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Breaking of equipartition in one-dimensional heat-conducting systems
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Using information-theoretical methods, we studied how energy equipartition is broken in one-dimensional
systems under a heat flow composed of alternating particles of two different masses. The average energy stored
in particles of different masses is seen to be different in both ideal gases and harmonic lattices.
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Much attention is currently being paid to heat transpor
one-dimensional systems by using computer simulation
lattices or gases to examine the behavior of the heat flux
function of the number of particles and, in particular,
behavior in the thermodynamic limit, i.e., when the numb
of particles tends to infinity~see, for instance,@1–4#!. These
analyses open many possibilities for the exploration and
derstanding of systems in nonequilibrium states and, in p
ticular, of the thermodynamics of steady states and the
croscopic foundations of Fourier’s law. Two differe
situations are usually studied: all the particles are conside
to have the same mass, or the mass of the different part
is considered as random. Very recently, two papers h
been devoted to unidimensional gases composed of alte
ing particles with two different values of mass@5,6#. These
two different values make the situation nonintegrable,
contrast with the case of one single value for the mass,
allow one to obtain significant results where the thermal c
ductivity in the thermodynamic limit is slowly divergent@5#
or finite @6#.

Here, we apply information theory@7–10# to two kinds of
one-dimensional heat-conducting system, ideal gases
harmonic chains, with the aim of studying the possib
breaking of equipartition of energy under the presence o
heat flux. With this objective in mind, we consider two kin
of particle with different masses and examine their aver
energy in nonequilibrium steady states, i.e., by imposing
the system constraints on the average total energy and
heat flux. Note that it is not assumed that the system doe
does not satisfy Fourier’s law, which is the central deba
topic in one-dimensional systems; indeed, in contrast w
the usual procedure, which imposes the values of the t
perature at the boundaries and computes the heat flux
different numbers of particles, we focus our attention on
system with a given heat flux and compute the average
ues of the energy of the different kinds of particles. In o
opinion, the wealth of recent results in the analysis of h
transport in one-dimensional systems could be used not
to study the conditions of validity of Fourier’s law, and i
convenient generalizations for microscopic systems, but
for the analysis of other topics of a more statistical natu
such as the breaking of local equilibrium or of equipartitio

We assume a maximum-entropy formalism with restr
tions on the total energy and on the heat flux of the syst
Since we consider a one-dimensional system in steady s
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the heat flux must be the same everywhere and therefore
average contribution of each kind of particle to the heat fl
must be the same. We thus consider a nonequilibrium dis
bution function of the canonical form

f 5Z21 exp@2b~H11H2!2g1Q12g2Q2#, ~1!

whereZ is the partition function ensuring normalization, an
b, g1 , andg2 are Lagrange multipliers imposing constrain
on the average energy of the total system and on the heat
through each subsystem, namely,

^H11H2&5U, ^Q1&5^Q2&5Q5Vq, ~2!

whereV is the volume of the system andq the heat trans-
ported per unit area and time~in one-dimensional systems
one has the lengthL instead ofV and the heat flux has
dimensions of energy divided by unit time!.

We assume that both kinds of particle are intercalated
an alternating way throughout the system, in such a way
it is globally homogeneous. Accordingly, we impose the a
erage value of the total energy only on each pair of partic
but not on each particle. Indeed, a thermometer put in c
tact with the system at any point would interact with o
particle of each kind, and would indicate only one tempe
ture. In contrast, if we supposed that the system were c
posed of two homogenous subsystems, each of them for
by particles of the same kind, it would seem more logical
impose constraints on the energy of each subsystem, bec
a thermometer at one point would interact only with partic
of one kind. In both situations, however, the value of the h
flux must be the same for both kinds of particle, due to
energy balance condition in the steady state. Our ques
refers to the proportion of energy stored in each kind
particle in the presence of a heat flux.

Let us mention that one could interpret this study in tw
different ways: as an analysis of the system as a whole
discrete thermodynamic system, withb being a global pa-
rameter such as the so-called contact temperature@11#, or as
a local analysis concentrated on a given pair of particles
this case, the coefficientb would have a local characte
which could make it closer to the temperature indicated b
thermometer at a given point of the system.

(a) Ideal gas in one dimension. We first consider an idea
nonrelativistic gas at rest under fixed values of energy
heat flux in one dimension. The distribution function wh
©2001 The American Physical Society01-1
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all the particles have the same massm is given, according to
the maximum-entropy formalism, by

f 5Z21 exp@2b 1
2 mC22g~ 1

2 mC22 3
2 b21!C#, ~3!

with m the mass of the particles. Here we have taken i
account that the microscopic operators for the energy and
heat flux are (1/2)mC2 and (1/2)mC2C, with C the specific
velocity of the particle with respect to the barycentric velo
ity; finally, the term 3

2 b21C guarantees that the average v
locity of the system is zero. Usually, one expands Eq.~3! up
to second order ing as

f 5Z21 exp~2b 1
2 mC2!@12g~ 1

2 mC22 3
2 b21!C

1 1
2 ~gC!2~ 1

2 mC22 3
2 b21!2#. ~4!

The partition functionZ ensures the normalization of th
distribution function and is found to be

Z5E
2`

1`

exp~2b 1
2 mC2!@11 1

2 ~gC!2~ 1
2 mC22 3

2 b21!2#dC

5A2p/mbF11
3

4mb3 g2G , ~5!

whereas the integral of the term of first order ing vanishes
because it is odd inC.

The average value of the energy is given by the integra
(1/2)mC2 and yields

U

N
5

1

2b

11~21/4mb3!g2

11~3/4mb3!g2 '
1

2b F11
9

2mb3 g2G , ~6!

whereN is the number of particles in the system. The av
age value of the heat flux is given by the integral
(1/2)mC2C over the distribution function and is given by

q52
~6/4mb3!~N/L !g

11~3/4mb3!g2 '2
6

4mb3

N

L
g, ~7!

whereL is length of the system. Combination of Eqs.~6! and
~7! allows us to write

U

N
5

1

2b F112mb3
L2

N2 q2G . ~8!

Up to now, we have referred to particles of the same ki
Here, we want to deal with a one-dimensional gas compo
of two kinds of particle, of massesm1 andm2 , respectively.
Instead of imposinga priori a value for the internal energ
associated with each kind of particle, we only fix the to
energy. Then, using expression~6! for both kinds of par-
ticles, we get

U

N
5

1

2b F11
9

2m1b3

N1

N
g1g11

9

2m2b3

N2

N
g2g2G ~9!

with N1 andN2 the respective numbers of particles 1 and
Note that there is only one value ofb but two values ofg
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because we are imposing only the total value of the ene
Concerning the Lagrange multipliers conjugated to the h
flux, we take into account that the heat flux must be equal
both kinds of particle because they are in series in the o
dimensional system. Thus, in view of Eq.~7! one has

q52
3

2m1b3

N1

L1
g152

3

2m2b3

N2

L2
g2 , ~10!

whereL1 andL2 are, respectively, the lengths of the syste
occupied by particles 1 and 2. Furthermore, it must be ta
into account that the equality of pressure imposes t
(N1 /L1)b215(N2 /L2)b21.

Equations~9! and~10! determine the values ofb, g1 , and
g2 in terms ofU andq. Now, we ask how the total interna
energy~9! is distributed in both kinds of particle. By com
bining Eqs.~9! and ~10! we obtain

u1

u2
5

U1 /N1

U2 /N2
5

112m1b3~L1
2/N1

2!q2

112m2b3~L2
2/N2

2!q2 , ~11!

whereu stands for the energy per particle. This express
yields the conclusion that in the presence of a heat flux
heavier particles have more energy, on the average, than
lighter ones, if the number of particles per unit length is t
same for both species. Of course, when the heat flux vani
one recovers the classical equipartition.

(b) Harmonic lattice. The second system we will conside
is a harmonic chain. In harmonic chains, the phonon m
free path is infinite and, consequently, the energy flux is
proportional to the temperature gradient but to the tempe
ture difference between the reservoirs located at its ends
avoid complications associated with the boundary con
tions, Miller and Larson@12,13# eliminate the boundaries b
considering a ring where, because of its infinite heat cond
tivity, a heat flux lasts indefinitely. Such a chain ring is cha
acterized by constraints on the average internal energyU and
the average heat fluxQ.

The system we consider consists of a harmonic chain oN
particles,N/2 of massm1 andN/2 of massm2 , intercalated
with each other in order to have, as in the previous situat
a globally homogeneous system. Each particle is conne
to its nearest neighbors by Hookean springs with stiffnesk.
Let qi be the displacement from equilibrium for each partic
i and pi its conjugate momentum. The Hamiltonia
H(q1 ,p1 ,...,qN ,pN) is given by

H5
1

2 (
i

pi
2

mi
1

1

2 (
i

k~qi 112qi !
2 ~12!

and the microscopic operatorJ(q1 ,p1 ,...,qN ,pN) for the
heat flux is@10#

J52
1

2 (
i

k

mi
~qi 11pi2qipi 11!. ~13!

First of all, we summarize the results obtained in@13# for a
chain composed of particles having the same mass. One
sumes as in Eq.~1! a distribution function of the form
1-2
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f 5Z21 exp~2bH2gJ !. ~14!

By transformingH andJ in terms of normal coordinates
follows that @13#

Z5$ 1
2 b@11~12y2!1/2#%2N, ~15!

where y is the dimensionless ratioy5(Ak/m)g/b. The
Lagrange multipliersb and g may be found in terms ofU
andQ through the constraints

U5^H&5
] ln Z

]b
, Q5^J &52

] ln Z

]g
, ~16!

which yield

U

N
5

1

b

11~12y2!1/2

12y21~12y2!1/2'
1

b
@11 1

2 y2#, ~17!

q52
1

b

y

12y21~12y2!1/2'2
y

2b
Ak/m. ~18!

By combining Eqs.~17! and ~18!, we may write for the en-
ergy

U

N
5

1

b F112b2
m

k
q2G . ~19!

As in the previous example of the ideal gas, we consi
now particles with two different masses, assuming that o
the total energy is fixed, and that the heat flux crossing e
position must be the same. We finally obtain, by followi
the same arguments as in the previous case,

u1

u2
5

U1 /N1

U2 /N2
5

112b2m1k21q2

112b2m2k21q2 . ~20!

Again, it is found that the heavier particles have higher
ergy in the presence of the heat flux, and the classical e
partition result is recovered when the heat flux vanishes.

The distribution function used here could be applied
the study of the second moments of the fluctuations of
energy and the heat flux, which will be affected by the pr
ence of the nonvanishing heat flux. This may have inter
for instance, in the application of the fluctuation-dissipati
theorem, but we have preferred to focus our attention on
explicit illustration of the breaking of equipartition.

Breaking of equipartition in nonequilibrium situations
to be expected, although it is usually not studied explici
Here, we have tried to go beyond more or less intuitive
pectations~which are not able to say, for instance, wheth
the lighter or the heavier particles should have more ene!
and have undertaken a quantitative analysis. For instanc
previous work @12,14# we showed that information
theoretical methods yield the conclusion that in an ideal
under a heat flux the average kinetic energy of the particl
different in the directions normal to the heat flux than in t
direction along it, in such a way that if the heat flux is d
rected along they direction, one has
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2!5^ 1
2 mnz

2&, 1
2 kBT, ^ 1

2 mny
2&. 1

2 kBT. ~21!

These trends have been qualitatively observed in indep
dent analyses based on nonequilibrium molecular dynam
@15#.

The present situation provides another illustration of t
breaking, which is of special interest because of the la
number of recent simulations of one-dimensional he
conducting systems. We are aware of only two recent pap
studying unidimensional gases composed of alternating
ticles with two different masses@5,6#. Both papers dea
mostly with their dynamical aspects~the system is noninte
grable, in contrast with systems with only one value of t
mass! and obtain a slowly divergent@5# or even a finite value
@6# for the thermal conductivity. One of these papers@5# does
not specify how energy is distributed in the two kinds
particle. The other indicates that the lighter particles tend
absorb more energy than the heavier ones, in contrast
our results. We do not know, at present, the origin of t
discrepancy, and one of the aims of our report is precisel
encourage such research. Indeed, there are several pos
ties for this disagreement: the fact that in the usual papers
value of the temperature is imposed on the boundaries
the heat flux is calculateda posteriori, whereas here we im
pose a given value for the heat flux; or it could be the u
certainty as to which ensemble should be used in the ana
of situations in the presence of a heat flux, or the breaking
ergodicity, or the limitations of the maximum-entrop
method, etc. At this moment, having only one numerical
sult for gases and not a single result for lattices, it is prem
ture to speculate about any conclusion on this topic, wh
we consider as open~note, for instance, that although Ref
@5# and @6# deal with particles with two masses, in Ref.@6#
thermal conductivity is finite in the thermodynamic limit, bu
it diverges slowly in Ref.@5#!.

Two other points to be noted are the following.~1! The
present analysis does not discuss whether Fourier’s law
satisfied or not, i.e., whether the heat flux is proportiona
DT/L or to DT/La, with a a coefficient different from 1,DT
being the difference of the temperatures of the heat re
voirs at the ends of the system. Our analysis uses only
microscopic expression for the heat flux and the condition
steady state; thus, it could be useful to analyze the result
computer simulation techniques, commonly used in this fi
with the aim of determining the behavior of the system as
number of particles is changed, when two different kinds
particle are considered. For instance, for harmonic cha
the energy current is a conserved quantity, in such a way
some authors@13#, instead of imposing boundary condition
for the temperature, assumed a ring chain where the en
flux is conserved, as well as the energy, thus having th
two quantities as natural constraints on the system in
information-theoretical analysis.~2! It is noted that the
Lagrange multiplier conjugated to the Hamiltonian is
longer the inverse of the local equilibrium temperatu
@12,14#, but a more general function that depends not only
the energy but also on the heat flux, as can be seen,
instance, from Eqs.~8! and~11! for the two kinds of systems
1-3
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we have considered. This could be of interest in the anal
of heat transport when the value of the heat flux is high.

We want to mention finally that other kinds of breaking
equipartition in one-dimensional systems have been poin
out in particles of the same mass but with inelastic collisio
@16#. It is observed that a few particles concentrate mos
the internal energy of the system, whereas the other part
form a kind of aggregate and stay essentially at rest.
cannot apply the present analysis to this interesting situa
because in the presence of inelastic collisions the heat flu
no longer constant throughout the system, since a part o
.

v
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energy is dissipated in each collision. Thus, one should c
sider separately the energy transported along the system
collisions between particles and the energy dissipated in
collisions.
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