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Three eras of micellization
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Micellization is the precipitation of lipids from aqueous solution into aggregates with a broad distribution of
aggregation number. Three eras of micellization are characterized in a simple kinetic model of Bethkgr-Do
type. The model asigns the same constant energy tokthd ] monomer-monomer bonds in a linear chain of
k particles. The number of monomers decreases sharply and many clusters of small size are produced during
the first era. During the second era, nuclei are increasing steadily in size until their distribution becomes a
self-similar solution of the diffusion equation. Lastly, when the average size of the nuclei becomes comparable
to its equilibrium value, a simple mean-field Fokker-Planck equation describes the final era until the equilib-
rium distribution is reached.
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[. INTRODUCTION ology employed here may be applicable to the kinetics of

phase segregation. We find that the approach to equilibrium

Spontaneous self-assembly of small molecular aggregaté¥curs in three well-defined stages or eras. Starting from the

in aqueous solutions forms association colloids or complexnitial state of pure monomers, the number of monomers de-
fluids [1]. Depending on their mean aggregation numberCréases sharply and many clusters of small size are produced
molecular volume, and critical hydrocarbon chain length, lip-during the first era. During the second era, aggregates are

ids can pack into spherical or cylindrical micelles. The syr-increasing steadily in size until their distribution becomes a

faces of these structures are formed by the hydrophilic hea tf-similar SOI_“t'On of the dlffu§|on equation. Lastly, when_
of the monomer molecules, whose hydrophobic tails lie in(Ne average size of Fhe nuclei be_comes comparable 1o its
side the aggregate. Equilibrium thermodynamics shows thafduilibrium value, a simple mean-field Fokker-Planck equa-
rodlike cylindrical aggregates have a polydisperse distribu;['on describes the _flnal era .untll the equilibrium Q|str|but|on
tion of sizes(micellization, whereas the sizes of spherical IS reached. Nunjerlcal solution of the model confirms all the
aggregates grow indefinitelphase segregatiofil]. The lat-  theoretical predictions. _

ter process is similar to other examples of first order phaseh The rest of the paper is as follows. In Sec. Il, we review
transitiong 2] such as condensation of liquid droplets from a € €quilibrium properties of self-assembling aggregates and
supersaturated vapor, colloidal crystallizatifgi, and the ntroduce discrete kinetic models of Beckeriibg type to

segregation by coarsening of binary alloys quenched into thgescribe thﬁlin' Depending oln the bir_1dir|1|g energy ththe ag-
miscibility gap[4—6]. Understanding the kinetics of nucle- 9regate withk monomers k cluste), micellization or phase
ation and growth beyond the determination of the steady-Segregatlon occurs. F_or rod_hke aggregates, th(.a binding en-
state nucleation rate is a task of great importance and not yglrgy of ak _cluster(relatlve to isolated monomers in solutjon
completely accomplished. This is so despite a rich literaturdS (K—1) times the monomer-monomer bond energy, and an
on nucleation and growtf7], and several attempts at bridg- equmprlum size dlstnbutpn _eX|sts(m|C(_eII|zat|or1). For

ing the gap between nucleation and late-stage coarsenir?é’her'cal aggregates, the binding energy includes a term pro-
theories[8]. portional to the surface area of the aggregate and no equilib-

In this paper, we study asymptotically a simple discretdilum size distribution exists beyond a critical density. Then
model of micellization kinetics of Becker-Diag type aggregates grow indefinitely and phase segregation occurs

[7—10]. Starting from an initial condition of pure monomers, following the typical nucleation and growth kinetics. Section

we expect the system to evolve to the well-known pondis-”' presents a numerlcal_ simulation of micellization kinetics,
perse equilibrium distributiofl]. However, the nonequilib- Which clearly reveals its three eras. The agenda of the

rium evolution is interestinger seand because the method- aSymptotic analysis is now clear, and is carried out in Sec.
IV. The last Sec. V contains our conclusions and suggestions

for experiments.
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lipid bilayers, for which a lattice formulation is physically
> pnpi+rin f) : (2.7
k=1

correct. In this paper, the main reasons for a lattice model are S= EIn O~—kg
clarity, and the expectation that the dilute limit of the lattice M

model (in which there are many more binding sitesthan

particlesN) should closely resemble crystallization from a r=1— E o 2.8
dilute solution. The latter is a classical problem in the kinetic = '
theory of first-order phase transitiof@]. We shall now re-

view the equilibrium statistical mechanics of aggregates, disby using Stirling’s formula. The free energy density
tinguishing between micellization and phase segregation, ang E/M — TS can be written in terms qgf and the densities of

then introduce the kinetic models we study. clusters having two or more particles by using its definition
and Eqgs.(2.3) and(2.6)—(2.8). The result is
A. Equilibrium size distribution of aggregates w .
Let us assume that we hapg=0 clusters withk particles f=-— E PreT kBTE pIn p+kgTrinr, (2.9
k=2 k=1

(in short,k clusters, so that
N where p;=p—32¢_,kp, andr=1-3,_,p,. In the dilute
N= >, kpy. (2. limit, 1-r=3;_;p<Z,_;kpk=p<1, and thereforer
k=1 ~1, rinr~—3¢_,p,, and Eq.(2.9 becomes

Let e, be the energy of & cluster. The total energy of the o w
lattice system is f=—3 petkeT 2 pllnp—1), (210
k=2 k=1
N N
E:kZl pke=Ne;+ kZZ pr(ex—key), (2.2 which corresponds to the Boltzmann counting. The equilib-

rium density ofk clusters k=2) can be found by differen-
tiating this equation with respect {9, and equating the re-
sult to zero. Taking into consideration thap,/dp,=—k
(k=2), we obtain

where we have used the particle conservati@d). Except
for a constaniNe,, the total energy is

N
E=— , 2.3 ~ €k
kzz Pkek 2.3 pk=p§exp(g>, (2.11
ex=ke;—e. (2.4 the positive sign in the argument of the exponential is due to

. . . our definition of the binding energies. Equati@hll can be
Now E is the total lattice energy measured with respect to 3ewritten as g g quatian1l

configuration in which all clusters are monomers, apds
the binding energy of thé& cluster(notice the sign conven- _ Ok
tion). We will obtain the equilibrium configuration by mini- pk=exi{ - ﬁ)
mizing the free energy density with respect to the density of B
k clusters. To calculate the entropy, we proceed as follows. 1
Let nj=0 be the occupation number of the sifge ] O=—&xt+ kBTkIn(—); (2.13
=1,... M. The configuration space of the lattice consists p1

of all M-tuples of occupation numbefs, ... ,ny}, with
E}\":an-:N and N<M. Clearly, there are manyndistin-
guishableconfigurations that produce the same given set o
numberspq, . .. ,py. Their numben) is given by the Bose-
Einstein counting argument,

(2.12

gy as a function ofk can be interpreted as the activation
nergy of nucleation theory. The equilibrium density of
onomers can be found by inserting E2.11) into Eq.(2.6)
and solving the resulting self-consistent equation gorin
terms of the constant densipy

M! o
0= , 2. €k
Pil- PN (M =py—- - —pp)! @29 > kpiexf{ﬁ
k=1 B
and the entropy of the system kgIn Q). In the appropriate

thermodynamic limit,;N—o with fixed densitiesp=N/M
(particles and p,=py/M (k clusters, particle conservation

=p. (2.19

Whether this self-consistent equation has a solution depends
on the value op and on the model we adopt for the binding
energy of ak cluster. Typical models are as follows. For

becomes rodlike aggregates,
z kpk:P, (26) sk=(k—1)akBT, (215)
k=1
where akgT is the monomer-monomer bonding enefdy.
and we can show that the entropy density is For spherical aggregates,
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3
e~ (k—1)akgT— Ea|<2/3 (2.1
for k>1. Here o=2y(4mv?/3)"3, wherey andv=V/M
are the interfacial free energy per unit afsarface tension
and the molecular volume, respectively.
Inserting Eq.(2.19 in Eq. (2.14 and usingZ_kx
=x(d/dx)Z;_;x*=x/(1—x)2, we obtain

pP1
p=—""—. (2.17
(1-p.e%)?
This equation has the unique solution
1+2pe“—1+4pe”
pP1= 2w ) (218)
2pe

with p;<e™ “ for all values of the density [1]. Notice that

(2.19

PHYSICAL REVIEW E66, 061406 (2002

Here D, g =gy;1—ex=—D,0c+kgT In(1/p;) and j, is
the net rate of creation of k+1 cluster from ak cluster,
given by the mass action law. We have made the detailed
balance assumption to relate the kinetic coefficient for mono-
mer aggregation to that of decay of k1) cluster,dy.

Thenpy given by Eq.(2.11) solvesj,=0. The kinetic model

is described by a closed system of equations once we supple-
ment Eqs.(2.6), (2.21), and(2.22 with expressions for the
binding energy of & cluster,e,, and for the kinetic coeffi-
cient of the decay reactiol, .

The simplest possible model for micellization within the
Becker-Daing theory is obtained by settings,=(k
—1)akgT andd,=1 in Eq.(2.22 for the creation rate of a
(k+1) cluster(rescaling of time can absorb a constant clus-
ter decay ratel, = d; typical time scales describing aggrega-
tion kinetics range from microseconds to millisecofii$—
13]). Equationg2.21) and(2.22 then become the following
discrete Smoluchowski equation:

prt (€9p1— 1) (pr— Pr—1) = P 1~ 20K+ Pr—1
(2.29

to be solved together with conservation conditi6),
namely, =, _,kp=p. At t=0, we assume thgt,=p 1.
We shall consider the limip>e™ ¢, in which the initial

is the average cluster size in equilibrium. Notice that formonomer concentration is much larger than the CMC. The

pe®>1, (k)~pe® andp,~e e ¥k,
For spherical aggregates, the self-
based on the approximation &g in Eq. (2.16) is

[

3o,k2/3
) =p (2.20

ayk—1 _
plgl k(p1e“) eXD( SkaT

Clearly, this series converges, providege“<1; and it di-
verges ifp;e“>1. The critical monomer concentratign
=e~ “ is called critical micelle concentration(CMC) [1].

Below CMC, Eq.(2.20 can be solved fop;, and the aggre-
gates eventually form micelles with an equilibrium size dis-

parameterg and« are not really independent. If we rescale

consistency conditioﬂqe cluster densities with, so that

Pk=Plk; (2.29

and define a scaled time

T=e%pt= E,
€

(2.2

the rescaled problem contains the single parameter
=(pe®) ~1<1. Then Egs(2.24 and(2.6) become

. . . . . g
tribution, Where_zas phase segregation and indefinite aggregate_+(rl_ (=T 1) =€e(F1— 2N +T_q), k=2
growth results if more monomers are added above the CMC. dr

For k>1, the free energy2.13 is gy~ akgT+30k?%2

—ke, with ¢=kgT In(p,e¥). For ¢>0, g, increases for

small k, it has a maximum at the critical cluster sike
~(ol)3, and then it decays monotonically ksurther in-
creases.

B. Kinetic models

Let us now formulate the kinetic theory of aggregation in
these systems. As in the Becker#idg kinetic theory, we

(2.27
1= 2 krk, (22&
k=1
to be solved with initial conditions
ri(0)=1, ry(0)=rg(0)=---=0. (2.29

Lastly, notice that we can straightforwardly derive two glo-

shall assume that lacluster can grow or decay by capturing bal identities from Eqs(2.27) and (2.28):

or shedding one monomer at a time. Then

pk=ik-1—ik=—D_jx, k=2, (2.21)
jk=di{eC+e0%sTp oy —pyi s}, (2.22

or finally,
jk=di{(e”(P+akeT—1)p, — D py}, (2.23

drq
——Fry(rytro)+e(rp—ro—rg)=0,

3r (2.30

(2.3)

dre
E+rlrc+ e(rq{—rg)=0.

Herer. is the total density of clusters,
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FIG. 1. (a) Scaled cluster size distributign,/p as a function of
k for 0=<7=<10. At time 7= 10, the values gp,/p, p,/p, etc. have
been joined by straight lines as a guide to the égeEvolution of
the scaled monomer concentratio/p. (c) Evolution of the scaled
dimer concentrationp,/p. Parameter values ara=10 and p

=0.1.

re= 2 Mk
k=1
and initially, r(0)=1.

III. NUMERICAL RESULTS

Numerical solution of the initial value problem given by
Egs. (2.27—(2.29 clearly expresses the phenomenology of
micellization, and informs the singular perturbation analysis
carried out in Sec. IV. Figures 1-5 illustrate the evolution of
the size distribution foe=4.54x10"* (corresponding tav
=10 andp=0.1). Figures (a) and 2—4 are histograms of

12
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0.175

0.125 .
P 9.1
0.075

.05 oms

2.5 5 7.5 10 12.5 15
k
FIG. 2. Same as Fig. (4), for the times =20, 1¢, and
2x10* At the two later times, we have joined values mf/p
corresponding to neighborings by straight lines as a guide to the
eye.

sequences of small dots at edchecord the values of at
times betweenr=0 and r=2, in increments ofA 7=0.2,
and the larger dots joined by straight lines record the values
of r at 7=10. The direction of increasing time is generally
clear. As indicated in Fig. (b), the monomer concentration
rapidly decreases to a small fraction of its initial value
=1, so that the time orientation on the like=1 is down-
ward. Many small clusters of sizés(2<k=5) are simulta-
neously created, so the time orientation on the lines of these
k is generally upward. Notice that, reaches a maximum
and then decreases to a constant value, as can be seen in Fig.
1(c). By the end of the initial stage at time=10, the cre-
ation of smaller clustergwith 2<k=<5) has slowed down
greatly relative to the initial spurt for times<0r<<2. Fur-
thermore, the number of clusters with more than five mono-
mers is negligible. Atr=10, (k)~2.69, much smaller than
the equilibrium value(k)~ pe*=e Y?~46.9. To deter-
mine the time scales appropriate for exploring the subse-
quent Kinetics, it is highly instructive to plot the average
cluster sizek) as a function of time, based on the numerical
solution. Figure 5 is a log-log plot dik)/e as a function of
7. It reveals an initial rapid growth ofk) to a “plateau
value” close toe, roughly located in the interval ¥0r
<100. In the subsequent growth after the plateau, large clus-
ters withk>1 eventually appear. Figure 5 indicates that by
time 7=5X10%, k clusters havingk)~10 are prevalent.
Figure 2 shows frames at times=20, 1¢f, and 2< 10%,

0.0025
0.002
Px 0.0015 _

0.001}.
0.0005 |

80 100 120

FIG. 3. Same as Fig.(4), starting atr=2x 10°. Snapshots of

as a function ok at different times, and Fig. 5 records the the size distribution have been taken at time intervals rof

time-dependent behavior of the average cluster &ze

=2X10P, until a time r=16x1C°. Then the last snapshot corre-

Figure Xa) depicts an early stage of the kinetics. The sponds tor=40x 10°.
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1 gence to an exponential distribution witk) equal to the
* equilibrium value of 46.9 is clear.
0.8
“0 6 IV. ASYMPTOTIC THEORY OF MICELLIZATION
5] .
“. In this section, we shall interpret the numerical results
£ 0.4 shown in Sec. Il by using singular perturbation methods; see
Ref.[14] for a general description thereof.
0.2
A. Initial transient
4 Initially, r,(0)=1, and there are no multiparticle aggre-
k /(k) gates. As we have seen in Sec. lll, the numerical solution of

the complete model shows that there is an initial transient
stage during which dimers, trimers, etc. form at the expense
of the monomers, and that~0 for sufficiently largek.
Taking thee—0 limit of Egs. (2.30 and (2.31) yields the
following planar dynamical system:

FIG. 4. Approximate self-similar behavior of the size distribu-
tion at times7=50 000, 100 000, and 150 0@8olid lineg. Notice
that(k)?r, is approximately the same function (k) at different
times. The dots correspond tG= 20.

thereby continuing those in Fig. 1. The heavy dots correpond dr,

to =20, which is well inside the plateau phase. The histo- e —(rq+re), (4.1
grams atr=10* and 2x 10* indicate the clear emergence of S

a continuum limit of the kinetics.

In the time interval X 10°< r<5x 10>, the log-log plot %
of (k)/e as a function ofr in Fig. 5 is close to a straight line ds
of slope 1/2. This strongly supports the existence of a self-
similar stage of the kinetics. The line graphs in Fig. 4 depict ds
(k)?r\ as a function ofk=k/(k) for the timesr=0.5x 10", dr '
10°, and 1.5<10°. They are nearly superimposed on top of
each other. The heavy dots correspond to the plateau time the adaptive time s [jp,d7. The general solution of the
7= 20, so the change in the distribution shape over the wholénear system4.1) and(4.2) is
time span 26 7<1.5x 10° is not very great.

The self-similar stage is not the final chapter of the kinet- ri=(a—bsje”®, r.=be’’
ics story either. Byr=1CP, the linear dependence of {kf/e) _ o N
with In 7 breaks down. In fact, at=1CP, (k)~31.1, which wherea andb are arbitrary constants. Our initial condition
is comparable to the equilibrium value of 46.9 mentionedyieldsa=b=1, so that
before. Evidently, there is a final stage of kinetics in which e s
the size distribution asymptotes to its equilibrium form. Fig- rn=(1-se> rc=e> (4.4
ure 3 is the final era of cluster aggregation, continued from
Fig. 2, in which snapshots of the size distribution are taken a‘?nd from Eq.(4.3),
rincrements of 0. 10°, from 0.2x 10° to 4Xx 10°. Conver-

=—TI¢, (4.2

4.3

s @8
T= jol—sds' (4.5
24
16 Clearly, 7—o corresponds ts—1—. At s=1, Eq. (4.9
8 yieldsr,;=0, r.=e" 1, which are the limiting values of the
(kY variablesr; andr. at the end of the initial stage. Equation
e 4 (2.27 with €e=0 becomedd(r,e®)/ds=r_,€° which can
be solved recursively to yield
1 / * / Sk—l Sk .
re= k=D K e °. (4.6)

1 10 150 2000 10° 3x10°
T As 7—», r,—(k—1)e Y/k!. Sincerg(1)=0.00255, after
FIG. 5. Evolution of the average cluster si4é/e as a function the initial transient stage the_\re are insignificant numbers of

of the scaled timer (thick solid ling. The dotted line corresponds 2ddregates with more than five monomers. In fact, the aver-
to the solution of the systei#.11) in Sec. IV below with an initial ~ 29€ aggregate cluster size(lg =1/ .=e; whereas at equi-
condition corresponding to the dot. The straight line of slope 1/2librium, <k>~\/pe‘f>1- We therefore conclude that there
corresponds to the self-similar continuum size distribution given bymust be successive transients on time scales much larger
Eq. (4.19. thant=0(e).
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B. Intermediate transient

Examination of the exact equati¢®.27) shows that when
r, decreases to sizZ@(e€), butr,, r5, ... are of order 1, all
terms in its right hand side af@(¢€). This suggests rescaling
r,=eRy, so thatp;=e™ “Ry, and using the original timé
=e7. Equation(2.27) becomes

dry

E—_(Rl_l)(rz_ER1)+r3_2r2+6Rl, (4n

drk
E:_(Rl_1)(rk_rk_1)+rk+1_2rk+rk_1, k=2.

(4.8
The global identitie2.30 and(2.31) become
dry
(Ri=Dre—ro+e W+R1+R1 =0, (4.9
dr,
H+(Rl—1)rc+eR1=0, (4.10

where nowr =eR;+ 2, _,r~¢_,rk, as e—0. In the
limit e—0, Ri—1=r,/r;, and Eq.(4.8) becomes

%:_rz(rk_rk—l) k=2
dt re -
(4.1)

This is a closed system of equations for, r5, ..., to be
solved with the asymptotic valueg=(k—1)e /k! as ini-

Frp1= 2 I g,

PHYSICAL REVIEW E 66, 061406 (2002

A similar calculation for the total number of clusters yields
re~ 3 for(x,T)dx, which suggests the definition

SR, Rczf r(x,T)dx.
0

[~

(4.19

We now substitute Eq(4.12 in Eq. (4.11), and use Eq.
(4.14) instead ofr.. The result is

a2 NIr(xT—r(x=5T)]

b
5T SR,

+r(X+8,T)

=2r(x,T)+r(x—46,T).

The right hand side of this expression is of or@(s?), so
that the following distinguished limit is obtained if we set
b=2 and take5—O0:

ar(x,T)
JT

r(0,T) ar(x,T) J°r(x,T)

=R x T (4.19

For k=2, Eq.(4.11) and the scaling4.12 with a=b=2
imply that r(0,T)=0. Therefore Eq.(4.15 becomes the
simple diffusion equation

a9
T e (4.18

for x>0, t>0 to be solved with the boundary condition
r(o,T1)=0.

The numerical solution of the discrete equatiqAsll)
show that large aggregates do not emerge ugtil. This

tial conditions. It can be shown that the reduced versions o$uggests that the appropriate solution of &q16 should be

Eq.(4.10 [r.=— (R,—1)r.] and the conservation condition

S e-.kr =1, are upheld automatically by the solution of Eq.

(4.11), so that they are redundant for this stage.

The numerical solution of the reduced system of equa-

tions(4.19) for ry, k=2 closely approximates that of the full

system of kinetic equations at this stage. It can be seen that

more and more, become different from zero dsncreases,

concentrated abouxt=0 asT— 0+ . That solution is propor-
tional to thex derivative of the diffusion kernel,

. g e—x2/4T X X2
r(x, )——5 \/ﬁ —2\/;T3/2ex A7)
(4.17

and that,—r,_, becomes small. This strongly suggests that! Ne numerical prefactor is chosen so that particle conserva-
r, can be approximated by a continuum limit for long times. tion, given by Eq.(4.13, holds. It follows from Eq.(4.14

To find the continuum limit, we set

Fdt)~383r(x,T), x=38k,T=2s". (4.12

Here 6—0 fixes the scale df=0(1/6), so thatx is fixed at

that R,=(#T) Y2 Hence the average aggregate size is

1 JaT

SR. o

(k)= (4.18

some value of order 13 andb are positive exponents to be In terms of the original variablek, t, andr,, the previous
determined. To finda, we use the conservation condition expressions are

S okr=1:
1=5622> (ka)r(ka,T)5~f x r(x,T)dx,
k=2 0

provideda=2. The limiting form of the particle conserva-
tion is thus

fwx r(x,T)ydx=1. (4.13
0

k k?
r(t)~ —Z\Etwexp( - E) , (4.19
(ky~t, (4.20
ast—o, These two equations yield
) K ml k\?
<k> Mg~ mex - Z m ) (4-21)

061406-6
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which resembles the behavior of the numerical solution of or or
the full kinetic model as indicated in Fig. 4. Notice that the
average cluster siz&) corresponding to the solution of Egs.

(4.11) (dotted line in Fig. % approaches the valugt.20
(straight line of slope 1/2 in Fig.)5

C. Equilibrium transient

PHYSICAL REVIEW E66, 061406 (2002

= il 4.2
ST =X o2 (4.28
to be solved with the boundary condition
r(o,m=1, (4.29

which follows from Eq.(4.26) with e—0. It can be straight-

The large time limit of Eq.(4.19 does not match the forwardly checked thatd/dT) f5x r(x,T)dx=0, and there-

kVe

equilibrium size distribution, which ig ~ee ¢ in the

fore [ox r(x,T)dx=1, providedr(x,0) satisfies this particle

same scaled units; see Sec. Il. Thus the limit given by Edeonservation condition.
(4.19 is expected to break down when it predicts an average \nve now have to show two thing¢l) As T—0+, the

(k) of the order of the equilibrium length {£. According to
Eq. (4.20, this occurs at a timeJt=0(e 3, ie., t

solution of Eqs.(4.28 and (4.29 is asymptotic[14] to the
right hand side of Eq(4.17), the self-similar limiting solu-

=0(e 1). In this third and final transient towards equilib- tion of the intermediate transient stad@) The solution of

rium, we set
x=ek, T=et. (4.22

This is the same scaling as in E¢.12 with a=b=2 and

r(t)=er(x,t),

5= e, and therefore we use here the same notation for th

Egs.(4.28 and(4.29 tends to the equilibrium size distribu-
tion asT—oo. Then the size distribution of the equilibration
transient asT — 0+ matches the long time limit of the pre-
vious intermediate stage, and tends towards equilibrium as
g — . This completes the description of the dynamics of the

variables. With this scaling, the scaled particle conservatio?99regate size distribution.

IS

o0

1=, kry=€2> 2kr(x,T),
= =

and the limite— 0 yields

f:xr(x,T)dx=1. (4.23
Similarly,
re~ ellzf:r(x,T)dXE eR,. (4.24
The scaled version of the global identi®.32) is
RC(Rl—l)-i—el/le—i—e?j—?_C:O. (4.25

Herer,;=eR;=er (Y2 T). It follows from Eq.(4.25 that

e_1/2

R,—1=——+0(e).

R (4.26

The scaled kinetic equatia2.27) is

63%= —(Ry—D)[r(x,T)—r(x—€"%T)]

+er(x+ e T)=2r(x,T)+r(x— "2 T)].
We now substitute Eq4.26) in this expression, divide it by
€3, and take the limit—0. The result is

a1 ar+¢92r
JT  RJ(T) ox = ax%

(4.27

In these units, the average aggregate lengttx)s=1/R.,
and Eq.(4.27) can be rewritten as

1. Matching with the intermediate transient stage

We represent(x,T) as

1 X
r(x,T)=fh(§,T), (= —. (4.30

ﬁ

With prefactor 1T, the particle conservation equati¢®.6)
and the total cluster density adopt the invariant forms

| “enemaz-1, .31
N 1= h(T
Re(T)= fo r(x,Tdx= Wfo h(g“,T)dgs%,
(4.32
Then
=\ (4.33

he(T)’

Inserting this equation together with Eg.30 in Eq. (4.298),
we obtain

*h 1 oh (ah gh)
= : (4.34

a2 Mt TG

to be solved with the boundary condition indicated by Egs.
(4.29 and(4.30),

(4.395

Asymptotic similarity asT—0 means that(Z,T) in Eq.
(4.30 has a limitH(¢) as T—0. The limit equations ob-
tained from Eqgs(4.31)—(4.35 are
3°H
9z

h(0OT)=T.

H
+H =0 for >0,
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H(0)=0,
f:s’H(é)dFl-

The unique solution of these equations i6l({)
= e~ (2 ), which is the right hand side of E¢4.17).

2. Trend towards equilibrium

The stationary solution of Eq4.28 with the condition
(4.29 is ro=e ¥, and the particle conservation condition
gives(x)?=1, so thatx)=1. Then the stationary solution
of Eq. (4.28 is re=e %, which is the sought equilibrium
solution. To show that (x,T)—r(x) asT—x, we define
the associated free energy

r
o

f[r]:J’:
ro=e %, (4.37

and show that it is a Lyapunov functional for E@L.28).
Notice that[{r Inrqdx=—[gxrdx=—1, and therefore[r]
is the usual free energ§[r]= [5(r Inr—r)dx
First, the standard inequalityIn x=x—1 for positive x
=rlry yields f=—[je *dx—1=—2, and thereforef is
bounded below. Notice thdfr,]=—2 at equilibrium.
Second, time differentiation of E@4.37) yields

df_foo&rI r 4
ﬁ_ Oﬁﬂa X.

If we now substitute Eq(4.29, integrate by parts, and use
r(0,T)=ro(0)=1 andf;r dx=1Kx), we obtain

% %1 (ar)?
1—erxJ——dx.
0 ol\ox

(4.39

—r+rin dx—1, (4.36

df »1[ar\?
d—_|_=<X>— 0?((?_X) dX:<X>
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to obtain
df_ Joc
at "

This equation shows that—T, asT—o. The particle con-
servation conditionf5xr,dx=1 yields(x)2=1, and there-
foreTo=e %

a [r\]? _
&H‘IN— ,  dx=0. (4.39

)

3. Approximation of the size distribution function by matched
asymptotic expansions

An uniformly valid approximation to the size distribution
function can be easily formed frofi) r()(7), given by Egs.
(4.5) and (4.6), (i) r{?(t), which solves the approximate
system of equation&t.11), andr.==,_,r, with the initial
conditions r, (0)=(k—1)e~Y/k!, and (iii) r(x,T), which
solves the nonlinear Fokker-Planck equatidr28 with the
condition (4.29), and it matches Eq4.17) asT—0+. The
result is

. k—1
re™ (0 =) +riP(en +er(Vek, e n) -
k p( k2 ) (4.40
———FeXp ——]. .
2\m(er)? der

Figure 6 compares the distribution function given by Eq.
(4.40 to the numerical solution of the complete model equa-
tions in times corresponding to the end of the intermediate
stage and the beginning of the equilibration stage. At these
times, r{V=(k—1)/(k!e). We observe a good agreement
between approximate and numerical solutions, which im-
proves as the time elapses and the equilibrium distribution is
approached.

The right hand side of this equation is less or equal than zero

because of the Cauchy-Schwarz inequality
2 - 2
s(j dq
0
° =1(ar\?
< J’ rdx j —| =] dx.
0 o N\ ox

Therefore, we have proven that the free energy is
Lyapunov functional. We can rewrite E@L.38 in an equiva-

lent form by definingr,=exd —x(X)], and using the identi-
ties
~ 2F . _Joc I 2d
(X)y=(x) Or X= 0r v X,

f@&rd fw alnr aln?od
== 0 X x= Or X ox o%

ar
ox

= gr
_ o[ [T
1=r(0.T) Uo 0

V. CONCLUSIONS

On the basis of a simple kinetic model and starting from
the initial state of pure monomers, we have shown that the
process of micellization of rodlike aggregates at high CMC
occurs in three separated stages or eras. In the first era, many
clusters of small size are produced while the number of
monomers decreases sharply. During the second era, aggre-

fates are increasing steadily in size and their distribution

approaches a self-similar solution of the diffusion equation.
Before the continuum limit can be realized, the average size
of the nuclei becomes comparable to its equilibrium value,
and a simple mean-field Fokker-Planck equation describes
the final era until the equilibrium distribution is reached. A
continuum size distribution does not describe micellization
until the third era has started; during the first two eras the
effects of discreteness dominate the dynamics.

In order to validate our theory by an experiment, it would
be important to measure the average cluster size as a function
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FIG. 6. Comparison of the approximati@¢a.40 (dashed lingto the numerical solution of the full kinetic mod&dolid line) for four
different times: (a) 100000, (b) 500000, (c) 1000000, andd) 3000 000. Notice that the agreement improves as the equilibrium
distribution is approached.
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