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Abstract 

In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of 

the research due to their high gravimetric and volumetric hydrogen densities. Among them, 

Ca(BH4)2 and the Ca(BH4)2 + MgH2 reactive hydride composites (RHC), were calculated to have 

the ideal thermodynamic properties which fall within the optimal range for mobile applications. 

In this study, the addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 reactive hydride composite 

system was attempted aiming to obtain a full reversible system with the simultaneous 

suppression of CaB12H12.  

Structural characterization of the specimens was performed by means of in-situ Synchrotron 

Radiation Powder X-ray diffraction (SR-PXD) and 
11

B{
1
H} Solid State Magic Angle Spinning-

Nuclear Magnetic Resonance (MAS-NMR). The evolution of the chemical state of the Nb- and 

Ti-based additives was monitored by X-ray Absorption Near Edge Structure (XANES).  

The addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 system have not suppressed completely 

the formation of CaB12H12 and only a slight improvement concerning the reversible reaction was 

displayed just in the case of Nb-doped composite material.  
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1. Introduction 

The independence from a petroleum-based economy passes through the exploitation of hydrogen 

as a fuel. Nevertheless, its storage in a safe, efficient and convenient way still represents the 

main issue. Among other chemical fuels, hydrogen offers the highest energy density per unit of 

weight.[1] In addition, it does not pollute because when it is produced by renewable energy (e.g. 

solar), stored in a medium and burned in a fuel cell, only water vapor is produced as waste.[2]  

In the last decade, alkaline and alkaline earth metal tetrahydroborates have been the focuses of 

the research due to their high gravimetric and volumetric hydrogen densities.[3] Among them, 

Ca(BH4)2 and the Ca(BH4)2 + MgH2 reactive hydride composites (RHC) are considered one of 

the most interesting because calculations have demonstrated that they possess ideal 

thermodynamic properties which meet the requirements of the automotive technology.[4] 

Ca(BH4)2 + MgH2 composite system, for instance, offers both a 10.5 wt. % theoretical hydrogen 

storage capacity and an estimated equilibrium temperature lower than 160 °C. [5] If MgB2 forms 

upon desorption, the system offers better reaction enthalpy and faster re-hydrogenation kinetics. 

[5] However, experimental results reported in the literature do not match the predictions of the 

calculations. The sorption kinetics is, generally, sluggish and only partial reversibility was 

achieved so far. [6-10] In fact, besides CaH2 and H2, the decomposition of calcium borohydride 

leads to the formation of boron or several boron-based compounds such as CaB6, CaB2H2, 

CaB2H6 and CaB12H12.[11-14] The competition among these decomposition products lies in the 

range of a few kJ mol
-1

 H2. [13] Moreover, so far, no evidence for the formation of MgB2 upon 

desorption is reported.  

The reasons for the unsuccessful full reversibility in the Ca(BH4)2 and the Ca(BH4)2 + MgH2 

reactive hydride composite system are linked to both the slow boron mass transport and the 

phase segregation of chemically very stable phases (e.g. boron, CaB12H12).[15,16]   

The addition of transition-metal chlorides and fluorides (TiCl3, NbF5 and TiF4) demonstrated to 

be beneficial to avoid the formation of boron and drive the decomposition reaction to CaB6 

which was reported to be essential for the occurrence of the reversible reaction. [10, 17, 18] In 

fact, when transition-metal chlorides and fluorides are combined with a hydride phase and 

subjected to the mechanochemical processing, they transforms into more stable compounds (e.g. 

transition-metal based nanoparticles) which might act as heterogeneous nucleation sites.[17]  
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In this study, the addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 reactive hydride composite 

system was attempted aiming to obtain a full reversible system with the simultaneous 

suppression of CaB12H12. Structural characterization was performed by means of in-situ 

Synchrotron Radiation Powder X-ray diffraction (SR-PXD) and 
11

B{
1
H} Solid State Magic 

Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR). The evolution of the Nb- and Ti-

based phases was monitored by X-ray Absorption Near Edge Structure (XANES).  

The addition of NbF5 or TiF4 to the Ca(BH4)2 + MgH2 system was not efficient in suppressing 

completely the formation of CaB12H12 and only a slight improvement concerning the reversible 

reaction is displayed just in case of the Nb-doped composite sample.  

 

2. Material and Methods 

Pure Ca(BH4)2 powder was obtained from Sigma-Aldrich. MgH2 was purchased by Goldschmidt 

(purity 95%). The MgH2 powder was pre-milled for 5 hours in a stainless steel vial under 1 bar 

argon atmosphere using a Spex Mixer Mill (model 8000) with 10:1 as ball to powder ratio. One 

gram of powder mixture, composed by commercial Ca(BH4)2 and premilled MgH2, was milled 

together for 5 hours using a Spex Mixer mill (model 8000). The milling was performed in a 

stainless steel vial under 1 bar of argon pressure with 10:1 as ball to powder ratio (3 spheres of 

3.5 g each one and 1 g of powder). Both powder handling and milling were done in an MBraun 

argon glovebox with H2O and O2 levels below 10 ppm to prevent contamination.  

The sorption and kinetics properties were evaluated using a Sievert apparatus (Hydro 

Quebec/HERA Hydrogen Storage System). The de-hydrogenation was investigated by heating 

from room temperature (25 °C) up to 400 °C with 5 °C min
-1

 as heating rate in static vacuum 

(0.02 bar the starting pressure value). Re-hydrogenation was performed on the de-hydrogenated 

products at 350 °C and 145 bar H2 for 24 hours. 

Differential Scanning Calorimetry was performed in a Netzsch STA 409 C in 50 ml min
-1

 argon 

flow. The samples were investigated in the 25-500 °C temperature range with 5 °C min
-1 

as 

heating rate. 

In-situ Synchrotron Radiation Powder X-ray diffraction (SR-PXD) was carried out at the 

synchrotron MAX-lab, Lund (Sweden) at the beamline I711. The beamline is equipped with a 

MAR165 CCD detector. An especially designed cell for in-situ diffraction studies on solid/gas 

reactions was employed. The powder samples were charged in a sapphire single crystal tube. 
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Every operation was performed in an argon filled glovebox with H2O and O2 levels below 0.1 

ppm. Under the sapphire tube a thermocouple is mounted in order to control the temperature. A 

gas supply system was connected to the cell which allows changing of the gas atmosphere. The 

X-ray exposure time was 30 s per powder diffraction pattern. The experiments were done heating 

the powder from room temperature up to 400 °C with a scanning heating rate of 5 K min
-1

. The 

FIT2D software was used to remove diffraction sapphire spots from the 2D pictures acquired. 

The abundance of phases was evaluated using the Rietveld method (using the MAUD software). 

[19] 

XANES (X-ray Absorption Near Edge Structure) measurements were performed in transmission 

mode at the synchrotron Hasylab, DESY (Hamburg), at the beamline A1 and C respectively. 

Spectra were collected at the Ti and Nb K-edge (4966 and 18986 eV respectively) under vacuum 

at ambient temperature. The as milled and de-hydrogenated/re-hydrogenated materials were 

mixed with dried cellulose powder for dilution before experiments. Then, materials were pressed 

into pellet and placed between two Kapton foils on aluminum sample holders. All powder 

handling and sample preparation was entirely performed in an argon filled glovebox. Ti-foil, 

TiB2, Ti2O3, TiO2 (anatase), TiO, TiF3 and TiF4 samples were used as a reference for the 

measurements at the Ti K-edge. Nb-foil, NbO, NbF5, NbB2, Nb2O5 and MgNb2O6 samples were 

used as a reference for the measurements at the Nb K-edge. EXAFS data processing was carried 

out by the software ATHENA and ARTHEMIS [20] two interactive graphical utility based on 

the IFFEFIT [21] library of numerical and X-ray Absorption Spectroscopy (XAS) algorithms. 

All data are normalized and pre-edge background is subtracted. 

Solid State Magic Angle Spinning - Nuclear Magnetic Resonance (MAS-NMR) spectra were 

obtained using a Bruker Avance 400 MHz spectrometer with a wide bore 9.4 T magnet and 

employing a boron-free Bruker 4 mm CPMAS probe. The spectral frequency was 128.33 MHz 

for the 
11

B nucleus and the NMR shifts are reported in parts per million (ppm) externally 

referenced to BF3Et2O. The powder materials were packed into 4 mm ZrO2 rotors in an argon-

filled glovebox and were sealed with tight fitting Kel-F caps. The one-dimensional (1D) 
11

B{
1
H} 

and 
11

B MAS-NMR spectra were acquired after a 2.7 μs single π/2 pulse (corresponding to a 

radiofield strength of 92.6 kHz) and with the application of a strong 
1
H signal decoupling by 

using the two-pulse phase modulation (TPPM) scheme. The spectra were recorded at a MAS 

spinning rate of 12 kHz. Sample spinning was performed using dry nitrogen gas. The recovery 
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delay was set to 10 s. NMR spectra were acquired at 20 °C (controlled by a BRUKER BCU 

unit). 

 

3. Results and Discussion 

The SR-PXD patterns (at room temperature) for all the starting materials milled with additives 

are presented in Figure 1. The Bragg peaks of γ-Ca(BH4)2 (orthorhombic) [22], β-Ca(BH4)2 

(tetragonal) [23], MgH2 and CaF2 are visible. The values of the relative abundance of phases are 

reported in Table 1. 

The differential scanning calorimetry curves for the Nb- and Ti- doped composite materials are 

showed in Figure 2. The Figure displays one broad endothermic event shifted to lower 

temperatures (ca. 30 °C) with respect to the pure Ca(BH4)2 + MgH2 composite (dotted curve). 

The three endothermic events showed by the pure composite are not clearly visible in the curves 

of the doped materials. Likely, the single broad signal, in case of the doped composite materials, 

includes more than one event. A low intensity endothermic signal at ca. 380 °C is visible for the 

TiF4-doped material. Since with calorimetry only, it cannot be confirmed that these endothermic 

events correspond exclusively to hydrogen desorption reactions, the above mentioned materials 

were analyzed in the Sievert apparatus.   

Figure 3 shows the kinetic curves of the first desorption reaction of the composite milled with the 

additives, obtained by thermovolumetric measurements. For comparison purposes, the desorption 

curve for pure ball milled Ca(BH4)2 + MgH2 composite system is reported as well. 

The Figure evidences that the addition of transition metal fluorides changes the desorption 

kinetics. Whereas in the ball milled Ca(BH4)2 + MgH2 pure composite the hydrogen starts to be 

released around 350 °C, in the samples with additives the de-hydrogenation reaction begins 

already at 125 °C. Such a low temperature hydrogen desorption reaction was already observed 

for the Ca(BH4)2 system milled with transition metal fluorides additives [10].  

While the pure ball milled Ca(BH4)2 + MgH2 desorbs 6.4 wt. % hydrogen (in 3 hours) under the 

applied conditions, the samples with additives desorbs ca. 6.2 wt. % and ca. 5.8 wt. % H2 

respectively. The reason for the reduced hydrogen capacity delivered will be explained later.  

In-situ SR-PXD was employed to obtain a comprehensive understanding of the sequence of 

reactions occurring during hydrogen desorption for the samples doped with NbF5 and TiF4.  
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The in-situ SR-PXD patterns over the temperature are reported in Figure 4 for the material 

milled with NbF5 [24]. If not otherwise indicated, the desorption reaction was studied under 

static vacuum by heating from room temperature up to 400°C.  

The XRD pattern at 30 °C evidences the reflections of CaF2. CaF2 originates from an the 

irreversible reaction between Ca(BH4)2 and NbF5 during milling.[10,24] Its formations reduces 

the overall hydrogen capacity. The SR pattern at 217 °C shows that most of all the γ-phase has 

transformed into the β-phase. At 304 °C, the reflections of the β-Ca(BH4)2 decrease their 

intensity whereas Ca4Mg3H14, CaF2-xHx, Mg and MgO phase appear. The absence of MgH2 

together with the reduced fraction of β-Ca(BH4)2 phase indicate that the hydrogen desorption 

step, at 304 °C, is approaching the end. The ternary Ca-F-H phase is formed as decomposition 

product by the reaction between CaH2 and CaF2.[10] The ternary Ca4Mg3H14 phase decomposes 

in the 304-327 °C temperature range into CaH2, Mg and H2. Yet, the pattern at 304 °C displays 

the signal of the MgO phase. Albeit the samples were handled in inert atmosphere, formation of 

MgO could not be avoided. However, it seems that oxygen contaminations are already included 

in the starting Ca(BH4)2 material.[25] MgO reduces the amount of hydrogen measured by Sievert 

analysis (Figure 3). The final de-hydrogenated products, CaF2-xHx, Mg and MgO, are highlighted 

in the SR pattern at 400 °C. No trace of any boron-phase was detected by in-situ SR-PXD.  

The in-situ SR-PXD patterns for the material milled with TiF4 are reported in Figure 5.  

CaF2 is visible in this sample as well.[10] The SR pattern at 190 °C shows the phase 

transformation from γ- into the β-phase. At 304 °C, the reflections of the Ca3(
11

BH4)3(
11

BO3) 

phase appear. [25] This phase is the responsible for the second hydrogen desorption step of 

Ca(BH4)2 and it was not observed in the case of the sample milled with NbF5. The pattern at 343 

°C displays the decomposition products. The two hydrogen desorption reactions occur in the 

304-343 °C temperature range and when Ca4Mg3H14 phase decomposes (pattern at 343 °C) 

respectively. At 343 °C, the reflections of Ca4Mg3H14 decrease their intensity. In the 343-400 °C 

temperature range, Ca4Mg3H14 decomposes into CaH2, Mg and H2. Furthermore, at 343 °C, 

beside CaF2-xHx, the signal of the MgO phase appears. The final de-hydrogenation products at 

400 °C are CaF2-xHx, Mg, MgO and CaB6. The Bragg peaks of the calcium hexaboride are broad 

indicating an amorphous-like or nano-size microstructure. [10] No trace of other boron-phases 

(e.g. CaB12H12) is detected by in-situ SR-PXD. 
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The re-hydrogenation reaction was attempted on the dehydrogenated products at 145 bar H2 

pressure and 350 °C for 24 hours. SR-PXD diffraction was carried out on the re-absorbed 

materials doped with NbF5 and TiF4 and the results are reported in Figure 6. 

Figure 6 displays, for either patterns, the diffraction peaks of the α-Ca(BH4)2 phase. Hence, 

reversible formation was achieved. Nevertheless, the de-hydrogenated product CaF2-xHx is also 

visible indicating that the reversibility is just partial. Compared to the pure system, no trace of 

CaH2 can be detected in the SR-PXD patterns. [17] Instead, reflections of the Ca4Mg3H14 show 

up. CaH2 signals are absent because of the reaction with MgH2 to form the ternary Ca-Mg-H 

phase. The re-hydrogenated material shows only the α- polymorph whereas the starting Ca(BH4)2 

powder contained a mixture of the γ- and β- polymorph. The α- modification has an higher 

energetic stability compared to the other polymorphs. [26] 

11
B{

1
H} MAS-NMR was undertaken aiming to detect amorphous or nanocrystalline boron-based 

compounds which cannot be revealed by diffraction techniques. The spectra are reported in 

Figure 7.   

The NMR spectrum of the pure milled Ca(BH4)2 + MgH2 composite  shows two lines at -30 and 

-32 ppm corresponding to the γ (orthorhombic as the α-phase) and to the β-Ca(BH4)2 (tetragonal) 

phase respectively.[10] CaB12H12 provides a signal at -15.4 ppm.[16, 27] MgB2 signal falls at ca. 

100 ppm.[27, 28] The CaB6 spectrum exhibits two lines, at +12 and +0.75 ppm, due to the two 

different boron sites in its structure.[29] The material after first desorption evidences three broad 

signals: +16, -15.6 and -30 ppm. The peaks at +16 and at -30 ppm are linked to the CaB6 and to 

the residual β-Ca(BH4)2 respectively. The signal at -15.6 ppm belongs to CaB12H12.[8, 27] 

The material after second hydrogen desorption show the same three peaks (at +16, -15.6 and -30 

ppm) observed for the samples after first hydrogen desorption. The signals belong to CaB6, 

CaB12H12 and residual β-Ca(BH4)2 respectively. XRD analysis evidenced that pure Mg and CaF2-

xHx are also present among the final products (Figure 4 and 5). MgO (traces) forms as well. 

Figure 7 (2
nd

 Desorption) shows that only in case of the Ti-doped composite, the quantity of 

CaB12H12 formed is either reduced or its particles size become smaller over cycling. If a lower 

concentration of CaB12H12 is likely, a better reversibility respect to the pure composite system 

should be observed. Instead, a value of 3.2 wt. % of hydrogen (not shown here) is released for 

the Ti-doped system after second de-hydrogenation. As a matter of fact, this value attributes to 

the TiF4 doped composite system a reversibility of 55 % which is exactly the same value 
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observed for the pure composite system. Hence, no improvement in terms of reversibility is 

found for the Ti-doped composite respect to the pure one. The Nb-doped system after second 

desorption (not shown here), instead, delivers 4 wt. % H2. Therefore, a slight improvement of the 

reversibility (65 %) compared to the pure composite (55 %) is observed.  

The Nb-phase formed during sorption reactions was investigated by XANES (X-ray Absorption 

Near Edge Structure). XANES curves, measured at the Nb K-edge (18986 eV), are represented 

in Figure 8. For comparison purposes, the spectrum of the material after ball milling and after 

first hydrogen desorption, are reported as well [24].  

Figure 8 shows that a reaction between NbF5 and the Ca(BH4)2 + MgH2 composite has occurred 

during milling [24]. In addition, the Figure indicates that, after milling, the oxidation state of the 

Nb species reduces irreversibly. The curves corresponding to the milled and desorbed materials 

match that of NbB2 (measured as a reference). Therefore, it can be concluded that Nb has 

reduced its oxidation state from (V) to (II). Just as a mere estimation it can be claimed that  a Nb-

B bond exists in the first coordination shell since the curves of the milled, desorbed and the NbB2 

materials are overlapping along the EXAFS (Extended X-ray Absorption Fine Structure) region 

(at higher energies respect to the Nb absorption K-edge). This assumption needs, nevertheless, to 

be confirmed by the Fourier Transform analysis of the EXAFS data.  

The addition of TiF4 to the Ca(BH4)2 + MgH2 composite system does not exhibit any striking 

effect on the reversibility. However, for the understanding of the reaction mechanism it is 

necessary to know the nature of the Ti phase formed upon hydrogen sorption process.  

XANES analysis at the Ti K-edge (4966 eV), including the curve for the ball milled and re-

absorbed material, are reported in Figure 9.  

The analysis of the curves, in the pre-edge region of the spectra, suggests that a reaction between 

the Ca(BH4)2 + MgH2 composite and TiF4 has occurred during milling [24]. In fact, the signal at 

4971 eV for the TiF4 curve is not visible anymore in the curve of the milled sample. SR-PXD has 

shown formation of CaF2 after milling which is a evidence that a reaction has taken place in the 

vial (Figure 1 and 5). The curve of the milled sample, at the absorption edge, matches those of 

TiO2 and Ti2O3. TiF4 is not taken into account because it has reacted with Ca(BH4)2 to form 

CaF2. Formation of Ti-oxides is plausible because of the oxygen contaminations contained 

within the starting Ca(BH4)2 material. [25] Nevertheless, within the rising edge region (at higher 

energies compared to the pre-edge region) the curve of the milled sample overlaps that of pure 
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TiO2. This result is similar to what observed for the TiF4 doped Ca(BH4)2 system. [10] However, 

Buslaev et al.[30] would exclude formation of TiO2 as a product of the hydrolysis reaction of 

TiF4. As a matter of fact, it can be concluded that for the milled sample, Ti has an oxidation state 

between IV (TiO2) and III (Ti2O3).  

The re-hydrogenated material shows further reduction in the oxidation state of Ti. Formation of 

TiB2 seems to be promoted. Instead, within the rising edge region, the curve of the re-absorbed 

material falls between those of pure Ti2O3 and TiO2. Combining these observations, it can be 

concluded that Ti might have evolved to a compound with an oxidation state between II (TiB2) 

and III (Ti2O3) or a mixture of both different chemical states.[31]  

 

4. Conclusions 

A comprehensive investigation of the effect of TiF4 and NbF5 on the reversible hydrogenation 

reaction of the Ca(BH4)2 + MgH2 composite system was carried out by means of several 

investigation tools.  

Partial re-hydrogenation was achieved. XANES data evidenced the formation of transition metal 

boride nanoparticles either after milling or upon sorption reactions for the Ti- and Nb-based 

Ca(BH4)2 + MgH2 doped composite systems. The full re-hydrogenation reaction is still hindered 

by the formation of CaB12H12 which is highly stable. The reaction leading to the [B12H12]
2-

 is 

very favored and the transition metal borides nanoparticles are not able to both drive the 

desorption reaction to other boron-based compounds and to allow boron mass transport of very 

stable segregated phases.  

As a matter of fact, on one hand, the addition of transition metal fluorides leads to the formation 

of transition metal boride nanoparticles as evidenced by XANES. On the other hand, side 

formation of CaF2 is promoted which reduces the overall hydrogen content. Oxides-

contamination in the starting material also limits irreversibly the re-hydrogenation reaction. 

Moreover, it seems that transition metal boride nanoparticles are not able to overtake the 

extremely positive effect of Mg on the reversible formation of the Ca(BH4)2 – MgH2 composite 

system as already reported in the literature. [32]  
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Tables 

 

Table 1 

 

 

Phase Ca(BH4)2 + MgH2 + NbF5 Ca(BH4)2 + MgH2 + TiF4 

γ-Ca(BH4)2 40 wt. % (± 5 error) 41 wt. % (± 5 error) 

β-Ca(BH4)2 45 wt. % (± 5 error) 46 wt. % (± 5 error) 

MgH2 9 wt. % (± 5 error) 9 wt. % (± 5 error) 

CaF2 6 wt. % (± 5 error) 4 wt. % (± 5 error) 
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Captions 

Table 1. Phase abundances calculated by Rietveld method for the TiF4- and NbF5-doped 

Ca(BH4)2 + MgH2 composite system. 

 

Figure 1. XRD patterns after milling of the Ca(BH4)2 + MgH2 composite milled with 0.05 mol of 

NbF5 and TiF4. γ-Ca(BH4)2 (γ); β-Ca(BH4)2 (β); MgH2 (); CaF2 ().  

 

Figure 2. DSC curves at 50 ml min
-1

 argon flow of ball milled Ca(BH4)2 + MgH2 (dotted); 

Ca(BH4)2 + MgH2 + 0.05 mol of NbF5 (blue); Ca(BH4)2 + MgH2 + 0.05 mol of TiF4 (dark 

yellow). 

 

Figure 3. Volumetric measurements showing the desorption curves over the temperature. 

Desorption curve of the pure Ca(BH4)2 + MgH2 composite (black); Ca(BH4)2 + MgH2 + 0.05 

mol of NbF5 (blue); Ca(BH4)2 + MgH2 + 0.05 mol of TiF4 (dark yellow). 

 

Figure 4. SR-PXD patterns of Ca(BH4)2 + MgH2 milled with 0.05 mol of NbF5. The experiment 

was carried out by heating the sample in vacuum from RT up to 400 °C with 5 °C min
-1

 as 

heating rate. γ-Ca(BH4)2 (γ); β-Ca(BH4)2 (β); CaF2 (); MgH2 (); CaF2-xHx (); Ca4Mg3H14 

(); Mg (); MgO ().  

 

Figure 5. SR-PXD patterns of Ca(BH4)2 + MgH2 milled with 0.05 mol of TiF4. The experiment 

was carried out by heating in vacuum from RT up to 400 °C with 5 °C min
-1

 as heating rate. γ-

Ca(BH4)2 (γ); β-Ca(BH4)2 (β); CaF2 (); Ca3(BH4)3(BO3) (); CaF2-xHx (); Ca4Mg3H14 (); 

Mg (); MgO (); CaB6 ().  

 

Figure 6. XRD of Ca(BH4)2 + MgH2 doped with NbF5 and TiF4 after re-absorption reaction at 

350 °C and 145 bar H2 pressure for 24 hours. α-Ca(BH4)2 (α); CaF2-xHx (); Ca4Mg3H14 (); 

MgH2 ().  

 

Figure 7. 
11

B{
1
H} MAS-NMR spectra at room temperature of pure Ca(BH4)2+ MgH2 and milled 

with 0.05 mol of TiF4 and NbF5 after first hydrogen desorption (1
st
 desorption) and after second 



  

13 

 

hydrogen desorption reaction (2
nd

 desorption). The NMR spectra of milled Ca(BH4)2+ MgH2, 

MgB2, CaB6, CaB12H12 and boron are included. Side bands are indicated by , , , , , . 

 

Figure 8. XANES data at the Nb K-edge for Ca(BH4)2 + MgH2 + 0.05 mol of NbF5 after ball 

milling and first hydrogen desorption. 

 

Figure 9. XANES data at the Ti K-edge for the Ca(BH4)2 + MgH2 + 0.05 mol of TiF4 after ball 

milling and re-absorption process.  
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Figure 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

24 

 

Figure 9 

 

 

 



  

Highlights: 

• Lower hydrogen desorption reaction evidenced by the addition of transition metal 

 fluorides additives with respect to the pure composite system. 

• Kinetic improvement concerning re-hydrogenation reaction showed by the addition of 

 NbF5. 

• Full characterization of the de-hydrogenation reaction pathway by means of both 

 SR-PXD and 11B{1H} MAS-NMR. 

• Study of the evolution of the chemical state of the additives upon both milling and  

 sorption reactions. 

 

 

  

 


