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We explore a reaction-dispersal mechanism for the generation of wave fronts which consists of a set of
particles traveling with random velocities �chosen from arbitrary distributions� which experience an autocata-
lytic reaction. The differences found between this mechanism and approaches based on the continuous-time
random walks, where the particles are assumed to perform discrete jumps from one position to another, are
analyzed and discussed. A complete analytical treatment of our velocity model is achieved, which allows us to
predict the constant speed of traveling fronts or their time dependence in case they are accelerated. Also, a
general criterion to distinguish the situations of fronts with constant speed from those accelerated is provided.
From it, we conclude that accelerated fronts should be expected in different situations easily achievable in
nature.
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I. INTRODUCTION

Reaction-dispersal models represent an archetypical
framework to understand and implement spread phenomena
and traveling solutions, in general, e.g., fronts, pulses, or
waves. This has found application in a wide variety of fields
like in chemical waves and patterns �1,2�, biological �3,4�
and human �5� invasions, epidemics propagation �6�, tumor
growth �7�, and so on.

Classical reaction-dispersal equations are built on the hy-
pothesis that individual particles move according to Fickian
diffusion, so one typically refers then to “reaction-diffusion”
systems. Such diffusive transport can be implemented by
considering that particles either “jump” from one position to
another or move with constant velocity, provided in both
cases that the characteristic time scale of the transport pro-
cess is very small compared to the observation time or the
other time scales in the system. Thus, the potential effects of
long-range dispersal �plus other microscopic details of the
transport pattern� are lost within that approach. This restric-
tion can be relaxed by introducing the well-known idea of
continuous-time random walks �CTRWs�. Within the CTRW
framework, particles can jump from one position to another
with an arbitrary distribution of jump lengths, these jumps
being separated by waiting times also randomly distributed.
This generalized mechanism allows one to implement,
among others, transport patterns that exhibit anomalous dif-
fusion. These are characterized by the power-law scaling t�

for the mean-square displacement, with ��1 ��=1 for Fick-
ian diffusion�. Actually, several authors have used this idea
in the past years to explore the properties of traveling wave
solutions and wave fronts for reaction-dispersal systems un-
der the condition that the dispersal process on its own corre-
sponds to subdiffusion ���1� �8–11�.

However, the idea that particles travel through discrete
jumps from one position to another is only realistic for some
specific situations, like in compartmentalized media �where
particles move effectively just from one compartment to an-
other� or patchy environments �12�. On the contrary, many
systems in nature �for instance, cell cultures or chemical re-

actions mediated by transport in a sparse medium� fit much
better a velocity-based approach. For those cases, velocity
models, where individual particles move continuously with a
given velocity instead of making jumps, become extremely
useful. The simplest versions of such velocity models as-
sume that the speed of a particle takes a fixed value v0, while
only the direction of movement can change in time. For the
one-dimensional �1D� case where the particle can choose
only between values v0 or −v0 with probability 1/2, and the
change from positive velocity to negative �and vice versa� is
governed by a Poisson process with characteristic rate �, one
obtains the so-called hyperbolic reaction-diffusion equation
�1,13–15�. The generalization to the case where the times
between consecutive changes in the direction follow an arbi-
trary probability distribution �that is, they are not simply de-
termined by a constant rate �� was provided by Zumofen and
Klafter �16�. The composite case where the particles can
travel with a fixed speed while at the same time they expe-
rience Fickian diffusion �which holds, for example, in a sys-
tem of self-propelled particles influenced by thermal noise�
has been studied in �17–19�. Finally, the situation where so-
journs with a fixed velocity v0 are separated by waiting pe-
riods �which has special interest in the field of cellular mi-
gration� has been explored in recent works �20�.

An important advance within this context has been pro-
vided by Zaburdaev et al. �21�. They have shown how to
extend the idea of the standard CTRW to the case where the
individual particles can travel with an arbitrary distribution
of velocities instead of making jumps. Their original work
and a recently published continuation �22�, however, just fo-
cused on the properties of the transport process, while the
effects resulting from a reaction �that is, a birth-death�
mechanism have not been considered yet. The present work
tries to fill that gap by exploring the characteristic traveling
fronts arising from the random velocity model presented in
�21� when a reaction term is considered. As we shall see, the
properties of these fronts show some interesting differences
if compared with those models based on the idea of “jumps.”
For example, we find that accelerated fronts emerge for some
velocity distributions which are not heavy tailed. This is in
contrast with the CTRW model and all reaction-dispersal
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models based on jumps, where a very slowly decaying dis-
tribution function of jump lengths �typically slower than ex-
ponential� is necessary to obtain such accelerated solutions
�23,24�. Also, we show in this work that the asymptotic
equivalence found by Zaburdaev et al. between their model
and the CTRW breaks down when the reaction process is
implemented; this will become evident by proving that the
characteristic speed of the fronts found in the two cases is
different.

This paper is organized as follows. The CTRW frame-
work and its random-velocity counterpart are presented in
Sec. II. In Sec. III we derive a criterion for distinguishing the
cases where reaction-dispersal fronts with constant speed or
accelerated are obtained. Different analytical results for the
characteristic speed and the asymptotic behavior of these
fronts are provided for both cases �Secs. III and VI�. These
results will also be compared to numerical simulations for
different cases of special interest. Finally, the conclusions of
our work will be left for Sec. V.

II. CTRW AND MODEL WITH RANDOM VELOCITIES

Let us consider for simplicity an infinite 1D continuous
medium in which a set of noninteracting particles can jump
from one position to another according to the jump length
probability distribution ��x�. Before they jump, particles
have to wait at their current position for a random time dis-
tributed according to ��t�. Then, if we define Jj�x , t� as the
density of particles arriving to the position x at time t, we
have

Jj�x,t� = �
0

t

dt��
−�

�

dx�Jj�x − x�,t − t����t����x��

+ J�x,0���t� , �1�

where the subindex j stands for jumps and the second term
in the right-hand side represents the contribution from
the initial condition. For the sake of clarity, let us mention
that sometimes these initial conditions are introduced,
alternatively, through a term of the type �−�

� dx�P�x
−x� ,0���t���x��, so defining an initial density of particles
P�x ,0� �see, for example, Section 3.4 in Ref. �1��. The dif-
ference between this term and the one used in Eq. �1� reflects
just the technical question of whether the particles are “put at
position x and then the time is reset” at t=0 �then it is more
natural to define an initial density P�x ,0�� or “first the clock
is reset at t=0 and then the particles are put there” �leading
to J�x ,0��. In any case, this is just a minor point which does
not change at all the form of the differential master equation
�see Eq. �3� below� or the global dynamics of the system, and
obviously it does not affect the results for traveling fronts
presented here.

According to expression �1�, the density of particles
standing at the position x at the time t will be computed
through

Pj�x,t� = �
0

t

dt�Jj�x,t − t��	�t�� , �2�

where 	�t�=�t
�dt���t�� is the “survival” probability distribu-

tion of ��t�; i.e., it gives us the probability that the particle
has not jumped yet after a waiting period of duration t stand-
ing at its current position.

Equations �1� and �2� represent the cornerstone of the
CTRW model. By inserting the solution of Eq. �1� into Eq.
�2� and differentiating with respect to time one finds

�Pj�x,t�
�t

= �
0

t

dt��
−�

�

dx�Pj�x − x�,t − t��M�t����x��

− �
0

t

dt�Pj�x,t − t��M�t�� , �3�

which is commonly known as the CTRW master equation.
The memory kernel M�t� is defined through its Laplace

transform in time �denoted by ˆ �,

M̂�s� =
s�̂�s�

1 − �̂�s�
, �4�

where s is the corresponding argument.
Now we will introduce a reaction process into this frame-

work. Since we are interested here in the analysis of wave
fronts propagating into unstable states, we will consider an
autocatalytic process of the type A+ � →2A, which is one
of the simplest mechanisms able to introduce such self-
similar solutions. Defining r as the characteristic parameter
of the reaction process, we have that the density R�x , t� of
particles appearing from the reaction process can be written
as a logistic growth term

R�x,t� = rP�x,t��1 − P�x,t�� , �5�

where rP�x , t� and −rP�x , t�2 stand for the birth and mortality
terms, respectively �where the latter term has been intro-
duced to avoid unbounded growth of the particle density�. In
Eq. �5� we have not specified the subindex for P because this
relationship holds both for jump and velocity models. We
can implement reaction term �5� into the CTRW if we as-
sume that the new particles created with the rate rP�x , t�
have zero age �see Section 3.4.2 in Ref. �1� for further de-
tails�. Then, Eqs. �1� and �2� turn into

Jj�x,t� = �
0

t

dt��
−�

�

dx�Jj�x − x�,t − t����t����x��
 j�x

− x�,t,t�� + Jj�x,0���t� + rP�x,t� , �6�

Pj�x,t� = �
0

t

dt�Jj�x,t − t��	�t��
 j�x,t,t�� , �7�

where

MÉNDEZ, CAMPOS, AND GÓMEZ-PORTILLO PHYSICAL REVIEW E 82, 041119 �2010�

041119-2




 j�x,t,t�� � exp�− r�
t−t�

t

�Pj�x,u��2du	
is a survival probability term which takes into account the
effects of the nonlinear �mortality� term in Eq. �5�.

Note that alternative forms to Eqs. �6� and �7� have also
been proposed in the literature to implement nonlinear ki-
netic terms �see �9� and Sections 3.4.1 and 3.4.3 in �1��.
Specifically, careful choice of this equation is necessary
�since it can lead to dramatically different results� in the case
of heavy-tailed waiting time distributions since the system
shows effects such as aging or ergodicity breaking which
strongly affect its general dynamics �8,9,11�.

The trajectory scheme of the particles experiencing a
CTRW plus reaction as that described above is depicted in
Fig. 1 �left�. The figure depicts only the linear part of the
reaction term �birth process�, as mortality processes underly-
ing the nonlinear term can be argued to be irrelevant for the
speed of the traveling front �see Secs. IV and V�. The solid
lines there represent the trajectory of the particle “0,” ini-
tially standing at position x0, whose waiting times between
jumps are denoted by �01,�02, . . ., while z01,z02, . . . represent
its corresponding jump lengths. Also, the particle ‘‘0’’ is seen
to generate, at a given time t1, a new particle “1” which then
starts its independent dynamics and so on. The trajectory
followed by each particle is drawn in a different line style
�see the figure caption�. Figure 1 �right�, on the contrary,
represents the equivalent situation for the case in which the
particles do not wait and jump from one position to another
but move continuously with a certain random velocity. The
velocity of the particle remains constant during a certain
“flight time” and then it is given a new value randomly. Note
that, in order to facilitate the comparison, the jump lengths
and waiting times in the CTRW scheme �left� are chosen
equal to the distances covered by the particles and the corre-
sponding “flight times” in the velocity scheme �right�.

The scheme in the right of Fig. 1 corresponds to the ve-
locity counterpart of the CTRW introduced by Zaburdaev et
al. �21�, plus the reaction �birth� process implemented as

discussed above. Following the prescriptions in the original
reference, we can define h�v� as the probability distribution
that the particle performs a single “flight” with velocity v.
Then the velocity model �with reaction� will be governed by
reaction �5� together with

Jv�x,t� = �
0

t

dt��
−�

�

dvJv�x − vt�,t − t����t��h�v�
v�x

− vt�,t,t�� + ��x���t� + rPv�x,t� , �8�

Pv�x,t� = �
0

t

dt��
−�

�

dvJv�x − vt�,t − t��	�t��h�v�
v�x,t,t�� ,

�9�

where the subindex v stands for “velocity.” Note that Eqs.
�8� and �9� are formally very similar to Eqs. �6� and �7�;
however, it must be stressed that the specific meaning of the
densities is different in both cases. Here, Jv represents the
density of particles that finish a single flight �that is, they
change the value of their speed� at time t at position x. Like-
wise, Pv is the density of particles passing through position x
at time t.

If we compare the two schemes in Fig. 1, it can be seen
that the position of the particle 0 coincides at times �01,�01
+�02, . . . albeit the trajectory of the particle is different in
each case. This implies that the asymptotic transport proper-
ties �without considering reaction� of the CTRW model and
its velocity counterpart will be equivalent. Actually, Zabur-
daev et al. gave the relation �21�

��x� = �
0

�

dt�
−�

�

dv��x − vt���t�h�v� �10�

between the jump length distribution in the CTRW and the
velocity distribution in their model, which ensures the
asymptotic equivalence between both approaches.

We will show that this equivalence between jumps and
velocities, which is valid when only transport is being con-
sidered, breaks down when the reaction is introduced. Actu-
ally, this is not an effect of the reaction process on its own.
Equation �10� guarantees that the asymptotic statistical prop-
erties of both models coincide, but it is also true that the
density profiles are different in jump and velocity models, as
has been emphasized previously �22�. What the reaction pro-
cess does is to strengthen these differences, which makes the
macroscopic dynamics of the system different too, as we
shall see.

From Fig. 1 it is also easy to understand intuitively how
these differences between jump and velocity models emerge.
While the behavior of the particle ‘‘0’’ will be the same as-
ymptotically in both cases, the particle ‘‘1’’ is created at po-
sition x0+z01 in the CTRW scheme, but it appears forward in
the velocity scheme �and the same will happen, in general.
for particles ‘‘2,’’ ‘‘3,’’ etc.�. As a result, one must expect that
the characteristic speed of traveling solutions obtained from
this reaction-dispersal framework will be always faster in the

�
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FIG. 1. Schematic representation of the trajectories of particles
in the reaction-dispersal mechanism for the CTRW �left� and its
velocity counterpart presented here �right�. The balls with the num-
ber inside represent individual particles at the moment when they
appear in the system, and so their dynamics starts. The x-t trajecto-
ries of the particles are represented by solid lines �particle 0�,
dashed lines �particle 1�, and dashed-dotted lines �particle 2�. The
values of �01,�02, . . . and z01,z02, . . . correspond to the waiting
�flight� times and the jump �flight� lengths of the particle 0,
respectively.
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velocity scheme than in the CTRW scheme, provided equiva-
lence condition �10� is fulfilled. This is exactly what one
finds �see Sec. IV�.

III. CRITERION FOR THE SPEED OF TRAVELING
FRONTS

The jump length distribution �known as dispersal kernel
in ecological literature� given in Eq. �10� allows us to know
whether the front will propagate with constant speed or will
accelerate. Given ��t� and h�v�, if the resulting ��x� has
finite moments and its moment-generating function is also
finite then the front will propagate with constant speed. This
criterion has been developed and discussed in detail for the
case of jumps in �25�. Note that according to this, if the
moment-generating function diverges �even if the moments
are finite� then the front will accelerate; some examples of
this situation are provided below. Let us define the moments
of the PDFs, ��x�, ��t�, and h�v�, as


xn� = �
−�

�

xn��x�dx ,


tn� = �
0

�

tn��t�dt ,


vn� = �
−�

�

vnh�v�dv ,

respectively. From Eq. �10�, it is not difficult to show that the
moments of the distribution read


xn� = �
−�

�

xn��x�dx

= �
−�

�

xndx�
0

�

dt�
−�

�

dv��x − vt���t�h�v�

= �
0

�

dt
��t�

t
�

−�

�

xnh� x

t
	dx = �

0

�

dt��t�tn�
−�

�

znh�z�dz

= 
tn�
vn� . �11�

The moment-generating function ��p�=�−�
� ��x�epxdx can

be expressed as the sum

��p� = �
n=0

�
pn

n!

tn�
vn� .

As a result, if this series does not converge then the moment-
generating function does not exist; so, if 
tn�
vn� grows with
n faster than n !an then the front will accelerate, with a as a
certain constant. This requirement is a general condition to
have accelerated fronts. In the following, we will show how
to compute the front speed when it is constant or accelerated.

IV. FRONTS PROPAGATING WITH CONSTANT
SPEED

To observe traveling fronts in reaction-dispersal systems it
is necessary to choose appropriate initial conditions �condi-
tions with compact support are often required �26��; for the
sake of simplicity we will consider here always Jv�x ,0�
=��x�. When the criterion provided in Sec. III predicts front
traveling with constant speed, this speed can be computed
with the Hamilton-Jacobi formalism �1�. This method con-
sists, first of all, in inserting the hyperbolic scaling x→x /�
and t→ t /� with �1 into Eqs. �8� and �9� to get

Jv
��x,t� = �

0

t/�

dt��
−�

�

dvJv
��x − �vt�,t − �t����t��h�v�
v� x

�
− vt�,

t

�
,t�	 + ��x/����t/�� + rPv

��x,t� ,

Pv
��x,t� = �

0

t/�

dt��
−�

�

dvJv
��x − �vt�,t − �t��	�t��h�v�
v� x

�
,

t

�
,t�	 , �12�

where we have defined the new fields Jv
��x , t�=Jv�x /� , t /��, Pv

��x , t�= Pv�x /� , t /��, and


v� x

�
,

t

�
,t�	 � exp�−

r

�
�

t−�t�

t

�Pv
��x,u��2du	 . �13�

Since Jv
��x , t� and Pv

��x , t� are positive we can make use of the transformations Jv
��x , t�=A1e−G��x,t�/� and Pv

��x , t�=A2e−G��x,t�/�,
which when inserted into Eq. �12� give

A1 = A1�
0

t/�

dt��
−�

�

dv exp�vt��xG
� + t��tG

� + O������t��h�v�
v� x

�
− vt�,

t

�
,t�	 + ��x/����t/��eG��x,t�/� + rA2,

A2 = A1�
0

t/�

dt��
−�

�

dv exp�vt��xG
� + t��tG

� + O����	�t��h�v�
v� x

�
,

t

�
,t�	 . �14�
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As �→0 the system evolves toward the asymptotic regime
where the front is completely developed from its initial con-
dition and travels at constant speed. It is expected then that
Pv�x , t� converges to the indicator function of the set whose
boundary is regarded as the front position that connects the
unstable state Pv�x , t�=0 to the stable state Pv�x , t�=1. Any
initial condition will ensure a front propagating with minimal
speed if it has compact support, i.e., has an exponentially
bounded tail �26�. We suppose that Jv�x ,0� and Pv�x ,0� are
A1 or A2 if x�0 and zero otherwise, respectively. The con-
dition G��x , t��0 determines the front position when �→0.
Since e−G��x,t�/�→0 as �→0 for G��x , t��0, we conclude
that the condition G�x , t�=0 provides the front position,
where G�x , t�=lim�→0 G��x , t�. The effect of the nonlinear
kinetics disappears because 
v→1 as �→0 �27�. So that,
taking the limit �→0 in Eq. �14� we find

 1 − �
0

�

��t�e−Htdt�
−�

�

h�v�evpt − r

− �
0

�

	�t�e−Htdt�
−�

�

h�v�evptdv 1 ��A1

A2
	 = 0,

�15�

where p=�xG and H=−�tG are the momentum and Hamil-
tonian, respectively. The system of algebraic equations for A1
and A2 has a nontrivial solution if the determinant of the
matrix in Eq. �15� is zero, i.e.,

1 = �
−�

�

h�v��̂�H − vp�dv + r�
−�

�

h�v�	̂�H − vp�dv ,

�16�

which provides the Hamilton-Jacobi equation. In Eq. �16� we
have introduced the notation �̂�s�=�0

�e−st��t�dt. Finally, the
front speed v f is obtained by solving the set of equations �1�,

v f =
H

p
and

dH

dp
=

H

p
, �17�

together with Eq. �16�.
For the CTRW model, the Hamilton-Jacobi equation led

to �1,12�

1 = �̂�H���p� + r	̂�H� , �18�

and so it means that the front speed will be computed from
the solution of Eqs. �17� and �18�. Next, we will deal with
some specific cases in order to compare these theoretical
predictions with numerical simulations.

Examples

�i� Consider first that particles perform flights of duration
� but their velocities are distributed according to a Gaussian

PDF; hence, h�v�=�−1/2v0
−1e−v2/v0

2
and ��t�=��t−��. As the

moment-generating function of a Gaussian exists, the front
will travel with constant speed. In this case the Hamilton-
Jacobi equation �Eq. �16�� turns into

1 = e−H�+p2v0
2�2/4 + r�

0

�

e−Ht+p2v0
2t2/4dt , �19�

and the front speed can be computed by solving numerically
the set of equations

1 = e−yvf/v0ey2/4 + a�
0

1

e−yvf�/v0e�2y2/4d�,
dv f

dy
= 0 �20�

for v f /v0 �y= pv0� , a=r��.
On the other hand, it is interesting to compare this re-

sult with the equivalent CTRW model. According to Eq.
�10�, the CTRW counterpart of the example considered
here will correspond to a PDF of jump distances ��x�
=�−1/2v0

−1�−1e−x2/�2v0
2
. Since the waiting time distribution is

��t�=��t−�� the Hamilton-Jacobi equation �Eq. �18�� reads

eH� = ep2v0
2�2/4 + r

eH� − 1

H
. �21�

From Eqs. �17� and �21� we get

v f

v0
=

1

2
min
z�0

z

�ln�ez�1 −
a

z
	 +

a

z
� , �22�

where z=H�.
�ii� Let us consider now that particles perform again

flights of duration � but their velocities are now distributed
according to the exponential PDF h�v�= �2v0�−1e−�v�/v0. The
dispersal kernel reads ��x�= �2�v0�−1 exp�−�x� /�v0�, its
moment-generating function exists, the Hamilton-Jacobi
equation is, from Eq. �16�,

1 =
e−H�

1 − �v0p��2 + r�
0

� e−Ht

1 − �v0pt�2dt , �23�

and the speed is given by solving numerically the set of
equations,

1 =
e−yvf/v0

1 − y2 + a�
0

1 e−yvf�/v0

1 − y2�2d�,
dv f

dy
= 0. �24�

For the CTRW model the Hamilton-Jacobi equation reads

eH� =
1

1 − �v0p��2 + r
eH� − 1

H
, �25�

and the front speed is then given by

v f

v0

= min
z�0

z

�1 − �ez�1 −
a

z
	 +

a

z
�−1

.

The comparison of the theoretical expressions for the speed
above with numerical results is provided in Fig. 2. In order to
check the validity of all the results obtained throughout the
paper, we performed a double numerical analysis: �i� we
solved numerically the original integral equations �i.e., Eqs.
�8� and �9� for the velocity model� and �ii� we performed
Monte Carlo simulations that reproduce the processes de-
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picted in Fig. 1. In all the cases we observed that the agree-
ment between numerical integration and Monte Carlo simu-
lations was excellent; basically the only differences we found
were in the length and the shape of the transitory regime
before the wave fronts are formed. So, in the present paper
we just show for simplicity the results obtained from Monte
Carlo simulations.

The plot in Fig. 2 shows that the agreement between ana-
lytical predictions and simulations is excellent for both cases
studied here. By comparing the results from the velocity
model with those from the CTRW, it must be noted that the
speed of fronts obtained from the latter is always smaller, as
expected. Also, the differences found between the two mod-
els confirm that, even if condition �10� is fulfilled, the
equivalence between the jump and velocity approaches
breaks down as a result of the interplay between the reaction
mechanism and the differences in the density profiles �ac-
cording to our discussion in Sec. II�. As can be seen from the
plots, the differences between the models become more im-
portant as the reaction parameter a grows so the effect of the
reaction process on the system dynamics increases.

V. ACCELERATED FRONTS

In this section we want to compute the dependence of the
front speed with time when there is acceleration. As ex-
plained above this occurs when the dispersal kernel ��x� in
Eq. �10� decays asymptotically slower than an exponential
function, i.e., its moment-generating function diverges. We
center our attention to the situation where both h�v� and ��t�
have finite moments and, as a consequence, ��x� also has
finite moments �though ��p� diverges�. Consider for ex-
ample the case where

h�v� =
1

2v0
e−�v�/v0 and ��t� = �−1e−t/�. �26�

From Eq. �10� the dispersal kernel is

��x� =
1

v0�
K0�2� �x�

v0�
	 , �27�

where K0 is the modified Bessel function of order 0.
Making use of the asymptotic properties of the Bessel func-
tion for large x, the kernel can be expressed as ��x�
��x�−1/4 exp�−2��x� /v0�� that has finite moments but diverg-
ing moment-generating function.

To obtain the speed of the front we linearize Eqs. �8� and
�9� around the unstable state because the front speed is de-
termined by the behavior of the front at the leading edge due
to the fact that the reaction is monostable �1,26�. In conse-
quence, the effects of the nonlinear part of the growth term
vanish, as happened in the Hamilton-Jacobi formalism in
Sec. IV �we typically use the term pulled front for those
cases when this happens�. Transforming on space and time to
the Fourier-Laplace space �k ,s� one gets

Jv�k,s� = Jv�k,s��
−�

�

�̂�s + ikv�h�v�dv + 1 + rPv�k,s� ,

Pv�k,s� = Jv�k,s��
−�

�

	̂�s + ikv�h�v�dv . �28�

By combining the two parts in Eq. �28� one finds

Pv�k,s� =

�
−�

�

	̂�s + ikv�h�v�dv

1 − �
−�

�

�̂�s + ikv�h�v�dv − r�
−�

�

	̂�s + ikv�h�v�dv

.

�29�

As we are interested in the asymptotic behavior of the sys-
tem we consider s→0 in Eq. �29�. Then, we can expand
terms as follows:

�
−�

�

�̂�s + ikv�h�v�dv � ��k� + M�k�s + ¯ ,

with

M�k� = − �
−�

�

h�v�t�̂�ikv�dv ,

where �̂ikv� means Laplace transform where the argument is
replaced by ikv. Analogously,

�
−�

�

	̂�s + ikv�h�v�dv � N1�k� + N2�k�s + ¯ ,

with

0.0 0.5 1.0 1.5 2.0
0

1

2

3

h(v) Gaussian

a

Velocity model
CTRW model

v/
v 0

h(v) exponential

FIG. 2. Comparison for the front speed as a function of a ob-
tained from the velocity model and the CTRW �see Legend� for
��t�=��t−�� with Gaussian and exponential speed distribution h�v�.
The jump kernel corresponding to the CTRW approach is that given
by Eq. �10�. For simplicity, arbitrary values �=1, v0=1 are chosen.
The corresponding numerical results obtained from Monte Carlo
simulations are denoted by circles �velocity model� and diamonds
�CTRW�.
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N1�k� = �
−�

�

h�v�	̂�ikv�dv and

N2�k� = − �
−�

�

h�v�t	̂�ikv�dv .

Introducing these expansions into Eq. �29� and inverting by
Laplace we obtain, as t→�,

Pv�k,t� � A�k�exp�B�k�t� , �30�

with

A�k� =
− M�k�N1�k� − N2�k����k� − 1�

�M�k� + rN2�k��2 ,

B�k� = −
��k� − 1 + rN1�k�

M�k� + rN2�k�
. �31�

As ��x� has finite moments we expand Eq. �30� in Maclau-
rin’s series for k, following �25�

Pv�k,t� � A�k���k�
exp�B�k�t�

��k�
= ��k��A�0�

exp�B�0�t�
��0�

+ �
n=1

�
kn

n!

dn

dkn�A�k�
exp�B�k�t�

��k� �
k=0
� .

Inverting by Fourier, it turns into

Pv�x,t� � ��x�exp�B�0�t��1 +
exp�− B�0�t�

A�0� �
n=1

�
1

n!

dn

dkn�A�k�
exp�B�k�t�

��k� �
k=0

1

��x�
dn

dxn��x�� .

If for all n=1,2 , . . . the condition

lim
�x�→�

1

��x�
dn

dxn��x� = 0 �32�

holds; then,

Pv�x,t� � ��x�exp�B�0�t� as �x� → � . �33�

To obtain the front speed we fix Pv�x , t� to a constant value
of the front tail. The resulting equation Pv�x , t�=const relates
the front position with time. Differentiating we find

0 = � �Pv

�x
	

t

dx

dt
+ � �Pv

�t
	

x

,

and the front speed is given by

v f =
dx

dt
= −

�tPv

�xPv
. �34�

As an example, let us consider three cases. First of all, we
take Eq. �26�. Clearly, Eq. �27� satisfies condition �32� and
for x→� the dispersal kernel is ��x��x−1/4e−��x, where � is
a certain constant and x�0. From Eq. �33� one has

Pv�x,t� � x−1/4e−��xert/�1+r��,

which can be used to get, from Eq. �34�,

v f = −
�tPv

�xPv
=

4rx

�1 + r���1 + 2��x�
� �x as x → � ,

�35�

so that, integrating dx /�x�dt, we have finally x� t2 and

v f � t . �36�

Second, if we consider

h�v� =
1

v0
��

e−v2/v0
2

and ��t� = �−1e−t/�,

the PDF of jumps is

��x� =
1

v0���
�

0

�

t−1e−t/�e−x2/v0
2t2dt �37�

but cannot be calculated explicitly. However, we can apply
the Laplace method for integrals with movable maxima �28�
to evaluate the asymptotic behavior of Eq. �37�. This method
is summarized by the following result

�
0

�

f��,��e�S���d� � �−
2�

�S���0��1/2

f��,�0�e�S��0�

+ O�1/�� as � → � �38�

if f�� ,��e�S��� tends to 0 for �→0 and �→�, ��0, and the
function S��� has a unique maximum at �=�0. The maxi-
mum is movable when its position depends on x. The maxi-
mum of −t /�−x2 /v0

2t2 is attained at t= �x /v0�2/3�2��1/3. So
that, introducing the change of variables t=�x2/3 into Eq.
�37� we find

��x� =
1

v0���
�

0

�

�−1 exp�− x2/3��

�
+

1

v0
2�2	�d� .

�39�

Now, S���=� /�+1 /v0
2�2 and �=−x2/3. Finally, from Eq.

�38� kernel �39� turns into �x�0�
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��x� �
1

�v0
2�2x�1/3e−3�x/2v0��2/3

as x → � , �40�

which has also finite moments and satisfies Eq. �32�. From
Eqs. �33� and �40� we obtain

Pv�x,t� � x−1/3e−�x2/3
ert/�1+r��, �41�

where � is a certain constant and x�0. From Eqs. �34� and
�41� one finally obtains

v f = −
�tPv

�xPv
=

3rx

�1 + r���1 + 2�x2/3�
� x1/3,

so that

x � t3/2 → v f � t1/2. �42�

In general, if we consider the PDFs h�v��e−�v�n and ��t�
�e−tm with n and m higher than 1, the dispersal kernel is
given by ��x��x−n/2�n+m�e−�xn/�n+m�

�x�0�, where � is a cer-
tain constant. Repeating the same procedure as above we
have

x � t1+m/n → v f � tm/n.

In Figs. 3 and 4 we show the behavior of wave fronts ob-
tained from our Monte Carlo simulations for velocity distri-
butions h�v� Gaussian and exponential, respectively. The ac-
celerated nature of the fronts is evident from the plots. The
scaling of the front position with time obtained theoretically
in Eqs. �35� and �42� is confirmed using a log-log scale �see
insets�. There one observes that, after a transient regime nec-
essary for the formation of fronts, a power-law scaling for
the front position is reached.

To finish, let us consider the third example where the
jump velocities are exponentially distributed and ��t�
��−1 exp�−�t−��2 /�2�. In the limit where �→0, the flight
duration distribution becomes ��t�=��t−�� and we recover
the second example studied in Sec. IV where the front propa-

gates with constant speed. Now we show how the method
employed in this section also predicts the constant speed of
the front in this limit �→0. From Eqs. �33� and �34�, we
obtain

v f = −
�tPv

�xPv
� −

��x�
���x�

. �43�

Since the dispersal kernel is now

��x� � �
0

� 1

�t
e−�t − ��2/�2

e−�x�/�v0dt

and lim�→0 ��x��e−�x�/�v0 then from Eq. �43� we have

lim
�→0

v f � −

lim
�→0

��x�

lim
�→0

���x�
= const

as expected.

VI. CONCLUSIONS

We have presented here a kind of reaction-dispersal
mechanisms based on the idea that individual particles travel
continuously with a speed taken from an arbitrary distribu-
tion h�v� instead of making jumps, as is implicitly assumed
in most approaches. This mechanism represents the velocity
counterpart of the CTRW with reaction, which has already
been explored by different authors in the past years �8–11�.

Two main results ought to be emphasized from all our
discussion and derivations above. First, we have shown that
the macroscopic dynamics in a reaction-dispersal mechanism
based on velocities and the one based on jumps �CTRW� are
different, despite an equivalence exists in the case without
reaction �21�. This is a consequence of the differences in the
density profiles in each transport model, which become ac-
centuated through the reaction process. Also, a microscopic
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FIG. 4. Time dependence of the front position �in arbitrary
units� for the case of h�v� exponential and ��t�=�−1e−t/�. Arbitrary
values �=0.3, v0=1, and a=3 have been chosen. The log-log plot is
given in the inset to observe the corresponding scaling, where the
dotted line represents the theoretical scaling in Eq. �42�.
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units� for the case of h�v� Gaussian and ��t�=�−1e−t/�. Arbitrary
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given in the inset to observe the corresponding scaling, where the
dotted line represents the theoretical scaling in Eq. �35�.
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justification for these differences has been sketched in Sec.
II. We want to stress that the interest of this result is not
merely academic; if there was an equivalence between
velocity-based and jump-based approaches, then one could
use a tool �Eq. �10� in this case� to translate from one to the
other, so that there is no need to study them separately. Since
this equivalence breaks down for reaction dispersal, it be-
comes necessary to specify the microscopic details of the
system in order to obtain accurate results for its global dy-
namics.

Second, we have provided a general criterion �actually
adapted from that in �25�� to predict when fronts with con-
stant speed or accelerated are to be expected. From this cri-
terion, we have observed, for example, that a system of par-
ticles changing speed with a constant characteristic rate �−1

�that is, for ��t�=�−1e−t/�� and with a speed distribution of
the type h�v��e−�v�n, with n�1, will exhibit accelerated
fronts. This includes the case when h�v� is Gaussian or ex-

ponential, which are very usual distributions obtained from
animal or cell tracking experiments �29–31�. As a whole, it
means that accelerated reaction-dispersal fronts should be
observed easily if the appropriate experimental setting is
available �probably settings based on chemical reactions or
cell culture growth would be the best candidates�. On the
contrary, transport models based on jumps can only lead to
accelerated fronts if long-tailed jump length distributions
�like stretched exponentials or power-law functions� are con-
sidered, which makes experimental observation more diffi-
cult to achieve.
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