
TFG EN ENGINYERIA INFORMÀTICA, ESCOLA D’ENGINYERIA (EE), UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB) 1

UNIT4 - Platform SNMP Provider
Alejandro Aguilera Ruiz, Universitat Autònoma de Barcelona.

Abstract—UNIT4 is a multinational dedicated to the software industry for business management; the Research and

Development department develops and uses the karat platform to deploy their products and services. The objective of this

Project was to publish management information from the karat platform in order to administrate karat servers using third party

market tools, which support network or application management standards like the Simple Network Management Protocol or

Java Management eXtensions. A Java Application was developed to achieve the objective and meet the requirements of the

Project, using an iterative agile methodology and providing not one, but two standard management services for the whole

platform. Karat servers can now be administered by most of the commercial network management systems of our days.

Index Terms— Java Management eXtensions, Management Information Base, network management, network monitoring,

Simple Network Management Protocol

Abstract (cat)—UNIT4 és una multinacional dedicada a la indústria del software per a la gestió empresarial; el departament

d'Investigació i Desenvolupament desenvolupa i utilitza la plataforma karat per desplegar els seus productes i serveis.

L’objectiu d'aquest Projecte va ser la publicació d'informació administrativa de la plataforma karat per tal de gestionar els

servidors karat utilitzant eines de mercat de tercers, que suporten estàndards de gestió de xarxes o d'aplicacions com el Simple

Network Management Protocol o les Java Management eXtensions. Una aplicació Java va ser desenvolupada per aconseguir

l'objectiu i complir amb els requeriments del Projecte, utilitzant una metodologia iterativa àgil i proveint no un, sinó dos serveis

estàndard de gestió per a la plataforma. Servidors karat ja poden ser administrats per la majoria dels sistemes comercials de

gestió de xarxes dels nostres dies.

Paraules Clau— gestió de xarxes, Java Management eXtensions, Management Information Base, monitorització de xarxes,

Simple Network Management Protocol

——————————  ——————————

1 INTRODUCTION

EFORE the adoption of the Internet Protocol Suite
(TCP/IP) in the early eighties [1], companies that

wanted to manage their primitive network had only one
option: to rely that their network vendor would provide a
highly expensive Network Management System that
operated at physical layer. Then TCP/IP occurred and
Network Management evolution began, interoperability
became a huge concern and standardization efforts start-
ed.

It was in 1988 when “A Simple Network Management
Protocol” (SNMP) was introduced, as an answer to the
need of a network management standard for TCP/IP
network vendors and operation communities [2], and
since then a several number of technologies have ap-
peared with one goal: to guarantee the higher availability
possible to the managed devices.

UNIT4 is a multinational company that develops and
deploys services and products for business management,
and it is their obligation to ensure the availability, per-
formance and security of their services to the customer.

The Research and Development Department (R&D) of

UNIT4 (Spanish branch) currently develops and uses the
karat platform, fully written in Java. On this platform all
products are installed and the configuration is done by
using the karat Control Panel. The panel is the central
point for all the configuration and management of karat
servers, but it presents 3 problems:

1. It does not store historic data.
2. It does not use notification or alarm mechanisms.
3. It does not comply with any network or applica-

tion management standard.
Platform SNMP Provider is a project developed in the

context of an internship program, where network man-
agement is approached from the vendor point of view;
the objective is to publish management information from
the karat platform, in order to provide the user with the
ability to administrate these servers by means of market
tools which support network or application management
standards, like SNMP, Java Management eXtensions
(JMX) or Web-Based Enterprise Management (WBEM)
technology.

This article begins with the state of the art regarding
network and application management, followed by an
explanation of the methodology used in order to accom-
plish the objectives. At this point, the achieved results
will be presented and this will finally allow us to evaluate
the Project in the conclusion section and show the possi-
ble future work.

June of 2014, Escola d’Enginyeria (UAB)

————————————————

 Contact e-mail: alejoag9900@gmail.com
 Specialization in: Software Engineering
 Work supervised by: Oriol Ramos Terrades (Computer Science Depart-

ment) and Ezequiel Parra Mestre (UNIT4-Iber)
 2013-2014 course

B

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78522171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 EE/UAB TFG INFORMÀTICA: UNIT4 – PLATFORM SNMP PROVIDER

2 STATE OF THE ART

Nowadays, network management is a critical factor to
consider in any company. A common way of characteriz-
ing network management functions is the 5 category ac-
ronym FCAPS, which stands for Fault, Configuration,
Accounting, Performance and Security. It is the model
and framework of the ISO Telecommunications Manage-
ment Network Group [3].

Many network management systems provide the full

FCAPS capability, though in this project we are especial-

ly interested in fault and performance. Therefore, tech-

nologies that allow this kind of network management

are: Simple Network Management Protocol (SNMP) [4]

and Web Based Enterprise Management (WBEM) [5].

On the other hand, since the karat platform is fully

written in Java, the technology that provides manage-

ment functionality for this language is called Java Man-

agement eXtensions (JMX) [6]. There is also a WBEM

API specification under the Java Community Process

JSR-48 [7].

All these technologies and standards were considered

in order to choose the best option for the Project; the

description of each one will be explained further in the

following subsections.

Before the description of each technology, some basic

terms shared in network management should be ex-

plained. In a typical network environment, there are one

or more administrative computers, called managers;

their function is to monitor or manage a host or a group

of hosts.

In order to do that, they need some sort of software

component in each host, which will gather the infor-

mation and perform the management tasks, this is called

an agent.

The manager on the other hand runs several compo-

nents or drivers which are compliant with many tech-

nologies for network management (SNMP, JMX and/or

WBEM amongst them), so is often called a Network

Management System (NMS) instead of just manager

because it integrates all these monitoring and manage-

ment protocols, standards and/or tools.

2.1 Simple Network Management Protocol (SNMP)

SNMP is a component of the TCP/IP stack, as defined by
the Internet Engineering Task Force (IETF). It consists on
a set of standards for network management contained in
a series of Request for Comments (RFC) documents [8],
including:

1. An application layer protocol: Simple Network
Management Protocol or SNMP (RFCs 3411-3418).

2. A database schema: Structure of Management In-
formation Version 2 or SMIv2 (RFC 2578).

3. A set of data objects: Management Information
Base Version 2, usually called MIB-II or MIB-2
(RFC 1213).

An SNMP manager can query data from the agent or

agents and also set this data. SNMP agents on the other

hand gather data from the host and reply to the manag-

ers requests; in addition, they can send alarms or notifi-

cations asynchronously to the manager.

2.2 Java Management eXtensions (JMX)

Java Management eXtensions is the Java technology that
supplies tools for managing and monitoring applications,
devices or service oriented networks. It is not a protocol
but a less restrictive technology that does not force any
transport or communication methods, instead provides
different options for those purposes. It uses a 3 level
architecture [9]:

1. Probe level: includes the probes (classes) that in-
strument the information. They are called MBeans.

2. Agent level: it is a server where all MBeans are
registered. The implementation is called MBean
Server.

3. Remote management level: enables other applica-
tions to access the MBean server, via connectors
using various communications methods (RMI,
IIOP, etc.) or via adaptors to other protocols
(SNMP, HTTP, etc.)

A JMX manager application accesses the MBean Serv-

er and therefore the MBeans; the manager can get

and/or set attributes and call methods remotely, which

are defined in each MBean (see Figure 2).

Similar to SNMP, MBeans can also send asynchronous

notifications, but in this case the manager will have to

subscribe explicitly to each MBean in order to receive

them.

Fig. 1. Architecture of SNMP. SNMP Managers send SET and GET
requests; SNMP Agents send the respective responses. In addition,
SNMP Agents can send asynchronous notifications.

ALEJANDRO AGUILERA RUIZ: UNIT4 – PLATFORM SNMP PROVIDER 3

2.3 Web-Based Enterprise Management (WBEM)

Web-Based Enterprise Management is a set of manage-
ment and Internet standard technologies developed to
unify the management of distributed computing envi-
ronments, facilitating the exchange of data across differ-
ent technologies and platforms. It includes:

1. A data definition: Common Interface Model
(CIM).

2. A transport/encoding method: CIM-XML.
3. An access mechanism: HTTP.
 A WBEM manager application will find the WBEM

server and then the devices; the manager will send en-

coded messages, commonly containing requests, to the

WBEM server via HTTP.

The server will decode the requests and consult the

model of the device to determine how to handle the

request. The interaction is made by the providers, which

are the agents in this infrastructure; the providers inter-

act with the real hardware or software and make the

respective system calls (see Figure 3).

CIM defines a synchronous alarm mechanism contain-

ing indications and triggers. Triggers are the criteria's

for an object or set of objects; triggers contain a tempo-

rary instance of the object that emitted the alarm, this is

called an indication. Triggers stay on the manager until

acknowledged.

2.4 Comparison

In brief, the architecture of all these technologies is very
similar; they mainly differ in the data definition. SNMP
data definition is much more restrictive (defined by MIB-
2) while JMX and WBEM are object oriented and more
flexible.

Obviously alarm and notification mechanisms are af-

fected by the data definitions, so in JMX and WBEM

alarms are more flexible than in SNMP. In JMX and

WBEM criteria for each object or even instance can be

defined while in SNMP alarms are bound to a specific

agent and MIB-2 data set implementation.

It is evident that any of these 3 options would help us

to accomplish our objective and at first sight it is diffi-

cult to determine which one is more appropriate, but

because of the wide use of SNMP in the current Net-

work Management Systems, it seemed this was the path

to take.

However, the team that develops the karat platform

expressed their interest in the implementation of JMX

technology, since it is the standard in Java; subsequently

both options were chosen for development.

3 METHODOLOGY

For the correct development of the Project and in order to
accomplish the objective, the Scrum methodology was em-
ployed [10]. At UNIT4, all the teams use this methodology
and it was important to keep this Project in line with the rest.

Coupled with the Scrum methodology, some devel-
opment constraints were considered and acknowledged.

First of all, the whole Project had to be developed in
Java, because karat and its products are written in this
programming language (the control panel amongst
them).

In consequence and to fulfill the need of software con-
figuration management, a Subversion (SVN) versioning

Fig. 2. Architecture of JMX. JMX Clients reach the MBean Server over
various connectors (RMI, HTTP, IIOP and others). MBean Servers
contain the MBeans which are the probes that manage the resources
and send asynchronous notifications.

Fig. 3. Architecture of WBEM. The WBEM application sends encoded
CIM-XML requests to the WBEM server. The WBEM server processes
them and reaches the correct provider. The providers manage the
resources and make the system calls if needed.

4 EE/UAB TFG INFORMÀTICA: UNIT4 – PLATFORM SNMP PROVIDER

and revision control system [11] was used, for the com-
pany had all the infrastructure and tools ready for the
process.

The configuration management rules were simple: 1)
only commit correct code to the repository (verified and
properly tested), and 2) a single branch will be used for
the whole Java Project. The first rule implied that the
development process would occur in local, and the se-
cond rule implied that there would be no parallel devel-
opment, since one person was to be developing the Java
Project at any time.

3.1 Scrum

Scrum is an iterative and incremental agile methodology
that challenges assumptions of the traditional sequential
approach. It acknowledges that in the course of a project,
customers can change their mind about their needs, leading
to unpredicted changes; therefore scrum teams focus on
delivering software constantly and responding to emerging
requirements, instead of fully understanding or defining the
problem, which is most of the time impossible.

In Scrum, cycles or sprints are defined in a closed time
box, usually 3 to 4 weeks long. These cycles are composed
by stories which are atomized requirements. A story is
functionality or a set of functionalities that provide value
to the customer and help the team accomplish the objec-
tives.

The product backlog is an ordered list of everything
needed in the project. It is the ensemble of all the stories,
by priority order. This artifact is never complete, since
during the project it evolves with new stories, fixes,
changes, needs, etc. It assumes that software can always
be improved and extended.

The initial definition of the stories and their measure-
ment is realized at the beginning of the project, this pro-
cess is called sizing. Stories are measured in points, the
value of a point is measured in hours and it is commonly
about 15 hours (2 days of work), depending on the work-
ing environment and schedule.

To complete a story we need to complete one or sever-
al tasks. A task is the minimum unit of work. Tasks are
measured in hours and it is not recommended that they
exceed 2 days of work. In this project the following tasks
were considered as a template:

1. Analysis.
2. Construction or development.
3. Test writing.
4. Test verification.
5. Documentation.
The analysis task allows examining the needs and risks

of implementing the story; normally this task is used for
requirement elicitation and objective clarification for the
project, the story or even the sprint itself.

In the construction task, the design and implementa-
tion of a usable piece of software is made, this deliverable
needs to provide value to the customer and therefore, it
covers a wide spectrum of elements: documents, dia-
grams, applications, prototypes, mock-ups and several
others.

The test writing task defines with more precision the

scope of the deliverable component, including its quality.
In addition with this task, the test verification task allows
the programmer to validate the content of the story and
perform any regression tests from previous stages of the
process.

Finally in the documentation task, the preparation for
the delivery is made. This means that all documents,
diagrams, installers, user manuals and test results are
adapted, completed and fixed for the client who will re-
ceive the component. The client will have to be able to use
the component and return some feedback.

However, it should be kept in mind that some stories
might not need all of this standard tasks. A market study
for example, where tasks like test writing or verification
make no sense at all. Similarly, the order of these tasks is
not fixed or forced in any way; this allows flexibility to
the development process, making it highly customizable
for each programmer, team or organization.

On the other hand, the planning of the project is done
in 2 phases. In the first phase the quantity and length of
the sprints is fixed, defining the final effort (in points) that
will be needed in each sprint. As a result, the team can
determine the scope of the project by placing stories in-
side the sprints. In the second phase an iterative process
begins.

Given a first baseline of the scope of the Project, the
first sprint is filled up with stories until it reaches its max-
imum work effort, then the sprint is carried out until the
times runs out. When this occurs, the sprint is reviewed
and the next sprint is planned. This process is called
sprint planning, and it allows perceiving each sprint as a
closed project, with its own goals, stories and tasks.

Granted that a sprint is planned, each team member
will have to pick a story and develop it, during this time 2
situations can happen: 1) the time runs out and the unfin-
ished stories need to return to the product backlog, to be
planned for the next sprint, or 2) all stories are finished
and the sprint can be extended with more stories. Obvi-
ously, the second situation is the least common.

During the period of time in which each team member
is working in a sprint, every day at the beginning of the
working schedule, the team will gather and they will
exchange information, regarding these 3 questions:

1. What did I do yesterday that helped the develop-
ment team meet the sprint goal?

2. What will I do today to help the development
team meet the sprint goal?

3. Do I see any impediment that prevents me or the
development team from meeting the sprint goal?

This way, the team is aware of the sprint development
and problems are detected early. This meeting, called
daily scrum meeting, improves communications, elimi-
nates other meetings, highlights and promotes quick
decision making and improves the team level of
knowledge. This is a key meeting in Scrum methodology.

At the end of each sprint 2 more meetings are con-
summated: 1) the review meeting and 2) the retrospective
meeting.

In the review meeting the team talks about what was
accomplished in the sprint, they make changes to the

ALEJANDRO AGUILERA RUIZ: UNIT4 – PLATFORM SNMP PROVIDER 5

product backlog and discuss possible stories for the next
sprint.

 In the retrospective meeting a more deep analysis is
performed, it’s the opportunity for the team to discuss
improvement to their work approach and the decision
making process; the purpose is to detect what went well
and what went wrong, regarding people, social relations,
processes and tools.

Generally speaking, the methodology was followed
almost by the book; the only activity that wasn’t carried
out was the daily scrum meeting, because the whole Pro-
ject was done by one team member (this author) and it
seemed redundant to perform such a communication task
to itself; Even so, review and retrospective meetings were
carried out with the designated Project tutor at UNIT4.

3.2 Project Planning

At this point, given the base concepts of the methodology
and the development constraints, the Project planning can be
introduced.

After the sizing of the product backlog it was evident
that, because of the length of the Project (560 hours), all
the stories could not be completed; In consequence, the
stories were prioritized according to the supposed value
they would provide to the end client. The value of each
story was determined by the Project tutor and this author.

At a first instance, the length of the sprints was deter-
mined, resulting in the following date lines:

1. Sprint 0: from 11/02/2014 to 10/03/2014.
2. Sprint 1: from 11/03/2014 to 31/03/2014.
3. Sprint 2: from 01/04/2014 to 12/05/2014.
4. Sprint 3: from 13/05/2014 to 30/05/2014.
5. Sprint 4: from 31/05/2014 to 27/06/2014.
In Figure 4 there is a Gantt diagram showing the

length in hours for each sprint.

In the first sprint, the objective was to study the proto-
cols chosen, to construct some examples of these proto-
cols and to study the karat Control Panel.

The second sprint objective was to construct the base
of the server, implementing session monitoring. An in-
termediate presentation was scheduled by UNIT4 in or-
der to check the Project status and its development.

In the third sprint, 3 main tasks were required: first a
deployable of the Java Project was needed, it should pro-
vide configuration parameters and guarantee security;
secondly, a study for market tools (JMX and SNMP) and
thirdly, further development of the server was to be
achieved: server monitoring.

For the fourth sprint, the alarm and notification mech-
anisms were first priority. Also a discovery tool for SNMP
and JMX servers was to be developed.

In the last sprint, more development of the server was
scheduled: cache and property files refreshment. A study
of the WBEM protocol was also planned in order to study
the feasibility of the Project in this matter, although the
Final Presentation was the main concern of the sprint.

Nevertheless, the effort in sprint 4 was not measured
correctly; alarm and notification mechanisms (especially
for SNMP) needed a lot of effort. In consequence the dis-
covery tool was postponed for the last sprint.

In addition, the Project closure and the final adjust-
ments for the integration of the Java Project in the karat
platform were not considered in the initial planning. This
together with the discovery tool made it impossible for
the study of the WBEM protocol and the cache/property
files refreshment to take place.

4 RESULTS

As a result of the iterative methodology followed and the
Project planning, a Java Application was developed as a
dual agent wrapper (SNMP and JMX). The application was
built in 5 sprints, each of them with a different objective. The
results of each sprint are detailed in the following subsec-
tions.

4.1 Sprint 0: Research and Study

In the first sprint of this Project, research and study tasks
were carried out with the objective of acquiring
knowledge regarding SNMP and JMX. This was achieved
by redacting definition documents and building proto-
types for both technologies.

The first activity exposed the purpose and the architec-
ture of each option; the second one allowed acknowledg-
ing the limitations, advantages and disadvantages in a
more practical context.

JMX technology was easy to use and to develop, a class
instrumenting a resource has to implement an interface
with the termination “MBean” after the name, for exam-
ple ServerMBean; in this interface attributes are defined
by the getters (read) and setters (write), other methods
can be defined as well.

To register the MBeans, an MBean server is needed;
the JVM MBean server can be obtained through a static
method but a custom MBean server can be created and
used as well; the registration method requires the in-
stance of the object (the MBean itself, implementing the
interface) and a unique name. The name is composed by

Fig. 4. Gantt diagram of the Project’s planning. Vertical axis shows the
sprints numbered from zero to four, horizontal axis shows the hours of
work needed for each sprint. A total of 560 hours were scheduled for
the Project.

120

90

170

90

90

0 80 160 240 320 400 480 560

Sprint 0

Sprint 1

Sprint 2

Sprint 3

Sprint 4

Hours

6 EE/UAB TFG INFORMÀTICA: UNIT4 – PLATFORM SNMP PROVIDER

the domain and a list of properties, for example:
“com.mbeanexamples.server:id=server1”. The properties
usually help identify and classify MBeans under the same
domain.

SNMP on the other hand had a little more work to do
and it needed from an open source library (SNMP4J [12
/*SNMP4J*/]) to handle the communication and message
processing.

The resources can be instrumented in classes as well,
but they need to be mapped into MIB objects. MIB objects
can be seen as a composed data type, containing syntax,
an access and an Object Identifier or OID; the syntax is in
essence the data type, Integer32 for example, the access
defines if the object can be read, written or both, the OID
identifies the object in the MIB, which follows a tree-like
structure.

For our study case, the data definition had to occur in 2
places: 1) the source code and 2) the vendor MIB defini-
tion. For the first one, the library was used to map the
classes into MIB objects and for the second one, a vendor
MIB had to be written from scratch in SMIv2 syntax. As
you can see the work is double, first the source code defi-
nition and implementation and then the vendor MIB
writing.

When the previous analysis was completed, research
about the karat Control Panel started; this tool was the
perfect example of getting managing information from
the karat Platform, functionality we would later use for
the Monitor Server.

The karat Control Panel makes a TCP connection to a
Main Server to obtain its administrative information.
Each Main Server can host several servers, these "com-
mon" servers are identified by their MAC address. Appli-
cations, services and products are hosted under each
server (see Figure 5).

The administrative information published by the Con-
trol Panel is organized in eight tabs:

1. Servers and related information.
2. Configurations for the karat platform.
3. Active client sessions.
4. Installed licenses.
5. Licenses being used at the moment.
6. SMS service configuration
7. Certificate store, to administrate and distribute the

security certificates for all the clients.
8. Clusters configuration, to add/delete servers and

configure them mainly for load balancing.
In the meantime, the formal requirement document

was made. This document included the description of the
control panel, the justification of the Project, the alterna-
tives considered and the proposal for the Project. The
proposal contained deadlines, costs and a first bene-
fit/risk analysis.

4.2 Sprint 1: Server Base

In the second sprint a first version of the application was
developed. MonitorServer was divided in 3 modules:

1. DATA.
2. SNMP.
3. JMX.
The DATA module connected to a karat Main Server

and obtained the administrative information just as the
karat Control Panel, the SNMP and JMX modules first
parsed this information into their respective data repre-
sentations and then published this information using
their respective protocols (see Figure 6).

Fig. 5. Architecture of the karat Platform. Main Servers host different
servers and these servers are the ones offering the services or hosting
the applications. The Control Panel connects to a Main Server and
asks for its administrative information (servers, sessions, licenses and
more).

Fig. 6. Modular diagram of the MonitorServer Project. The DATA mod-
ule gets the information from the Main Server, the SNMP module
publishes it via SNMP version 3 and the JMX module publishes it via a
JMX service URL, using an RMI registry.

ALEJANDRO AGUILERA RUIZ: UNIT4 – PLATFORM SNMP PROVIDER 7

SNMP (version 3) uses TCP and UDP transport proto-
cols, one port for communication (161) and one for notifi-
cations (162); all this is handled by the SNMP4J library.

 JMX on the other hand can use different varieties of
connectors for transport, but the most used and the one
used in this Project was the Remote Method Invocation
(RMI) connector [13], which uses various TCP ports ran-
domly chosen, although in this Project the RMI connector
used a single TCP port specified in the JMX service URL.

The JMX service URL is the identification of the JMX
connector and service (see Figure 7), it allows any JMX
client to locate:

1. The target machine: where the service is hosted (IP
address or hostname).

2. The RMI server port: the port where the RMI serv-
er is hosted.

3. The RMI registry port: the port where the RMI reg-
istry is located.

This first version of MonitorServer published only the
list of sessions in JMX and SNMP. Additionally, since
JMX technology allows remote invocation of methods, the
JMX module of the server was capable of killing a session
remotely.

In this sprint, a first presentation was requested by
UNIT4. The company wanted to trace Project objectives,
schedule and the work done until then (02/04/2014); the
activity included a demo of the server base.

The demo showed that tabular information in JMX was
not user friendly because only one row could be seen at a
time, the suggestion was noted and in the sprint review a
new story was added to the product backlog.

4.3 Sprint 2: Configuration, Security and
Evaluation of Market Tools.

In this sprint, security and configuration were the main
focus.

First of all, configuration parameters for both servers
were moved to property files and a launcher was created.
The configuration folder “conf” (see Figure 8) contained
the launcher configuration file and two more folders, one
for SNMP configuration and another for JMX configura-
tion.

The launcher set up the properties for each module
and allowed starting one server or both of them; launcher
properties included the Main Server address and port,
and the admin password for authentication. This was
common for the other two modules (JMX and SNMP).

 For JMX, the main configuration file “jmx.properties”
included the hostname and port to publish the JMX con-
nection; regarding security, SSL was used together with

access and password files [14]:
1. client/server SSL certificates.
2. client/server keystore: a container of private keys.
3. client/server truststore: a container of public keys.
4. jmxremote.access file: the users and their role.
5. jmxremote.password file: the users and their

password.
Keystores and truststores are created using the keytool

command tool [15], it allows the creation of public and
private keys within a store, the keys can be exported as
certificates later. For this set up, the first step is to create
both private keys for the server and the client within
keystores, then the public keys need to be exported as
certificates, finally the certificates have to be imported
into the truststores, the client must trust the server and
the server must trust the client.

For SNMP, the main configuration file
“snmp.properties” included the address and port to be
used by the agent.

Regarding security, SNMP version 3 supports MD5
and SHA protocols for authentication, and DES and AES
(128 bits version) for privacy [16]. A unique user’s file
was created to provide the configuration:
“snmp.users.csv”; the file had 6 fields:

1. Security name or user name.
2. Role: defines if authentication or privacy protocols

are to be used.
3. Authentication protocol: MD5, SHA or none.
4. Authentication password
5. Privacy protocol: DES, AES or none.
6. Privacy password
Although it is advised to use authentication and priva-

cy protocols, users that don't use any of them can be cre-

service:jmx:rmi://<TARGET_MACHINE>:

<JMX_RMI_SERVER_PORT>/jndi/rmi://

<TARET_MACHINE>:<RMI_REGISTRY_PORT>/

jmxrmi

Fig. 7. JMX service URL. The TARGET_MACHINE is the machine
where the service is hosted (IP address or hostname),
JMX_RMI_SERVER_PORT is the port where the RMI server is hosted
and the RMI_REGISTRY_PORT is the port where the registry is
located. The rest are constants of the URL (service, jmxrmi, jndi …).

Fig. 8. Configuration file directory. The file launch.properties contains
information needed to reach a karat Main Server, the JMX folder con-
tains security and configuration files for the JMX agent and the SNMP
contains the user’s file, the configuration file and the vendor MIB for
the SNMP agent.

8 EE/UAB TFG INFORMÀTICA: UNIT4 – PLATFORM SNMP PROVIDER

ated (no authentication and no privacy); for this reason
View-Based Access Control Model (VACM) [17] was
implemented, to restrict the access to these users. Basical-
ly, not authenticated nor privacy protected users have no
write privileges and restricted read access while authenti-
cated and privacy protected users have full read/write
privileges and access.

The vendor MIB, “Karat SNMP-Provider.mib” in Fig-
ure 8, was placed inside the SNMP folder. SNMP clients
need to import it in order to understand the MIB objects
supported by the agent and perform the requests.

The remaining two files in this folder were automati-
cally created by the SNMP4J library; the files contain
serialized non-volatile information:

1. SNMPagentBootCounterFile.bc: information about
values of MIB objects.

2. SNMPagentConfig.properties: configuration of the
agent.

With the security assured, the functionality to publish
servers and their hierarchical information was developed.
Services, processes and configuration files were published
and available for management via JMX and SNMP; in the
case of the services, JMX allowed starting or stopping
them remotely.

For the SNMP part of the Project this included an up-
date of the vendor MIB. It is not possible to nest tables in
SNMP, so server information had to be mapped into 4
tables, one for the servers themselves and the remaining 3
for the services, processes and configuration files. The last
3 tables were indexed by server MAC in order to distin-
guish from which server each service, process or configu-
ration file came from.

The improvement of tabular information in JMX was
solved in this sprint; the solution was to register each row
from the tables as a different MBean object and group
MBeans using properties.

The improvement represented a major visual update
for the JMX side of the Project; re-design was needed in
order to implement this solution.

When the previous stories were finished, market tools
were installed to be linked with MonitorServer. This
showed that karat servers can be monitored and adminis-
trated by any JMX monitoring tool, or SNMP compliant
NMS. AggreGate Network Manager v5.01 [18] and PRTG
Network Monitor v14.1 [19] were used for SNMP testing;
AppDynamics Application Performance Management
v3.8 [20] was used for JMX.

However, it was noted that JMX tools for production
environments were scarce or insecure while SNMP tools
were abundant. In contrast, some SNMP tools weren’t
able to import vendor MIBs and were restricted only to
MIB-2 default objects.

4.4 Sprint 3: Notifications and Alarms

The wish of providing notification or alarm mechanisms
for karat servers was especially considered, and in this
sprint, SNMP and JMX notifications were implemented.

SNMP notifications are defined in the vendor MIB and
assembled in the agent, they contain: the source, the
SNMP version and the variable binding (see Appendix

A1). The variable binding is a set of variables, system
uptime and trap OID are mandatory.

JMX notifications are defined in the MBean, they con-
tain: the timestamp, the type of the notification, the se-
quence number, a message and the MBean instance name
(see Appendix A2).

Four different alarms, relative to servers, are triggered
automatically:

1. Server down: the server is not responding to re-
quests.

2. Memory threshold exceeded: memory exceeds a
certain threshold.

3. CPU threshold exceeded: the CPU hosting the kar-
at server exceeds a certain threshold.

4. Maximum session number exceeded: the number
of sessions in this server exceeds a certain limit.

The last 3 alarm thresholds were placed as properties
in the launch configuration file; the notification rate for
each agent was placed in each of their main configuration
files (snmp.properties and jmx.properties).

For SNMP, a new user role was defined: the admin
role; SNMP notifications are targeted to a user role so
only admin users receive them; admin users must be
authenticated and privacy protected.

Despite of the fact that market tools were able to detect
and show notifications for both agents, the tools advised
to use their alerting mechanisms.

Testing some of the market tools used in the sprint 2, it
was noted that their alarm mechanisms were much more
configurable. They allowed configuring multiple alerts
for each instance or object and there were many different
types of them: upper threshold exceeded, lower threshold
exceeded, state changed, host not reachable, host packet
loss threshold exceeded, and several others.

4.5 Sprint 4: Server Discovery Tool and Project
Closure.

In the final sprint, a server discovery tool was developed
using a multicast self-made protocol.

Each server needed to run a multicast listener thread
all the time, when a new client joined the network it
would query from active servers in a multicast channel;
the servers would answer with a description, containing
location and services offered (JMX and SNMP monitoring
among them).

Additionally, SNMP auto-discovery is a feature of
most SNMP clients (market tools) and no further func-
tionality is needed for that; it consists in sending an
SNMP request to all network hosts to the default port
(161) and listening for the replies.

At last, the final adjustments to the server were made;
before integration, some security, unit and integration
tests were carried out. Some mistakes included user ac-
cess, default ports and default addresses.

MonitorServer was integrated in the karat platform
v9.1.1.0 as a service. The Project was presented with a
final demo, using Java VisualVM v1.7.0_51[21] for JMX
and AggreGate Network Manager v5.01 [18] for SNMP.

ALEJANDRO AGUILERA RUIZ: UNIT4 – PLATFORM SNMP PROVIDER 9

5 CONCLUSIONS AND FURTHER WORK

The main objective of the Project was accomplished satis-
factorily since management information of karat servers
can be exposed through the SNMP protocol version 3 and
JMX technology in a secure way. Managing karat servers
through market tools that support these protocols is now
possible.

First of all, it should be acknowledged that high avail-
ability of any system or service is a key factor to be aware
of, for this reason it is very important to be able to admin-
istrate networks and applications in a standard way.

Even though JMX is a very powerful technology that
provides means of remote method invocation, the lack of
market tools for production environments makes JMX
monitoring by market tools an odd choice. Custom solu-
tions are preferred, like the karat Control Panel which is
more user-friendly.

SNMP is security reliable and much more flexible in
data access levels, although is more restrictive regarding
alarm mechanisms and data definition; However, notifi-
cation mechanisms are better supported by market tools
which are protocol independent, therefore the importance
of this functionality is minimum.

By consequence, this author concludes that the choice
of SNMP as a protocol was more accurate for the purpose
of the Project, mainly because SNMP is widely used and
supported by many NMS.

Future improvement has yet a lot of room. For a start-
er, lot of information from the control panel is still miss-
ing in the agents, valuable information like SSL certifi-
cates, licenses and server clusters could be published.

Additional development could include a WBEM pro-
vider, for the DATA module is independent from the rest
of the modules.

ACKNOWLEDGMENT

This author would like to thank Jordi Pons, the Escola
d'Enginyeria and by extension the Universitat Autònoma
de Barcelona for the opportunity to carry out this Project
in an Internship Program.

This work was supported by a grant from UNIT4
which is also worth of acknowledgment.

Last but not least, this author wishes to thank Ezequiel
Parra and Arnau Escursell for their dedication, effort and
time spent supervising the Project.

REFERENCES

[1] R. Hauben, "From the ARPANET to the Internet," 23 June 1998.

[Online]. Available:

http://www.columbia.edu/~rh120/other/tcpdigest_paper.txt. [Ac-

cessed 26 June 2014].

[2] IETF, "RFC 1067 - A Simple Network Management Protocol," August

1988. [Online]. Available: http://www.ietf.org/rfc/rfc1067.txt. [Ac-

cessed 26 June 2014].

[3] ISO/IEC, "ISO/IEC 7498-4: 1989 Information processing systems --

Open Systems Interconnection -- Basic Reference Model -- Part 4: Man-

agement framework," 21 July 2006. [Online]. Available:

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.

htm?csnumber=14258. [Accessed 26 June 2014].

[4] IETF, "An Architecture for Describing Simple Network Management

Protocol (SNMP) Management Frameworks," December 2002. [Online].

Available: http://tools.ietf.org/html/rfc3411. [Accessed 26 June 2014].

[5] DMTF, "Web-Based Enterprise Management," 2014. [Online]. Availa-

ble: http://www.dmtf.org/standards/wbem. [Accessed 26 June 2014].

[6] J. S. Perry, Java Management Extensions, O'Reilly Media, 2002.

[7] Oracle Corporation, "JSR 48: WBEM Services Specification," 2014.

[Online]. Available: https://jcp.org/en/jsr/detail?id=48. [Accessed 26

June 2014].

[8] IETF, "Request for Comments (RFC)," 2014. [Online]. Available:

http://www.ietf.org/rfc.html. [Accessed 26 June 2014].

[9] Oracle Corporation, "Trail: Java Management Extensions (JMX)," 2014.

[Online]. Available:

http://docs.oracle.com/javase/tutorial/jmx/index.html. [Accessed 26

June 2014].

[10] L. A. Salazar, "Scrum.org | Scrum Guide," July 2013. [Online]. Availa-

ble:

https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/2

013/Scrum-Guide.pdf. [Accessed 26 June 2014].

[11] C. M. Pilato, B. Collins-Sussman and B. W. Fitzpatrick, Version Control

with Subversion, Sebastopol, United States: O'Reilly Media, 2008.

[12] F. Fock and J. Katz, "SNMP4J - Free Open Source SNMP API for Java,"

2014. [Online]. Available: http://www.snmp4j.org/. [Accessed 26 June

2014].

[13] Oracle Corporation, "Trail: RMI," 2014. [Online]. Available:

http://docs.oracle.com/javase/tutorial/rmi/. [Accessed 26 June 2014].

[14] Oracle Corporation, "Java Management Extensions (JMX) Java Platform

Standard Edition version 7," August 2008. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/tutori

al/tutorialTOC.html. [Accessed 26 June 2014].

[15] Oracle Corporation, "keytool - Key and Certificate Management Tool,"

2014. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/ke

ytool.html. [Accessed 26 June 2014].

[16] IETF, "User-based Security Model (USM) for version 3 of the Simple

Network Management Protocol (SNMPv3)," December 2002. [Online].

Available: http://tools.ietf.org/html/rfc3414. [Accessed 26 June 2014].

[17] IETF, "View-based Access Control Model (VACM) for the Simple

Network Management Protocol (SNMP)," December 2002. [Online].

Available: http://tools.ietf.org/html/rfc3415. [Accessed 26 June 2014].

[18] Tibbo Technology Inc., "AggreGate Documentation: Network Man-

agement and Monitoring," 2014. [Online]. Available:

http://aggregate.tibbo.com/docs/en/index.htm?network_manageme

nt.htm. [Accessed 26 June 2014].

[19] Paessler AG, "PRTG Network Monitor - User Manual," 2014. [Online].

Available: http://www.paessler.com/manuals/prtg. [Accessed 26

June 2014].

[20] AppDynamics Inc., "Monitor JMX MBeans - AppDynamics Pro 3.8

Documentation," 2014. [Online]. Available:

http://docs.appdynamics.com/display/PRO14S/Monitor+JMX+MB

eans. [Accessed 26 June 2014].

[21] Oracle Corporation, "VisualVM," 2014. [Online]. Available:

http://docs.oracle.com/javase/7/docs/technotes/guides/visu

alvm/. [Accessed 27 June 2014].

10 EE/UAB TFG INFORMÀTICA: UNIT4 – PLATFORM SNMP PROVIDER

APPENDIX

A1. SNMP NOTIFICATION SCREENSHOT

A2. JMX NOTIFICATION SCREENSHOT

Left panel shows SNMP notification information: agent hostname, SNMP version, notification type, trap OID, variable bindings among others;
right panel shows the original variable bindings, in this case: system uptime (mandatory), trap OID (mandatory) and the server identifier variable
that holds the message.

Left panel shows the MBeans managed, the right panel shows the notifications received and their information: timestamp, type, sequence num-
ber, message, event and source. In this case we are receiving notifications from server aescurse2.

