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Three eras of micellization
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Micellization is the precipitation of lipids from aqueous solution into aggregates with a broad distribution of
aggregation number. Three eras of micellization are characterized in a simple kinetic model of Becker-Do¨ring
type. The model asigns the same constant energy to the (k21) monomer-monomer bonds in a linear chain of
k particles. The number of monomers decreases sharply and many clusters of small size are produced during
the first era. During the second era, nuclei are increasing steadily in size until their distribution becomes a
self-similar solution of the diffusion equation. Lastly, when the average size of the nuclei becomes comparable
to its equilibrium value, a simple mean-field Fokker-Planck equation describes the final era until the equilib-
rium distribution is reached.
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I. INTRODUCTION

Spontaneous self-assembly of small molecular aggreg
in aqueous solutions forms association colloids or comp
fluids @1#. Depending on their mean aggregation numb
molecular volume, and critical hydrocarbon chain length, l
ids can pack into spherical or cylindrical micelles. The s
faces of these structures are formed by the hydrophilic he
of the monomer molecules, whose hydrophobic tails lie
side the aggregate. Equilibrium thermodynamics shows
rodlike cylindrical aggregates have a polydisperse distri
tion of sizes~micellization!, whereas the sizes of spheric
aggregates grow indefinitely~phase segregation! @1#. The lat-
ter process is similar to other examples of first order ph
transitions@2# such as condensation of liquid droplets from
supersaturated vapor, colloidal crystallization@3#, and the
segregation by coarsening of binary alloys quenched into
miscibility gap @4–6#. Understanding the kinetics of nucle
ation and growth beyond the determination of the stea
state nucleation rate is a task of great importance and no
completely accomplished. This is so despite a rich literat
on nucleation and growth@7#, and several attempts at bridg
ing the gap between nucleation and late-stage coarse
theories@8#.

In this paper, we study asymptotically a simple discr
model of micellization kinetics of Becker-Do¨ring type
@7–10#. Starting from an initial condition of pure monomer
we expect the system to evolve to the well-known polyd
perse equilibrium distribution@1#. However, the nonequilib-
rium evolution is interestingper seand because the method
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ology employed here may be applicable to the kinetics
phase segregation. We find that the approach to equilibr
occurs in three well-defined stages or eras. Starting from
initial state of pure monomers, the number of monomers
creases sharply and many clusters of small size are prod
during the first era. During the second era, aggregates
increasing steadily in size until their distribution becomes
self-similar solution of the diffusion equation. Lastly, whe
the average size of the nuclei becomes comparable to
equilibrium value, a simple mean-field Fokker-Planck equ
tion describes the final era until the equilibrium distributio
is reached. Numerical solution of the model confirms all t
theoretical predictions.

The rest of the paper is as follows. In Sec. II, we revie
the equilibrium properties of self-assembling aggregates
introduce discrete kinetic models of Becker-Do¨ring type to
describe them. Depending on the binding energy of the
gregate withk monomers (k cluster!, micellization or phase
segregation occurs. For rodlike aggregates, the binding
ergy of ak cluster~relative to isolated monomers in solution!
is (k21) times the monomer-monomer bond energy, and
equilibrium size distribution exists~micellization!. For
spherical aggregates, the binding energy includes a term
portional to the surface area of the aggregate and no equ
rium size distribution exists beyond a critical density. Th
aggregates grow indefinitely and phase segregation oc
following the typical nucleation and growth kinetics. Sectio
III presents a numerical simulation of micellization kinetic
which clearly reveals its three eras. The agenda of
asymptotic analysis is now clear, and is carried out in S
IV. The last Sec. V contains our conclusions and suggest
for experiments.

II. THERMODYNAMICS AND KINETIC MODELS

The model presented here is nucleation in a lattice. Th
are systems, such as proteins aggregating in a cubic pha
d-
©2002 The American Physical Society06-1

https://core.ac.uk/display/78518319?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


y
a

ce

a
ti

di
a

e

o

-
-
o

w

st

t o

f
on

lib-

-

to

n
of

nds
g
r
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lipid bilayers, for which a lattice formulation is physicall
correct. In this paper, the main reasons for a lattice model
clarity, and the expectation that the dilute limit of the latti
model ~in which there are many more binding sitesM than
particlesN) should closely resemble crystallization from
dilute solution. The latter is a classical problem in the kine
theory of first-order phase transitions@2#. We shall now re-
view the equilibrium statistical mechanics of aggregates,
tinguishing between micellization and phase segregation,
then introduce the kinetic models we study.

A. Equilibrium size distribution of aggregates

Let us assume that we havepk>0 clusters withk particles
~in short,k clusters!, so that

N5 (
k51

N

kpk . ~2.1!

Let ek be the energy of ak cluster. The total energy of th
lattice system is

E5 (
k51

N

pkek5Ne11 (
k52

N

pk~ek2ke1!, ~2.2!

where we have used the particle conservation~2.1!. Except
for a constantNe1, the total energy is

E52 (
k52

N

pk«k , ~2.3!

«k5ke12ek . ~2.4!

Now E is the total lattice energy measured with respect t
configuration in which all clusters are monomers, and«k is
the binding energy of thek cluster~notice the sign conven
tion!. We will obtain the equilibrium configuration by mini
mizing the free energy density with respect to the density
k clusters. To calculate the entropy, we proceed as follo
Let nj>0 be the occupation number of the sitej, j
51, . . . ,M . The configuration space of the lattice consi
of all M-tuples of occupation numbers$n1 , . . . ,nM%, with
( j 51

M nj5N and N!M . Clearly, there are manyindistin-
guishableconfigurations that produce the same given se
numbersp1 , . . . ,pN . Their numberV is given by the Bose-
Einstein counting argument,

V5
M !

p1! •••pN! ~M2p12•••2pN!!
, ~2.5!

and the entropy of the system iskBln V. In the appropriate
thermodynamic limit,N→` with fixed densitiesr[N/M
~particles! andrk[pk /M (k clusters!, particle conservation
becomes

(
k51

`

krk5r, ~2.6!

and we can show that the entropy density is
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S[
kB

M
ln V;2kBS (

k51

`

rkln rk1r ln r D , ~2.7!

r 512 (
k51

`

rk , ~2.8!

by using Stirling’s formula. The free energy densityf
5E/M2TS can be written in terms ofr and the densities o
clusters having two or more particles by using its definiti
and Eqs.~2.3! and ~2.6!–~2.8!. The result is

f 52 (
k52

`

rk«k1kBT(
k51

`

rkln rk1kBTr ln r , ~2.9!

where r15r2(k52
` krk and r 512(k51

` rk . In the dilute
limit, 12r 5(k51

` rk,(k51
` krk5r!1, and thereforer

;1, r ln r;2(k51
` rk , and Eq.~2.9! becomes

f 52 (
k52

`

rk«k1kBT(
k51

`

rk~ ln rk21!, ~2.10!

which corresponds to the Boltzmann counting. The equi
rium density ofk clusters (k>2) can be found by differen-
tiating this equation with respect tork and equating the re
sult to zero. Taking into consideration that]r1 /]rk52k
(k>2), we obtain

r̃k5r1
kexpS «k

kBTD , ~2.11!

the positive sign in the argument of the exponential is due
our definition of the binding energies. Equation~2.11! can be
rewritten as

r̃k5expS 2
gk

kBTD , ~2.12!

gk52«k1kBTk lnS 1

r1
D ; ~2.13!

gk as a function ofk can be interpreted as the activatio
energy of nucleation theory. The equilibrium density
monomers can be found by inserting Eq.~2.11! into Eq.~2.6!
and solving the resulting self-consistent equation forr1 in
terms of the constant densityr:

(
k51

`

k r1
kexpS «k

kBTD5r. ~2.14!

Whether this self-consistent equation has a solution depe
on the value ofr and on the model we adopt for the bindin
energy of ak cluster. Typical models are as follows. Fo
rodlike aggregates,

«k5~k21!akBT, ~2.15!

whereakBT is the monomer-monomer bonding energy@1#.
For spherical aggregates,
6-2
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«k;~k21!akBT2
3

2
sk2/3 ~2.16!

for k@1. Here s52g(4pv2/3)1/3, whereg and v5V/M
are the interfacial free energy per unit area~surface tension!
and the molecular volume, respectively.

Inserting Eq. ~2.15! in Eq. ~2.14! and using(k51
` kxk

5x(d/dx)(k51
` xk5x/(12x)2, we obtain

r5
r1

~12r1ea!2
. ~2.17!

This equation has the unique solution

r15
112rea2A114rea

2re2a
, ~2.18!

with r1,e2a for all values of the densityr @1#. Notice that

^k&[
(
k51

`

kr̃k

(
k51

`

r̃k

5
A114rea21

2
~2.19!

is the average cluster size in equilibrium. Notice that
rea@1, ^k&;Area and r̃k;e2ae2k/^k&.

For spherical aggregates, the self-consistency condi
based on the approximation to«k in Eq. ~2.16! is

r1(
k51

`

k~r1ea!k21expS 2
3sk2/3

2kBT D5r. ~2.20!

Clearly, this series converges, providedr1ea,1; and it di-
verges if r1ea.1. The critical monomer concentrationr1
5e2a is called critical micelle concentration~CMC! @1#.
Below CMC, Eq.~2.20! can be solved forr1, and the aggre-
gates eventually form micelles with an equilibrium size d
tribution, whereas phase segregation and indefinite aggre
growth results if more monomers are added above the CM
For k@1, the free energy~2.13! is gk;akBT13sk2/3/2
2kw, with w5kBT ln(r1e

a). For w.0, gk increases for
small k, it has a maximum at the critical cluster sizekc
'(s/w)3, and then it decays monotonically ask further in-
creases.

B. Kinetic models

Let us now formulate the kinetic theory of aggregation
these systems. As in the Becker-Do¨ring kinetic theory, we
shall assume that ak cluster can grow or decay by capturin
or shedding one monomer at a time. Then

ṙk5 j k212 j k[2D2 j k , k>2, ~2.21!

j k5dk$e
(D1«k)/kBTr1rk2rk11%, ~2.22!

or finally,

j k5dk$~e2(D1gk)/kBT21!rk2D1rk%, ~2.23!
06140
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Here D1«k[«k112«k52D1gk1kBT ln(1/r1) and j k is
the net rate of creation of ak11 cluster from ak cluster,
given by the mass action law. We have made the deta
balance assumption to relate the kinetic coefficient for mo
mer aggregation to that of decay of a (k11) cluster,dk .
Thenr̃k given by Eq.~2.11! solvesj k50. The kinetic model
is described by a closed system of equations once we sup
ment Eqs.~2.6!, ~2.21!, and ~2.22! with expressions for the
binding energy of ak cluster,«k , and for the kinetic coeffi-
cient of the decay reaction,dk .

The simplest possible model for micellization within th
Becker-Döring theory is obtained by setting«k5(k
21)akBT anddk51 in Eq. ~2.22! for the creation rate of a
(k11) cluster~rescaling of time can absorb a constant clu
ter decay ratedk5d; typical time scales describing aggreg
tion kinetics range from microseconds to milliseconds@11–
13#!. Equations~2.21! and~2.22! then become the following
discrete Smoluchowski equation:

ṙk1~ear121!~rk2rk21!5rk1122rk1rk21 ,
~2.24!

to be solved together with conservation condition~2.6!,
namely, (k51

` krk5r. At t50, we assume thatrk5rdk1.
We shall consider the limitr@e2a, in which the initial
monomer concentration is much larger than the CMC. T
parametersr anda are not really independent. If we resca
the cluster densities withr, so that

rk5rr k , ~2.25!

and define a scaled time

t[ear t[
t

e
, ~2.26!

the rescaled problem contains the single parametee
[(rea)21!1. Then Eqs.~2.24! and ~2.6! become

drk

dt
1~r 12e!~r k2r k21!5e~r k1122r k1r k21!, k>2

~2.27!

15 (
k51

`

krk , ~2.28!

to be solved with initial conditions

r 1~0!51, r 2~0!5r 3~0!5•••50. ~2.29!

Lastly, notice that we can straightforwardly derive two gl
bal identities from Eqs.~2.27! and ~2.28!:

dr1

dt
1r 1~r 11r c!1e~r 12r 22r c!50, ~2.30!

drc

dt
1r 1r c1e~r 12r c!50. ~2.31!

Here r c is the total density of clusters,
6-3
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r c5 (
k51

`

r k , ~2.32!

and initially, r c(0)51.

III. NUMERICAL RESULTS

Numerical solution of the initial value problem given b
Eqs. ~2.27!–~2.29! clearly expresses the phenomenology
micellization, and informs the singular perturbation analy
carried out in Sec. IV. Figures 1–5 illustrate the evolution
the size distribution fore54.5431024 ~corresponding toa
510 andr50.1). Figures 1~a! and 2–4 are histograms ofr k
as a function ofk at different times, and Fig. 5 records th
time-dependent behavior of the average cluster size^k&.

Figure 1~a! depicts an early stage of the kinetics. T

FIG. 1. ~a! Scaled cluster size distributionrk /r as a function of
k for 0<t<10. At timet510, the values ofr1 /r, r2 /r, etc. have
been joined by straight lines as a guide to the eye.~b! Evolution of
the scaled monomer concentrationr1 /r. ~c! Evolution of the scaled
dimer concentrationr2 /r. Parameter values area510 and r
50.1.
06140
f
s
f

sequences of small dots at eachk record the values ofr k at
times betweent50 and t52, in increments ofDt50.2,
and the larger dots joined by straight lines record the val
of r k at t510. The direction of increasing time is general
clear. As indicated in Fig. 1~b!, the monomer concentratio
rapidly decreases to a small fraction of its initial valuer 1
51, so that the time orientation on the linek51 is down-
ward. Many small clusters of sizesk (2<k<5) are simulta-
neously created, so the time orientation on the lines of th
k is generally upward. Notice thatr2 reaches a maximum
and then decreases to a constant value, as can be seen i
1~c!. By the end of the initial stage at timet510, the cre-
ation of smaller clusters~with 2<k<5) has slowed down
greatly relative to the initial spurt for times 0,t,2. Fur-
thermore, the number of clusters with more than five mo
mers is negligible. Att510, ^k&'2.69, much smaller than
the equilibrium value^k&'Area5e21/2'46.9. To deter-
mine the time scales appropriate for exploring the sub
quent kinetics, it is highly instructive to plot the averag
cluster sizê k& as a function of time, based on the numeric
solution. Figure 5 is a log-log plot of̂k&/e as a function of
t. It reveals an initial rapid growth of̂k& to a ‘‘plateau
value’’ close to e, roughly located in the interval 10,t
,100. In the subsequent growth after the plateau, large c
ters withk@1 eventually appear. Figure 5 indicates that
time t553104, k clusters havinĝk&'10 are prevalent.

Figure 2 shows frames at timest520, 104, and 23104,

FIG. 2. Same as Fig. 1~a!, for the times t520, 104, and
23104. At the two later times, we have joined values ofrk /r
corresponding to neighboringk’s by straight lines as a guide to th
eye.

FIG. 3. Same as Fig. 1~a!, starting att523105. Snapshots of
the size distribution have been taken at time intervals oft
523105, until a time t5163105. Then the last snapshot corre
sponds tot5403105.
6-4



on
to
of

el
ic

o
tim
o

et

e
ch
ig
om
n

lts
see

e-
of

ent
nse

n

n

of
ver-

e
rger

u-

s

1/
b

THREE ERAS OF MICELLIZATION PHYSICAL REVIEW E66, 061406 ~2002!
thereby continuing those in Fig. 1. The heavy dots correp
to t520, which is well inside the plateau phase. The his
grams att5104 and 23104 indicate the clear emergence
a continuum limit of the kinetics.

In the time interval 23104,t,53105, the log-log plot
of ^k&/e as a function oft in Fig. 5 is close to a straight line
of slope 1/2. This strongly supports the existence of a s
similar stage of the kinetics. The line graphs in Fig. 4 dep
^k&2r k as a function ofx[k/^k& for the timest50.53105,
105, and 1.53105. They are nearly superimposed on top
each other. The heavy dots correspond to the plateau
t520, so the change in the distribution shape over the wh
time span 20,t,1.53105 is not very great.

The self-similar stage is not the final chapter of the kin
ics story either. Byt5106, the linear dependence of ln(^k&/e)
with ln t breaks down. In fact, att5106, ^k&'31.1, which
is comparable to the equilibrium value of 46.9 mention
before. Evidently, there is a final stage of kinetics in whi
the size distribution asymptotes to its equilibrium form. F
ure 3 is the final era of cluster aggregation, continued fr
Fig. 2, in which snapshots of the size distribution are take
t increments of 0.23106, from 0.23106 to 43106. Conver-

FIG. 4. Approximate self-similar behavior of the size distrib
tion at timest550 000, 100 000, and 150 000~solid lines!. Notice
that ^k&2r k is approximately the same function ofk/^k& at different
times. The dots correspond tot520.

FIG. 5. Evolution of the average cluster size^k&/e as a function
of the scaled timet ~thick solid line!. The dotted line correspond
to the solution of the system~4.11! in Sec. IV below with an initial
condition corresponding to the dot. The straight line of slope
corresponds to the self-similar continuum size distribution given
Eq. ~4.19!.
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gence to an exponential distribution with^k& equal to the
equilibrium value of 46.9 is clear.

IV. ASYMPTOTIC THEORY OF MICELLIZATION

In this section, we shall interpret the numerical resu
shown in Sec. III by using singular perturbation methods;
Ref. @14# for a general description thereof.

A. Initial transient

Initially, r 1(0)51, and there are no multiparticle aggr
gates. As we have seen in Sec. III, the numerical solution
the complete model shows that there is an initial transi
stage during which dimers, trimers, etc. form at the expe
of the monomers, and thatr k'0 for sufficiently largek.
Taking thee→0 limit of Eqs. ~2.30! and ~2.31! yields the
following planar dynamical system:

dr1

ds
52~r 11r c!, ~4.1!

drc

ds
52r c , ~4.2!

ds

dt
5r 1 , ~4.3!

in the adaptive time s5*0
tr1dt. The general solution of the

linear system~4.1! and ~4.2! is

r 15~a2bs!e2s, r c5b e2s,

wherea and b are arbitrary constants. Our initial conditio
yields a5b51, so that

r 15~12s!e2s, r c5e2s, ~4.4!

and from Eq.~4.3!,

t5E
0

s es

12s
ds. ~4.5!

Clearly, t→` corresponds tos→12. At s51, Eq. ~4.4!
yields r 150, r c5e21, which are the limiting values of the
variablesr 1 and r c at the end of the initial stage. Equatio
~2.27! with e50 becomesd(r ke

s)/ds5r k21es, which can
be solved recursively to yield

r k5S sk21

~k21!!
2

sk

k! De2s. ~4.6!

As t→`, r k→(k21)e21/k!. Since r 6(1)50.002 55, after
the initial transient stage there are insignificant numbers
aggregates with more than five monomers. In fact, the a
age aggregate cluster size is^k&51/r c5e; whereas at equi-
librium, ^k&;Area@1. We therefore conclude that ther
must be successive transients on time scales much la
than t5O(e).

2
y
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B. Intermediate transient

Examination of the exact equation~2.27! shows that when
r 1 decreases to sizeO(e), but r 2 , r 3 , . . . are of order 1, all
terms in its right hand side areO(e). This suggests rescalin
r 15eR1, so thatr15e2aR1, and using the original timet
5et. Equation~2.27! becomes

dr2

dt
52~R121!~r 22eR1!1r 322r 21eR1 , ~4.7!

drk

dt
52~R121!~r k2r k21!1r k1122r k1r k21 , k>2.

~4.8!

The global identities~2.30! and ~2.31! become

~R121!r c2r 21eS dR1

dt
1R1

21R1D50, ~4.9!

drc

dt
1~R121!r c1eR150, ~4.10!

where now r c5eR11(k52
` r k;(k52

` r k , as e→0. In the
limit e→0, R1215r 2 /r c , and Eq.~4.8! becomes

drk

dt
52

r 2~r k2r k21!

r c
1r k1122r k1r k21 , k>2.

~4.11!

This is a closed system of equations forr 2 , r 3 , . . . , to be
solved with the asymptotic valuesr k5(k21)e21/k! as ini-
tial conditions. It can be shown that the reduced versions
Eq. ~4.10! @ ṙ c52(R121)r c# and the conservation conditio
(k52

` krk51, are upheld automatically by the solution of E
~4.11!, so that they are redundant for this stage.

The numerical solution of the reduced system of eq
tions~4.11! for r k , k>2 closely approximates that of the fu
system of kinetic equations at this stage. It can be seen
more and morer k become different from zero ast increases,
and thatr k2r k21 becomes small. This strongly suggests th
r k can be approximated by a continuum limit for long time
To find the continuum limit, we set

r k~ t !;dar ~x,T!, x5d k,T5dbt. ~4.12!

Hered→0 fixes the scale ofk5O(1/d), so thatx is fixed at
some value of order 1;a andb are positive exponents to b
determined. To finda, we use the conservation conditio
(k52

` krk51:

15da22(
k52

`

~kd!r ~kd,T!d;E
0

`

x r~x,T!dx,

provideda52. The limiting form of the particle conserva
tion is thus

E
0

`

x r~x,T!dx51. ~4.13!
06140
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A similar calculation for the total number of clusters yield
r c;d *0

`r (x,T)dx, which suggests the definition

r c;d Rc , Rc[E
0

`

r ~x,T!dx. ~4.14!

We now substitute Eq.~4.12! in Eq. ~4.11!, and use Eq.
~4.14! instead ofr c . The result is

db
]r

]T
;2

d2r ~2d,T!@r ~x,T!2r ~x2d,T!#

d Rc
1r ~x1d,T!

22r ~x,T!1r ~x2d,T!.

The right hand side of this expression is of orderO(d2), so
that the following distinguished limit is obtained if we s
b52 and taked→0:

]r ~x,T!

]T
52

r ~0,T!

Rc~T!

]r ~x,T!

]x
1

]2r ~x,T!

]x2 . ~4.15!

For k52, Eq. ~4.11! and the scaling~4.12! with a5b52
imply that r (0,T)50. Therefore Eq.~4.15! becomes the
simple diffusion equation

]r

]T
5

]2r

]x2 , ~4.16!

for x.0, t.0 to be solved with the boundary conditio
r (0,T)50.

The numerical solution of the discrete equations~4.11!
show that large aggregates do not emerge untilt@1. This
suggests that the appropriate solution of Eq.~4.16! should be
concentrated aboutx50 asT→01. That solution is propor-
tional to thex derivative of the diffusion kernel,

r ~x,T!52
]

]x S e2x2/4T

ApT
D 5

x

2ApT3/2
expS 2

x2

4TD .

~4.17!

The numerical prefactor is chosen so that particle conse
tion, given by Eq.~4.13!, holds. It follows from Eq.~4.14!
that Rc5(pT)21/2. Hence the average aggregate size is

^k&5
1

d Rc
5

ApT

d
. ~4.18!

In terms of the original variablesk, t, and r k , the previous
expressions are

r k~ t !;
k

2Apt3/2
expS 2

k2

4t D , ~4.19!

^k&;Apt, ~4.20!

as t→`. These two equations yield

^k&2r k;
pk

2^k&
expF2

p

4 S k

^k& D
2G , ~4.21!
6-6
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which resembles the behavior of the numerical solution
the full kinetic model as indicated in Fig. 4. Notice that t
average cluster sizêk& corresponding to the solution of Eq
~4.11! ~dotted line in Fig. 5! approaches the value~4.20!
~straight line of slope 1/2 in Fig. 5!.

C. Equilibrium transient

The large time limit of Eq.~4.19! does not match the
equilibrium size distribution, which isr k;ee2kAe in the
same scaled units; see Sec. II. Thus the limit given by
~4.19! is expected to break down when it predicts an aver
^k& of the order of the equilibrium length 1/Ae. According to
Eq. ~4.20!, this occurs at a timeAt5O(e21/2), i.e., t
5O(e21). In this third and final transient towards equilib
rium, we set

r k~ t !5er ~x,t !, x5Aek, T5et. ~4.22!

This is the same scaling as in Eq.~4.12! with a5b52 and
d5Ae, and therefore we use here the same notation for
variables. With this scaling, the scaled particle conserva
is

15 (
k51

`

krk5e1/2 (
k51

`

e1/2 kr~x,T!,

and the limite→0 yields

E
0

`

xr~x,T!dx51. ~4.23!

Similarly,

r c;e1/2E
0

`

r ~x,T!dx[e1/2Rc . ~4.24!

The scaled version of the global identity~2.32! is

Rc~R121!1e1/2R11e
dRc

dT
50. ~4.25!

Here r 15eR15er (e1/2,T). It follows from Eq. ~4.25! that

R12152
e1/2

Rc
1O~e!. ~4.26!

The scaled kinetic equation~2.27! is

e3
]r

]T
52e2~R121!@r ~x,T!2r ~x2e1/2,T!#

1e2@r ~x1e1/2,T!22r ~x,T!1r ~x2e1/2,T!#.

We now substitute Eq.~4.26! in this expression, divide it by
e3, and take the limite→0. The result is

]r

]T
5

1

Rc~T!

]r

]x
1

]2r

]x2 . ~4.27!

In these units, the average aggregate length is^x&51/Rc ,
and Eq.~4.27! can be rewritten as
06140
f

q.
e

e
n

]r

]T
5^x&

]r

]x
1

]2r

]x2 , ~4.28!

to be solved with the boundary condition

r ~0,T!51, ~4.29!

which follows from Eq.~4.26! with e→0. It can be straight-
forwardly checked that (d/dT)*0

`x r(x,T)dx50, and there-
fore *0

`x r(x,T)dx51, providedr (x,0) satisfies this particle
conservation condition.

We now have to show two things:~1! As T→01, the
solution of Eqs.~4.28! and ~4.29! is asymptotic@14# to the
right hand side of Eq.~4.17!, the self-similar limiting solu-
tion of the intermediate transient stage.~2! The solution of
Eqs.~4.28! and~4.29! tends to the equilibrium size distribu
tion asT→`. Then the size distribution of the equilibratio
transient asT→01 matches the long time limit of the pre
vious intermediate stage, and tends towards equilibrium
T→`. This completes the description of the dynamics of t
aggregate size distribution.

1. Matching with the intermediate transient stage

We representr (x,T) as

r ~x,T!5
1

T
h~z,T!, z5

x

AT
. ~4.30!

With prefactor 1/T, the particle conservation equation~2.6!
and the total cluster density adopt the invariant forms

E
0

`

z h~z,T!dz51, ~4.31!

Rc~T!5E
0

`

r ~x,T!dx5
1

AT
E

0

`

h~z,T!dz[
hc~T!

AT
.

~4.32!

Then

^x&5A T

hc~T!
. ~4.33!

Inserting this equation together with Eq.~4.30! in Eq. ~4.28!,
we obtain

]2h

]z2 1h1
1

2
z
]h

]z
5TS ]h

]T
1

zh

hc
D , ~4.34!

to be solved with the boundary condition indicated by E
~4.29! and ~4.30!,

h~0,T!5T. ~4.35!

Asymptotic similarity asT→0 means thath(z,T) in Eq.
~4.30! has a limit H(z) as T→0. The limit equations ob-
tained from Eqs.~4.31!–~4.35! are

]2H

]z2 1H1
1

2
z

]H

]z
50 for z.0,
6-7
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H~0!50,

E
0

`

zH~z!dz51.

The unique solution of these equations isH(z)
5ze2z2/4/(2Ap), which is the right hand side of Eq.~4.17!.

2. Trend towards equilibrium

The stationary solution of Eq.~4.28! with the condition
~4.29! is r e5e2x^x&, and the particle conservation conditio
gives ^x&251, so that̂ x&51. Then the stationary solutio
of Eq. ~4.28! is r e5e2x, which is the sought equilibrium
solution. To show thatr (x,T)→r e(x) as T→`, we define
the associated free energy

f @r #5E
0

`F2r 1r lnS r

r 0
D Gdx21, ~4.36!

r 05e2x, ~4.37!

and show that it is a Lyapunov functional for Eq.~4.28!.
Notice that*0

`r ln r0dx52*0
`x r dx521, and thereforef @r #

is the usual free energy,f @r #5*0
`(r ln r2r)dx.

First, the standard inequalityx ln x>x21 for positive x
5r /r 0 yields f >2*0

`e2xdx21522, and thereforef is
bounded below. Notice thatf @r 0#522 at equilibrium.

Second, time differentiation of Eq.~4.37! yields

d f

dT
5E

0

` ]r

]T
lnS r

r 0
Ddx.

If we now substitute Eq.~4.28!, integrate by parts, and us
r (0,T)5r 0(0)51 and*0

`r dx51/̂ x&, we obtain

d f

dT
5^x&2E

0

`1

r S ]r

]xD 2

dx5^x&F12E
0

`

r dxE
0

`1

r S ]r

]xD 2

dxG .
~4.38!

The right hand side of this equation is less or equal than z
because of the Cauchy-Schwarz inequality

15r ~0,T!25S E
0

`]r

]x
dxD 2

<S E
0

`U]r

]xUdxD 2

<E
0

`

r dx E
0

`1

r S ]r

]xD 2

dx.

Therefore, we have proven that the free energy is
Lyapunov functional. We can rewrite Eq.~4.38! in an equiva-
lent form by definingr̃ 05exp@2x^x&#, and using the identi-
ties

^x&5^x&2E
0

`

r dx5E
0

`

r S ] ln r̃ 0

]x
D 2

dx,

^x&52^x&E
0

`]r

]x
dx5E

0

`

r
] ln r

]x

] ln r̃ 0

]x
dx,
06140
ro

a

to obtain

d f

dT
52E

0

`

r F ]

]x
lnS r

r̃ 0
D G 2

, dx<0. ~4.39!

This equation shows thatr→ r̃ 0 asT→`. The particle con-
servation condition*0

`xr̃0dx51 yields ^x&251, and there-

fore r̃ 05e2x.

3. Approximation of the size distribution function by matched
asymptotic expansions

An uniformly valid approximation to the size distributio
function can be easily formed from~i! r k

(1)(t), given by Eqs.
~4.5! and ~4.6!, ~ii ! r k

(2)(t), which solves the approximat
system of equations~4.11!, and r c5(k52

` r k with the initial
conditions r k(0)5(k21)e21/k!, and ~iii ! r (x,T), which
solves the nonlinear Fokker-Planck equation~4.28! with the
condition ~4.29!, and it matches Eq.~4.17! asT→01. The
result is

r k
(uni f)~t!5r k

(1)~t!1r k
(2)~et!1e r ~Aek,e2t!2

k21

k!e

2
k

2Ap~et!3/2
expS 2

k2

4et D . ~4.40!

Figure 6 compares the distribution function given by E
~4.40! to the numerical solution of the complete model equ
tions in times corresponding to the end of the intermedi
stage and the beginning of the equilibration stage. At th
times, r k

(1)5(k21)/(k!e). We observe a good agreeme
between approximate and numerical solutions, which
proves as the time elapses and the equilibrium distributio
approached.

V. CONCLUSIONS

On the basis of a simple kinetic model and starting fro
the initial state of pure monomers, we have shown that
process of micellization of rodlike aggregates at high CM
occurs in three separated stages or eras. In the first era, m
clusters of small size are produced while the number
monomers decreases sharply. During the second era, a
gates are increasing steadily in size and their distribut
approaches a self-similar solution of the diffusion equati
Before the continuum limit can be realized, the average s
of the nuclei becomes comparable to its equilibrium val
and a simple mean-field Fokker-Planck equation descr
the final era until the equilibrium distribution is reached.
continuum size distribution does not describe micellizat
until the third era has started; during the first two eras
effects of discreteness dominate the dynamics.

In order to validate our theory by an experiment, it wou
be important to measure the average cluster size as a fun
6-8
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FIG. 6. Comparison of the approximation~4.40! ~dashed line! to the numerical solution of the full kinetic model~solid line! for four
different timest: ~a! 100 000, ~b! 500 000, ~c! 1 000 000, and~d! 3 000 000. Notice that the agreement improves as the equilibr
distribution is approached.
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of time, as in Fig. 5; the multiscale behavior is more clea
seen in this figure. To determine the time scale, we nee
measure of the cluster diffusion coefficientd that was set
equal to 1 in Sec. II. A convenient relation could be E
~4.20!, which in dimensional units iŝk&'Adpt. In case the
self-similar size distribution is not reached during the int
mediate phase, another way to determined is to study the
equilibration era and compare the experimentally obtai
size distribution with the numerical solution of the model.
equilibrium, ^k&2'rea, and this relation determines the d
mensionless binding energya.
.A
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