
 

 

 

 

Abstract— Starting with data obtained from human-subject 

experiments to investigate farmers’ responses to a 

conservation incentive scheme, we derive a cognitive model 

of the farmers’ decision-making behaviour, and implement 

this model within an agent-based simulation of farmers 

interacting via different types of social network.  We find 

that the outcome of the scheme in early time periods is 

improved by providing more information to farmers. 

However, changing the structure of the social network by 

which the information is provided has no effect. 

I. INTRODUCTION 

HIS abstract contributes to the literature on the use of 

agent based simulation modeling to study the pattern of 

land use behaviour on privately owned geographical 

landscapes, specifically agricultural landscapes. Such 

landscapes deliver ecosystem services that are beneficial for 

mankind (Millennium Ecosystem Assessment Report 2005), 

including food and water provision, flood control, insect 

pollination services for crop cultivation, water quality 

maintenance and habitat and biodiversity protection. Land 

use behaviour pertaining to the provision of these ecosystem 

services is commonly incentivized with the help of 

conservation incentive schemes termed Payment for 

Ecosystem Services (PES) Schemes. These schemes entail 

financial compensation for private landowners, most 

commonly farmers, who adopt pro-conservation land uses 

on their property. The economic rationale behind such funds 

transfer is that many ecosystem services have public good 

features, leading to their under-provision by the private 

agent – thus increase in supply can be potentially affected by 

making targeted payments to farmers. Another rationale for 

these payments is that since the ecosystem services provided 

by the farmers have benefits for society, farmers should be 

compensated for producing these benefits. Examples of PES 

schemes include the Stewardship Scheme in the UK (Dobbs 

and Pretty 2004), the Conservation Reserve Program in the 

US (Ferris and Siikamäki 2009) and the Pago por Servicios 

Ambientales (PSA) in Costa Rica (Sanchez-Azofeifa et al. 

2007). 

In the domain of PES schemes, one issue that has received 

widespread attention is that adopting the same land use on 

parcels of neighbouring farms, or on parcels within a given 

distance of each other, can increase the delivery of many 

ecosystem services which have positive spatial synergies 

(Margules and Pressey 2000). The economic literature by 

Parkhurst et al. (2007), Warziniack et al. (2007), Watzold et 

al. (2010) and Banerjee et al. (2012 & 2014) has focused on 

the study of the Agglomeration Bonus (AB) subsidy, that 

incentivizes such spatially coordinated land use behaviour 

by neighbouring landowners. The AB is a two-part payment 

scheme with a base payment and a bonus contingent on 

spatial coordination of land uses by neighbours. In this 

format the AB takes the form of a coordination game with 

multiple Nash equilibria, each corresponding to a particular 

land use strategy, ranked in terms of their payoffs – under 

one Nash equilibrium situation, participants make more 

money than under the other. This is the Pareto efficient 

equilibrium. However, depending upon the payoffs, the 

equilibrium selection principle of risk dominance (Harsanyi 

and Selten 1988) may select equilibria other than the Pareto 

efficient one, resulting in coordination failure. Previous 

experimental work has analyzed performance of the AB 

scheme and coordination failure under various conditions 

such as repeated interactions with neighbouring farmers, or 

the possibility of communication before making land use 

decisions (Parkhurst and Shogren 2007; Warziniack et al 

2007).  

Banerjee et al. (2012, 2014) focus on behaviour on simple 

local networks where every farmer has two neighbours 

whose actions determine whether they receive AB bonus 

payments or not. Laboratory experiments are used to explore 

the performance of the AB scheme in achieving cooperation 

amongst farmers over repeated periods of strategic 

interaction. In this paper we build upon these experimental 

results, first by extracting from them a cognitive model of 

the farmers’ decision-making behaviour in response to the 

scheme, and then by using agent-based simulation to 

investigate how the performance of the AB scheme is 

affected by the amount of information available to farmers 

and the source from which this information is received. Our 

model adds to the large body of agent-based modelling 

literature focusing on the study of land use change and 

decision making under various economic settings as 
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applicable to environmental management and conservation 

(Berger 2001; Filatova et al.; Ng et al. 2011). We also 

contribute to the growing body of work on combining agent-

based modeling with human-subject experimentation (Duffy 

2006). 

Our cognitive model combines imitative learning (Eshel 

et al. 1998) and myopic best response (Morris 2000), along 

with force of habit (Blume 1993, Kahneman 2003) and a 

non-specific, time-dependent learning effect. Simulations 

using this model show that giving farmers more information 

about other farmers’ choices and payoffs leads to higher 

levels of cooperation during early periods.  However, 

changing the source of that information – whether it comes 

from local neighbours only or from long-range contacts in a 

small world network – has no effect on cooperation levels. 

II. METHODS 

A. Experimental data 

 

Fig. 1. Network structure in human subject experiments. The 

geographical network (solid lines) is a ring of 12 farmers. The 

information network is either a ring (solid lines only) or a ring lattice 

(solid and broken lines). Squares represent subjects adopting strategy 

M and circles represent subjects adopting strategy K. 

 

The starting point of our work is data from human subject 

experiments by Banerjee et al. (2014). These experiments 

considered networks of 12 subjects representing farmers 

arranged geographically on a ring, as pictured in Figure 1. 

Each subject on this network is geographically adjacent to 

two neighbours, one on the left and one on the right, termed 

direct neighbours. From a conservation perspective a ring 

network is useful as it is representative of many 

geographical landscapes, such as riparian landscapes, but 

removes potential sources of confounding due to edge 

effects. Experiments lasted for 30 periods. During a period, 

each subject was asked to choose between two alternative 

strategies, M (the “efficient, cooperative” choice) and K (the 

“inefficient” choice), represented as green squares and red 

circles, respectively, in the figure. Subjects were provided 

with a payoff table (Table 1) informing them of the payoffs 

they would receive for each choice, depending upon the 

choices of their direct neighbours in the same period. For 

example, subject 1 in Figure 1 receives a payoff of 60 (the 

player’s choice is K and the neighbours’ choices are MM). 

In each period, subjects are informed of certain other 

subjects’ choices and payoffs in the previous period. In one 

treatment, this information comes from directly linked 

neighbours only. In a second treatment, the information also 

comes from indirect neighbours, who are the direct 

neighbours of the subject’s two direct neighbours on both 

sides (pictured as broken lines in Fig 1).  

Experiments were carried out during 12 sessions (6 for 

each treatment), with 12 participants at each session. The 

experimental data (see for example, Figure 4) shows a 

relatively high initial level of cooperation which declines 

steadily over time. 

 

B. Cognitive model 

Many models of human decision making in iterated 

strategic interactions have been proposed in the literature. 

Myopic best response (Morris 2000) models cognitively 

sophisticated agents capable of strategic thinking. In this 

model, an agent’s choice for the current period is the 

strategy that is the best response to the situation faced in the 

previous period. So for example, subject 1 in Figure 1 will 

choose strategy M in the next period, as that is the best 

response to the situation  where both neighbours (subjects 2 

and 12) having chosen M previously will do so in the current 

period as well. 

Imitation (Eshel et al. 1998) is an alternative model which 

requires less cognitive ability on the part of agents. In this 

model, an agent simply considers the strategies and payoffs 

of its neighbours from the previous period, and copies the 

most rewarding strategy in the current period. Force of habit 

(Blume 1993, Kahneman 2003) is an even simpler model 

that captures the fact that human beings are cognitively 

sluggish and tend to repeat the same behaviour even when it 

might be in their economic interest to change. 

Our cognitive model combines myopic best response, 

imitation, and force of habit, together with a period term 

intended to capture other, non-specific forms of learning 

over time that might take place (for example, growing 

apathy or cynicism leading to reduced willingness to 

cooperate). The model was derived by applying logistic 

regression to the strategic choices of the human subjects in 

experiments. The model gives the probability (p) that an 

agent will choose strategy M in the next period. The model 

includes three binary predictors, representing whether 

strategy M is the choice predicted by myopic best response 

(MBR), imitation (Imit), and force of habit (Habit), 

respectively. The time period (t) is the final predictor.  Table 

2 shows the details of the statistical analysis. The estimated 

regression equation is: 

TABLE I. 

PAYOFFS IN THE AGGLOMERATION BONUS GAME 

 Direct neighbors’ choices 

Landowner choice MM MK KK 

M 90 50 10 

K 60 70 80 
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C. ABM dynamics 

 

 
Fig. 2. Flow diagram for a single agent i. 

 

Figure 2 illustrates the logic followed by a single agent i in 

the simulation. Initially, the agent will randomly select either 

strategy M or K, with a probability of 0.68 of choosing M. 

This probability reflects the proportion of times M was 

chosen by the experimental subjects in the initial period. The 

payoffs for the current period are then calculated. The 

strategies chosen by direct neighbours are examined and 

used to calculate the myopic best response prediction for the 

next period. The strategies and outcomes for all social 

contacts are examined and used to calculate the imitation-

based prediction for the next period. Finally, these 

predictions are fed into the cognitive model equation, 

yielding a probability pit(M) that agent i will select M in the 

next period t, and the agent randomly chooses a strategy 

according to this probability. 

D. Social network treatments 

The literature on community natural resource 

management (Bodin et al. 2009; Prell et al. 2009) suggests 

that social networks within farming communities play an 

instrumental role in determining the success of natural 

resource management initiatives. In our model, the social 

network acts as the source of information about other 

farmers’ strategic choices and consequent payoffs. We 

consider the impact of varying two aspects of these social 

networks 1) the number of social contacts per agent, which 

determines the amount of information the agent receives, 

and 2) the topology of the network.  

 

 

 

Fig. 3. Geographical network of a ring of 12 farmers with two different 

social networks. Solid lines represent the geographical network; solid and 

broken lines represent the social network. Top: regular social network 

where each agent has exactly 6 local contacts. Bottom: small world social 

network where each agent has on average 6 contacts which may be local or 

long-range. 

TABLE 2. 

STATISTICAL DERIVATION OF THE COGNITIVE MODEL 

Random-effects logistic regression 

Number of observations: 4176 

Number of agents: 144   (exactly 29 observations per group) 

Random effects ui ~ Gaussian 

Wald chi2(4) = 929.18                      Prob > chi2 = 0.00 

 Coef 
Std 

Err 
z 

P > 

[z] 

[95% conf. 

int.] 

MBR 2.83 0.20 14.16 0.00 2.44 3.22 

Imit 0.69 0.17 4.15 0.00 0.36 1.02 

Habit 2.88 0.17 17.26 0.00 2.56 3.21 

t -0.05 0.01 -5.39 0.00 -0.07 -0.03 

constant -2.42 0.20 -11.97 0.00 -2.82 -2.03 
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Agents may receive information, not only from their two 

direct, geographical neighbours, but also from indirect 

neighbours, a situation referred to as information spillover. 

To study the impact of the amount of information received, 

we consider a range of information spillover setups, starting 

from the minimum setup where an agent’s only social 

contacts are its two geographical/direct neighbours, to one in 

which the social network is a fully-connected clique. Figure 

1 and Figure 3 (top) show two points on this range, 

illustrating the cases where each agent has, respectively, 4 

and 6 social contacts. The social networks in this study are 

regular networks, of a ring-lattice type, with varying degree. 

To study the impact of the network topology, we begin 

with the regular social networks of the previous stage, and 

rewire some of the links by replacing them with random 

links. The effect of rewiring is to replace some local links 

with long-range links. This reduces the diameter of the 

network, allowing information to flow more quickly 

between nodes that are geographically distant. The resulting 

networks have the small-world property, which has been 

observed in many real world social networks (Watts and 

Strogatz, 1998) and has been found to influence the 

dynamics of many processes that take place on those 

networks, e.g., epidemic spread and control (Maharaj and 

Kleczkowski, 2012). By varying the probability of rewiring, 

we create a range of social networks, from ones with only 

local links (Figure 3, top), to small world networks (Figure 

3, bottom), up to fully random networks. (We note that 

rewiring, as implemented in our model, may cause links with 

direct neighbours to be lost, which is arguably unrealistic). 

III. RESULTS 

A. Comparison of cognitive model with experimental data 

Figure 4 shows a comparison of the experimental data 

with simulations using our cognitive model with the same 

geographical and social network setups used in the 

experiments. Here, the information network is a ring lattice, 

as shown in Figure 1. We also show the results of simulating 

two simpler cognitive models: pure myopic best response 

and pure imitation. As the figure shows, neither of the 

simpler models yields results that resemble the experimental 

data, therefore it seems likely that the cognitive process 

employed by experimental subjects is more complicated than 

either of these. As a measure of model fit we can use the 

sum of squared differences between the model result and the 

experimental result at each time step. The imitation model 

scores 142471 and the myopic best response model scores 

23938. Our cognitive model, which combines these simple 

models with force of habit and a non-specific time-

dependent learning effect, captures the behaviour of the 

experimental subjects better, particularly in the early 

periods, having the best score (10737). The correspondence 

between the model and the experimental data is even better 

in the case of the simple ring network (not shown). 

 

Fig.  4  Comparison of experimental data with simulations of myopic 

best response, imitation, and the combined model. The figure shows the 

percentage of cooperation (M choices) by period. The geographical and 

information networks are as in Figure 1. Simulation results show the 

median of 1000 replicates. In all cases, the information network is a 

ring lattice (direct and indirect neighbours) as shown in Figure 1. 

B. Effect of information 

Figure 5 shows the results of increasing the amount of 

information available to agents.  In this figure, simulations 

are done on regular networks with local social contacts, of 

the form shown in Figure1 and Figure 3 (top). Our results 

indicate that given the current adverse payoff structure 

(whereby there is not much payoff difference between a 

player and neighbours choosing  M or K) on a local network, 

increasing the information available to agents increases their 

likelihood of efficient coordination in the short term but does 

not prevent the inefficient strategy from becoming 

contagious in the long run. Thus performance of AB-based 

PES schemes should consider mechanisms to ensure that the 

efficient outcome can be obtained in the presence of more 

information even if repeated interaction has a tendency to 

transition the system to the inefficient outcome.  

 
 
Fig. 5. Number of periods taken for the percentage of M choices to fall 

to 10% or less, against number of social contacts, in a regular network of 

100 nodes with local information. Each box represents 100 replicates. 

Increasing information leads to greater cooperation in early periods  
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Surprisingly, introducing long-range, non-local links into 

the social network has no effect on cooperation. Figure 6 

shows typical results. Here, the total number of links in the 

network is kept fixed at 200 (equivalent to a ring lattice as in 

Figure 1), but the probability of replacing a local link with a 

randomly chosen, possibly long-range link, is varied from 0 

to 1. The time taken for cooperation to drop below 10% is 

the same, regardless of the structure of the social network. 

(Note that the result for the case where there is no rewiring 

differs slightly from the equivalent case in Figure 5; this 

appears to be due to stochastic differences between the 

simulations used in the two figures.) 

 
Fig. 6. Number of periods taken for the percentage of M choices to fall 

to 10% or less, against rewiring probability, in a Watts-Strogatz information 

network of 100 nodes. Each box represents 100 replicates. Replacing local 

with long-range information has no effect on cooperation.  

 

IV. CONCLUSION 

We evaluate spatial coordination of agents in an AB 

scheme when they are arranged on a ring and receive 

information about others’ actions through social networks of 

varying topologies. We find that additional information and 

network structure play only a limited role in maintaining 

efficient coordination over repeated periods of strategic 

interaction. Future research in this context may thus involve 

devising and testing different ways of preventing contagion 

of the inefficient action. One option would be to evaluate 

agent behaviour when the payoff difference between 

efficient and inefficient equilibria is much higher than what 

we consider. Another option is to explore whether 

information about AB scheme decisions from neighbouring 

communities can influence agents’ to coordinate efficiently. 

This is important since conservation agencies usually have 

access to this information that they can make available to 

farmers at minimal cost. Finally, noting that the network 

structure does not matter, it would be interesting to use a 

mean-field mathematical model to simulate behaviour and 

evaluate AB scheme outcomes.  
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