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Chapter 1

Introduction

In this chapter we will introduce the concept of RFID and the contents of this project.

RFID (Radio Frequency Identification) technology is the use of a wireless non-contact
system to transfer data between a tag and a reader, for the purposes of automatic identifi-
cation, as a substitute inter alia of the barcode [9].

In the last years that kind of systems have become very popular and a research area of
priority [4]. These systems are used in areas like industry, logistics, distribution, access
control, e-passports and ticketing.

1.1 Motivation

Let’s look a little deeper into the applications of RFID systems: as we can see in Figure 1.1
there are multiple ways to use RFID technology for payment and authentication but the
main benefits can be the main disadvantages as well if security is not well implemented.
It is contactless, so information can be intercepted from some distance. It is fast, so
information can be retrieved or altered almost instantly. Also, it is widely used as an
access control system (as in the metro of London) and as a wallet to store credit for some
services (as in some vending machines).

All these kinds of applications and many others involve a strong security factor which
must be taken into account.

1.2 Objectives

In recent years the use of RFID devices has increased in various services, payment, access
control and labelling. An example of these devices are called contactless cards, either in

1
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(a) Public transport (b) Credit cards (c) Event ticketing

Figure 1.1: Applications of RFID

the form of credit cards, Bicing card (Barcelona’s bicycle sharing system), activation
of alarms or access cards to gyms and hotels. Most systems based on smartcards on
the market that use MIFARE family of chips, specifically the Classic model. MIFARE
products are technologies that claim to follow the ISO / IEC 14443, but its implementation
and protocol is proprietary.

1.2.1 Main objective

Since the implementation of the MIFARE Classic smartcard is secret it’s reliability has
not been officially verified by others than its creators. It’s a risk to rely on a technology
that bases its security on obfuscation, but currently it is used in a wide range of services.

It would therefore be interesting to analyse the security of this RFID devices. Since they
work by proximity and without direct intervention from the owner, it’s important to see
to what extent they are reliable, check if they have cracks or security vulnerabilities and
study what should be done to correct these problems.

That’s why we have decided that the overall objective of the project is to check the security
of MIFARE Classic smartcards and the systems which are usedin these devices, analysing
its functioning and looking at its potential vulnerabilities.

1.2.2 Specific objectives

Below, we thought it would be interesting to include a list for a better definition of the
specific objectives of the project and its sections, and for a better tracking of the work
done.

1. Analyze the structure and general operation of RFID infrastructure and how they
benefit or harm systems that use them.
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2. Study the performance of the communication protocols and security systems that
implement the MIFARE Classic tags

3. Study existing known vulnerabilities in systems based on MIFARE Classic chips
and see if we can find new ones.

4. Learn to use the specific hardware for reading, writing and sniffing RFID tags.

5. Check the feasibility of the theoretical known vulnerabilities in real world scenar-
ios.

6. Analyze real case security systems implementing MIFARE Classic technology and
see the use made of it.

7. See how much the smartphone’s NFC is a potential risk factor for RFID systems, if
you can replace the specific hardware and operating systems or if they implement
some kind of security or control.

8. Search strategies and best practices to maximize the security of RFID systems or at
least minimize the risk.

1.3 State of the Art

While NXP kept in secret the implementation of the MIFARE chips, there have been cases
of attacks to this technology. As seen in the Chaos Communications Congress [18] the
hardware can be reverse engineered regardless the size of chips, so security by obfuscation
is not effective in this area. The following year Peter Van Rossum [11] published how
they reverse engineered the protocol and the algorithm, along with some practical Attack
to MIFARE Classic chips. Later Henryk Plöetz and other people uploaded to the internet
detailed information from MIFARE Classic tags and methodology to attack them [17].
The company NXP(who created the MIFARE Chips) tried to cover these publications.

Also, there are well-known cases, like the one made to the London Underground Oyster
Card or OV-chipkaart German public transport, allowing the hackers to travel for free.

Attacks such as this suggest that these systems are not as secure as its creators say, and
despite the security mechanisms this technology implements, information can be retrieved
and altered. If this is true, anyone can get to withdraw money from credit a card wirelessly,
use “Bicing” without paying or enter restricted access facilities such as hotels, hospitals
and government facilities.
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On top there is the appearance in the market of the NFC technology, as seen in the EU-
SecWest2012 [2] conference; NFC allows to remove the specific hardware and use a
smartphone to make the attacks, either to emulate a card to copy or modify the content.

1.4 Viability

1.4.1 Technical viability

All the study and analysis of the security of MIFARE Classic cards is theoretical, and
therefore does not depend on other external factors besides the documentation we can
find.

The practical application of the project will require specific hardware. The hardware
consists of a computer, a device to read/write cards and MIFARE Classic cards themselves
from the services to be analysed. An Android smartphone with NFC technology will be
required to try to adapt these types of attacks on NFC phones.

For the readers there is a wide range and they can be found easily online.

1.4.2 Economical viability

The cost of the project is based on the human resources and the required hardware for the
practical section, that is:

• Computer

• Read/write device for RFID cards

• MIFARE Classic cards

• NFC smartphone

From the previous list of hardware we just lack the tags and the RFID card reader, and we
found an OpenSource with a price of about 50e, from there, we can find them for a very
wide price range.

1.4.3 Ethical and legal viability

The content of this project will encounter security issues that may affect others, it is very
important to make clear that the main aim of this project is not to find vulnerabilities to
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exploit systems. On the contrary, we want to show security problems to the general public
and make them aware of the risks of using this technology. Also, to develop possible
corrections to the problems found in the future.

1.5 Memory structure

The memory begins in Chapter 2 with an introduction of the RFID technology and some
cryptography concepts. The next chapter is focused in the MIFARE Classic chip structure
and also how the cryptographic protocol used in the MIFARE Classic chip works. In
Chapter 4 we explain some characteristics that make these chips weak. The next Chapter
contains an explanation of the tools used in our tests and Chapter 6 presents our tests and
the attacks performed. Finally, we explain some case studies and in the last chapter, the
conclusions.
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Chapter 2

Basic concepts

In this chapter we present a theoretical approach to the RFID technology and the cryptog-
raphy used in an attempt of making this kind of systems safe, also introducing important
terminology.

2.1 RFID technology

Radio-frequency identification (RFID) is the wireless non-contact use of radio-frequency
electromagnetic fields to transfer data, for the purposes of automatically identifying and
tracking tags attached to objects. This technology is made of two kind of components:
the Proximity Integrated Circuit Card (PICC) and the Proximity Coupling Device (PCD).
Since the PICCs are not always in card shapes they can be referred to as transponder or
tag which is located on the object or subject to be identified. Also the PCD is commonly
referred to as interrogator or reader, which, depending on the design, may be a read
or write/read device. Those components that are located in the end-user environment
constitute the front-end of an RFID system. Optionally the RFID readers can be connected
to a back-end system [4].

2.1.1 Classification of RFID systems

We can categorize RFID systems depending on the system structure:

• online RFID: In those systems the reader has an online connection to the back-end
system, which can be accessed during the transaction. Because of this, it is easier
to detect fraud, for example: the multiple use of tickets.

7
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• offline RFID: In those systems the reader is offline but contacted in some regular
time intervals. Here the readers work autonomously and the transactions are down-
loaded from time to time by maintenance personnel.

Another way to categorize RFID systems is based on their security functionality:

• Low-end RFID Systems: In this category there are low-cost tags. Among these,
there are one-bit transponders used for anti-theft in stores and tags with a perma-
nent ID but without any security or privacy functions. Other low-end tags provide
some elementary functions: a password-protected KILL command, an access pass-
word, read, write and lock memory blocks, checksums (e.g. CRC16) and a pseudo
random number generator. The prevalent EPC (Electronic Product Code) Class 1
Generation 2 UHF tags belong to this category.

• Mid-range RFID Systems: This category includes read-write transponders of mod-
erate cost with read-write data memory from a few hundred bytes to more than
100 kB. Mid-range RFID systems are used in applications such as ticketing, ac-
cess control, and automotive immobilizers. Usually, these tags implement mutual
authentication and enforce an access control for the transponder’s memory. The
transmitted data is encrypted and integrity protected over the radio interface. The
transponders are usually implemented as a “hard-wired” state machine and often
proprietary cryptographic functions are in use. MIFARE Classic is the most promi-
nent example in this category.

• High-end RFID Systems: These RFID transponders contain microprocessor-based
smartcard chips and are equipped with a smartcard operating system. Both the chip
and its operating system implement security mechanisms. The security mechanisms
are application specific and include advanced cryptographic functions. In the very
high-end, we find dual-interface smartcards with crypto-coprocessors allowing for
public key cryptography such as digital signature operation.

There is a set of standards called ISO-14441, ISO-14442, ISO-14443 and ISO-14444 that
define communication protocols and data exchange formats in RFID. Near Field Com-
munication (NFC) is a RFID data interface between devices, similar to Bluetooth. NFC
is a subset of the RFID technology and its characteristics are of interest in relation to
smartphones and smartcards as it guarantees their interaction as we will see in section
2.1.4.
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2.1.2 Operative frequencies and range

Different requirements in the RFID systems make necessary to use a wide range of fre-
quencies. On the one hand, the systems using frequencies between 100kHz and 30MHz
operate using inductive coupling, on the other hand, the systems using frequencies be-
tween 2.45GHz and 5.8GHz are coupled using electromagnetic fields[9]. Microwave sys-
tems have a higher range, more memory capacity and are less sensitive to electromagnetic
interference fields. However, in contrast to inductive systems, microwave systems require
a backup battery. Inductive systems can operate using the energy provided by the reader
transmission.

• Low Frequency (LF): Typically operates at 125kHz or 134kHz. This frequency
band provides a short read range (<0.5m) and a slow read speed, but tend to be less
sensitive to interference.

• High Frequency (HF): These systems operate at 13.56MHz, and perform a greater
read range (<1.0m) and higher read speed than LF tags. Also, the price is among
the lowest of all RFID tags, and tend to be more sensitive to interference than LF.

• Ultra High Frequency (UHF): Utilizes the 860 to 930MHz band (typically 868MHz
in Europe). This frequency band range is up to 10.0m and the data transfer rate is
faster than HF. UHF lacks the ability of read tags through water or metal.

• Microwave: This band operates either in 2.45Ghz or 5.8GHz. It provides the high-
est data reading rate and has the highest reading range (>3.0m). They are the most
expensive tags and are not able to penetrate objects with high water or metal con-
tent.

LF HF UHF Microwave
Frequency <135kHz 13.56MHz 860/915MHz 2.45GHz
Range <0.5m <1m <10m >3m

Table 2.1: RFID ranges and frequencies

2.1.3 Applications

RFID technology can be used in multiple applications:
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• EPC: The Electronic Product Code is a universal product identifier made as a sub-
stitute of the bar code. They are low-end tags and use the UHF range.

• Contactless Payment Systems: They are used in credit cards and smartphones, they
usually operate at HF and they should always be high-end tags.

• Electronic Passport: It includes a Mid-range RFID chip operating at HF including
the owners information and photo.

• Access Control: Depending on the security requirements these tags can be from
low to high-end and usually operate at HF.

• Animal Identification: Equivalent to EPC but operating at LF, it is used for live
stock, it can also be used to store information from domestic animals.

• Electronic Immobilisation: It is integrated in car keys to make them harder to copy.
The car only starts if you use the right key and it includes the correct RFID chip. It
uses low-end tags and operates at LF.

• Sporting Events: It helps to avoid fake tickets and illegal resale by including a RFID
chip with the serial number. It usually uses low-end tags transmitting at HF for the
low cost.

• Medical Applications: With different kinds of sensors, temperature, blood pressure,
glucose and other biological parameters can be monitorized for medical purposes.
The most common use is tracking of medical supplies with low-end tags operating
at HF.

2.1.4 NFC

The NFC is a communication protocol made as a subset of RFID technology. It operates
at HF (13.56MHz) and includes all devices from Low to High-end, among these devices
we can find tags and also smartphones. The ISO-14441, ISO-14442, ISO-14443 and
ISO-14444 are the principal standards that define all the protocol layers from physical
to application to guarantee the interoperability of all kinds of devices regardless of the
manufacturer.

According to the ISO-14443-A standard each component uses a different encoding to
communicate. The reader uses the Modified Miller, and the tag uses the Manchester
encoding.
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The Modified Miller encoding has a low pulse at the beginning of the bit to encode a
0, to encode a 1 the low pulse is delayed half a period. And if a 0 is preceded by a 1
the 0 is encoded with no low pulse as seen in Figure 2.1(a). Figure 2.1(b) shows the
Manchester encoding, in this case the bit duration is split in two halves. A 0 is produced
by introducing field resistance in the second half of the bit duration while a 1 is encoded
by introducing field resistance in the first half.

(a) Modified Miller (b) Manchester

Figure 2.1: Encoding methods used by reader and tag

Other significant characteristics are the reading range limited to 10cm and the timing
limitations made to enhance the security and reliability. The MIFARE Classic tags (which
we will see in Chapter 3) from NXP claim to be NFC compatible but in some of the newest
smartphones it is not supported as these tags use a proprietary “secret” protocol.

2.2 Cryptography

Cryptography is the science and practice of hiding information [23] and there are several
methods to do it. In this section we will approach the techniques that are used in the
MIFARE Classic chips.

2.2.1 Symmetric encryption

The symmetric encryption basically consists of 4 elements: message, key, encryption al-
gorithm and decryption algorithm. This method is used to transform a plaintext into a
ciphertext and vice versa with the same key. To encrypt, the algorithm receives the plain-
text and the key as input, and returns the ciphertext. Using the same key, the ciphertext
and the decryption algorithm, the plaintext is recovered.

In general, this method is fast even with large amounts of data. The two most remarkable
limitations are the key exchange and the number of keys to store, the reason is that for
each group sharing a secret a different key is needed.
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In Chapter 3 we will see how the MIFARE Classic uses symmetric encryption in the
communication between the reader and the tag.

2.2.2 Stream ciphers

Stream ciphers are a very fast kind of symmetric encryption algorithm which works ci-
phering individual characters or bits using a transformation. In our case this transfor-
mation is accomplished by XORing the message with a pseudo-random sequence, this
is done both to encrypt and decrypt as we can see in Figure 2.2. The pseudo-random
sequence is created trough a pseudo-random number generator using the key as seed [23].

Figure 2.2: Structure of stream ciphers

When a sequence of random numbers is needed the best we can do is use very long period
sequences, called pseudo-random sequences. For a periodic sequence to be considered
pseudo-random it must fulfil the Golomb principles:

1. The number of zeros and ones should be as equal as possible per period.

2. Half of the runs (bursts) in a cycle have length 1, one quarter have length 2, one
eighth have length 3, and so forth. Moreover, half of the runs of a certain length are
gaps(...10001...), the other half are blocks(...01110...).

3. The out-of-phase autocorrelation AC(p) is two-valued, take the value 1 if p is a
multiple of the period N and another constant value otherwise.

Moreover the sequence must have a very long period, be easy to generate and crypto-
graphically secure against chosen plaintext attack.
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A common implementation of pseudo-random number generators is the Linear Feedback
Shift Registers (LFSR) which is a shift register whose input bit is a linear function (XORs
in our case) of its previous state [4]. After the initialization of the registers each extracted
bit makes all the registers shift and triggers the XORing that determines the value of the
input register. The principal weakness of the LFSRs is that with enough data from the
output it can be reverse-engineered; a usual solution is to apply non-linear functions to
the LFSR output, this way it is more difficult to recover the LFSR state. In Figure 3.7 we
can see an LFSR with some filter functions.

In the context of the project, the MIFARE Classic chip uses a stream cipher and generates
the pseudo-random numbers with a LFSR and filter functions [24]. We will focus on this
in Chapter 3.

2.2.3 Challenge-Response Authentication

Challenge-response authentication is an authentication mechanism in which a system
presents a question, known as challenge, and the user must provide a valid answer, known
as response, to be authenticated. The implementations for this system involve mutual au-
thentication, where the different parts must convince each other that they know the pass-
word without it being transmitted.

To achieve mutual authentication each part of the communication can use the password
as encryption key to encrypt and transmit random-generated data as challenge so the re-
sponse to this challenge must be the decrypted data. These data is usually known as
nonce. Using this method we can avoid the password eavesdropping. Also, the usage
of random-generated data decreases the possibility of a replay attack, where the attacker
eavesdrops the communication to retransmit it later attempting to authenticate. Nonces
should be randomly generated to avoid attacks.

As we will see in Chapter 3, the MIFARE Classic chip performs a mutual challenge-
response authentication using the LFSR to pseudo-randomly generate nonces.
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Chapter 3

MIFARE Classic tags

In this chapter we examine the company’s RFID NXP Semiconductors chip, MIFARE
Classic. Given that this tag model holds the 80% of the market applications, we believe it
is a significant case of study because of its implications from the point of view of security.
The MIFARE Classic chip has two versions 1K and 4K, apart from the memory size the
diference lies in the memory organization. We will describe the 1K Classic chip in detail.

3.1 Structure Overview

The MIFARE Classic chip is an EEPROM memory with some cryptographic features.
According to the data sheets from NXP the basic unit of the memory is a 16-byte data
block. In the 1K card, data blocks are grouped together to form 16 sectors of 4 data
blocks each. Data blocks in the 4K card are distributed in 32 sectors of 4 blocks each and
8 sectors of 16 blocks each [22]. The logical structure of the chip is shown in Figure 3.1.

In the MIFARE Classic 1K the block 0 from sector 0 is write protected, it holds the Unique
Identification Number (UID) and manufacturer data, as we can see in Figure 3.2, and it
also has a bit count check (BCC) which is the result of XORing the UID bytes. Each
sector has 4 blocks, the first 3 are for storing data (except in the block 0 case) and the last
one is known as the sector trailer.

The first three data blocks of each sector (except block 0) can be configured into read/write
mode or value mode. The read/write mode allows to store raw data in the block and the
value mode is for electronic purse functions. Value blocks have a fixed data format which
permits error detection, correction and a backup management. This format consists in
writing the same data three times, one inverted and two non-inverted.

15
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Figure 3.1: MIFARE Classic 1K memory structure

Figure 3.2: MIFARE Classic 1K manufacturer block

The sector trailer is used to store the keys of 48 bits each and the permissions of the sector
containing it. These sector trailers contain the A key (bytes 0 to 5), the access bits (bytes
6 to 9) and the B key (bytes 10 to 15). The reader needs to be authenticated by a sector
before any memory operations are allowed.

After authentication any of the operations shown in Table 3.1 can be done:
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Read reads one block
Write writes one block
Decrement decrements the contents of one block and stores the result in the data-register
Increment increments the contents of one block and stores the result in the data-register
Transfer writes the contents of the data-register to one block
Restore stores the contents of one block in the data-register

Table 3.1: Memory Operations

3.2 Permissions

Each sector trailer contains keys A an B and 3 bits for each data block in that sector. These
bits define the access conditions of the blocks of that sector. The bits are stored twice,
once inverted and once non-inverted making a total of 3 bytes plus 1 blank byte as we
can see in Figure 3.3, with the purpose of performing error detection and error correction.
These bits control the memory access rights to the sector trailers and the data blocks,
including the interaction with keys A and B. The access conditions for sector trailers and
data blocks are shown in Tables 3.3 and 3.2 respectively.

Figure 3.3: MIFARE Classic access conditions

As an example, for the fixed values of C1i = 1, C2i = 0 and C3i = 0 (where i is a value
from 0 to 3 that indicates the block) on an ordinary block (i between 0 and 2) only read
and write operations will be allowed, the read operation will be possible by authenticating
with keys A or B but the write operation will be only permitted providing the B key. On
the other hand if these permission values refer to the sector trailer (i = 3) it will mean
that it is not permitted to overwrite the access conditions but we will be able to read them
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C1 C2 C3 read write incr decr, transfer, restore
0 0 0 key A|B key A|B key A|B key A|B
0 1 0 key A|B never never never
1 0 0 key A|B key B never never
1 1 0 key A|B key B key B key A|B
0 0 1 key A|B never never key A|B
0 1 1 key B key B never never
1 0 1 key B never never never
1 1 1 never never never never

Table 3.2: Access conditions for data blocks (i = 0, 1, 2)

C1 C2 C3 read write read write read write
0 0 0 never key A key A never key A key A
0 1 0 never never key A never key A never
1 0 0 never key B key A|B never never key B
1 1 0 never never key A|B never never never
0 0 1 never key A key A key A key A key A
0 1 1 never key B key A|B key B never key B
1 0 1 never never key A|B key B never never
1 1 1 never never key A|B never never never

Table 3.3: Access conditions for sector trailer (i = 3)

by authenticating with any of the A or B keys and these keys will be overwrittable only
with previous authentication using the B key.

3.3 Communication

Figure 3.4 shows the communication flow of the MIFARE Classic. In the following sec-
tions we will explain the phases of this process and its abbreviations.

3.3.1 Request

The tag starts at the Power On Reset (POR) state and the reader sends repeated request
standard (REQA) or request all (WUPA) commands, then the tags can respond by sending
the answer to request code (ATQA). As we can see in Table 3.4 the ATQA code is related
to the tag model and manufacturer. At this point the reader recognises that at least one
card is in the read range.
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Figure 3.4: MIFARE Classic transaction flow.

3.3.2 Anticollision Loop

In the anticollision loop an Anticollision command (AC) is sent, then the serial number
of a card with its BCC is received. If there are multiple tags in the reader range, a colli-
sion occurs. The reader uses only the valid received values to send another Anticollision
command updated with the new data, then only the tags whose UID match will respond.
This is repeated until there is no collision. This way the tags can be distinguished by their
UID.

Manufacturer Product ATQA SAK
NXP MIFARE Mini 04 00 09

MIFARE Classic 1k 04 00 08
MIFARE Classic 4k 02 00 18
MIFARE Ultralight 44 00 00
MIFARE DESFire 44 03 20
MIFARE DESFire EV1 44 03 20

Infineon MIFARE Classic 1k 04 00 88

Table 3.4: MIFARE Classic ATQA and SAK values
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3.3.3 Card Selection

The reader selects one individual card with the select card command (SEL) and the card
returns the select acknowledge reply (SAK) code which is meant to determine the type of
the selected card.

3.3.4 Authentication

After the tag selection, the reader specifies the memory location of the next memory
access and uses the corresponding key for the 3-step authentication procedure. After a
successful authentication all memory operations are encrypted as we will see in Section
3.4.

At any point of the communication the reader can stop the communication by sending a
halt command (HLTA), then the tag will go into a halt state and only will be able to awake
with a WUPA command. More detailed information and the command set of MIFARE
Classic can be found in Garcia’s article [7].

3.3.5 Example trace

In Figure 3.5 we can see a trace of a reader initial communication from the request to the
card selection where the values of the different commands are shown.

The communication starts with the reader sending a request command (REQA) and the tag
responds with the ATQA code, after that the anticollision loop starts with the anticollision
command (AC) then the tag responds with the UID and an error check code (BCC). At
this point the card selection phase starts with the SEL and SAK commands. Finally, the
reader stops the communication with a HLTA command.

In Table 3.5 another communication trace is shown including the authentication process
and data transmission of block 0.

3.4 The cryptographic algorithm: Crypto1

Crypto1 is the algorithm used in MIFARE Classic chips for encryption. Developed by
NXP Semiconductors, it’s proprietary and bases part of its security on the secrecy of
the Crypto1 algorithm. Despite the secrecy, Nohl and Plötz uncovered the algorithm by
reverse engineering the chip implementations [18], also Garcia et.al. disclosed the entire
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Figure 3.5: Example of communication

algorithm [12].

In Figure 3.6 we can see the basic structure of the Crypto1 and we will describe in detail
the relevant components in the following subsections.

Figure 3.6: Structure overview of Crypto1

3.4.1 Data transmission

All the memory operations on the MIFARE Classic tag are transmitted encrypted using
Crypto1 as a stream cipher. The pseudo-random number generator used for this purpose,
as we can see in Figure 3.7, is a 48-bit LFSR with a two-layer non-linear filter.

At each clock cycle, a keystream bit is generated by applying the filter functions to twenty
bits from the LFSR. Then the LFSR shifts to the left discarding the 0th bit and inserts a
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Sender Bytes Command
1 PCD 26 REQA (WUPA if 52)
2 PICC 04 00 ATQA
3 PCD 93 20 AC
4 PICC 9C 59 9B 32 6C UID & BCC
5 PCD 93 70 9C 59 9B 32 6C 6B 30 SEL
6 PICC 08 B6 DD SAK
7 PCD 60 00 F5 7B Authenticate block 0 using key A
8 PICC 82 A4 16 6C Tag nonce
9 PCD EF EA 1C DA 8D 65 73 4B Reader nonce & response

10 PICC 9A 42 7B 20 Tag response
11 PCD 30 00 02 A8 READ
12 PICC 9C 59 9B 32 6C 88 04 00 47 DATA

C1 2D 2A C9 00 28 07 5A 41
13 PCD 50 00 57 cd HLTA

Table 3.5: Complete communication trace

Figure 3.7: Crypto1’s LFSR and filter functions

new bit on the right using the feedback function. This feedback function can be defined
by:

L(x0x1...x47) = x0 ⊕ x5 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x14 ⊕ x15 ⊕ x17 ⊕ x19 ⊕ x24

⊕ x25 ⊕ x27 ⊕ x29 ⊕ x35 ⊕ x39 ⊕ x41 ⊕ x42 ⊕ x43

(3.1)

The filter that generates one bit out of the 20 bits extracted from the LFSR is defined by
a combination of the functions fa, fb and fc as we can see in (3.5). Each one of the filter
functions are defined in Equations (3.2), (3.3) and (3.4).

fa(a, b, c, d) = ((a ∨ b)⊕ (a ∧ d))⊕ (c ∧ (a⊕ b) ∨ d) (3.2)
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fb(a, b, c, d) = ((a ∧ b) ∨ c)⊕ ((a⊕ b) ∧ (c ∨ d)) (3.3)

fc(a, b, c, d, e) = (a ∨ ((b ∨ e) ∧ (d⊕ e)))⊕ ((a⊕ (b ∧ d)) ∧ ((c⊕ d) ∨ (b ∧ e))) (3.4)

f(x0x1...x47) = fc(fa(x9, x11, x13, x15), fb(x17, x19, x21, x23), fb(x25, x27, x29, x31),

fa(x33, x35, x37, x39), fb(x41, x43, x45, x47))

(3.5)

The ISO-14443-A standard specifies that every byte sent is followed by a parity bit for
error detection, so the MIFARE Classic sends a parity bit with each byte transmitted but
calculates it over the plaintext instead of the ciphertext and then encrypts it. Moreover the
parity bit is encrypted with the same value as the next bit transmitted.

3.4.2 Initialisation and Authentication

The authentication protocol used in MIFARE Classic follows a mutual challenge-response
mechanism. In this case, the challenge is a 32-bit nonce generated by a 16-bit LFSR, a
different LFSR from the 48-bit LFSR used for the cipher.

During each clock cycle, the 16-bit LFSR generates one bit and inserts a new rightmost
bit using the feedback function defined by Equation (3.6).

L(x0x1..x15) = x0 ⊕ x2 ⊕ x3 ⊕ x5 (3.6)

According to the design of the protocol, for a given 32-bit sequence, the next sequence
can be computed using the successor function (3.7), then sucn is the result of applying n

times the suc function as defined by the Equation (3.8).

suc(x0x1...x31) = x1x2...x31L(x16x17...x31) (3.7)

sucn(x0x1...x31) = suc(sucn−1(x0x1...x31)) (3.8)
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Figure 3.8: Authentication phase

The authentication process shown in Figure 3.8 can be described as:

1. The reader sends an authentication request to the tag.

2. The tag sends a challenge nonce NT . The next messages will be encrypted (XOR-
ing with the keystreams ks1, ks2 and ks3 respectively which we will explain after-
wards).

3. The reader replies with an encrypted1 nonce NR and an encrypted response to the
previous challenge AR.

4. If the reader response is correct, the tag will respond with an encrypted answer AT ,
otherwise the tag will not respond.

5. Once the reader has checked correctness of the tag response the authentication is
concluded and operation commands can be done.

The calculation of the challenge responses was discovered by Garcia [11] who also dis-
covered that the tag nonce depends only on the time between the power-up an the start of
the communication.

Given 32-bit sequence the next sequence can be computed using the successor function
suc(NT ), so the answer to the nonces are calculated as shown in Equations 3.9 3.10 an
encrypted with the corresponding keystreams before they are sent.

1Keys {} denote encrypted values in Figure 3.8. The detailed encryption procedure is described next
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AR = suc64(NT ) (3.9)

AT = suc96(NT ) (3.10)

In order to synchronize the 48-bit LFSRs, the stream ciphers have to be initialised at
the reader and tag during the authentication session. The parameters necessary for this
process are the 48-bit key K the nonces NT and NR, and the tag UID, where

K = k0k1k2...k47 (3.11)

NT = nT,0nT,1nT,2...nT,31 (3.12)

UID = u0u1u2...u31 (3.13)

NR = nR,0nR,1nR,2...nR,31 (3.14)

and the internal cipher state at time i (Si), which is the values of the LFSR at time i, are
defined as

Si = sisi+1si+2...si+47 (3.15)

Now we are going to explain the authentication process in greater detail including the
initialisation of the LFSR. As we can see in Figure 3.9 authentication process starts with
the initialization of the 48-bit LFSR and ends achieving a state of si which will allow a
communication between the tag and the reader. It is defined by the following steps:

1. First the reader sends an authentication request indicating the block to read.

2. Then the reader and tag ciphers are initialized with the 48-bit sector key

si = ki,∀i ∈ [0, 47] (3.16)

3. Next, the tag sends the nonce NT from the 16-bit LFSR to the reader.
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4. Then NT ⊕ UID is shifted in the reader LFSR with the feedback

si+48 = L(si, si+1, ..., si+47)⊕ nT,i ⊕ ui,∀i ∈ [0, 31] (3.17)

5. The reader picks a nonce NR and uses the keystream (ks1) obtained in the previous
operation to cipher it. Then, the reader computes the AR using the successor func-
tion (as seen in Equation (3.9)), after that, the NR is shifted in the reader LFSR and
the keystream generated (ks2) is used to encrypt the AR. Finally, the reader sends
NR, AR to the tag.

si+80 = L(si+32, si+33, ..., si+79)⊕ nR,i,∀i ∈ [0, 31] (3.18)

6. The tag decrypts the NR using ks1, then NR is shifted in the tag LFSR and the
keystream generated (ks2) is used to decrypt AR. Finally the tag calculates the AT

using the successor function (as seen in Equation (3.10)), and a new keystream is
generated (ks3) to encrypt before sending.

7. The reader generates a keystream (ks3) to decrypt the AT and check the correctness
of the authentication.

8. At this point the tag and the reader have the same state and from now on the stream
cipher can be used

si+112 = L(si+64, si+65, ..., si+111),∀i ∈ N (3.19)

Next, we formalize some of the concepts seen in the initialisation and authentication
process. We can define the keystream bit bi at time i, obtained from the LFSR using the
function of Equation (3.5), as

bi = f(sisi+1...si+47),∀i ∈ N (3.20)

The encryption of NR, AR and AT used in the communication of the 3-step authentication
is denoted using {} as we can see in the next equations.

{nR,i} = nR,i ⊕ bi+32,∀i ∈ [0, 31] (3.21)

{aR,i} = aR,i ⊕ bi+64, ∀i ∈ [0, 31] (3.22)

{aT,i} = aT,i ⊕ bi+96,∀i ∈ [0, 31] (3.23)
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For references we also group the previous keystream bits together using the following
common notation.

ks1 = b32b33...b63 (3.24)

ks2 = b64b65...b95 (3.25)

ks3 = b96b97...b127 (3.26)

In Figure 3.9 a graphical description of the process can be seen. There, we can see the
initialisation phases in both components (reader and tag).

For the understanding of the figure we define the function word() which returns a 32 bit
word from the 48-LFSR cipher and the arguments define what is being shifted in while
extracting this word.

Figure 3.9: Detailed Authentication Phase
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Chapter 4

Vulnerabilities of the MIFARE Classic
tags

In this chapter, we will examine and explain some weaknesses of the Crypto1 protocol
and the MIFARE Classic tag implementation based on the documentation from NXP, the
work done by other researchers and also from practical experimentation.

These vulnerabilities can be found either in the pseudo-random number generator, the
cryptographic cipher, the communication protocol and the implementation of the system.

4.1 Pseudo-random number generator weaknesses

4.1.1 Low entropy of random generator

From the Equation (3.6) we can see that the pseudo-random number generator used to
create the nonces is only 16-bit wide, then the LFSR generated sequence has a period of
216−1 (65535). From previous investigations [17] we know that it takes only 0.6 seconds
for the 16-bit generator to generate all the possible nonces. Also the LFSR resets to a
known state every time it powers up.

4.2 Stream cipher weaknesses

4.2.1 Odd state bits in LFSR feedback

According to the Equation (3.1), the LFSR state bits used in the filter function are some
of the odd-numbered bits. The odd 9th to 47th bits are used to generate a keystream bit.

29
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Then, after two shifts of the LFSR the original 20 bits used for the input of the filter
function are shifted to the left, so that the 9th bit is discarded and a new 47th bit is added.
The next keystream bit is generated by using these bits. If we know two consecutive
keystream bits, we can narrow down the possibilities for the state bits of the 48-bit LFSR
[24], a similar process can be used for the even bits.

4.2.2 Leftmost LFSR bits not used in the stream cipher filter

As it can be seen in Figure 3.7, we can see that the bits from positions 0 to 8 are not used
in the filter functions. This allows us to perform a reverse filter function to “roll-back”
the LFSR state to recover the secret key. The “roll-back” process consists of doing the
inverse operation applied to the LFSR during the Authentication.

If we know the LFSR state immediately after NR has been fed into the streamcipher (as
seen in Section 3.4.2) the process consists in “unshifting” the LFSR to the right, then the
rightmost bit(the 47th) will be discarded and a new 0th bit r will be inserted (note that the
value of the new bit is irrelevant at this point as we don’t need it in the filter functions),
now that we have undone one step of the LFSR we can proceed to the next step.

Next we use the filter functions to compute the keystream bit used to encrypt the bit nR,31.
With the keystream bit obtained we perform an XOR with {nR,31} to recover nR,31. At
this point we can use it to set r to the correct value using the feedback function of the
LFSR (Figure 4.1).

Repeating this procedure 31 more times we obtain the LFSR state before NR is fed in,
and 32 more times to recover the secret key before UID ⊕NT is shifted in.

Figure 4.1: Unshifting the Crypto1’s LFSR

4.2.3 Statistical bias in cipher

The 48-bit LFSR output differs from a true random sequence. Comparing the output with
a sequence from RANDOM.ORG [13] we can apreciate that it may have some kind of
bias.
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Courtois investigated on the impact of varying a few bits of NR for the generation of
keystream ks1 with Crypto1. In his experiments, he fixed the first three bytes of NR and
varied only the last bits of NR. His results showed that, with a probability of 0.75, the
keystream ks1 is independent of the last three bits of NR, whereas, in fact, the probability
should ideally be 0.5. He also made use of this weakness in his card-only attack in [6].

4.3 Protocol weaknesses

4.3.1 Reuse of parity bits

The ISO-14443-A standard defines that every byte transmitted is followed by a parity bit.
However, the MIFARE Classic calculates the parity bit over the plaintext instead of the
ciphertext. So the 48-bit LFSR does not shift when the parity bit is encrypted. This means
that both the parity bit and the first bit of the next plaintext byte are encrypted with the
same keystream bit (see Figure 4.2). This violates the property whereby a one-time pad
should not be reused.

Figure 4.2: One-time pad reuse

4.3.2 Information leak from error code

During the authentication process when the reader sends NR and AR the tag checks the
parity bits before checking if AR is correct. If any of the eight parity bits is incorrect
the tag does not respond, but if all parity bits are correct and AR is wrong the tag will
respond with a 4-bit error code 0x5. This error code is also sent encrypted, so XORing
the message with the error code 0x5 we can recover four keystream bits.

4.3.3 Multiple sector authentication

After a successful authentication the LFSR is used to generate the keystreams to encrypt
the communications, this encrypted session is kept for all kind of memory operations and
new authentications. Any new authentications will be performed with all the messages
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FFFFFFFFFFFF A0A1A2A3A4A5 B0B1B2B3B4B5 4D3A99C351DD
1A982C7E459A 000000000000 D3F7D3F7D3F7 AABBCCDDEEFF

Table 4.1: Well known default keys

encrypted without resetting the LFSR state, so information can be extracted from sectors
with unknown keys if we previously authenticated in any sector.

4.4 Deployment weaknesses

4.4.1 Deployment with Default Keys

To facilitate testing and integration, the manufacturers ship their chips with default keys.
Some of these well known keys are listed in Table 4.1. For different reasons this default
keys are in most of the cases not changed.

This kind of weakness is independent of the system itself, if the keys are known, no matter
how secure the tag’s protocol can be, we will have total access to the data.

4.4.2 Wrong permission configuration

This weakness is similar to the previous one but a little more subtle, it is based on the
fact that the chips are distributed with default access permits. A bad configuration of the
access permissions can derive in a security breach.

As an example, if the access permissions of one data block are the default we know that it
can be read either with key A or B, if any of the keys is a default one the data can be read
despite we don’t know the other one.
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Tools used for practical attacks

In this chapter we will introduce the different tools used in this project, both hardware
and software.

5.1 Hardware

5.1.1 Raspberry Pi

The Raspberry Pi (Figure 5.1) is a credit-card sized computer developed with the inten-
tions of promoting the teaching of basic computer science in schools [10]. It is powered
by an ARM processor at 700MHz and 512MB of RAM. It has all the connectors we could
find in a standard PC plus some pins for low-level peripherals. Also it can be overclocked
without voiding the warranty.

With a power consumption of 3.5W and a Debian based S.O. the Raspberry Pi is a good
candidate to substitute a standard PC or laptop and make a standalone device to increase
the portability of the RFID reader.

5.1.2 Portable Battery Charger

As a power supply to mount a standalone device we used an external battery pack (see
Figure 5.2). The product is described as a power bank to recharge your ipad/iphone on
the move, and claims to be able to make the ipad battery last 3.5 extra hours, we can see
the specifications in Table 5.1.

This device also has multiple connector adapters that will allow us to recharge the battery

33
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Figure 5.1: Raspberry Pi

Figure 5.2: Portable battery pack

easily and connect it directly to the Raspberry Pi.

In our experiments we have used it to power the Raspberry Pi so we could use it anywhere.
As a result we have seen that it can operate up to 5 hours intensively, we also observed that
for the normal usage of our tests it can be used for several days without need to recharge
it.
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Output capacity 18.5Wh (5000mAh)
USB Output 1 5V, 1A
USB Output 2 5V, 500mA
Charging time 8.5 hours
Input 5V, 1A
Max. output current 1.5A
Dimension 110x70x16mm
Weight 145g

Table 5.1: Battery specs

5.1.3 PN532 NFC v1.3

The PN532 NFC/RFID controller breakout board (Figure 5.3) is a PCD that uses the
most popular NFC chip (the PN532 from NXP Semiconductors). It can write and read
NFC/RFID Type 1 through 4 tags.

Figure 5.3: PN532 NFC/RFID controller breakout board v1.3

It has tree different ways to communicate with it TTL UART, I2C and SPI, it is also fully
supported by libnfc. This allows us to plug in a FTDI cable and use it trough the USB
port of any computer.

In this project we will use the TTL UART interface to connect it to the laptop with the
FTDI cable and to the Raspberry Pi using either the cable and the GPIO pins as we can
see in Figures 5.5 and 5.6.

It also has an integrated antenna designed for using it with NFC enabled systems that
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makes this device an integrated and cheap solution for experimentation and testing.

As a drawback, the emulation functionality is limited by hardware to only be able to use
UIDs starting with 0x08. These UIDs are used for testing and are no operative in real
cases.

5.1.4 MIFARE Classic Customized cards

Reading from the datasheets of the MIFARE Classic chip, we know that the UID is set by
the manufacturer and by design can’t be altered. Despite this restriction, we have found
a Hong Kong provider [14] that sells MIFARE Classic tags with rewritable UID. Using a
PCD like PN532 with libnfc [20] and these tags we can make a perfect copy of any tag
with known keys.

5.1.5 Smartphones

Android NFC enabled smartphones are good candidates to try the security of the MIFARE
Classic tags as there are many free applications that claim to be able to communicate with
the tags or exploit some vulnerabilities. For this project we have used a Samsung Galaxy
SIII and an LG Nexus 4.

5.2 Software

5.2.1 Operating Systems

Ubuntu 12.04 LTS

Ubuntu is a distribution of the GNU/Linux Operative System. We will use it as a platform
for testing the PN532 and libnfc.

Raspbian "Wheezy" 2013-02-09

Raspbian is a free operating system based on Debian, optimized for the Raspberry Pi
hardware. This operating system comes with the set of basic programs and utilities that
make Raspberry Pi run “out of the box”.
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Backtrack 5

Backtrack is a GNU/Linux distribution developed as a penetration testing tool. We ob-
served that it has preinstaled some of the RF tools that we will use on Ubuntu with the
PN532.

5.2.2 Programmes and libraries

Libnfc

Libnfc is an open source library written in C to handle Near Field Communication (NFC).
The purpose of the libnfc library is to provide developers a way to work with NFC hard-
ware at a higher level of abstraction at no cost. It was released in February 2009 and
currently it is at version 1.7. Libnfc can be compiled using Windows Visual Studio in
Windows or any C compiler in Linux. The package includes drivers to interact with dif-
ferent kinds of hardware and also comes with some example codes to help us get started.

There are some changes in the installation process if we use version 1.7 or older versions,
in the older versions the hardware was automatically detected but in the newer ones it has
to be specified in which port it is connected as a measure to avoid interferences with other
connected hardware and improve the trimmings. Despite this it can be installed in most
UNIX like and Windows systems, in the scope of the project this means our laptop, the
Raspberry Pi and the PN532 reader.

Crapto1

Crapto1[3] is a C library that implements the Crypto1 cipher in software and also pro-
vides some functions supporting the attack from Garcia [11]. It is only a library and does
not provide interaction with hardware readers or tags nor any user interface, we can im-
plement one ourselves or (as we found later) we can use some implemented tools that
use it [8] to recover the original key from a sniffed authentication (see Figure 5.4). Some
Crapto1 functions that we have used to implement the emulation of Crypto1 cipher are
described next.

• crypto1_create(key): This command initialises the LFSR with the given key

• crypto1_word: It will return a 32-bit keystream, and updates the LFSR state.

• crypto1_get_lfsr: Returns the LFSR state
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• lfsr_recovery64: This function produces the LFSR state after the given 64 keystream
bits are generated.

• lfsr_rollback: Roll back the LFSR 32 times to get the previous state. It is an imple-
mentation of the attack for the weakness described in Section 4.2.2.

Figure 5.4: GUI for Crapto1 tool

MFCUK

MFCUK is an open source C implementation of “Dark Side attack [6] by Courtois”
coded by Andrei Costin. It uses Libnfc and Crapto1 library to exploit MIFARE Clas-
sic CRYPTO1 weakness. The source code for this library can be downloaded from [5].

MFOC

MFOC is an open source C implementation of “Offline Nested attack [12] by Nijmegan
Oakland Group” and coded by Nethemba, an IT security company. It uses Libnfc and
Crapto1 library to recover the tag keys using the vulnerabilities seen in 4.1.1, 4.3.1, 4.3.2
and 4.3.3, provided at least one valid KeyA/KeyB of any sector is known, or if the card
uses a default key. If a card uses at least one encrypted block with a default key, all the
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Figure 5.5: PN532 and Raspberry Pi connection with FTDI

other keys can be extracted in minutes. If the card does not use any default keys, one key
can be retrieved using the MFCUK application, after which this tool can be used. The
source code can be downloaded from [21].

5.3 DIY Standalone device

To increase our mobility during the project we tried to use smartphones to implement
our test but we found that they are limited by software so major S.O. changes had to be
applied in order to unlock all the features. Furthermore, some smartphone devices have
the emulation functionality limited by hardware which eliminates any possible option.

With the same purpose to increase de viability of the attacks by upgrading the mobility of
the reader, we have build a standalone device which is capable of acting as a reader and at
the same time be portable and have internet connectivity. This device is made from some
of the previously presented tools.

First of all, we connected the NFC reader to the Raspberry PI with the FTDI cable as we
can see in Figure 5.5. After checking that the PN532 is operative with libnfc installed
on the Raspberry Pi we proceeded to make it more mobile by connecting it as described
in Adafruit [1] (Figure 5.6(a)), but lately we discovered that the connections could be
simplified a lot(which made it even more portable) as we can see in Figure 5.6(b).

Then, to operate it without any screen or keyboard we installed a USB Wifi adapter and
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(a) Adafruit connections

(b) Simplified connections

Figure 5.6: PN532 and Raspberry Pi connections with GPIO pins

configured the ssh server on the Raspberry Pi. Finally we added a battery to recharge
ipads as a power supply.

The result (as we can see in Figures 5.6(b) and 5.7) is a standalone device that can work
for several hours and maintains a size that allows us to use it everywhere and can be
operated from any point in the world.
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Figure 5.7: DIY standalone device
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Chapter 6

Practical feasibility of MIFARE Classic
attacks

In this chapter we explain some attacks we have tested, and some real world cases using
MIFARE Classic tags. In this last part we will not disclose all the details of the vulnerable
systems for its own security.

6.1 Tested Attacks

6.1.1 Key recovery

The objective of this attack is to recover all the keys from a tag to later be able to retrieve
the information and modify it. To achieve this goal there are two approaches: Communi-
cation interception (as we will see in section ??) and card only attacks.

Card only attacks are easier to perform as the attacker only needs to be near a tag and act
as the reader and can be performed any time while the chances to intercept the communi-
cation are lower.

In this category we find two programs that use libnfc and crapto1 to crack the keys:
MFCUK and MFOC.

MFCUK

MIFARE Classic Universal toolKit [5] is a toolkit containing samples and various tools
based on and around libnfc and crapto1, with emphasis on MIFARE Classic NXP/Philips
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# A keys Unknown # B keys Unknown # unique Unknown keys Content retrieval time
11 11 1 1m 38s
11 11 2 2m 21s
11 11 3 3m 7s
0 0 0 0m 5s
1 0 1 0m 39s
2 0 1 10m 1s

Table 6.1: MFOC example times

RFID cards (as seen in Section 5.2.2). It has support for Proxmark3 [19] and PN532
among others.

We used it to perform the “Dark Side Attack” [6]. Basically this attack tries to synchronize
with the tag by sending a fixed Nt and receiving encrypted error messages using the
vulnerability seen in Section 4.1.1. When it obtains 8 responses using the vulnerability
seen in Section 4.3.2, then it tries to reconstruct the possible states using the vulnerabilities
from 4.2.1 and 4.2.3 (which gives a list of 216) and by rolling back we obtain 216 possible
keys. Checking the parity bits, it narrows down the possible keys and finally it tries which
one is the real key.

MFOC

MFOC is an open source implementation of “offline nested” attack by Nethemba as seen
in Section 5.2.2. This attack is much faster than MFCUK but we need to know at least
one key of the tag, then it uses the vulnerabilities from Sections 4.3.1 and 4.3.3 to retrieve
the keys from the remaining sectors.

By using a combination of the two tools we can perform a complete key recovery by
disclosing the first key with MFCUK and the rest with MFOC.

In our experiments MFCUK hasn’t worked with the newer tags, as NXP upgraded them
some time after the vulnerability was disclosed but with the older ones a key can be
recovered within one hour. On the other hand, MFOC worked on most of the cases as
expected and in very low times. As we can see in Table 6.1, the time to crack and retrieve
the content of a tag is much lower than MFCUK.

6.1.2 Card clonation

The objective of this attack is to replicate a card to fool the genuine reader into thinking
that it is communicating with the actual tag. To achieve this we have to retrieve all the
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data within the PICC.

For a tag with known keys we can retrieve all the information by using the PN532 or
an NFC enabled smartphone. In the case of PN532 we used the tool nfc-mfclassic from
libnfc, with it we can read or write any data of a genuine tag (except the UID). On the
other hand there are some Android Apps, like the one published by NXP, that can retrieve
all the information from the tag if the keys are known.

Using any of these tools we could obtain a binary file that is an image of the tag blocks
and write it to a new tag, the only difference of these clones to the original tags was the
UID as it is written and protected by the manufacturer. As many of the systems using
MIFARE Classic authenticate using the UID we needed a way to rewrite it, so we used
the custom tags described in Section 5.1.4 to make complete clones. The final result is
that the standard readers can’t distinguish between the original tags and the clones.

6.1.3 Card Emulation

The objective of this attack is to use some hardware to fool the reader into thinking that
it is communicating with an authentic tag but without using a real MIFARE Classic chip.
These kinds of attacks have more flexibility than the Clonation Attack because the data
within the emulated tag can be modified easily.

To perform these attacks there are two main approaches:

• NFC enabled smartphones

• Dedicated hardware

Due to the time constraints of the Project we focused on the dedicated hardware approach
using the PN532.

Dedicated hardware

The PN532 has the emulation features limited by hardware to only being able to use test
UIDs (first byte equal to 0x08), but by disabling the chip communication handlings after
a fake initialization to send raw data we can forge messages and send any command, even
real UIDs.

We developed a program to fully emulate a MIFARE Classic tag and its communications.
By using libnfc, crapto1 and our DIY standalone device we want to use any UID and
emulate the content of any tag (Figure 6.1(a)).
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The main problems we found were that there was only detailed information about simple
reader behaviours, that the implementation of the procedure is not exactly as the theoret-
ical definitions we found, the hardware restriction to emulate UIDs and the access to a
reader for the tests.

With this program we have been able to replicate the complete process and fool some
readers with loose timeouts that not only read the UID but also authenticate by reading
some of the contents of the tag. Despite that, most of the readers have very restrictive
timeouts, so the use of the PN532 trough USB is discarded and the DIY standalone device
doesn’t work in all the situations.

The multi sector nested authentication has not been implemented yet, we used a simple
authentication for the tests.

6.2 Real World RFID deployments

In this section we describe some of the vulnerabilities found in real systems that use the
MIFARE Classic tags as RFID device.

6.2.1 Mobile World Congress 2013

The first case we present is the Barcelona Mobile World Congress 2013. This year the
main novelty was, as they called it, the NFC experience. So the ticketing was made with
MIFARE Classic tags, also, inside the MWC, every company’s stand had readers to par-
ticipate in contests and control visits. There was also an application for NFC smartphones
that emulated the Access badge.

Using our badge we found that it was a MIFARE Classic 1k tag. On the first test of the
tag we found that only the 12 first sectors used non-default keys, so we could use MFOC
to retrieve all the information in less than 2 minutes. Comparing it to other badges we
found that the same keys are used in every tag, this makes it possible to retrieve all the
information of any tag within 5 seconds with our DIY standalone device.

Then, we proceeded to identify the tag’s retrieved data and we found that the first 2 sectors
contained the visitor registration numbers. The subsequent sectors contain the personal
data of the user in ASCII such as names, email, phone number, ID (DNI) and postal code;
the final sectors contain padding data too.

As we didn’t find any data that determines access restrictions we think that it is stored in
the back-end of the system. Then the most feasible attack is impersonating other atten-
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dants as well as stealing their private information, since such information is included in
the card.

Finally we tried the NFC smartphone application whose only purpose was to emulate the
badge while showing the user details on the phone screen. While using the LG Nexus 4
we observed that the NFC was a little bugous, so in some cases we were allowed to enter
the facilities by showing the screen of our phone. Although this is not a problem of the
RFID tags it is an important security breach for the organization.

6.2.2 Building and facility access controls

The test for the access control applications has been performed in three different facilities.
In the first test case we observed that the access badges to access the building authenticate
only by using the tag’s UID, this makes the system totally insecure as the UID can be
read instantly from any tag and used later using a card clone or by emulation (a brute
force attack is also feasible as the UID has only 4 bytes).

In the second test case we found that the tags had some personal information to authen-
ticate together with the UID, this practice makes the brute force attack harder and would
make the information extraction slower except for the fact that the wrong configuration of
the tag permissions allowed us to access the data with the default B keys (they configured
the A keys only).

In the third test case we observed that the access permissions to the different zones of
the building were codified in the tag instead of performing a personal authentication and
granting access by identity. This configuration makes it possible to modify the tag infor-
mation and gain access to any zone and it makes it harder to differentiate between the
users.

6.3 Vending and renting applications

We have seen that some self-service cafés use tags to accelerate the payment process.
For security reasons they store the balance of the users on a server instead of the tags.
However, to identify the users the system only reads the UID of the tags, as the ticketing
machine is unsupervised, anyone can try UIDs until a valid one is found and spend all the
credit.

A similar problem applies to a well known renting service, in this case the problem is not
the credit but using the service impersonating another customer as this service only uses
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the UID of the tags to authenticate.

In another case we, observed that in some buildings personal ID badges are used by all
the working personnel. For security reasons they use the badges as a measure to control
the access to certain areas of the building, each worker only has access to the facilities
related to his or her job and position. These tags are also used as a wallet for the vending
machines.

We found that these badges use the MIFARE Classic 4k chip, so we started the testing.
The first relevant result was that most of the sectors are blank and protected with the
default key and permissions, this allowed us to perform a card only attack using MFOC
to retrieve all the tag’s information.

Analysing the content we observed that there were only four unique non-default keys
(two A and two B) and three kinds of permissions. The data contained in the tag can be
separated in two main categories from its sector positions.

1. Data stored in sectors 4 through 8 which has one A key, one B key and two kinds
of permissions.

2. Data stored in sectors 38 through 40 which has one A key and one B key.

Testing the two categories we found that category one is the one used as a wallet and
category two is for access control. Due to the restricted access to badges for testing we
will focus on the wallet data.

By reading the tag’s memory content with different amounts of money we found that
some of the sectors were modified, this made us think that the money is stored in the tag
instead of a back-end system.

In our next test we demonstrated that it is possible to spend any number of times the same
money by keeping a backup of the charged tag, this also confirmed our assumption that
the money is stored in the tag.

Then we focused on the analysis of the wallet data to disclose how it stores the user’s
money, our first observations from a tag with different amounts of money can be seen in
Table 6.2.

After the previous observations we can discard the static memory sectors and proceed
with less data to carry out our analysis; the remaining sectors (8, 6 and 5) can be also
separated in two groups according to their access permissions As we can see in Tables 6.3
and 6.4, comparing this data to the access conditions (Tables 3.2 and 3.3) we observed
that sector 5 is used as a value block and sectors 6 and 8 are used as data blocks.
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Sector Modified Comments
4 false Deployer Company
5 true Different permissions than sectors 4, 6,7 and 8
6 true -
7 false -
8 true -

Table 6.2: Wallet initial data from multiple readings

Hex BIN C1 C2 C3
Byte 6 60 0110 0000 Block 0 1 1 0
Byte 7 F7 1111 0111 Block 1 1 0 0
Byte 8 89 1000 1001 Block 2 1 0 0
Byte 9 00 0000 0000 Block 3 1 1 1

Table 6.3: Restricted building tag, Sector 5 permissions

Testing these data blocks we discovered that sectors 6 and 8 are used to store the recent
usage history of the tag. Comparing all the data, we extended the information as follows:

• Sector 8 Block 0: In this block the last amount of money charged into the tag is
stored with a check code.

• Sector 8 Block 1: In this block it is stored penultimate amount of money charged
into the tag with a check code.

• Sector 6 Block 0: In this block the code of the last machine used (either for replen-
ishing or for buying) is stored.

Finally we analysed the value block (sector 5 block 0), as described in the MIFARE Clas-
sic documentation [22]. It contains a value stored once inverted and twice non inverted.
Extracting the values of the tag with different amounts of credit and swapping the bytes
we obtained the results of Table 6.5.

These results mean that the credit inside the tag is not protected so any amount can be
written in the badges without paying for it as we can see in Figure 6.1(b).

Hex BIN C1 C2 C3
Byte 6 70 0111 0000 Block 0 1 0 0
Byte 7 F7 1111 0111 Block 1 1 0 0
Byte 8 88 1000 1000 Block 2 1 0 0
Byte 9 00 0000 0000 Block 3 1 1 1

Table 6.4: Restricted building tag, Sectors 6 and 8 permissions
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Credit HEX Value Swapped HEX Value DEC Value
0.70e BC 02 00 00 02 BC 700
0.80e 20 03 00 00 03 20 800
0.90e 84 03 00 00 03 84 900
0.25e FA 00 00 00 FA 250
0.10e 64 00 00 00 64 100

Table 6.5: Restricted building tag, credit values

(a) DIY standalone device in use (b) Wallet credit manipulation

Figure 6.1: MIFARE Classic attacks
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Conclusions

With the obtained results we can conclude that the MIFARE Classic tags are very insecure,
despide that a high number of enterprises still use them by the lack of knowledge or to save
the cost of updating the systems with a newer technology, but using a better configuration
would increase the security of these systems keeping a low cost.

In this chapter we summarize the principal problems of the MIFARE Classic tags and our
recommendations to minimize the risk.

7.1 MIFARE Classic Problems

The first and most common vulnerability in the implementation of the different systems is
in the default keys, we haven’t found any tag without at least one default key. This means
that all the systems that we have analysed can be exploited by the card only attack MFOC.

The following list summarizes the main problems of MIFARE Classic tags found in this
project:

• MIFARE Classic tags are very insecure.

• MIFARE Classic tags are widely used.

• Some systems use only the UID for authentication, and UIDs can be emulated eas-
ily.

• Some systems have a wrong permissions configuration, i.e. they set the A key but
the permissions allow to use the default B key to access the data.

• The data stored in the tags is usually in plain text.
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• The privileges that grant each tag are based on the information inside the chip in-
stead of carrying out a good personal authentication.

• It seems very secure for the general public as they don’t know what it is or how it
works

7.2 Implementation best practices

The principal recommendation is, if possible, avoid using MIFARE Classic tags; if that is
not an option the following list summarizes the best practices for the usage of these tags.

• Don’t leave any default key (neither A or B) in any sector

• Never use only the UID for authentication, the cryptographic features of the tags
must be used.

• Use the most restrictive permissions possible for the use we are going to do of that
tag.

• Cipher the data and use check codes in different sectors to detect manipulation.

• Include history checks or use tokens to avoid replay of operations.

• If used as a wallet don’t store the credit in the tag, use a back-end system to avoid
credit manipulation.

7.3 Future Work

During the execution of this project some aspects have been found that may be of interest
for future investigations.

• Test if a relay attack or a communication interception is feasible.

• Study how much the range of these tags can be upgraded to perform attacks or
intercept communications (Figure 7.1).

• Study MIFARE Plus: According to the NXP documentation it is an evolution of
MIFARE Classic and it uses Crypto1+AES, and it is used by some banks as a wallet.
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• Credit cards with NFC as Visa (paywave) and MasterCard (paypass) don’t use any
kind of encryption in the communications and all the information can be retrieved
without using any key. As their usage is even wider than the MIFARE Classic tags
it may be an important case of study.

• Smartphones with NFC are used as a substitute of the NFC credit cards. So they
inherit the same problems as the credit cards as well as the risks from a high con-
nectivity and multitasking.

• Test if NFC enabled smartphones can emulate MIFARE Classic tags or perform a
relay attack using Cyanogen Mod [15] and a dedicate application [16].

• PN532 is simpler and cheaper than a proxmark3 but it is limited by the response
time, so adapting the emulation software to the proxmark3 would increase the per-
formance.

Figure 7.1: Someone sniffing RF communications at MWC
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Resum
Aquest projecte inclou una aproximació als conceptes de RFID i targetes contactless
centrant-se en l’ampliament usat MIFARE Classic chip. L’objectiu principal es mostrar el
seu funcionament i les seves vulnerabilitats, així com alguns exemples pràctics fent una
anàlisi de diferents serveis que les utilitzen.

Resumen
Este proyecto incluye una aproximación a los conceptos de RFID y tarjetas contactless
centrándose en el ampliamente usado MIFARE Classic chip. El objetivo principal es
mostrar su funcionamiento y sus vulnerabilidades, así como algunos ejemplos prácticos
haciendo un análisis de diferentes servicios que las utilizan.

Abstract
This project includes an introduction to the concepts of RFID and contactless cards by
focusing on the widely used MIFARE Classic chip. The main objective is to show how
it works and its vulnerabilities, as well as some practical examples making an analysis of
different services that use it.


