
Analysis and Design of a Subtitling System for Ambient Intelligence Environments

Aitor Rodriguez-Alsina, Guillermo Talavera, Pilar Orero, Jordi Carrabina
Qc-2090D. Escola d’Enginyeries. Campus UAB

08193 Bellaterra, Spain
{Aitor.Rodriguez, Guillermo.Talavera, Pilar.Orero, Jordi.Carrabina}@uab.cat

Abstract — The development of ubiquitous applications for
ambient intelligence environments needs to also take into
account some usability and accessibility issues in order to
ensure a proper user experience and to overcome the existing
content access barriers. A proper access to video subtitles, for
instance, is not always available due to the technical limitations
of traditional video packaging, transmission and presentation.
New Web standards enable more featured applications with
better multi-platform definition, so they are suitable for
building ubiquitous applications for ambient intelligence
environments. This work presents a video subtitling system
that enables the customization and adaptation of subtitles. The
benefits of Web applications compared with device-specific
native applications for building the solution as well as its
current platform support are analyzed. Finally, three different
application use cases are presented.

Keywords - Multimedia Synchronization; Subtitles; Ambient
Intelligence; Accessibility; TV; HTML5; SVG; SMIL

I. INTRODUCTION
In Ambient Intelligence (AmI) environments, as with

any multimedia context, one of the key elements to ensuring
proper access to video content is the service of subtitling
and captioning. Subtitles are a multifunction service since
they allow the breaking down of many barriers such as those
related to language and audio content for groups such as
disabled people, the elderly, immigrants, foreign language
students and children. They can also be a powerful teaching
tool. Subtitle services enrich multimedia content, but the
mechanisms for their presentation (as well as other
accessibility data like audio-descriptions and sign language)
do not yet conform to the accessibility requirements of
specific groups of users. In ubiquitous home environments,
where users share and interact with a variety of smart
devices (e.g. TV, mobile, tablet, PC, laptop, console), in
order to get video content the underlying technological
differences between connected devices can be overcome
through the use of Web technologies. This enables the
implementation of more ubiquitous systems by the
widespread support of web applications over the variety of
proprietary runtime environments that are provided by
device manufacturers. However, most of the web video
content consumed does not include selectable subtitles, and
non-standard embedded video players do not allow
independent management of subtitles with the aim of

enabling adaptation to the user (or application) accessibility
requirements. Most subtitles distributed on the Internet are
described in text files that follow the SubRip (.SRT) format,
considered "perhaps the most basic of all subtitle
formats"[4]. Figure 1. shows an example of an .SRT file.
Each subtitle entry consists of the subtitle number, the time
the subtitle should appear on the screen, the subtitle itself,
and a blank line to indicate the end.

1
00:00:20,000 --> 00:00:24,400
Altocumulus clouds occur between six thousand

2
00:00:24,600 --> 00:00:27,800
and twenty thousand feet above ground level.

Figure 1. Example of subtitles defined using the SubRip (.SRT) format.

While the standardization of subtitles as part of HTML5
video and audio components is still under discussion, novel
approaches for video subtitling in web-based environments
are required for the exploration of video accessibility in
ambient intelligence environments. This paper presents an
alternative design strategy for implementing customizable
subtitle systems in a variety of platforms and devices. It
takes advantage of the native support to Scalable Vector
Graphics (SVG) and the Synchronized Multimedia
Integration Language (SMIL) [5] within HTML5 documents
for presenting synchronized subtitles on any web-capable
device with the appropriate browser. The current platform
support for the proposed solution is also analyzed for both
desktop environments and for mobile and TV. Furthermore,
in order to demonstrate the viability and support for the
proposed solution, three application use cases for video
subtitling have been constructed: (1) a web widget for
desktop applications, which extends the functionality of an
HTML5 video component to enable user modifications to
the language and format of subtitles; (2) a TV application
that improves subtitle readability when the user interface
combines video with other interactive content; and (3) a
mobile application that extends the screen of the media
center in a home environment (as an example of AmI
environment) to receive the TV subtitles on a mobile device.

The rest of the paper is structured as follows: Section 2
analyzes the pros and cons of deploying Web applications
compared with native applications. Section 3 presents a new

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/78521781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

approach to synchronizing web-based video subtitles using
SVG and SMIL. Section 4 analyzes the current platform
support for the proposed approach and Section 5 outlines the
paper’s conclusions and takes a look at the future.

II. WEB APPLICATIONS VS. NATIVE APPLICATIONS
With the explosion in the popularity of smart devices and

application markets on the one hand, and on the other the
enhancement of Web technologies led by HTML5, it seems
natural to analyze the pros and cons of building native
applications versus the development and maintenance of
Web sites. This section compares the two, and justifies our
choice for building the presented subtitling system.

A. Platform support
Native applications need to be specifically built for every

target platform. Thus, application providers must take into
account the number and types of target platforms in order to
address the application to the individual needs of each of
them. It is not only a matter of the application environments
(e.g. desktop, mobile, interactive TV) or brands (e.g. iPhone,
Android, BlackBerry), but also a question of the platform
versions (e.g. Android experiences a cloud of versions with
different features depending on the device manufacturer).
When the application needs to be supported by a new
platform, it must be written again using its native
programming language and its native look and feel functions.

By contrast, Web applications are based on Web
standards and are deployed on a Web browser, which acts as
a bind between an application written using shared standards
and the specific runtime environment of each target platform.
This enables Web applications to be deployed on any
browser-capable platform regardless of the application
environment of the specific device. However, differences
still exist when using the same platform with different
browsers due to different feature implementation in the
browser engine (e.g. individual browsers support a different
HTML5 set of features, and this may also depend on the
browser version). Moreover, the universal support of Web
applications can be limited when using special device
features such as the accelerometer for mobile devices and the
tuner for TV platforms. Although HTML5 provides support
for accessing some of these features (e.g. geolocation)
through specific Application Programming Interfaces (APIs),
it is quite clear that it will not support all the concrete
features for all devices. When a Web application needs to be
supported by a new platform, nothing (theoretically, based
on the principle “build once, run anywhere”) has to be done
more than ensure that content fits properly within the new
environment.

B. Installation and maintenance
The installation of native applications can depend on the

application environment and device brand, but the current
trend for the discovery and delivery of native applications
on various platform environments such as smart mobiles
and smart TV platforms, is in their acquisition from ‘app
stores’. Applications are published to an app store (or
market), reviewed by the store managers, approved for

delivery and installed on the device when a user requests
them. Updates also require the same review and approval,
and they must be done specifically for each different
platform.

Web applications on non-desktop devices are accessed
in a variety of ways depending on the target platform. The
so called “smart devices” (i.e. smart phones and smart TV
devices), as well as mobile phones, allow free searching and
access to any site available on the Internet. In contrast,
some other interactive TV experiences only allow the access
to the Web applications included in standard markets.
However, hybrid solutions are also possible, such as the
placement of Web applications (for both mobile and TV)
inside native applications which are then sold through the
common application stores. Web applications do not need to
be reviewed and approved by the managers of any
application market, and they are updated simply by
modifying the Web application on the server side. All the
platforms then receive the updated version without
modifications on the client system.

C. User experience
Native applications are usually faster because they reside

within the device platform and can take advantage of the
system UI functions. These functions also enable a set of
visual effects that are shared by the rest of the system
applications. This results in a better user experience by
facilitating the application usability on small screens.

With the arrival of HTML5, Web applications can be
more integrated within the system (especially on mobile
devices), their structure can be semantic and more
functional, and JavaScript functions can effectively meet the
requirements of most applications. While some device
functions such as accelerometer, video and audio are now
supported in HTML5, other device specific features are still
under discussion. Two examples of this are the access to
phone services (e.g., contacts, agenda, etc) and the
management of device-associated interfaces (e.g. webcams,
microphones, USB devices) through the <device> tag. This
can be sufficient for most applications, but the rest still need
to be natively implemented, especially for non-mobile
devices. HTML5 is still evolving and new features will be
added but at the moment it is not supported by the vast
majority of non-smart devices.

D. Development
The development of ubiquitous services as native

applications requires specific knowledge for each different
platform due to the varying underlying programming
languages, SDKs, style guidelines and development
infrastructures. This implies that there are usually higher
development costs because of the need for a higher number
of developers with different skills, and the specialization of
developmental tools and frameworks.

For building Web applications, developers mainly need
to know HTML, CSS and JavaScript, thus avoiding the need

to learn new programming languages to code native
applications. This allows the reusability of the existing
development teams and development infrastructure for any
new target platform. However, any platform may require
specific content adaptations to the supplied Web sites in
order to achieve the best user experience.

E. Our conclusion
While platform support and user experience may still be

better for native applications, Web applications can offer a
more attractive solution for application providers by
facilitating (and reducing the costs of) the distribution,
updating and development of ubiquitous applications.
Moreover, the platform support and user experience is being
quickly improved with HTML5, and users will become
increasingly used to Web applications on non-desktop
devices as new applications become available. Finally, we
strongly believe that the ubiquity achieved by Web
applications through the principle of “build once, run
anywhere” is the key to implementing ambient intelligence
user applications and supports its choice for building the
subtitling system proposed in this paper.

III. WEB-BASED, SCALABLE AND CUSTOMIZABLE
SUBTITLES FOR AMBIENT INTELLIGENCE

Taking advantage of the underlying Web ubiquity, we
have designed and successfully implemented a video
subtitling system that enables subtitle format customization
and its adaptation to needs of the user/application. It is
based on HTML5 and the new features that enable SVG and
SMIL. Since the standardization of the HTML5 video
component and its acceptance by the major Web browsers,
there has been some implementation of the synchronization
and presentation of subtitles attached to a <video> tag.[6]
Most of these changes make intensive use of JavaScript
through third party libraries which can imply a penalty on
the resulting performance and portability of the application.
A different approach can be achieved by taking advantage
of SMIL time properties for the multimedia content
synchronization. Instead of managing the content timeline
programmatically through JavaScript, a web programmer
can make use of the event management and timeline running
on the SMIL engine of a Web browser. This can
dramatically simplify the development of a time-based
application like subtitling by delegating the time
management (i.e. the presentation time of each subtitle or
caption) to the browser, instead of purely managed by
JavaScript.

A. Related Work
Jan Gerber was one of the first to develop a subtitle

synchronization system for a HTML5 <video> tag, which
resulted in the JavaScript library jquery.srt.js [7]. This
library parses the HTML document looking for subtitle
containers which have been previously defined with the
“srt” class, and attempts to load the related subtitles.

Subtitles can be written directly in .SRT format into the
subtitle container or accessed remotely through the address
defined as a custom parameter into the HTML container.
This implementation works correctly but relies on custom
HTML attributes.

Taking Gerbers’s approach, Michael Dale proposed an
evolution that demonstrates the benefits of including some
HTML5 elements as child nodes of the HTML5 <video>
container to associate a video component with time-aligned
text [8]. This eliminates the custom defined attributes of the
previous approach but still relies on the same JavaScript
library as subtitle synchronization for time-related issues.

Philippe Le Hegaret adapted Gerber’s JavaScript library
to demonstrate the viability of using Gerber’s proposal with
a different format for the presentation of time-based text in
his HTML5 DFXP Player prototype [9]. He used the
Distribution Format eXchange Profile (DFXP) of the Timed
Text Authoring Format (TT AF) [10], which was created by
the W3C for the conversion, exchanging and distributing
timed text information amongst legacy distribution content
formats in use for subtitling and captioning.

Alex Danilo proposed a completely different approach to
multimedia synchronization in web-based environments
[11]. This work presents an example of multimedia and
graphic synchronization using SMIL to present SVG
subtitles that are displayed on top of an SVG video. SMIL
facilities allow the direct definition of time marks on subtitle
text elements and specify the begin time and duration for
each subtitle. No JavaScript code is needed because the
SMIL engine is responsible for maintaining the
synchronization between video and subtitles. This is only a
basic illustrative example, but it opens up a new and
interesting pathway for implementing video subtitles in
web-based environments.

B. Proposed approach
Inspired by Danilo’s approach for synchronizing SVG
subtitles through SMIL, this paper proposes a
comprehensive solution for video subtitling based on new
Web technologies around HTML5. This solution enables
the acquisition and parsing of remote subtitle files and
allows dynamic modifications to the selected language and
text format during video playback. It is robust against
changes on the video timeline, i.e. the subtitles remain
synchronized after functions such as pause, fast-forward,
direct jump, etc. are used. Subtitle text components are
written in SVG in order to improve scalability and allow
SMIl animations on them; JavaScript is used for parsing
functions, client-server communications, the dynamic
creation of subtitle text elements, and the event management
of the <video> container. SMIL manages the time-related
functions and decides the subtitle text visibility according to
the ‘begin’ and ‘end’ attributes defined by the SMIL
<animation> element. These time marks correspond to the
times defined in the related .SRT subtitle file. Figure 2.
shows a subtitle definition using an SMIL animation on

HTML5 documents. Text opacity is initially set to 0 to hide
the text, and the <animation> element specifies when this
opacity attribute must be changed to set the text to visible.
The time format is the same as in the .SRT subtitle files (i.e.
hours:minutes:seconds,milliseconds), so no calculations or
JavaScript are required in the translation. The SMIL engine
of the Web browser manages the rest of the process in order
to keep subtitles synchronized with the video content.

One interesting novelty provided by HTML5 is the
support for embedded SVG and SMIL code in the document
as for any other HTML tag. These elements are also
included as part of the Document Object Model (DOM),
which means that they can be accessed and modified
through JavaScript and CSS in the same way as any other
HTML tag. By including SVG subtitles as part of the Web
document, any web application can present customized
subtitles natively, almost as in those platforms with the
suitable web browser. However, this basic implementation
is insufficient to support user-driven changes in the video
timeline (e.g. pause, seek in time) because the timeline
managed by the SMIL engine must also be notified about
these changes. This is important for keeping the subtitles
synchronized with the video content. When the user
modifies the video playback timeline, any web application
can automatically apply the suitable modifications to the
SMIL timeline through the JavaScript API provided by
HTML5 for the SMIL time-management. For a basic
playback management, three basic video properties are
required: onplay, onpause and onseeking. Figure 3. shows
an eexample of the JavaScript functions required to control
the SMIL timeline. When the user pauses, plays or seeks on
the video, the HTML5 <video> container fires these
JavaScript functions. The SVGRoot element of the example
stands for the root element of the entire SVG document (i.e.
<svg>) and the variable video references the <video>
container itself.

<text opacity=0>
 <animation attibuteName=’opacity’
 begin=’00:00:20,000’
 end=’00:00:24,400’ values=’1’/>
 At the left we can see...
</text>

Figure 2. Code example of an SVG text element with an SMIL animation
for presenting a subtitle.

function onPlay() {
 SVGRoot.unpauseAnimations();}
function onPause() {
 SVGRoot.pauseAnimations();}
function onSeek() {
 SVGRoot.setCurrentTime(video.currentTime);}

Figure 3. Code example of a SVG text element with a SMIL animation
for presenting a subtitle.

IV. ANALYSIS OF THE PLATFORM SUPPORT
The platform support for the proposed solution depends

on the availability of a web browser and its support for some
HTML5 features such as the video and audio management,
SVG and SMIL animations. Although a variety of browser
plugins and SVG players exist, we focus on the native
support for SVG by the main web browsers in order to
ensure maximum ubiquity. In this section we analyze the
support for these features in three different application
environments: desktop, mobile and TV.

A. Desktop environments
Nowadays, all major modern desktop web browsers

provide support for HTML5 and SVG to the level required
by the proposed solution, with the exception of Internet
Explorer (IE) which can present some problems with SMIL
animations. Google’s announcement on August 2010 that it
had begun to index SVG content (standalone files as well as
embedded in HTML5 documents) and cases of successful
applications such as Wikipedia (which presents SVG
images) all push for a wider acceptance of the format.
However, not all the features are completely supported by
the current versions of some browsers and slight adaptations
should be applied when implementing the proposed solution
for video subtitling. Table I summarizes the SVG (and
SMIL) browser support for the main features that use the
proposed subtitling solution. As shown in the table, the
inclusion of inline SVG tags within HTML5 documents is
not completely supported, but this can be easily solved by
externally referencing the SVG document. Moreover, IE
does not support native SMIL animations so a third-party
plugin is required.

TABLE I. HTML5 AND SVG SUPPORT IN DESKTOP WEB BROWSERS

 Main desktop web browsersa
Required feature Fi Ch Op IE Sa

HTML5 documents yes yes yes yes yes

HTML5 Video yes yes yes yes yes

SVG basic support yes yes yes yes yes

Inline SVG yes yes no yes no

SMILanimation yes yes yes no yes

a. Firefox 4.0 (Fi), Chorme 12 (Ch), Opera 11.1 (Op), Internet Explorer 9.0 (IE) and Safari 5.0 (Sa)

B. Mobile environments
New mobile web browsers are supporting more and

more advanced features but they are still some way back
when compared to the development of desktop browsers. In
particular, the only mobile web browser in the study that
provides full support for the proposed solution to video
subtitling is Mozilla Firefox 4.0 Mobile. The lack of SVG
support by the Android default web browser (based on the
WebKit browser engine) and the lack of support for SMIL
animations by the rest (with the exception of Firefox) limit

the deployment of the proposed solution to only one of the
major web browsers. One reason for this delay in providing
support on mobile web browsers is evident in the lack of
variety of applications that request these features on mobiles
devices. At the moment, most mobile applications are
deployed natively. However, in the same way that users are
currently totally familiar with desktop web applications, it is
only a matter of time (and more available applications)
before users also become used to mobile web applications.

TABLE II. HTML5 AND SVG SUPPORT IN MOBILE WEB BROWSERS

 Main mobile web browsersa
Required feature iOs An Fi Op

HTML5 documents yes yes yes yes

HTML5 Video yes yes yes yes

SVG basic support yes no yes yes

Inline SVG no no yes no

SMILanimation no no yes no

a. iOS Safari 4.2 (iOs), Android Browser 2.3 (An), Firefox 4.0 (Fi), Opera Mobile 11 (Op)

C. TV environments
The interactive TV situation is even more scattered than

for mobiles because the technological details of what
constitutes a ‘smart TV’ have not yet been clearly defined.
Currently, three main approaches coexist as smart TV
platforms. (1) Device and Internet operators have presented
their own solutions. In the case of Apple and Google (which
have respectively created AppleTV and GoogleTV) the first
provides an integrated Set-top Box (STB), whilst the second
provides a framework deployable on prepared STBs and
TVs. Both support the main features of HTML5, but they do
not yet support SVG animations. (2) TV manufacturers
build Internet-capable devices that combine the TV video
flow with web applications and widgets. Their browser
implementations provide little support for HTML5 features
as they have very limited resources (even less than mobile
devices). (3) Some Internet video service providers (e.g.
Netflix, Boxee) are interested in collaborating with TV and
STB manufacturers to deploy their services on a variety of
terminals. In any case, the support for HTML5 and SGV
animations on smart TV devices depends on the available
device resources to deploy a web browser that supports the
required features. Fortunately, the Open IPTV Forum
recommends the use of SVG (SVG Tiny 1.2) for declarative
environment applications on the client side [12] and some
initiatives for the standardization of hybrid digital TV
platforms such as the Hybrid Broadcast Broadband TV
(HbbTV) follow this model. Even so, and according to
Ericsson, the SVG specification could add some features in
order to make SVG more suitable for TV (e.g. support for
TV-related remote control keys, ability to seek in time and
speed for fast forwarding/rewinding, etc).

V. APPLICATION USE CASES
The proposed approach for advanced video subtitling has

been validated through its implementation on three different
use cases in order to also demonstrate its usefulness and
ubiquity. The first one extends the functionality of any
HTML5 <video> container onto desktop browsers; the
second offers a solution for video subtitling in web-based
interactive TV environments; and the third makes use of
mobile devices to present personalized subtitles on a TV’s
second screen.

A. The SVG Subtitle Access Bar (SVG-SAB)
SVG-SAB is a web widget that extends the functionality

of any HTML5 <video> component to enable advanced
subtitle functions. It facilitates the access to video content on
the Web by the adaptation of subtitles to the needs and
preferences of the user. This widget applies the proposed
solution to synchronizing subtitles and video content on the
client side using SMIL animations. This keeps contents
synchronized even if the user dynamically changes the
language, the subtitle text format and the position of the text
on the screen. Figure 4. shows a snapshot of the SVG-BAR
attached to a video component playing a subtitled video.
Subtitle languages can be selected and switched dynamically
from remote .SRT files. Each subtitle is added as a DOM
node with its corresponding presentation time, and SMIL
manages these times in order to show each piece of text on
the screen. Developers need not take into account either the
current playback time or the subtitle sequence order to
maintain the content synchronization. When a language
switch is applied, the widget removes the previous subtitles
and adds the new ones without synchronization delay.

Figure 4. Screenshot of the embedded SVG-SAB presented on a desktop

browser (Firefox 4).

The SVG-SAB widget includes a set of tools for
changing the text color and size in order to enable the
subtitle’s personalization and its adaptation to the video or
application requirements, e.g. text color can be adapted to

achieve a better contrast. Adaptation of the subtitle can also
be necessary to overcome user difficulties in accessing web
content. The use and functionality of these subtitles is
multiple: for language teaching and language therapy [13],
for people with visual impairments or color blindness, for the
elderly and people who speak other languages, or for those
with literacy or comprehension difficulties [14][15].

B. Positioning Subtitles on Interactive TV
On TV, subtitle customization enables better access to

video content, especially within the environment of
interactive TV. Subtitles can be placed and sized properly to
ensure maximum readability, while the video content
remains playing in an interactive user interface. Subtitle
position can also be modified in order to place it wherever is
most comfortable for the user [16]. This feature has been
applied, as in Figure 4, to construct an interactive application
for TV that presents video subtitles that are always readable
even if the video window is reduced in order to display the
rest of the interactive contents. Due to the time management
of the SMIL browser engine, content is always synchronized
even if it is visually separated on the screen.

(a)

(b)

Figure 5. Two screenshots of the positioning of subtitles within an
interactive TV environment. In (a), the user is watching a subtitled video

content on the TV. He then accesses the interactive element and the video
playback is reduced to a corner of the screen as shown in (b). Here,

subtitles are presented in normal size and positioned in the same place as
before.

C. Presenting subtitles on a second screen
Within the home environment, a mobile device can be

used as a second screen [17] of the TV platform onto which
to extend its content and management options. Mobile
devices can become an advanced remote controller, as well
as the support for presenting the same contents as on the TV
set or some complementary contents. The access to video
content can benefit from this feature as it allows the
personalized access to video subtitles by each user through
their own smart mobile phone. This can facilitate the access
to content for people with special requirements (e.g. the
elderly, children and disabled people) and thus improves the
family balance. We have built a web-based mobile
application to present video subtitles that are synchronized
with TV contents, extending the TV screen to a mobile
device. In a home environment, this mobile application
connects to the media center, which serves the TV interactive
application with the synchronized video subtitles (shown in
the previous section), through the WLAN network. The user
receives the subtitles of the current video content on his
mobile device and can change the language, size and color of
subtitle texts independently from the TV stream or any other
connected device. This mobile web application applies the
same SMIL subtitle synchronization principle proposed in
this paper. The main difference with regards to
implementation from the previously highlighted use cases is
the synchronization requirements between the media center
and the user device acting as a second screen. In our
implementation, the user device application receives the
current playback time from the media center, which acts as
server. Media Center and device SMIL timelines are then
synchronized and the mobile browser engine can present
each subtitle at the correct time. Figure 6. shows an example
of its use when accessing from an Android 2.2 platform and
Firefox 4 web browser.

Figure 6. Example of 2nd screen application for subtitles.

VI. CONCLUSIONS
New web standards facilitate the building of new user

applications that meet the tough requirements of ubiquitous
environments that users are currently requesting. The present
work has focused on the use of some of these standards
(HTML5, SVG and SMIL) to improve the accessibility to
video subtitles in web-based environments by allowing their
customization and adaptation to personal needs.
Furthermore, we strongly believe that the achieved flexibility
of the subtitle styling can also be very useful for research
studies on subtitle usability and accessibility on new
platforms. However, the analysis conducted of the platform
support reveals that, although high feature browsers are
available on the main multimedia environments, not all
browsers natively support SVG and SMIL animations. This
can still be an issue for deploying the proposed subtitle
approach on smart devices with low featured web browsers,
but this situation is constantly changing. In addition, in this
paper we have also presented some application use cases for
customizable video subtitling on desktop environments,
smart mobiles and smart TV. The ubiquity achieved by web
standards enables the deployment of smarter applications for
AmI environments that can also be accessed by everyone.

ACKNOWLEDGMENT
This article is supported by the Catalan Government

Grant Agency Ref. 2009SGR700.

REFERENCES
[1] HTML5, W3C Working Draft, 24 June 2010, Ian Hickson,

http://www.w3c.org/TR/html5/
[2] Web Content Accessibility Guidelines (WCAG) 2.0, W3C

Recommendation, 11 December 2008,
http://www.w3.org/TR/WCAG/

[3] Accessible Rich Internet Applications (WAI-ARIA) 1.0, W3C
Working Draft, 15 December 2009, http://www.w3.org/TR/wai-aria/

[4] “SRT Subtitles", Matroska,
http://www.matroska.org/technical/specs/subtitles/srt.html

[5] SMIL 3.0, W3C Recommendation, 1 December 2008,
http://www.w3.org/TR/SMIL/

[6] S. Pfeiffer and C. Parker.: Accessibility for the HTML5 <video>
element. In 6th Int. cross-disciplinary conference on Web accessibility
(W4A'09), pages 98-100, Madrid, Spain, 2009.

[7] “Jquery.srt.js”, Jan Gerber, http://v2v.cc/~j/jquery.srt/
[8] “SRT text tags with languages and categories”, Michael Dale,

Metavid.org,
http://metavid.org/w/extensions/MetavidWiki/skins/mv_embed/exam
ple_usage/sample_timed_text.php

[9] “HTML5 DFXP Player prototipe”, Philippe Le Hegaret, W3C,
http://www.w3.org/2008/12/dfxp-testsuite/web-
framework/START.html

[10] Timed Text (TT) Authoring Format 1.0 – Distribution Format
Exchange Profile (DFXP), W3C Candidate Recommendation, 16
November 2006, http://www.w3.org/TR/2006/CR-ttaf1-dfxp-
20061116/

[11] A.Danilo: Lights, Camera, Action. In the 7th International Conference
on Scalable Vector Graphics (2009),
http://svgopen.org/2009/papers/3-Lights_Camera_Action/#d4e69

[12] Release 2 Specification – Volume 5, Declarative Application, v2.0,
Open IPTV Forum, Setember 2010,
http://www.oipf.tv/Release_2.html.

[13] Porteiro, Minia (forthcoming) “The Use of Subtitles to Treat Speech-
Language Disorders”. MONTI.

[14] Pereira, Ana, Criteria for elaborating subtitles for deaf and hard of
hearing adults in Spain: Description of a case study. In Anna
Matamala and Pilar Orero. Listening to Subtitles. Subtitles for the
Deaf and Hard of Hearing. (2010) pages 87-102. Bern: Peter Lang.

[15] Lorenzo, Lourdes. Criteria for elaborating subtitles for deaf and hard
of hearing children in Spain: A guide of good practice. In Anna
Matamala and Pilar Orero. Listening to Subtitles. Subtitles for the
Deaf and Hard of Hearing. (2010) pages 139-148. Bern: Peter Lang

[16] Bartoll, Eduard & Anjana Martínez Tejerina. The positioning of
subtitles for deaf and hard of hearing. In Anna Matamala and Pilar
Orero. Listening to Subtitles. Subtitles for the Deaf and Hard of
Hearing. (2010) pages 69-87. Bern: Peter Lang

[17] César, P., Bulterman, C. A., Jansen, A. J. Usages of Secondary
Screen in an Interactive Television Environment: Control, Enrich,
Share and Transfer television Content. In Proceedings of 6th
European Conference EuroITV 2008, Springer, 168-177.

