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Breaking of equipartition in one-dimensional heat-conducting systems
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Using information-theoretical methods, we studied how energy equipartition is broken in one-dimensional
systems under a heat flow composed of alternating particles of two different masses. The average energy stored
in particles of different masses is seen to be different in both ideal gases and harmonic lattices.
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Much attention is currently being paid to heat transport inthe heat flux must be the same everywhere and therefore the
one-dimensional systems by using computer simulations ofiverage contribution of each kind of particle to the heat flux
lattices or gases to examine the behavior of the heat flux asmust be the same. We thus consider a nonequilibrium distri-
function of the number of particles and, in particular, itsbution function of the canonical form
behavior in the thermodynamic limit, i.e., when the number 1
of particles tends to infinitysee, for instancd1—4]). These f=Z""exg = B(H1tHz) = %Q1=7Q21. (1)

analyses open many possibilities for the exploration and Unyherez is the partition function ensuring normalization, and
derstanding of systems in nonequilibrium states and, in Parg .. andvy, are Lagrange multipliers imposing constraints

ticular, of the thermodynamics of steady states and the Migp, the average energy of the total system and on the heat flux
croscopic foundations of Fourier's law. Two different through each subsystem, namely

situations are usually studied: all the particles are considered
to have the same mass, or the mass of the different particles (Hi+H5)=U, (Q1)=(Q,)=Q=Vaq, 2
is considered as random. Very recently, two papers have
been devoted to unidimensional gases composed of alternathereV is the volume of the system arglthe heat trans-
ing particles with two different values of maf5,6]. These ported per unit area and tinfén one-dimensional systems,
two different values make the situation nonintegrable, inone has the length instead ofV and the heat flux has
contrast with the case of one single value for the mass, andimensions of energy divided by unit tilme
allow one to obtain significant results where the thermal con- We assume that both kinds of particle are intercalated in
ductivity in the thermodynamic limit is slowly divergeff]  an alternating way throughout the system, in such a way that
or finite [6]. it is globally homogeneous. Accordingly, we impose the av-
Here, we apply information theofy—10] to two kinds of  erage value of the total energy only on each pair of particles,
one-dimensional heat-conducting system, ideal gases admit not on each particle. Indeed, a thermometer put in con-
harmonic chains, with the aim of studying the possibletact with the system at any point would interact with one
breaking of equipartition of energy under the presence of @article of each kind, and would indicate only one tempera-
heat flux. With this objective in mind, we consider two kinds ture. In contrast, if we supposed that the system were com-
of particle with different masses and examine their averag@osed of two homogenous subsystems, each of them formed
energy in nonequilibrium steady states, i.e., by imposing orby particles of the same kind, it would seem more logical to
the system constraints on the average total energy and tot@hpose constraints on the energy of each subsystem, because
heat flux. Note that it is not assumed that the system does @ thermometer at one point would interact only with particles
does not satisfy Fourier's law, which is the central debatedf one kind. In both situations, however, the value of the heat
topic in one-dimensional systems; indeed, in contrast witHlux must be the same for both kinds of particle, due to the
the usual procedure, which imposes the values of the tenenergy balance condition in the steady state. Our question
perature at the boundaries and computes the heat flux foefers to the proportion of energy stored in each kind of
different numbers of particles, we focus our attention on garticle in the presence of a heat flux.
system with a given heat flux and compute the average val- Let us mention that one could interpret this study in two
ues of the energy of the different kinds of particles. In ourdifferent ways: as an analysis of the system as a whole as a
opinion, the wealth of recent results in the analysis of heatliscrete thermodynamic system, withbeing a global pa-
transport in one-dimensional systems could be used not onlfameter such as the so-called contact temperafiirg or as
to study the conditions of validity of Fourier's law, and its a local analysis concentrated on a given pair of particles. In
convenient generalizations for microscopic systems, but alsthis case, the coefficien8 would have a local character
for the analysis of other topics of a more statistical naturewhich could make it closer to the temperature indicated by a
such as the breaking of local equilibrium or of equipartition.thermometer at a given point of the system.
We assume a maximum-entropy formalism with restric- (a) Ideal gas in one dimensiolVe first consider an ideal
tions on the total energy and on the heat flux of the systenmonrelativistic gas at rest under fixed values of energy and
Since we consider a one-dimensional system in steady stateeat flux in one dimension. The distribution function when
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all the particles have the same masss given, according to because we are imposing only the total value of the energy.

the maximum-entropy formalism, by Concerning the Lagrange multipliers conjugated to the heat
flux, we take into account that the heat flux must be equal for

f=Z"lexg —BimC>— y(3mC?—2p1C], (3  both kinds of particle because they are in series in the one-

dimensional system. Thus, in view of E{) one has

with m the mass of the particles. Here we have taken into

account that the microscopic operators for the energy and the B 3 Ny 3 N

heat flux are (1/2nC? and (1/2mC?C, with C the specific = om B L T 2mE L, T

velocity of the particle with respect to the barycentric veloc-

ity; finally, the term2 8~ 1C guarantees that the average ve-whereL, andL, are, respectively, the lengths of the system

locity of the system is zero. Usually, one expands @yjup  occupied by particles 1 and 2. Furthermore, it must be taken

(10

to second order iy as into account that the equality of pressure imposes that
(N1/L) B~ =(N2/Ly) B~
f=Z"lexp—BsmC?)[1—y(3mC*-3p1HC Equations(9) and(10) determine the values ¢, y,, and
v, in terms ofU andg. Now, we ask how the total internal
+1(yC)?(3mC*—3p71H2]. (4)  energy(9) is distributed in both kinds of particle. By com-

bining Egs.(9) and(10) we obtain
The partition functionZ ensures the normalization of the
distribution function and is found to be up  Ug/Ng 1+2m, B3(L2IN?)g?

U Up/N,  1+2myB3(LEIN3) G2

(11
7= f*x exp(— BimC)[1+ 1 (yC)2(imC2— 28 1)2]dC

- whereu stands for the energy per particle. This expression

yields the conclusion that in the presence of a heat flux the

, (5) heavier particles have more energy, on the average, than the
lighter ones, if the number of particles per unit length is the

=\27/mpB
. ) ) ) same for both species. Of course, when the heat flux vanishes
whereas the integral of the term of first orderyvanishes 4 recovers the classical equipartition.

1+ 3
4m,837

because it is odd ig. o _ (b) Harmonic lattice The second system we will consider
The a;/erage_value of the energy is given by the integral ofs 3 harmonic chain. In harmonic chains, the phonon mean
(1/2)mC” and yields free path is infinite and, consequently, the energy flux is not
32 proportional to the temperature gradient but to the tempera-
B: 1 M’“ 1 1+ LS 72}, (6) ture difference between the reservoirs located at its ends. To
N 28 1+(3/4mp°)y° 2B 2mg avoid complications associated with the boundary condi-

tions, Miller and Larsori12,13 eliminate the boundaries by

whereN is the number of particles in the system. The AVETconsidering a ring where, because of its infinite heat conduc-
age value of the heat flux is given by the integral of

L ; - tivity, a heat flux lasts indefinitely. Such a chain ring is char-
2
(1/2)mCC over the distribution function and is given by acterized by constraints on the average internal engrggpd

6/4mB3) (N/L 6 N the average heat fluQ.
__ ! A 3 )27 ~— 3=, (7) The system we consider consists of a harmonic chah of
1+(3/4mpB%)y 4ms= L particles,N/2 of massm; andN/2 of massm,, intercalated

with each other in order to have, as in the previous situation,
a globally homogeneous system. Each particle is connected
to its nearest neighbors by Hookean springs with stiffness

whereL is length of the system. Combination of E¢6) and
(7) allows us to write

2 Let g; be the displacement from equilibrium for each particle
—=_—|1+2mB3—>q?|. (8 i and p; its conjugate momentum. The Hamiltonian
N 28 N -He
H(qlvpla'--!qNapN) IS g|Ven by
Up to now, we have referred to particles of the same kind. 2
Here, we want to deal with a one-dimensional gas composed H= }E P + EE k(qis1—q)2 (12)
of two kinds of particle, of massas; andm,, respectively. 2T m 29 " !

Instead of imposing priori a value for the internal energy

associated with each kind of particle, we only fix the totaland the microscopic operatQf(di,ps,...,.dn,Pn) for the
energy. Then, using expressigB) for both kinds of par- heat flux is[10]

ticles, we get

1 K
U_1[ 0 N 9 N, . T==5 2 (G P AP ). (13
N_ ﬁ + Zmlﬁg W’YI’Yl-l- 2m23§ W)/ZYZ ( )

First of all, we summarize the results obtained 13] for a
with N; andN, the respective numbers of particles 1 and 2.chain composed of particles having the same mass. One as-
Note that there is only one value @f but two values ofy  sumes as in Eq1) a distribution function of the form
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f=Z Yexp(— BH—vJ). (14)

By transformingH and .7 in terms of normal coordinates it

follows that[13]

Z={3B[1+(1-y?)"7", (15)
where y is the dimensionless ratig=(/«x/m)y/B. The
Lagrange multipliers and y may be found in terms of)
and Q through the constraints
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(M) =(3mp2)<3keT, (GmMro)>3keT. (21)

These trends have been qualitatively observed in indepen-
dent analyses based on nonequilibrium molecular dynamics
[15].

The present situation provides another illustration of this
breaking, which is of special interest because of the large
number of recent simulations of one-dimensional heat-
conducting systems. We are aware of only two recent papers

studying unidimensional gases composed of alternating par-
ticles with two different massef5,6]. Both papers deal
mostly with their dynamical aspectthe system is noninte-
grable, in contrast with systems with only one value of the
mas$ and obtain a slowly divergef§] or even a finite value
[6] for the thermal conductivity. One of these papékdoes
not specify how energy is distributed in the two kinds of
particle. The other indicates that the lighter particles tend to
absorb more energy than the heavier ones, in contrast with
our results. We do not know, at present, the origin of this
discrepancy, and one of the aims of our report is precisely to
encourage such research. Indeed, there are several possibili-
ties for this disagreement: the fact that in the usual papers the
value of the temperature is imposed on the boundaries and
the heat flux is calculated posteriori whereas here we im-
s E 1+2,BZE 2} pose a given value for the heat flux; or it could be the un-
N B K Q| certainty as to which ensemble should be used in the analysis
of situations in the presence of a heat flux, or the breaking of

As in the previous example of the ideal gas, we consideergodicity, or the limitations of the maximum-entropy
now particles with two different masses, assuming that onlymethod, etc. At this moment, having only one numerical re-
the total energy is fixed, and that the heat flux crossing eachult for gases and not a single result for lattices, it is prema-
position must be the same. We finally obtain, by following ture to speculate about any conclusion on this topic, which
the same arguments as in the previous case, we consider as opefnote, for instance, that although Refs.
[5] and[6] deal with particles with two masses, in RE®]
thermal conductivity is finite in the thermodynamic limit, but
it diverges slowly in Ref[5]).

Two other points to be noted are the followin@) The
Again, it is found that the heavier particles have higher enpresent analysis does not discuss whether Fourier's law is
ergy in the presence of the heat flux, and the classical equéatisfied or not, i.e., whether the heat flux is proportional to
partition result is recovered when the heat flux vanishes. AT/L ortoAT/L¢, with a a coefficient different from 1AT

The distribution function used here could be applied tobeing the difference of the temperatures of the heat reser-
the study of the second moments of the fluctuations of theoirs at the ends of the system. Our analysis uses only the
energy and the heat flux, which will be affected by the presimicroscopic expression for the heat flux and the condition of
ence of the nonvanishing heat flux. This may have interesisteady state; thus, it could be useful to analyze the results of
for instance, in the application of the fluctuation-dissipationcomputer simulation techniques, commonly used in this field
theorem, but we have preferred to focus our attention on awith the aim of determining the behavior of the system as the
explicit illustration of the breaking of equipartition. number of particles is changed, when two different kinds of

Breaking of equipartition in nonequilibrium situations is particle are considered. For instance, for harmonic chains,
to be expected, although it is usually not studied explicitly.the energy current is a conserved quantity, in such a way that
Here, we have tried to go beyond more or less intuitive exsome author§l3], instead of imposing boundary conditions
pectations(which are not able to say, for instance, whetherfor the temperature, assumed a ring chain where the energy
the lighter or the heavier particles should have more energyflux is conserved, as well as the energy, thus having these
and have undertaken a quantitative analysis. For instance, two quantities as natural constraints on the system in an
previous work [12,14 we showed that information- information-theoretical analysis(2) It is noted that the
theoretical methods yield the conclusion that in an ideal gakagrange multiplier conjugated to the Hamiltonian is no
under a heat flux the average kinetic energy of the particle ifonger the inverse of the local equilibrium temperature
different in the directions normal to the heat flux than in the[12,14], but a more general function that depends not only on
direction along it, in such a way that if the heat flux is di- the energy but also on the heat flux, as can be seen, for
rected along theg direction, one has instance, from Eq¥8) and(11) for the two kinds of systems

dinzZ

U=(H)= B

dinZ
, Q=<‘7>=—0—71 (16)

which yield

U 1 1+(1-yH)??
N~ BI—yra—ym gttty

(17

_ 1 y Y
BTy 2p

\k/m.

(18

By combining Eqs(17) and (18), we may write for the en-
ergy

(19

Ul_ U1/N1_ 1+2B2m1K_1q2 20
U, U,/N, 1+282myx g2 (20
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we have considered. This could be of interest in the analysienergy is dissipated in each collision. Thus, one should con-
of heat transport when the value of the heat flux is high. sider separately the energy transported along the system by
We want to mention finally that other kinds of breaking of collisions between particles and the energy dissipated in the
equipartition in one-dimensional systems have been pointegollisions.
out in p_articles of the same mass byt with inelastic collisions A acknowledges the support of the Helene und Erwin
[16]. It is observed that a few particles concentrate most oktephan-Stiftung of the Technische UniveisBerlin. D.J.
the internal energy of the system, whereas the other particlegcknowledges the financial support of the Diréaci@eneral
form a kind of aggregate and stay essentially at rest. Wele Investigacin Cientfica y Tecnica of the Spanish Ministry
cannot apply the present analysis to this interesting situatioof Science and Technology under Grant No. BFM2000-
because in the presence of inelastic collisions the heat flux 8351-C03-01 and of the DirecciBeneral de Recerca of the
no longer constant throughout the system, since a part of th@eneralitat of Catalonia under Grant No. 1999SGR00095.
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