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Abstract

We generalize the test proposed by Kojadinovic, Segers and Yan which is used for testing whether

the data belongs to the family of extreme value copulas. We prove that the generalized test can

be applied whatever the alternative hypothesis. We also study the effect of using different extreme

value copulas in the context of risk estimation. To measure the risk we use a quantile. Our results

have been motivated by a bivariate sample of losses from a real database of auto insurance

claims.
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1. Introduction

Let S be the sum of k dependent random variables X1, . . . ,Xk, i.e. S = X1 + · · ·+ Xk.

The distribution of S depends on the multivariate distribution, i.e. on the relationship

between the random variables X j, j = 1, . . . ,k (see Sarabia and Gómez-Déniz, 2008, for

a review about the methods of construction of multivariate distributions). Analyzing the

distribution of S is essential in finance and insurance for quantifying the risk of loss. In

this regard, there are studies that have analyzed the stochastic behaviour of the sum of

dependent risks and the way in which the dependency between these marginal risks may

affect the total risk of loss (see, Denuit et al., 1999; Kaas et al., 2000; Cossette et al.,

2002; Bolancé et al., 2008b). The aim of this paper is to analyze the test proposed by

Kojadinovic et al. (2011) that allows to test whether or not our data have been generated
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by an extreme value copula. We conclude that weak convergence of the test statistic is

true for any of the alternative hypothesis. Using a real data base, we have analyzed how

the error in the selection of the copula can affect the risk estimate. Throughout this paper

we simplify the notation to the bivariate case.

As noted by Fisher (2000), copulas are interesting for statisticians for two basic

reasons: firstly, because of their application in the study of nonparametric measures of

dependence and, secondly, as a starting point for constructing multivariate distributions

that capture dependency structures, even when the marginals follow extreme value

distributions (EVD). Also, we know that the choice of the marginals may be crucial

to model the dependency behaviour of variables. According to Nelsen (2006), when

coupling the marginals in the joint distribution, the copula captures the link between

the two behaviours. The relationship between the joint distribution and the marginals is

established in the fundamental theorem proposed by Sklar (1959). This theorem shows

that a bivariate cumulative distribution function (CDF) H of a random vector of variables

(X1,X2) with marginal cumulative distribution functions (CDFs) F1 and F2 includes a

copula C according to the following expression:

H(x1,x2) =C(F1(x1),F2(x2))∀x1,x2 ∈ R. (1)

Due to the fact that the joint distribution (and therefore the dependency structure) is

unknown, specific tests for choosing the best copula are necessary. This has been the

motivation for developing tests for the adequacy of copulas. It is worth mentioning the

paper by Genest and Rivest (1993) on inference for bivariate Archimedean copulas, the

test proposed in Scaillet (2005) on the positive quadrant dependence hypothesis and,

finally, the test of symmetry in bivariate copulas introduced in Quessy et al. (2012).

Regarding the inference for extreme value copulas, we can mention the test proposed

in Genest et al. (2011) based on a Cramér-von Mises statistic and the test analyzed

in Ghorbal et al. (2009) based on an U-statistic. However, Kojadinovic et al. (2011)

uses the max− stable property to test the adequacy of an extreme value copula that is

also based on the Cramér-von Mises statistic. In our study we find a similar result for

the bivariate case and we obtain the weak convergence of the statistic proposed in the

general case.

In Section 2, first, we present our main result and, second, we describe three

examples of copulas which are extreme value copulas: Gumbel, Galambos and Hüsler-

Reiss. In Section 3 we describe a real database of auto insurance claims which we use in

the empirical application. In Section 4 we report the results of our empirical study, firstly

we apply the test described in Section 2 and, secondly, we calculate the quantile using

different extreme value copulas and compare these results with those obtained when

using a widely known non extreme value copula, such as a Gaussian copula. We use two

alternative marginal distributions and we compare them: the log-normal, that is a EVD

Type I (Gumbel), and the Champernowne distribution, which converges to a Pareto in
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the tail and therefore is an EVD Type II (Frechet). We also note that the Champernowe

distribution looks more like a log-normal near 0. We conclude in Section 5.

2. Test for extreme value copulas

We know that the class of extreme value copulas corresponds to the class of max−stable

copulas (see, for example, Segers, 2012). A copula is max− stable if for every positive

real number r and all u1, u2 in [0,1], C(u1,u2) = Cr(u
1/r

1 ,u
1/r

2 ). Then we formulate the

null hypothesis and its alternative as:







Hr
0 : C(u1,u2) =Cr(u

1/r

1 ,u
1/r

2 ), ∀u1,u2 ∈ [0,1],∀r > 0

Hr
1 : C(u1,u2) 6=Cr(u

1/r

1 ,u
1/r

2 ), ∃u1,u2 ∈ [0,1],∃r > 0
.

Specifically we need to test the max− stable hypothesis,

{

H0 :
⋂

r>0 Hr
0

H1 :
⋃

r>0 Hr
1,

in practice we only can test Hr
0 for some values of r. From Kojadinovic et al. (2011), it

seems that r < 1 is not so good, so they consider only values of r greater than 1.

Let (Xi1,Xi2), ∀i = 1, . . . ,n be a bivariate sample of n independent and identically

distributed observations. We consider the functions:

D
r
n(u1,u2) =

√
n
(

Cn(u1,u2)−Cr
n(u

1/r

1 ,u
1/r

2 )
)

D
r(u1,u2) =

√
n
(

C(u1,u2)−Cr(u
1/r

1 ,u
1/r

2 )
)

,

where Cn(u1,u2) is the empirical copula defined as:

Cn(u1,u2) =
1

n

n

∑
i=1

I(F̂1n(Xi1)≤ u1, F̂2n(Xi2)≤ u2), u1,u2 ∈ [0,1]2, (2)

where I(·) is an indicator function that takes value 1 if the condition in brackets is

true and 0 otherwise. F̂1n and F̂2n are the empirical marginal cumulative distribution

functions. To test the max− stable property we need to analyze if we can use Dr
n(u1,u2)

as an estimator of Dr(u1,u2). Then we find the convergence to a Gaussian process of the

difference Dr
n(u1,u2)−Dr(u1,u2).

We use the result by Fermanian et al. (2004) for the weak convergence of the

empirical copula process Cn to a Gaussian process G in the space of all bounded real-
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valued functions on [0,1]2, i.e. l∞([0,1]2), which is expressed as follows:

√
n(Cn(u1,u2)−C(u1,u2)) G(u1,u2) (3)

= B(u1,u2)−∂1C(u1,u2)B(u1,1)−∂2C(u1,u2)B(1,u2), (4)

where ∂ jC(u1,u2), j = 1,2 are the partial derivatives of the function C respect to u j and

 indicates weak convergence and B is a Brownian bridge on [0,1]2 with covariance

functions:

E[B(u1,u2)B(u
′
1,u

′
2)] =C(u1 ∧u′1,u2 ∧u′2)−C(u1,u2)C(u′1,u

′
2),

where ∧ is the minimum.

Proposition 1 If the partial derivatives of a copula C(u1,u2) are continuous then for

any r > 0 we have:

D
r
n(u1,u2)−Dr(u1,u2) C

r(u1,u2) = G(u1,u2)− rCr−1(u
1/r

1 ,u
1/r

2 )G(u
1/r

1 ,u
1/r

2 ), (5)

in l∞([0,1]2). The result in (5) is true under Hr
0 and Hr

1 .

Kojadinovic et al. (2011) proved the weak convergence under Hr
0 of Dr

n(u1,u2)

towards the same process defined in Proposition 1. We have proved that the weak

convergence of the difference Dr
n(u1,u2)−Dr(u1,u2) is true under Hr

0 and Hr
1 .

Proof 1 In order to prove the result in Proposition 1 we consider the function:

Γ : C(u1,u2)−→ Γ(C(u1,u2)) =Cr(u
1/r

1 ,u
1/r

2 ),r > 0.

Γ is a differentiable function as defined by Hadamard (see, Ren, 1995). We use the Delta

functional method to analyze the weak convergence of Γ(C(u1,u2)) =Cr(u
1/r

1 ,u
1/r

2 ). To

find the Hadamard derivative of Γ that is denoted by Γ′, we consider the function:

h(t) = Γ((C+ t∆)(u1,u2))−Γ(C(u1,u2))

= (C+ t∆)r(u
1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 ),

where t∆ is a function representing a difference, namely, t is a real value and ∆ is a fixed

perturbation. Then we calculate Γ′ as the derivative of function h at t = 0. Namely, Γ′(∆)

if the first derivative of function Γ(C(u1,u2)) =Cr(u
1/r

1 ,u
1/r

2 ) with respect to t evaluated

at t = 0.
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Using the expression of the Pascal triangle:

(a+b)n =
n

∑
k=0

(

n

k

)

an−kbk,

we obtain that:

h(t) =
r

∑
k=0

(

r

k

)

Cr−k(u
1/r

1 ,u
1/r

2 )tk∆k(u
1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 )

=

(

r

0

)

Cr(u
1/r

1 ,u
1/r

2 )+

(

r

1

)

Cr−1(u
1/r

1 ,u
1/r

2 )t∆(u
1/r

1 ,u
1/r

2 )

+
r

∑
k=2

(

r

k

)

Cr−k(u
1/r

1 ,u
1/r

2 )tk∆k(u
1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 ).

If we differentiate at t = 0, we obtain:

∂h(t)

∂ t
|t=0 = Γ′(∆) = rCr−1(u

1/r

1 ,u
1/r

2 )∆(u
1/r

1 ,u
1/r

2 ).

The result in Proposition 1 is obtained by observing that:

D
r
n(u,v)−Dr(u,v) =

√
n
(

(Cn(u1,u2)−C(u1,u2))− (Cr
n(u

1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 ))
)

.

Using the convergence of the empirical copula given by Fermanian et al. (see Fermanian

et al. (2004)) we obtain:

√
n(Cn(u1,u2)−C(u1,u2)) G(u1,u2),

and, finally, applying the Delta functional method, we obtain:

√
n
(

Cr
n(u

1/r

1 ,u
1/r

2 )−Cr(u
1/r

1 ,u
1/r

2 )
)

 Γ′(G(u1,u2)).
�

Under the hypothesis H0 we have that Dr(u1,u2) = 0 and in this case Dr
n(u1,u2)

weakly converges to process (5).

For hypothesis testing given a fixed r, we use a Cramér-von Mises statistic:

Sr
n =

∫ 1

0

∫ 1

0
(Dr

n(u1,u2))
2

du1du2. (6)
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As proposed by Kojadinovic et al. (2011) for a range of values of r, r1, . . . ,rp, the

following statistic can be considered:

S
r1,...,rp
n =

p

∑
i=1

Sri
n . (7)

To calculate the critical values we use the method proposed by Van der Vaart (2000),

consisting on generating independent copies of Sr
n. The procedure is as follows:

1. If ∂ jC(u1,u2), j = 1,2 are continuous on [0,1]2 then N independent copies of Dr
n,

D
r,(1)
n , . . . ,D

r,(N)
n can be generated, such that

(Dr
n,D

r,(1)
n , . . .Dr,(N)

n ) (Dr,Dr,(1), . . .Dr,(N)),

where Dr,(1), . . . ,Dr,(N) are independent copies of Dr.

2. If ∂ jC(u1,u2), j = 1,2 are continuous on [0,1]2 then, (S
r,(1)
n ,S

r,(2)
n , . . . ,S

r,(N)
n ) can be

calculated by using a numerical approximation of formula (6) (see, Kojadinovic

et al., 2011), then:

(Sr
n,S

r,(1)
n ,Sr,(2)

n , . . . ,Sr,(N)
n ) (Sr,Sr,(1),Sr,(2), . . . ,Sr,(N)),

where (Sr,(1),Sr,(2), . . . ,Sr,(N)) are independent copies of Sr.

3. Obtain the p-value as:

1

N

N

∑
k=1

I(Sr,(k)
n ≥ Sr

n).

The Van der Vaart method is implemented in the software R with the function

evTestC() included in the package copula (see, Hofert et al., 2013).

2.1. Three examples of extreme value copulas

In the application presented in next section, we compare three examples of extreme value

copulas: Gumbel, Galambos and Hüsler-Reiss, which are described in this section.

The functional form of Gumbel copula (see, Gumbel, 1958) is given by:

Cθ (u1,u2) = exp

(

−
[

(− ln(u1))
θ +(− ln(u2))

θ
]1/θ

)

,
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where θ ∈ [1,+∞) is the parameter controlling the dependency structure. Note that, the

dependence is perfect when θ → ∞, while independence corresponds to the case when

θ = 1. For the Gumbel copula, it is well known that lower tail dependence is λL = 0 and

upper tail dependence is λU = 2−2
1
θ , i.e. the Gumbel copula has upper tail dependence.

The Galambos copula was proposed by Galambos (1975) and has the following

form:

C(u1,u2) = u1u2 exp

(

[

(− ln(u1))
−θ +(− ln(u2))

−θ
]−1/θ

)

,

where the range of θ is [0,∞) and the upper tail dependence is λU = 2−2
1
θ .

Another example of extreme value copulas is the Hüsler-Reiss copula that was

developed by Hüsler and Reiss (1989). Its functional form is given by:

C(u1,u2) = exp

(

−û1Φ

[

1

θ
+

1

2
θ ln

(

û1

û2

)]

− û2Φ

[

1

θ
+

1

2
θ ln

(

û2

û1

)])

,

where the range of θ is [0,∞) and Φ is cdf of the standard Gaussian, u1 =− ln(û1) and

u2 =− ln(û2).

3. The data

Our example is motivated by a problem in the context of insurance. We assume that

when there is an accident, the total cost to be paid to a policyholder is the sum of

two components: (1) the material damage and (2) the bodily injury compensation. The

insurance company is interested in evaluating the risk of a given claim exceeding a

certain amount. So the right-tail quantiles are important to understand the risk that an

accident claim is very costly.

We work with a random sample of 518 observations containing two types of costs:

Cost1, representing property damages and compensation of the loss, and Cost2, which

corresponds to the expenses related to medical care and hospitalization. In general, the

cost of bodily injuries is covered by the National Institute of Health, however the insured

has to bear the cost of some medical expenses and rehabilitation, technical assistance,

drugs, etc., including compensation for pain, suffering and loss of income.

Bodily injury claims typically take years to be settled. Nevertheless, all the claims

in our sample were already settled in 2002, according to the company, (see, Bolancé

et al., 2008b). Finally, we should mention that the compensation may include payments

to third parties that have been damaged in one way or another.

In Table 1 we summarize the descriptive statistics of the sample for Cost1, Cost2

and the Total Cost. The variables Cost1 and Cost2 are always positive, and there is a big
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difference between the corresponding maximum and minimum values. Furthermore, we

observe that the variables described in Table 1 have right skewness. In Figure 1 we show

the histograms representing the shape of the distributions associated with the variables

Cost1 and Cost2.

The K-Plot (related to Kendall Plot, see, Genest and Boies, 2003) is a visual method

that allows us to analyze in a descriptive way if our bivariate data have been generated

by an extreme value copula. In Figure 2 we show the K-Plot, that compare the order

Table 1: Descriptive statistics.

Cost Average Std.Dev. Skewness Min Max Median

Cost1 182.80 686.80 15.65 13.00 137900.00 677.00

Cost2 283.92 863.17 8.04 1.00 11855.00 88.00

Total Cost 211.20 752.00 15.27 32.00 149800.00 789.00
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Figure 1: Histograms.
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in real data (H, pseudo-observations generated by the bivariate empirical distribution)

with the order supposing that the data have been generated by the independence copula

(W , expected pseudo-observations). We note that costs have a positive association (as

shown in the values of the K-plot above the diagonal, which indicates independence).

Almost all points are between the straight line and the boundary curve indicating perfect

positive dependence. It seems that for larger values of W , the data are closed to the case

of a perfect positive dependence. This means that the higher the severity of the claim,

the higher is the correlation between the medical costs and compensation.

4. Results

In this section we report the results that we have obtained in an empirical application

of the methodology that we have presented. In order to estimate the total risk of loss,

our goal is to determine the dependency structure between the data corresponding to

a sample of claims provided by a major insurance company which operates in Spain.

To test if our data are generated by an extreme value copula we calculate the value

of the Cramér-Von Mises statistic in (7), firstly with r = 3,4,5. We have estimated the

significance level of the test statistic using the method proposed by Van der Vaart (2000).

In total, we generated 1000 independent copies of S3,4,5
n . The results are shown in Table

2 and allow us to conclude that the analyzed bivariate data are generated by an extreme

value copula.

Table 2: Cramér-Von Mises statistic.

Statistic Estimation p-value

S
3,4,5
n 0.2680 0.1773

Table 3: Copula estimation results.

Gaussian t-Student∗ Gumbel Galambos Hüsler-Reiss

Parameters 0.5905 0.5981 1.7397 1.0208 1.4946

Standard Errors 0.02485 0.02718 0.07538 0.07689 0.09059

AIC −212.3695 −217.0000 −246.3839 −243.3305 −237.8542

BIC −208.1195 −208.5000 −242.1339 −239.0805 −233.6042

CIC −208.1195 −208.5000 −242.1339 −239.0805 −233.6042

Kendall Tau = 0.4252. ∗d.f. = 9.6442

We estimate the parameters of the three extreme value copulas described in Sec-

tion 2.1: Gumbel, Galambos and Hüsler-Reiss.
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In Table 3 we show the estimated parameters for these three copulas together with

those obtained for the Gaussian and the t-Student copulas. To estimate the dependence

parameter of Gaussian, Gumbel, Galambos and Hüsler-Reiss copulas we have used the

inversion of Kendall’s tau method (Itau). To estimate the dependence parameter and the

degree of freedom of the t-Student copula we have used maximum likelihood estimation

(MLE). For selecting the copula we have used two known statistical information

criterion, the Akaike Information Criterion AIC = −2logL(θ )+ 2k and the Bayesian

Information Criterion BIC =−2lnL(θ )+k ln(n)k, where k is the number of parameters

to be estimated and L the value of the likelihood function. Also, we have used the copula

information criterion CIC propose by Gronneberg and Hjort (2014). The corresponding

results are presented in Table 3. We observe that BIC and CIC values are very similar

and we conclude that the Gumbel copula is the one that best reflects the dependence

structure of our data.

Once the dependency structure is estimated, the next step is to estimate the marginal

distribution functions. Considering the histograms in Figure 1, we chosed to use two

EVD. Namely, we compare the log-normal distribution, that is a EVD Type I (Gumbel),

with the modified Champernowne distribution1, which converges to a Pareto in the tail

and therefore it is an EVD Type II (Frechet); besides the Champernowe distribution

looks more like a log-normal near 0. Furthermore, the Champernowne distribution have

been analyzed in the context of semiparametric estimation of EVD (see, for example,

Bolancé, 2010; Bolancé et al., 2008a; Alemany et al., 2013). In Table 4 we show the

results for the maximum likelihood estimation of the marginal distributions. We can see

that for Cost1, Log-normal and Champernowne have similar AIC and BIC, however for

Cost2 Champernowne provides lower values of AIC and BIC.

Table 4: Maximum likelihood estimation of marginal distributions.

Log-normal Champernowne

CDFs

∫ logx

−∞

1√
2πσ2

e
− (t−µ)2

2σ2 dt, x ≥ 0
(x+ c)δ− cδ

(x+ c)δ+(H + c)δ−2cδ
, x ≥ 0

X1 = Cost1 µ= 6.4437,σ = 1.3349, δ = 1.3271,H = 677,c = 0

AIC = 8448.8950 and BIC = 8452.7190 AIC = 8448.163 and BIC = 8453.899

X2 = Cost2 µ= 4.3755,σ = 1.5189, δ = 1.1622,H = 88,c = 0

AIC = 9425.1340 and BIC = 9428.9590 AIC = 6443.7150 and BIC = 6449.4510

1. The cdf of the modified Champernowne distribution is:

F (x) =
(x+ c)δ− cδ

(x+ c)δ+(H + c)δ−2cδ
, x ≥ 0,

with parameters δ > 0, H > 0 and c ≥ 0. The estimation of transformation parameters is performed using the maximum
likelihood method described in Buch-Larsen et al. (2005).
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For evaluating the risk of total loss we estimate the quantile of S at confidence level

α (qα(S)). We use the Monte Carlo simulation method and the procedure is as follows:

1. We generate the pseudo-random sample
(

Û1i,Û2i

)

, ∀i= 1, . . . ,r, from the bivariate

copulas whose estimated parameters are shown in Table 3.

2. Using the inverse of the marginal CDFs we calculate
(

X̂1i = F−1
1 (Û1i), X̂2i =

= F−1
2 (Û2i)

)

, ∀i = 1, . . . , l, where the sample volume l is large.

3. We calculate Ŝi = X̂1i + X̂2i, ∀i = 1, . . . , l and we estimate qα(S) empirically from

the generated pseudo-sample. We generate l = 10,000 samples.

In Table 5 we show the results of the estimations of qα for α = 0.95,0.99,0.995,

0.999. On the first row of Table 5 we provide the empirical values of the qα(S) calculated

with the 518 observations in the sample of the aggregate loss S = X1 +X2 for different

confidence levels α; below we show the same qα(S) that have been estimated by the

Monte Carlo simulation method for the five copulas considered here. We note the

importance of using an extreme value copula and extreme value marginal distributions

when the data indicate this behaviour.

Table 5: Quantiles of total loss.

α 0.95 0.99 0.995 0.999

Empirical 7905.6000 24821.1400 28420.8700 92112.9300

Log-normal

Normal 6635.427 15628.804 20762.765 39733.894

t-Student 6547.524 16638.175 22521.175 39547.101

Gumbel 6432.017 15464.969 22011.382 40001.210

Galambos 6429.160 15471.400 22066.000 39925.670

Hüsler-Reiss 6421.028 15465.126 22122.110 39841.559

Champernowne

Normal 7237.591 25504.175 38682.444 110082.261

t-Student 7302.165 25740.933 42223.504 117447.015

Gumbel 7264.831 23944.798 41461.743 119401.409

Galambos 7253.166 24056.946 41409.717 118982.012

Hüsler-Reiss 7241.504 24103.038 41107.537 118539.744

In Table 5 we show that by using log-normal marginal distributions, the estimated

quantile is below the empirical quantile for the five copulas considered here. Therefore,

the risk is underestimated. We also note that the selected copula does not have much

influence on the risk estimation. However, if we use Champernowne marginal distribu-

tions, which has a heavier right tail than log-normal distribution, the influence of the

selected copula is not significant at lower confidence levels (0.95 and 0.99) but it is sig-
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nificant for extreme confidence levels (0.995 and 0.999). As indicated by the goodness

of fit measures for our data, the best selection is the Gumbel copula with Champernowne

marginal distributions.

5. Conclusions

The test we have introduced for the adequacy of extreme value copulas allows us to

determine the suitable copula, especially when the data have extreme values.

In our empirical application, the K-Plot identified a positive and increasing depen-

dence between variables related to automobile insurance claims, and the new test we

presented for extreme value copulas confirms that, in our case, we should use an ex-

treme value copula.

In the selection of the marginal distribution we have considered a modified Champer-

nowne distribution. It provides interesting results, due to its similarity to the log-normal

distribution for low values of the variable and, additionally, due to its convergence to a

Pareto distribution in the right tail.

When the marginal distributions have heavy right tail, as is the case with the

Champernowne distribution and if the aim is to estimate extreme quantiles, the results

show the importance of testing the adequacy of an extreme value copula to the data.
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Alemany, R., Bolancé, C. and Guillén, M. (2013). A nonparametric approach to calculating value-at-risk.

Insurance: Mathematics and Economics, 52, 255–262.
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Sarabia, J. and Gómez-Déniz, E. (2008). Construction of multivariate distributions: a review of some recent

results. SORT-Statistics and Operations Research Transactions, 32, 3–36.

Scaillet, O. (2005). A kolmogorov smirnov type test for positive quadrant dependence. The Canadian

Journal of Statistics, 33, 415–427.

Segers, J. (2012). Max-stable models for multivariate extremes. REVSTAT-Statistical Journal, 10, 61–82.
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