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BAUTIN IDEALS AND TAYLOR DOMINATION

Y. Yomdin

Abstract: We consider families of analytic functions with Taylor coefficients-poly-

nomials in the parameter λ: fλ(z) =
∑∞
k=0 ak(λ)zk, ak ∈ C[λ]. Let R(λ) be the

radius of convergence of fλ. The “Taylor domination” property for this family is the

inequality of the following form: for certain fixed N and C and for each k ≥ N + 1

and λ,

|ak(λ)|Rk(λ) ≤ C max
i=0,...,N

|ai(λ)|Ri(λ).

Taylor domination property implies a uniform in λ bound on the number of zeroes
of fλ. In this paper we discuss some known and new results providing Taylor domina-

tion (usually, in a smaller disk) via the Bautin approach. In particular, we give new

conditions on fλ which imply Taylor domination in the full disk of convergence. We
discuss Taylor domination property also for the generating functions of the Poincaré

type linear recurrence relations.
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rence.

1. Introduction

Consider a family of analytic functions fλ(z), λ ∈ Cm, represented by
a convergent power series with the coefficients-polynomials in λ:

(1.1) fλ(z) =

∞∑
k=0

ak(λ)zk, ak ∈ C[λ].

The main problem we discuss in this paper is the following: under
what conditions fλ possesses the “Taylor domination” property, i.e. the
inequality for the Taylor coefficients ak(λ) of the following form (see
Section 3 for an accurate definition): for certain fixed N and C and for
each k > N and λ,

|ak(λ)|Rk(λ) ≤ C max
i=0,...,N

|ai(λ)|Ri(λ).
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Taylor domination property is well known to be essentially equivalent
to the bound on the number of solutions of fλ(z) = c (see [4, 17, 22]).
In this paper we discuss some known [7, 9, 10, 25] and new results
which derive Taylor domination from algebraic properties of the Bautin
ideal I(fλ) = {a0(λ), . . . , ak(λ), . . . }. In particular, we give conditions
on fλ which imply Taylor domination in the full disk of convergence. We
discuss Taylor domination property also for the generating functions of
the Poincaré type linear recurrence relations, presenting a result recently
obtained in [1].

Our main motivation is in study of closed trajectories of differential
equations. Here the pioneering approach suggested by Bautin in [2, 3]
has already provided some of the strongest results available. We believe
that further development of this approach may improve our understand-
ing of the structure of closed trajectories, and hope that the present
paper, as well as [1], can be considered as certain steps in this direction.

2. Motivation: Smale–Pugh problem

We consider Abel differential equation

(2.1) y′ = p(x)y2 + q(x)y3

with polynomial coefficients p, q on the interval [a, b]. A solution y(x)
of (2.1) is called “closed” if y(a) = y(b). The Smale–Pugh problem is
to bound the number of isolated closed solutions of (2.1) in terms of the
degrees of p and q. This problem is a version of the (second part of)
Hilbert’s 16-th problem asking for the bound of the number of isolated
closed trajectories of a polynomial system in the plane. The Smale–
Pugh problem has appeared in the course of the work of S. Smale’s
seminar in the beginning of 1960’s, in an attempt to find “the simplest
situation where Hilbert’s 16-th problem is still non-trivial”. There are
many reasons today to consider this choice as highly successful – see
[6]–[8], [11]–[14], [18] and references therein as a very partial evidence.

The problem above can be naturally expressed in terms of the Poincaré
“first return” map yb = G(ya) along [a, b]. Let y(x, ya) denote the solu-
tion y(x) of (2.1) satisfying y(a) = ya. The Poincaré map G associates
to each initial value ya at a the value yb at b of the solution y(x, ya)
analytically continued along [a, b]. Closed solutions correspond to the
fixed points of G. So the problem is reduced to bounding the number of
the fixed points of G, or of zeroes of G(y)− y.
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However, this last problem turns out to be extremely difficult. The
Poincaré map, which “predicts the future”, is one of the most mysterious
functions in Analysis. It does not render itself to any convenient analytic
representation, and hence most of the known approaches to “bounding
zeroes” are not applicable. Historically, one of the most successful direc-
tions in the study of the Poincaré map G was the direction initiated by
Bautin in [2, 3]: to derive the analytic properties of G, in particular, the
number of its fixed points, from the structure of its Taylor coefficients.

It is well known that G(y) for small y is given by a convergent power
series

(2.2) G(y) = y +

∞∑
k=2

vk(p, q, a, b)yk.

The “Poincaré coefficients” vk(p, q, x, a) of the Poincaré map from x to a
satisfy the following differential-recurrence relation (see, for example,
[6]):

(2.3)
dvk
dx

=−(k−1)pvk−1−(k−2)qvk−2, v0≡0, v1≡1, vk(0)=0, k≥2.

It is easy to see from (2.3) that the Poincaré coefficients vk(p, q, a, b) are
polynomials with rational coefficients in the parameters of the problem
(i.e. in the coefficients of p and q). They can be explicitly computed for
as large indices k as necessary.

It is more difficult to find general patterns in the structure of vk. It
is known that each vk(p, q, a, b) can be expressed as linear combinations
of certain iterated integrals of p and q along [a, b] (see, for example, [6]).

In some aspects the generalized moments mk =
∫ b
a
P k(x)q(x) dx provide

a rather accurate approximation of vk (see [6]). But in general a much
better understanding of the structure of vk is required in order to provide
even “semi-local” bounds on the fixed points of the Poincaré map.

3. Taylor domination

Let f(z) =
∑∞
k=0 akz

k, ak ∈ C, be a series with the radius of conver-

gence R̂ > 0.

Definition 3.1. Let a positive R ≤ R̂, a natural N , and a positive
sequence S(k), growing sub-exponentially as k tends to infinity, be fixed.
The function f possesses an (N,R, S(k))-Taylor domination property if
for each k ≥ N + 1 we have

(3.1) |ak|Rk ≤ S(k) max
i=0,...,N

|ai|Ri.
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For S(k) ≡ C a constant, we shall call this property (N,R,C)-Taylor
domination.

Taylor domination allows us to compare the behavior of f(z) with

the behavior of the polynomial PN (z) =
∑N
k=0 akz

k. In particular, the
number of zeroes of f can be easily bounded in this way.

Theorem 3.1 ([22, Lemma 2.2]). There exists a finite function

M(N, R
′

R , C), tending to infinity as R′

R tends to 1, and equal to N for R′

R
sufficiently small, such that the following bound holds: if f possesses a
(N,R,C)-Taylor domination property then for any R′ < R, f has at

most M(N, R
′

R , C) zeroes in DR′ .

In particular, put R1 = R
4 , R2 = R

2 max(C,2) and R3 = R
23N max(C,2)

.

Then the number of zeroes of f in the disks DR1 , DR2 and DR3 does not
exceed 5N + log5/4(2 + C), 5N + 10 and N , respectively.

An explicit expression for M is given in [22, Proposition 2.2.2]. The
corresponding bounds are true also in a general case of (N,R, S(k))-Tay-
lor domination. Indeed, it is easy to see that an (N,R, S(k))-domination
implies for each R′ < R an (N,R′, C)-domination, with a certain con-

stant C depending on R′

R and on the sequence S(k). See [1] for specific
estimates.

It is important to stress that Taylor domination property is essentially
equivalent to the bound on the number of zeroes of f − c, for each c. Let
us give the following definition (see [17] and references therein):

Definition 3.2. A function f regular in a domain Ω ⊂ C is called
p-valent there, if for any c ∈ C the number of solutions in Ω of the
equation f(z) = c does not exceed p.

Theorem 3.2 (Biernacki, [4]). If f is p-valent in the disk DR of radius
R centered at 0 ∈ C then

|ak|Rk ≤ (Ak/p)2p max
i=0,...,p

|ai|Ri.

Here A is an absolute constant.

For a detailed discussion of this and of some more accurate bounds,
as well of some open problems in this line, see [15, 16].

In our notations, Theorem 3.2 claims that a function f which is p-va-
lent in DR, possesses an (N,R, (Ak/p)2p)-Taylor domination property.
Theorem 3.1 shows that the inverse is also essentially true.

For univalent functions, i.e. for p = 1, and for a0 = 0, R = 1, the
Bieberbach conjecture proved by de Branges in [5] claims that |ak| ≤
k|a1| for each k.
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Now we return to a family of analytic functions fλ(z)=
∑∞
k=0 ak(λ)zk,

λ ∈ Cm, as in (1.1), with ak ∈ C[λ]. The position of singularities, and
hence the radius of convergence R(λ), in general, depend on λ. Let a pos-
itive function R1(λ) ≤ R(λ), a natural N , and a positive sequence S(k),
growing sub-exponentially as k tends to infinity, be fixed.

Definition 3.3. The family fλ(z) possesses an (N,R1(λ), S(k))-Taylor
domination property if for each k ≥ N + 1 and for each λ ∈ Cm,

|ak(λ)|Rk1(λ) ≤ S(k) max
i=0,...,N

|ai(λ)|Ri1(λ)

with N and a sub-exponentially growing sequence S(k) not depending on
λ. If R1(λ) ≡ R(λ), then fλ(z) is said to possess an (N,R(λ), S(k))-uni-
form Taylor domination.

Uniform Taylor domination implies a uniform in λ ∈ Cm bound on
the number of zeroes in each disk DαR(λ), for any fixed α < 1. Our
goal is to give conditions for families fλ(z) to possess uniform Taylor
domination property.

4. Taylor domination via the Bautin ideal

From now on we shall consider families fλ(z) as in (1.1), satisfying
the following conditions:

(1) deg ak(λ) ≤ C1k + C2, k = 0, 1, . . . .
(2) ||ak(λ)|| ≤ C3 · Ck4 , k = 0, 1, . . . . Here the norm of a polynomial

is defined as the sum of the absolute values of its coefficients.

Following [7, 25] we call families fλ(z) satisfying these conditions
A-families.

Definition 4.1. For fλ(z) an A-family the Bautin ideal I(f) is the ideal
in C[λ] generated by all the Taylor coefficients ak(λ):

I(f) = {a0(λ), a1(λ), . . . , ak(λ), . . . }.

Because of the Noetherian property of C[λ], the ascending chain of
ideals Ik(f) = {a0(λ), a1(λ), . . . , ak(λ)} stabilizes for a certain index N :
IN−1(f) ⊂ IN (f) = IN+1(f) = · · · . Hence, in fact, I(f) = IN (f). This
index N = N(f) is called the Bautin index of f .

Bautin ideals were introduced by Bautin in [2, 3] in his study of
the limit cycles of the plane polynomial systems which appear in small
perturbations of the integrable cases. In particular, it was shown there
that in perturbations of the linear center of the form ẋ = −y + F (x, y),
ẏ = x + G(x, y) with F (x, y) and G(x, y) polynomials of degree two
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vanishing at the origin with their first derivatives, at most three limit
cycles may appear in a sufficiently small neighborhood of the origin.

Although Bautin considered a real situation, his approach allows one
to prove the following result (see [9, 10]):

Theorem 4.1. For fλ(z) an A-family let N = N(f) be its Bautin index.
Then for each λ ∈ Cm the function fλ(z) has at most N zeroes in a
sufficiently small neighborhood of the origin.

Sketch of the proof: For each k ≥ N+1 we have ak(λ) ∈ I(f) = IN (f) =
{a0(λ), a1(λ), . . . , aN (λ)}. Hence

(4.1) ak(λ) =

N∑
i=0

ϕki (λ)ai(λ).

It is rather easy to see that, because of the conditions (1) and (2) in
the definition of A-families, and via the Hironaka division algorithm,
the degrees of ϕki in (4.1) grow at most linearly in k while their norms
grow at most exponentially. Therefore for each λ ∈ Cm (4.1) im-
plies a (N,R′(λ), C(λ))-Taylor domination for fλ(z) with certain con-
stants R′(λ), C(λ), where R′(λ) is positive but may be much smaller
than the true radius of convergence of fλ. Now the result follows from
Theorem 3.1 above.

A natural question is: can we explicitly estimate the size of the neigh-
borhood in Theorem 4.1 via Taylor domination? In [9, 10] this question
has been studied on the base of Hironaka’s Division Theorem applied
to (4.1). Rather accurate estimates have been obtained there: the ra-
dius of convergence R(λ) is typically of order C

|λ|K1
, while we can bound

zeroes only in DR′(λ) with R′ of order 1
|λ|K2

, K2 > K1. We believe that

without additional assumptions on A-families fλ, the uniform control of
zeroes in the full disk of convergence cannot be achieved. An important
open question is to specify an appropriate subclass of A-families, pos-
sessing such control, and wide enough to contain important examples.
An attempt to give an answer in “algebraic terms”, through certain
“Bautin-type” ideals, was suggested in [25]. However, the conditions
given in [25] are rather difficult to check, so only some “synthetic” ex-
amples were presented there. In the next section we provide much sim-
pler (but rather restrictive) conditions on A-families, which, however,
are satisfied in some important examples.
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4.1. Uniform Taylor domination via Bautin-type ideals. Con-
sider A-families fλ(z) =

∑∞
k=0 ak(λ)zk, λ ∈ Cm, satisfying the following

conditions:

(Afam-1) The coefficients ak have the form ak(λ) = P k+1(λ)Rk(λ) for
a certain polynomial P (λ), with degRk(λ) = d, and with
||Rk(λ)|| ≤ S(k) for each k = 0, 1, . . . . Here the norm of
a polynomial is the sum of absolute values of its coefficients,
and S(k) is a certain sequence of sub-exponential growth.

(Afam-2) lim supk→∞ |Rk(λ)| 1k = 1 for each λ ∈ Cm.

(Afam-3) Consider the increasing chain of ideals Jk=Jk(f)={R0(λ), . . . ,
Rk(λ)},and let N be its stabilization moment. Put J(f) =
JN (f). Then M(λ) = maxj=0,...,N |Rj(λ)| satisfies M(λ) ≥
K|λ|d, for each λ with |λ| ≥ S. Here K > 0, S > 0 are
certain constants, and for λ = (λ1, . . . , λm) ∈ Cm by definition
|λ| = maxj=1,...,m |λj |.

Remark. For one-dimensional λ ∈ C, condition (Afam-3) follows from
condition (Afam-1). Indeed, each of the polynomials Rj(λ) has degree d
by (Afam-1). So its coefficient αj,d is non-zero. Put α=maxj=0,...,N|αj,d|,
and let this maximum be achieved for j= l. Put also S=2 maxj=0,...,NS(j).
Now for |λ| ≥ S we have

M(λ) ≥ |Rl(λ)| ≥ α|λ|d(1− S(k)λ−1) ≥ α

2
|λ|d.

So (Afam-3) is satisfied for S as above, and for K = α
2 .

Theorem 4.2. Assume that an A-family fλ(z) satisfies conditions
(Afam). Then:

(1) The radius of convergence R(λ) is equal to |P (λ)|−1 for each λ ∈
Cm.

(2) The ideal J(f) is {1}, the Bautin index of fλ(z) is at most N , and
the Bautin ideal I(f) contains {PN+1(λ)}.

(3) The family f possesses the (N,R(λ), CS(k))-uniform Taylor dom-
ination, with S(k) the sequence in condition (Afam-1), and C a
constant.

Proof: We have

R−1(λ) = lim sup
k→∞

|ak(λ)| 1k = |P (λ)| lim sup
k→∞

|Rk(λ)| 1k = |P (λ)|

for each λ ∈ Cm, by conditions (Afam). The ideal J(f) has no zeroes, be-
cause of condition (Afam-2), and thus J(f) is {1}. Next, assume that k ≥
N+1 is fixed. Because of stabilization of the ideals Jl(f) we have Jk(f) =
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JN (f) = J(f), and hence Rk ∈ J(f), i.e. Rk(λ) =
∑N
j=0 ψj(λ)Rj(λ) for

certain polynomials ψj . Multiplying this equality by P k+1 we obtain

ak = P k+1Rk =
∑N
j=0 P

k−jψjP
j+1Rj =

∑N
j=0 P

k−jψjaj ∈ IN . There-
fore the Bautin ideals Ij stabilize at most from j = N and hence the

Bautin index is at most N . Starting with 1 =
∑N
j=0 φj(λ)Rj(λ) and

repeating the calculations, we get PN+1(λ) ∈ I(f).
To prove the (R(λ), N,CS(k))-uniform Taylor domination, we notice

that |ak(λ)|Rk(λ) = |P k+1(λ)| · |Rk(λ)| · |P−k(λ)| = |P (λ)| · |Rk(λ)|. So
we have to show that there exists a constant C such that for k ≥ N+1 we
have |Rk(λ)|≤CS(k)M(λ), where, as above, M(λ)=maxj=0,...,N |Rj(λ)|.
We shall show this fact, bounding |Rk| from above, and independently
bounding M from below. For |Rk| we consider two cases: |λ| ≤ 1 and
|λ| > 1. In the first case |Rk(λ)| ≤ ||Rk|| ≤ S(k), and in the second case
|Rk(λ)| ≤ ||Rk|| · |λ|d ≤ S(k)|λ|d, by condition (Afam-1). So for any λ
we get

(4.2) |Rk(λ)| ≤ S(k)(1 + |λ|d).

As for M(λ), by condition (Afam-3) we have M(λ) ≥ K|λ|d, for each λ
with |λ| ≥ S. For |λ| ≤ S we use the fact that JN = {1}, and so
R0, . . . , RN have no common zeroes. So we just put β=min|λ|≤SM(λ) >
0. We conclude that for any λ we have

(4.3) M(λ) ≥ γ(1 + |λ|d),

where γ = 1
2 min{2K,β, 1

S }. Combining (4.2) and (4.3) we obtain for
each k ≥ N + 1 and for each λ the bound |Rk(λ)| ≤ CS(k)M(λ), with
C = 1

γ . This completes the proof of Theorem 4.2.

4.2. An example: polynomial moments. Consider the Stieltjes

transform of a given polynomial q(x) =
∑d
i=0 αix

i:

(4.4) Sλ(q)(z) =

∫ λ

0

q(x) dx

1− xz
=

∞∑
k=0

mk(λ, q)zk, λ ∈ C,

where mk(λ, q) =
∫ λ

0
xkq(x) dx are the moments of q on [a, b]. Ex-

plicit computations show that Sλ(q)(z) = G(x, λ) − q(z)
z log(1 − λz),

with G(x, λ) a polynomial in λ and z. However, obtaining uniform Tay-
lor domination for Sλ(q) is not completely straightforward. Indeed, as
we shall see in Section 5 below, already for rational functions uniform
Taylor domination is a nontrivial fact, which is, essentially, equivalent to
the classical Turán Lemma in Harmonic Analysis ([23, 24]). Analysing
the explicit formula for Sλ(q)(z) given above we encounter roughly the
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same difficulties. So we shall obtain uniform Taylor domination for Sλ(q)
via Theorem 4.2. Without loss of generality we can assume that q has
degree exactly d, i.e. αd 6= 0. To simplify a presentation we also shall
assume that q(0) 6= 0, i.e. α0 6= 0.

Proposition 4.1. The Stieltjes transform Sλ(q)(z) satisfies condi-
tions (Afam), and possesses ( 1

λ , d, C)-uniform Taylor domination.

Proof: For q as above we immediately get mk(λ, q) = λk+1qk(λ), where

qk(λ) =
∑d
i=0 αi,kλ

i with αi,k = 1
k+iαi. We put P (λ) = λ, and Rk(λ) =

qk(λ). Clearly, qk(λ) are polynomials of degree d, and their coefficients
decrease in k. So we can put S(k) ≡ C0, for C0 = ||q||. The stabilization
moment of the ideals Jk = {q0, . . . , qk} can also be easily estimated.
Indeed, the moments mk(λ) are the scalar products mk = 〈xk, q(x)〉
on the interval [0, λ]. Since the system 1, x, . . . , xd in the space Pd of
polynomials of degree d on [0, λ] is linearly independent for each λ 6=0, the
moments mk(λ) cannot vanish simultaneously for any such λ. Therefore
the polynomials q0, . . . , qd have no common zeroes (at λ = 0 they do not
vanish by assumptions). Hence Jd = {1}, and N ≤ d.

It remains to show that for each λ ∈ C we have lim supk→∞ |qk(λ)| 1k =
1. This is equivalent to the equality R(λ) = |λ|−1 for the radius of
convergence of the series in (4.4). But this fact follows directly from
the integral formula for the Stieltjes transform in (4.4): the nearest to
zero singularity of Sλ(q)(z) is at z = 1

λ . Thus conditions (Afam-1) and
(Afam-2) are satisfied. By the remark above, in the case of scalar λ
conditions (Afam-1) and (Afam-2), imply (Afam-3). This completes the
proof.

Remark. Computations of the scalar products above can be performed
in a more “effective” way, showing, in particular, that the constant C in
Taylor domination for Sλ(q)(z) depends only on the degree of q(x). Com-
pare the results on uniform Taylor domination for Stieltjes transforms of
D-finite functions in [1]. Also the condition lim supk→∞ |qk(λ)| 1k = 1

can be verified directly: the polynomials qk(λ) =
∑d
i=0 αi,kλ

i with
αi,k = 1

k+iαi can be considered for k → ∞ as perturbations of 1
k q(λ),

and their behavior near the roots of q can be described rather accurately.

Theorem 4.2 can be applied also to one specific case of the Poincaré
map for the Abel equation on the interval [0, λ], namely, to the equation
y′ = y2 + cxy3 considered by Liouville [19]. This equation can be inte-
grated explicitly, but the study of its Poincaré map is still far from being
straightforward (see [8, 13]). We believe that application of the Bautin
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approach in this case may be instructive, and plan to present some re-
sults in this direction separately. However, it is important to stress that
in general conditions (Afam) are not satisfied for the Poincaré map of
Abel equations.

5. Turán Lemma and its extensions

The most basic example of uniform Taylor domination concerns Tay-
lor coefficients of rational functions. It is provided by the classical Turán
Lemma (see [23, 24]). Consider a linear recurrence relation with con-
stant coefficients

(5.1) ak =

d∑
j=1

cjak−j , k = d, d+ 1, . . . .

Given ā = (a0, . . . , ad−1) the entire sequence ak, k = 0, 1, . . . , is uniquely
determined by (5.1). For each ā = (a0, . . . , ad−1) the generating function
f(z) = fā(z) =

∑∞
k=0 akz

k of the recurrence (5.1) is a rational function

of the form f(z) = P (z)
Q(z) , with Q(z) = 1 −

∑d
j=1 cjz

j being the charac-

teristic polynomial of (5.1), and with degP (z) ≤ d− 1. Conversely, for

each rational function f(z) = P (z)
Q(z) =

∑∞
k=0 akz

k, with Q as above and

degP (z) ≤ d−1, its Taylor coefficients ak satisfy (5.1). We consider f(z)
as an A-family, the parameters λ being the coefficients cj of (5.1), and
the initial values ā = (a0, . . . , ad−1), or, alternatively, the coefficients cj
and the coefficients of P (z). We shall omit these parameters λ in the
notations below.

Let z1, . . . , zd be all the roots ofQ(z). By the form ofQ we have zi 6= 0,
i = 1, . . . , d, so put xi = z−1

i . Assume also (to simplify the expressions)
that zi 6= zj for i 6= j. We can represent our rational function f(z) as a

sum of elementary fractions R(z) =
∑d
i=1

αi

1−xiz
, so expanding geometric

progressions we get the Taylor coefficients ak of f(z) as the values of the

exponential polynomial ψ(s) =
∑d
i=1 αix

s
i at the integer points s = k.

Put ρ = maxi=1,...,n |xi| and let R = 1
ρ = mini=1,...,n |zi| be the radius

of convergence of f(z) = P (z)
Q(z) =

∑∞
k=0 akz

k.

Theorem 5.1 (Turán, [23, 24]). For each k ≥ d+ 1

(5.2) akR
k ≤

[
4e(k + d− 1)

d

]d−1

max
i=1,...,d

|ai|Ri.

This theorem provides a uniform Taylor domination for rational func-
tions in their maximal disk of convergence DR. Indeed, after rescaling
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to D1 the parameters of (5.2) depend only on the degree of the rational
function f(z), but not on its specific coefficients. We present below, for
more general “Poincaré-type” linear recurrence relations, a weaker ver-
sion of Turán Lemma, proved in [1]. It provides uniform in parameters
Taylor domination not in the maximal disk of convergence, but in its
concentric sub-disk of a sufficiently small radius.

5.1. Poincaré-type recurrence relations. We consider linear recur-
rence relations belonging to the “Poincaré class”(see [21, 20]):

(5.3) ak =

d∑
j=1

[cj + ψj(k)]ak−j , k = d, d+ 1, . . . , lim
k→∞

ψj(k) = 0.

It is well known that Taylor coefficients of solutions of linear ODE’s with
polynomial coefficients obey recurrence relations of the form (5.3), with
ψj(k) rational functions in k. The same is true for the series arising
at regular singular points of such ODE’s. However, below we shall not
use this special information, and we shall allow general sequences ψj(k),
tending to zero as k tends to infinity.

Let Q(z) = 1 −
∑d
j=1 cjx

j be the characteristic polynomial of (5.3),

and let z1, . . . , zd be all the roots of Q(z). As above, we put xj = z−1
j ,

denote by ρ the maximal absolute value of xj , and put R = 1
ρ .

Let us now define N̂ as the first index such that for k ≥ N̂ + 1 we
have |ψj(k)| ≤ 2dρj , and put N = N̂ + d.

Theorem 5.2 ([1]). Let a0, a1, . . . satisfy (5.3). Then for each k ≥ N+1
we have

|ak|Rk ≤ 2(d+3)k max
j=0,...,N

|aj |Rj .

Theorem 5.2 provides Taylor domination in a disk of radius R′ = R
2d+3 ,

and it is uniform in the geometry of the roots z1, . . . , zd. As far as the
dependence of N on the behavior of ψj(k) is concerned, it is essentially
sharp. It would be desirable to extend this Taylor domination to the full
disk of convergence. Some results in this direction are obtained in [1],
based on the Poincaré–Perron Theorem (see [21, 20]), and on its recent
extensions. However, the dependence of the constants on the geometry
of the roots z1, . . . , zd and on ψj(k) becomes less explicit. We believe
that more can be done in this direction.
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