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The problem of nonlinear Hamiltonian oscillators is one of the classical questions in physics. When an
analytic solution is not possible, one can resort to obtaining a numerical solution or using perturbation theory
around the linear problem. We apply the Fourier series expansion to find approximate solutions to the oscillator
position as a function of time as well as the period-amplitude relationship. We compare our results with other
recent approaches such as variational methods or heuristic approximations, in particular the Ren-He’s method.
Based on its application to the Duffing oscillator, the nonlinear pendulum and the eardrum equation, it is shown
that the Fourier series expansion method is the most accurate.
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I. INTRODUCTION

The dynamic behavior of nonlinear oscillators has been
traditionally analyzed by using perturbation methods �such
as the Lindstedt-Poincaré method or the Shohat expansion�
where the initial amplitude of oscillation is assumed to be a
small parameter, or considering the averaging method �1�.
More recently there have been an amount of works devoted
to improve the previous methods with alternative analytical
techniques that do not need to define a small parameter, such
as variational principles �2–4� or variational iteration meth-
ods �5�. The variational principle is constructed to obtain the
period-amplitude relationship by maximizing a functional
over a set of trial functions. The method ensures the exis-
tence of a trial function, which yields the exact result but
does not provide it. The most common approach is to make
use of the trial function that gives the exact result for the
linear problem. The variational iteration method consists in
constructing a correction functional by a Lagrange multi-
plier, which can be identified via the variational theory. The
method also uses the solution to the linear problem as initial
approximation and, although we have not been able to prove
it generally, this is the reason why both variational methods
seem to give the same results for the period-amplitude rela-
tionship. Other more recent methods are the homotopy per-
turbation �6�, the harmonic balance method �7�, and heuristic
methods based on ancient Chinese mathematics �namely,
Ren-He’s method� �8�.

Fourier series expansion is a useful tool for solving linear
differential equations. However, this method is also adequate
to find approximate solutions to nonlinear problems such as
population pattern formation in continuum media �9,10� or to
characterize chaotic populations in lattices living in finite
domains under Dirichlet boundary conditions �11�.

In this work, we apply the Fourier series expansion
method to solve nonlinear Hamiltonian oscillators and com-
pare our results with numerical calculations and with the
approximated solutions supplied by some of the aforemen-
tioned methods. We rigorously prove that the leading term of
the expansion recovers the solutions obtained from the varia-
tional principle developed in �2� and, as it occurs in the virial
expansion for a real gas, each of the terms in the expansion is
of lower order than the previous one. Hence, we stress that

Fourier series expansion goes beyond the linear approach on
which the variational principles are based. In consequence
our method is in better agreement with the numerical solu-
tions. In some sense, the Ren-He’s method also makes use of
the solution to the linear oscillator to get a new solution in a
kind of iterative procedure. In fact, Ren-He’s method is noth-
ing but the first iterate of the classical Picard iteration
method. We also observe that the Ren-He’s method shows
pathological results in some family of nonlinear oscillators
due to the appearance of secular terms that diverge with
time. In Secs. II and III, we discuss these general results and
in Sec. IV, we provide comparison with three widely known
examples: the Duffing oscillator, the nonlinear pendulum and
the eardrum equations.

II. FOURIER SERIES EXPANSION

Let us consider nonlinear Hamiltonian oscillators of the
form

u� + u + �f�u� = 0, �1�

with initial conditions

u�0� = a, u��0� = 0, �2�

where a is the initial amplitude of motion. The prime symbol
stands for the temporal derivative, � is a parameter and f�u�
is a nonlinear function of the position u. When �=0 the
oscillator is linear, u�t�=a cos�t� and T=2�. The Fourier se-
ries method consists in proposing a solution to Eq. �1� of the
form u�t�=�m�m�m�t�, where the coefficients �m are to be
determined and �m�t� is a basis of orthogonal functions
which must satisfy the initial conditions Eq. �2�. To this end,
we choose the trigonometric basis �m�t�=cos�kmt�. It is clear
that u��0�=0 for any km; however, from the definition of
period T, one has u�T /4�=0, so that it is necessary that
kmT /4= �2m−1�� /2 for m=1,2 ,3 , . . .. In consequence, we
propose

u�t� = �
m=1

�

�m cos�2�2m − 1��t

T
� . �3�

To find the solution we need to obtain the set of coefficients
�m. Because of the orthogonality of the trigonometric func-
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tions, one gets a set of nonlinear algebraic equations for the
coefficients �m by introducing Eq. �3� into Eq. �1� and then
multiplying this equation by cos�2�2n−1��t /T� and integrat-
ing over t from 0 to T /4. As this system of equations cannot
be solved analytically, we consider the following approxima-
tion: let us assume that in the expansion Eq. �3� each term
is smaller than the previous one in such a way that
the main contribution to the solution Eq. �1� comes from the
first term, that is �1 cos�2�t /T�. Then, we consider f�u�
� f��1 cos�2�t /T��, neglecting higher order terms. The set
of algebraic equation reduces to

�n =
4�/�

4�2�2n − 1�2

T2 − 1
	

0

�/2

cos��2n − 1�s�f��1 cos�s��ds .

�4�

On setting n=1 in Eq. �4� we get the equation to solve �1:

�1 =
4�/�

4�2

T2 − 1
	

0

�/2

cos�s�f��1 cos�s��ds , �5�

which can be introduced into Eq. �4� to find �n as a function
of the period T. However, what we aim to find is how u�t�
depends on the initial amplitude a, so that we need to obtain
first the period-amplitude relationship. From Eqs. �2� and �3�
this relation reads

a =
4�T2

�
�
n=1

�
1

4�2�2n − 1�2 − T2	
0

�/2

cos��2n − 1�s�

�f��1 cos�s��ds , �6�

where �1 is given by Eq. �5�. To prove the validity of the
approximation f�u�� f��1 cos�2�t /T�� the first term in the
expansion Eq. �3� must be the leading term, and in conse-
quence the condition lim�1→0 �n /�1=0 must be satisfied.
This is easy to check from Eq. �4�. As f� · � is a nonlinear
function, when �1→0 one has �n
 f� · �
o��1� and
lim�1→0 o��1� /�1=0. The approximation is more accurate
when the amplitude a of motion is small and, in conse-
quence, the linear term becomes more important than non-
linear terms.

Let us now compute the main contribution in the trun-
cated expansion Eq. �3� up to the first order. In this case

u�t� � �1 cos�2�t

T
� �7�

and a��1. Then, from Eq. �5�

a =
4�/�
4

T2 − 1
	

0

�/2

cos�s�f�a cos�s��ds . �8�

The integral in Eq. �8� a can be written as

	
0

�/2

cos�s�f�a cos�s��ds =
1

a2	
0

a zf�z�


1 −
z2

a2

dz

under the change of variable z=a cos�s�. Finally, the period-
amplitude relationship is given by

T =
2�


1 +
4�

�a3 I�a�
with I�a� = 	

0

a zf�z�


1 −
z2

a2

dz . �9�

This result, together with Eq. �7�, proves that the Fourier
series expansion up to the first order coincides with the pre-
dictions from the variational principle �2�.

III. REN-HE’S METHOD

The Ren-He’s method �8� consists in choosing as the trial
function u0=a cos�2�t /T�, and introducing it into Eq. �1� to
get u�+u0+�f�u0�=0, which is a linear ordinary differential
equation that can be solved by integrating twice under the
initial conditions Eq. �2�. The solution reads

u�t� = a�1 −
T2

4�2� +
aT2

4�2cos�2�t

T
�

− �	
0

t

ds	
0

s

f�a cos�2�z

T
��dz . �10�

The period-amplitude relationship is obtained from Eq. �10�,
through the condition u�T /4�=0, to yield the implicit rela-
tionship

a =
�

1 +
T2

4�2

	
0

T/4

ds	
0

s

f�a cos�2�z

T
��dz . �11�

This is a heuristic method with many known variations that
fits well with the exact relation between period and ampli-
tude. However, less attention is paid in checking this method
by comparing the result Eq. �10� with the numerical or exact
solution. We now show that this method fails when applied
to nonlinear oscillators of the form u�+u+�un=0 with n an
even number. Inserting f�u�=un into Eq. �10� one gets

u�t� = a�1 −
T2

4�2� +
aT2

4�2cos�2�t

T
�

− �an	
0

t

ds	
0

s

cosn�2�z

T
�dz . �12�

The double integral in Eq. �12� can be explicitly calculated.
When n is an even number �12�
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0

t

ds	
0

s

cosn�2�z

T
�dz =

1

2n+1�n

2
�t2 −

T2

2n+1�2 �
k=0

n
2

−1 �n

k
� cos�2��n − 2k�t

T
� − 1

�n − 2k�2 , �13�

while for odd n one finds �13�

	
0

t

ds	
0

s

cosn�2�z

T
�dz = −

T2

2n+1�2 �
k=0

n−1
2 �n

k
� cos�2��n − 2k�t

T
� − 1

�n − 2k�2 . �14�

As can be seen, the main difference is that when n is even a
term proportional to t2 appears, a secular term that cannot be
removed. This pathological behavior leads u�t� to decrease
toward −� as t→�. As we will see in an example, the agree-
ment between the solution of the Ren-He’s method and the
numerical solution is bad, even for relatively short times.

IV. EXAMPLES

In this section, we apply the Fourier series, variational
principle and Ren-He’s methods to find the solution of Eq.
�1� and the period-amplitude relationship for different func-
tions f� · �. The results obtained for the oscillator position
from the three approaches will be compared to numerical
solutions performed by using the Runge-Kutta method
RK45. The period-amplitude relationship can be also ob-
tained by integrating Eq. �1�. The velocity of the oscillator is
defined by v=−u� in such a way that v�0 for t� �0,T /4�.
After a first integration and taking into account the initial
condition v�0�=0 one finds

−
du

dt
= �a2 − u2 + 2�	

u

a

f�z�dz�1/2

. �15�

Integrating Eq. �15� and using u�T /4�=0 the period-
amplitude relationship is

T = 4	
0

1

ds�1 − s2 +
2�

a2 	
as

a

f�z�dz�−1/2

. �16�

For many nonlinear oscillators the period given by Eq. �16�
can be expressed in terms of elliptic integrals, hypergeomet-
ric functions, or other special functions �1�. However, we
will solve Eq. �16� numerically in each example to check the
accuracy of the methods here discussed.

A. Duffing oscillator

The well-known Duffing oscillator is described by Eq. �1�
with f�u�=u3. From Eq. �4� we have

�n =
��1

3

4

3	n1 + 	n2

4�2�2n − 1�2

T2 − 1

, �17�

where 	nm is the Kronecker delta. The period-amplitude re-
lationship Eq. �6� is expressed as

3a2�

4
= �4�2

T2 − 1��1 +
1

3

4�2 − T2

36�2 − T2�2

. �18�

The solution for the position of the Duffing oscillator is,
from Eqs. �3� and �17�,

u�t� =
2


3�

4�2

T2 − 1 cos�2�t

T
�

+
2

3
3�

�4�2

T2 − 1�3/2

36�2

T2 − 1

cos�6�t

T
� , �19�

where T is given by Eq. �18�.
The solution obtained from the variational principle is

simpler: from Eq. �9�, the period-amplitude relationship is
given by

T =
2�


1 +
3�a2

4

, �20�

which coincides with the result found in �2�. From Eqs. �7�
and �20�, the solution to the position is

u�t� = a cos�t
1 +
3�a2

4
� . �21�

Now let us write the solutions obtained from the Ren-He’s
method. From Eqs. �10� and �11� one gets

u�t� =
aT2

2�2�1

2
+

�a2

3
�cos�2�t

T
� +

�a3T2

36�2 cos3�2�t

T
� + a

−
aT2

4�2 −
7�a3T2

36�2 �22�

and

T =
2�


1 +
7�a2

9

, �23�

respectively. Both results have been recently obtained by
Ren and He �8�.
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In Fig. 1, we plot the position of the Duffing oscillator as
a function of time. As shown in Fig. 1�a�, the three methods
agree very well in absolute terms. Figure 1�b� is an amplifi-
cation of the same Fig. 1�a�, and allows us to see that the
Fourier series expansion result �squares� is in better agree-
ment with numerical results �solid lines� than variational
�dashed lines� or Ren-He’s �dotted lines� methods. The dif-
ference between the approximate methods and the numerical
solution grows with time, as one can appreciate in Fig. 1�b�.

In Fig. 2, we plot the period-amplitude relationship for the
Duffing oscillator. Similarly, in Fig. 2�a�, we appreciate that
all three methods agree very well with the numerical results
obtained �solid line� in general terms but if we look in deeper
detail as done in Fig. 2�b�, it is found that the Fourier series
method is again the best fit to the numerical result, followed
by the variational approach. This means that Fourier series
expansion slightly improves the first order �leading� contri-
bution obtained from the variational principle.

B. Nonlinear pendulum

The nonlinear Eq. �1� for the pendulum reads u�+sin�u�
=0, where u�t� describes the angle as a function of time so
that the maximum amplitude of motion is � �hence, a
��.
Although this case is somewhat different from model Eq. �1�,
it is a very instructive example. The Fourier series expansion
yields

�n =
T2

2�2

�− 1�n−1

�2n − 1�2J2n−1��1� , �24�

where Jn� · � is the Bessel function of first kind of order n.
Taking n=1 we obtain the transcendental equation 2�2�1
=T2J1��1� for �1, which allows us to find �1=�1�T�. Intro-
ducing this result into Eq. �24� we get �n=�n�T� for n�1.
The period-amplitude equation is then acquired by summing
all �n, hence

FIG. 1. Position of the Duffing oscillation as a function of time
for �=a=1. The numerical solution �solid curves� is depicted to-
gether with the other three methods studied: Fourier series expan-
sion �squares�, variational principle �dashed curves�, and the Ren-
He’s method �dots�. In panel �a� time ranges from 0 to 20 and in
panel �b� it ranges over a small period of time in order to appreciate
the differences between the different approaches. The time is given
in dimensionless units.

FIG. 2. Period-amplitude plot for the Duffing oscillator �=1. T
and a are given in dimensionless units. The numerical solution
�solid curves� is depicted together with the other three methods
studied: Fourier series expansion �squares�, variational principle
�dashed curves�, and the Ren-He’s method �dots�. In panel �a� we
show the range 0
a
50 while in panel �b� we show an enlarge-
ment to appreciate the differences between methods.
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a =
T2

2�2 �
n=1

�
�− 1�n−1

�2n − 1�2J2n−1��1� , �25�

and the solution for the angle as a function of time reads

u�t� =
T2

2�2 �
n=1

�
�− 1�n−1

�2n − 1�2J2n−1��1�cos�2�2n − 1��t

T
� .

�26�

Truncating the expansion at first order, and since as �1
�a, one has the result for the period-amplitude relationship
obtained from the variational principle �4�

T = �
 2a

J1�a�
, �27�

and the solution for the angle

u�t� = a cos�t
2J1�a�
a

� . �28�

The equation to solve for the Ren-He’s method is u�
+sin�u0�=0, under the initial condition Eq. �2� has the solu-
tion

u�t� = a − 	
0

t

ds	
0

s

sin�a cos�2�z

T
��dz = a

−
T2

2�2 �
n=0

�
�− 1�nJ2n+1�a�

�2n + 1�2 �1 − cos�2�2n + 1��t

T
�� ,

�29�

where we have considered the property

sin�a cos�s�� = 2�
n=0

�

�− 1�nJ2n+1�a�cos��2n + 1�s� .

Setting u�T /4�=0 into Eq. �29� we find the formula

T = �
2a��
n=0

�
�− 1�nJ2n+1�a�

�2n + 1�2 �−1/2

�30�

for the period-amplitude relationship.
As in the Duffing oscillator, all methods agree quite well

with the numerical solutions for the angle as function of time
�see Fig. 3�a��, once again the Fourier series expansion pro-
vides the best fit, followed by the variational expansion �see
Fig. 3�b��. When the initial amplitude a tends to its maxi-
mum value � the period should tend to infinity. This can be
observed in Fig. 4�a�. As a→�− all methods tend to infinity

but their fit to the numerical solutions is worst accurate. For
a
� /2 all methods are in good agreement and, as we can
see in Fig. 4�b�, the Fourier series expansion gives the best
results, followed by the variational result. However, it di-
verges faster than the other two methods. This is due to the
presence of a separatrix at u=� �see Appendix�.

C. Eardrum equation

The equation of motion for the human eardrum can be
written by Eq. �1� with f�u�=u2 �1�. The Fourier series ex-
pansion predicts, from Eq. �6�, the period-amplitude
relationship

a� =
9�

8
�4�2

T2 − 1�2

�
n=0

�
�− 1�n

�2n − 3��4n2 − 1��4�2n + 1�2�2

T2 − 1� . �31�

The position of the oscillator is, from Eq. �3�, given by

FIG. 3. Angle of the pendulum as function of time for �=a=1.
The numerical solution �solid curves� is depicted together with the
other three methods studied: Fourier series expansion �squares�,
variational principle �dashed curves�, and the Ren-He’s method
�dots�. The time is given in dimensionless units.
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u�t� =
9�

8�
�4�2

T2 − 1�2

�
n=0

�
�− 1�n

�2n − 3��4n2 − 1��4�2n + 1�2�2

T2 − 1� cos�2�2n − 1��t

T
� . �32�

Truncating the Fourier series expansion up to first order
and considering �1�a we recover the result of the varia-
tional principle. The period-amplitude relationship reads
from Eq. �9�

T =
2�


1 +
8�a

3�

�33�

and the position is, from Eq. �7�,

u�t� = a cos�t
1 +
8�a

3�
� . �34�

The period-amplitude relationship obtained with the Ren-
He’s method �Eqs. �10� and �11�� is

T =
2�


1 +
4 + �2

16
�a

�35�

and the position

u�t� = a −
a

1 +
4 + �2

16
�a

�1 − cos�t
1 +
4 + �2

16
�a�

+
�a

4
sin2�t
1 +

4 + �2

16
�a� +

�a

4
�1 +

4 + �2

16
�a�t2� .

�36�

Due to the presence of a separatrix and heteroclinic orbits for
�a�1 /2 �see Appendix� the methods are able to fit the nu-
merical results only for �a
1 /2. In Fig. 5�a� it is shown that
the Ren-He’s method fails to agree with the numerical results
for t�T due to the secular term in Eq. �36�, while the other
two methods agree quite well. In the case depicted in Fig. 5
the contribution of the terms with n�1 in the Fourier series
expansion Eq. �32� does not improve substantially the first-
order correction as we can see from Fig. 5�b�, probably due
to the fact that the initial amplitude is small �in this figure
a=0.1�. The Fourier series expansion and the variational
method give almost the same results. In Fig. 6, it is shown
that the Ren-He’s method provides a reasonably good
method for the period-amplitude relationship in contrast to
its prediction for the oscillator position. Nevertheless, this
time the best method is by variational principle.

V. CONCLUSIONS

We have analyzed different methods for solving the prob-
lem of nonlinear Hamiltonian oscillators, emphasizing the
Fourier series expansion as an accurate method, where an
appropriate basis of orthogonal functions, that accomplish
the boundary conditions, permits to write the oscillator posi-
tion as a sum of different terms. The comparison of the po-
sition as a function of time and of the period-amplitude re-
lationship is better than with variational approaches and the
recent Ren-He’s method. Therefore, the Fourier series expan-
sion generally improves the other results, as it has been
shown in the different examples studied: Duffing oscillator,
nonlinear pendulum, and eardrum equation. In fact, we have

FIG. 4. Period-amplitude plot for the nonlinear pendulum for
�=1. In panel �a� we show the complete range of the initial ampli-
tude �0
a
��. The numerical solution �solid curves� is depicted
together with the other three methods studied: Fourier series expan-
sion �squares�, variational principle �dashed curves�, and the Ren-
He’s method �dots�. In panel �b� we show only small values for the
initial amplitude. T and a are given in dimensionless units.
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shown that the Fourier series expansion is a higher order
correction to the variational approach, which is recovered
truncating the Fourier expansion at first order, and all the
other terms approximate better the real result, as in a kind of
virial expansion. A strong limitation for all analytical meth-
ods is the presence, for some oscillators, of a separatrix, �i.e.,
of heteroclinic orbits�. The Ren-He’s method is simple and
convenient only in some situations, as it fails in predicting
the position of nonlinear oscillators with nonlinear terms of
powers of even exponents although the system is far from
the separatrix. The Fourier series expansion is rather general,
and specially accurate for small amplitudes. Although this
method is shown to be more accurate than the other methods,
for the case of the nonlinear pendulum it diverges faster near
the separatrix. It would be interesting to study if this method
holds for dissipative oscillators but it needs a more careful
analysis and could be the subject of future works.
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APPENDIX: SEPARATRICES

Equation �1� can be integrated and one gets

u�2

2
= −

u2

2
− �	 f�u�du + E , �A1�

where E is an integration constant. Since Eq. �1� is conser-
vative, E can be regarded as the total energy, i.e., the sum of
the kinetic energy K=u�2 /2 and the potential energy

V�u� =
u2

2
+ �	 f�u�du . �A2�

The fixed points of the system, u0, satisfy the equation u0
+�f�u0�=0, i.e., they are solutions to �dV /du�u=u0

=0. Their

FIG. 5. Position of the eardrum oscillator as function of time for
�=a=0.1. The numerical solution �solid curves� is depicted to-
gether with the other three methods studied: Fourier series expan-
sion �squares�, variational principle �dashed curves�, and the Ren-
He’s method �dots�. The time is given in dimensionless units.

FIG. 6. Period-amplitude plot for the eardrum with �=1. T and
a are given in dimensionless units. The numerical solution �solid
curves� is depicted together with the other three methods studied:
Fourier series expansion �squares�, variational principle �dashed
curves�, and the Ren-He’s method �dots�. In panel �a� we show the
range 0
�a
1 /2, for which the oscillator describes homoclinic
orbits. In panel �b� we show an enlargement to appreciate the dif-
ferences between methods.
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stability is given by the sign of the second derivative of the
potential. If �d2V /du2�u=u0

�0 then u0 is stable and if
�d2V /du2�u=u0


0 then u0 is unstable. If the system Eq. �1�
has only one fixed point for which V is minimal �as occurs
for the Duffing oscillator� it is a center and its dynamics is
always described by homoclinic orbits �each orbit has a dif-
ferent value of the energy E�, that is, the system oscillates
around the fixed point. However, the nonlinear pendulum
and the eardrum equation have a center and a saddle point.
For example, consider the nonlinear pendulum equation with
−2��u�2�. u0=0 is a center while u0=� and u0=−� are
saddle points. This means that there exists a region called
separatrix that is a frontier between the attraction basins of
both fixed points or, in other words, is a frontier between
homoclinic and heteroclinic orbits. For the case of the ear-

drum equation there is a center at u0=0 and a saddle point at
u0=−1 /�. Now the question is to find where the separatrix is
located. In particular, we are interested in finding the values
for the initial amplitude a for which the system exhibits both
homoclinic or heteroclinic orbits. Let E� be the energy level
corresponding to the saddle point and Vmin the energy level
corresponding to the center. If Vmin
E
E�, the orbits are
homoclinic and if E�E� they are heteroclinic. Hence, the
separatrix corresponds to E=E�. For the pendulum f�u�
= �sin�u�−u� /� and from Eqs. �2� and �A1� one finds E=
−cos�a� and E�=1, so that the orbits are homoclinic for 0

a
�. For the eardrum equation one has E=a2 /2+�a3 /3
and E�=1 /6�2. In this case, the orbits are homoclinic for
�a
1 /2.
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