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Legendre transform in the thermodynamics of flowing polymer solutions
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We propose a Legendre transform linking two different choices of nonequilibrium varialidesus pres-
sure tensor and configuration tensor the thermodynamics of flowing polymer solutions. This may avoid
some current confusions in the analysis of thermodynamic effects in polymer solutions under flow.
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In this Brief Report, we propose a Legendre transform Our first aim is to explore the form of the nonequilibrium
linking two different formulations of nonequilibrium thermo- free energy for a polymer solution, when one takes as a
dynamics of flowing polymer solutions, one of them depend-nonequilibrium variable the viscous pressure terBbror,
ing on the viscous pressure tensor and the other one on tlaternatively, the macromolecular configuration ten¥ér
configuration tensor. The lack of a detailed comparison beeefined asV=23;W;, with
tween these different possibilities has hindered the use of the
nonequilibrium chemical potential, because the theoretical H
expressions obtained in these different choices appear to be Wi:ﬁ<QiQi>— iU, ©)
mutually incompatible, and has caused some confusion in the B
analysis of thermodynamic effects in polymer solutions un-
der flow, such as shear-induced diffusion or shear-inducewhereQ; are the vectors related to tith normal mode of a
shift in the critical poinf1—8]. Here, we clarify the relation macromoleculeH the elastic constant of the springs in the
between the chemical potentials dependent on these tweead-and-spring model of macromolecules, &hdhe unit
choices of nonequilibrium variables, and show how to usdensor. Recall tha®;", the contribution of théth mode of the
this valuable tool of equilibrium thermodynamics in the macromolecule to the viscous pressure, &idare related
study of flowing polymer solutions, where it has still not for a dilute polymer solution through the Kramers relation
been used because approaches beyond local equilibrium g&0] P'=—GW,=—J; 'W,, G being the elastic modulus,
required, where concepts of equilibrium thermodynamicswhich in the dilute concentration regimegs=nkgT, with n
must be generalized in a nontrivial way. the number of macromolecules per unit volume of the solu-

The chemical potential plays a central role in the analysision. The reciprocal ofj; is the steady-state compliandg,
of polymeric solutions under flow, not only from a thermo- given by J,=r,/#;, with 7, and #; the relaxation time and
dynamic perspectivgs,5,6], but also from a dynamical one the viscosity corresponding to théh normal mode of the
[2,9]. Indeed, to mention only one well known example, themacromolecule.
dynamical equation describing the evolution of the concen- Both P” andW have often been used as nonequilibrium
tration ¢ is, according to Helfand and Fredricks, variables: the first one in extended irreversible thermody-

2 \ \ namics(EIT) [4,11-13, and the second one in theories with
T S N Yv.pr internal variableg14,15. Each choice has its own motiva-
at tu-ve KBTV (CVu)+ KBTVV'P ' @ tions and advantages, and therefore, it is logical to try to
relate them. In particular, we want to clarify the form of the
where \ is related to the diffusion coefficienD by free energy and of the chemical potential.

D= (AkgT)c, kg is the Boltzmann constan, is the chemi- In equilibrium thermodynamics, several choices of vari-
cal potential of the polymer, and the balance equation for th@bles may contain the whole information on the system, pro-
linear momentunpu is taken to be vided that one uses the suitable thermodynamic potential
[16]: the internal energyJ(S,V,N), when S (entropy, V
Ju i-
p—=—pu-Vu+noV2u—V-P"+(Vc)u. @) (volume, and N (number of moleculgsare taken as vari

ot ables; the Helmholtz free enerd(T,V,N) whenT (abso-

lute temperatureis used as variable instead &f or the

Out of equilibrium, one cannot rely directly on classical ther-Gibbs free energg(T,p,N), whenSandV are replaced by
modynamic stability requirements, and one analyzes the dyF andp (pressurg These thermodynamic potentials are con-
namical stability of Eqs(1) and(2), complemented with an nected by Legendre transforms, which allow one to pass
evolution equation forP” as given, for instance, by the from one choice of variables to another without losing infor-
upper-convected Maxwell modé¢l0]. To close this set of mation. However, information is lost if thermodynamic func-
equations, an equation of state for the chemical potential ifons are not expressed in terms of their natural variables, as

necessary. for instanceS(T,p,N), or F(T,p,N).

1063-651X/2001/6&)/0571013)/$20.00 63057101-1 ©2001 The American Physical Society


https://core.ac.uk/display/78518296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BRIEF REPORTS PHYSICAL REVIEW E 63 057101

Here, we examine a Legendre transform connecting a Fl(T,V,N'VPV):Feq(T,V’N)+%\]VPV:PV, (9)
nonequilibrium free energy(T,V,N,VP") depending on

':ahneervlsc;) U(ST ;:/reNss\l/Jvr)e éinia:ai:ndoﬁ ?ﬁgegggfgmmefgﬁgr whereF.(T,V,N) stands for the local-equilibrium free en-
conﬁgﬁra%ion, tén,sok/v Tﬁe firstgvariable is more macro- o 9 Also, taking into account Edp), the corresponding
9 ' expression for the free energpy, is

scopic than the second one, and is especially suited for thé
description of nonequilibrium steady states, whereas the sec-
ond one is more useful for a microscopic understanding of
the problem. To simplify the analysis, we consider only one
normal mode of the macromolecule and a dilute polymer
solution. According to EIT, the Gibbs equation in nonequi-
librium has the forn{11]

Fo(T,V,NW)=F(T,V,N,W)— VP”

(VP
=F(T,V,N,W)+iW:VP” (10)

or, using Eq.9),

\W
dU=TdS-pdV+ udN— —:d(VP"), (4)
p M 2 (VP") Fo(TV.NW)=FgT,V,N) - 2J 'W:vW. (11

where we have used the relati®¥i=—J W to write ex-
plicitly the conjugate oVP”. We can thus write for the free
energyF, the expression

In contrast, if one writes directlfF, in terms ofW, i.e., if
one simply expressegP” in terms ofW in Eq. (9), one gets

oV FUTVNW)=FT,V,N)+ 23 vwWiw. (1)
Fi(T.V.N,VPY)=U——=S=U(T,V,N,VP")

Note the different sign in the nonequilibrium term in Egs.
(12) and(12), which yield therefore opposite predictions for
the nonequilibrium contributions.

The corresponding expressions for the chemical potential

-TYT,V,N,VP"), (5)

in which S has been replaced bl as independent variable.
If, instead of VP”, W is preferred as the independent vari-

able, the corresponding free enerigy would be will be

Fo(T,V,N,W)=U Me 9 _ypr (aFl) - VP":PY (13

2l LV,NW)=U =~ 5=~ T5nt K=o =keqt 7| 5N P
S~ (VP N TV.VPY 410N/,
=F.(T,V,N,W)+3W:VP". (6)
and
The use of the adequate expression for the free energy is

essential to obtain correct results for the chemical potential. IF, 1/93°1
Indeed, in equilibrium thermodynamics it is well known that m= (a_N> = Meg™ Z(a_N) VW:W. (19
[16] w=(dF/dN)ty=(dG/dN)t,, but, in contrast, u TV,W TV

#(dF/dN)1 ,. Similarly, in the presence of a viscous flow

the chemical potential would be given by It is easy to see that Eq&l3) and(14) coincide. In contrast,

these results are different from those obtained by direct dif-

(aFl(T,V'N'VPV)) (aFZ(T,V,N,W)) ferentiation of Eq.(12), namely
M: = - N 1
IN N IF 1(T,V,N,W) 1({37t
T,V,VP¥ T,V,W IV VTN, _ - .
(7) ( N )TVW—Mequ 2 (_&N )VW.W.
but (15)
IF{(T.V.N.W) The chemical potentiall5) is incorrect and the qualitative
,Uﬁe(l(— _ (g)  trends predicted on the shear-induced shift of the critical
N TV.W temperature are opposite to experimental observations,

which are well described with the correct forth3) or (14)

It follows that bothVP” andW can play the role of indepen- of the chemical potential.
dent variables in the definition of the chemical potential, pro- Here we have discussed how the two most usual choices
vided one uses a correct expression for the free energy. Umf the nonequilibrium variableghe configuration tensor and
fortunately, misunderstandings about the definitionwoin  the viscous pressure tenga@re related through a Legendre
nonequilibrium situationf5,17] have been very influential in  transform; although this concept is well known in equilib-
the literature and constitute a serious difficulty to assess theum [16], to our knowledge, it is proposed here for the first
validity of thermodynamics in nonequilibrium steady states.time in the context of nonequilibrium variables in flowing

To explicitly illustrate this discussion, consider, in accor- polymer solutions. In the literature, different forms of free
dance with the integrated form of Eqg) and(5), energy with nonequilibrium contributions are found. How-
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