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1Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra, Spain
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The aim of this work is the description of the chain formation phenomena observed in colloidal suspensions
of superparamagnetic nanoparticles under high magnetic fields. We introduce a methodology based on an
on-the-fly coarse-grain (CG) model. Within this approach, the coarse-grain objects of the simulation and their
dynamic behavior are not fixed a priori at the beginning of the simulation but rather redefined on the fly.
The motion of the CG objects (single particles or aggregates) is described by an anisotropic diffusion model and
the magnetic dipole-dipole interaction is replaced by an effective short-range interaction between CG objects. The
methodology correctly reproduces previous results from detailed Langevin dynamics simulations of dispersions
of superparamagnetic colloids under strong fields while requiring an amount of CPU time orders of magnitude
smaller. This substantial improvement in the computational requirements allows the simulation of problems
in which the relevant phenomena extend to time scales inaccessible with previous simulation techniques. A
relevant example is the waiting time dependence of the relaxation time T2 of water protons observed in magnetic
resonance experiments containing dispersions of superparamagnetic colloids, which is correctly predicted by
our simulations. Future applications may include other popular real-world applications of superparamagnetic
colloids such as the magnetophoretic separation processes.
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I. INTRODUCTION

In recent years, work in coarse-grain models for the descrip-
tion of soft matter and biomolecular systems is experiencing
a remarkable outburst [1]. The reason is that the description
of these systems at experimentally relevant time and length
scales requires inclusion of phenomena occurring at very
different scales. The objective of coarse-grain (CG) models
is thus to retain sufficient molecular or nanoscale detail and
yet remain amenable of simulation up to macroscopic time
scales. Many approaches have been developed to construct
CG models of different kinds of soft matter systems. For
example, in the case of polymers, there is a long tradition
of using CG models and the field is sufficiently mature so
that there are systematic and rigorous approaches to build up
CG models from accurate atomistic descriptions [2]. Also,
in the field of biomolecular simulations, there are important
developments such as the MARTINI force field [3] which
allow the simulation of difficult problems such as the behavior
of lipid vesicles or protein folding at millisecond or even larger
time scales. New advances include also simulation packages
specially designed for CG models of soft matter such as
ESPRESSO [4].

Our interest here is the development of an improved
CG model for a specific problem which is still difficult to
simulate, namely the assembly of superparamagnetic colloids
under strong magnetic fields. Superparamagnetic colloids are
made of small nanoparticles of magnetic material (typically
5–10-nm iron oxide nanocrystals) embedded in a nonmagnetic
matrix (typically polymers or silica) [5]. These particles
have no magnetic dipole in absence of magnetic field but
they develop very high magnetizations in the presence of a
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magnetic field, similar to those obtained with ferromagnetic
materials. This highly tunable response and the possibility
to functionalize their surface make these materials very
interesting for applications such as capture and removal of
biomolecules and pollutants, NMR contrast agents, and many
others [6–8].

Our work is motivated by the difficulties encountered
in modeling different kinds of real experimental situations
involving superparamagnetic colloids. A relevant example
is provided by the experiments by Chen et al. [9] of a
dispersion containing superparamagnetic colloids designed
as contrast agents for magnetic resonance imaging (MRI).
In these experiments, a strong uniform magnetic field was
applied to the dispersion. It was observed that the transverse
relaxation time T2 of protons in water changed with time,
an effect which was attributed to the formation of chains
of superparamagnetic colloids. In fact, the kinetics of chain
formation was estimated from these experiments, spanning
time scales from 10 to 103 s or more. Another relevant example
is magnetophoresis [10], which is the motion of magnetic
particles under an external magnetic gradient. Experimental
evidence shows that the formation of chains induced by the
external field speeds up the magnetophoresis process [11],
which is orders of magnitude faster than that observed in the
absence of chain formation [12]. It is worth noting that in
these experiments, chains dissolve almost immediately after
removal of the external field, as should be expected since
superparamagnetic nanoparticles have no dipole in the absence
of magnetic field. In this respect, these systems are very
different from the widely studied (and simulated) dispersions
of dipolar particles, which are able to form structures in the
absence of an external magnetic field due to the interaction of
their permanent dipoles [13–15].

The standard approach for simulation of chaining processes
in magnetic colloids is the use of Langevin Dynamics (LD)
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simulations (see, for example, [16,17]). This technique allows
the inclusion of particle-particle interactions, thermal noise,
and the friction due to the fluid. The resolution of the
simulation technique is typically in the nanoseconds scale.
Simulation runs up to a few seconds are possible, but they
are highly intensive, requiring the use of parallel computing
during several weeks [17]. These CPU requirements make this
simulation technique unsuitable for the study of the problems
mentioned above.

The need to account for microscopic time and length scales
but also reach macroscopic time scales at low computational
cost has motivated the development of a simulation strategy
based on an on-the-fly CG procedure. The methodology which
will be developed in this paper is a generalization of two
procedures proposed in previous works: the method proposed
by Miguel and Satorras [18] to study aggregation processes
and the method proposed by Schaller et al. [19] to study
magnetophoresis.

In the methodology proposed here, one starts by simulating
the motion and interaction between individual colloids. As
the simulation advances, colloids form chains due to the
magnetic dipole-dipole attraction induced by the high external
magnetic field. The motion of each particle inside a chain is
not simulated explicitly. In our methodology, these chains are
considered individual coarse-grain (CG) objects which move
following certain effective rules and interact (and possibly
aggregate) with other CG objects or single individual particles.
In this way, the CG objects of the simulation are not fixed a
priori at the beginning of the simulation but rather redefined
on the fly. Thus we adjust the resolution of the calculations
during the simulation run, allowing for the possibility of
much longer simulation runs requiring less computer power.
Preliminary simulation results and comparison with experi-
ments, presented in a previous work [9], demonstrated the
feasibility and utility of our approach. Here we will discuss
in detail the physical basis of the model, the simulation
methodology, and detailed comparison with more standard
Langevin simulation techniques. All simulations of our model
were performed employing the MAGCHAIN program, a C + +
application developed in house, which is freely available for
use of researchers. The code, its documentation, and usage
examples can be found available for download at our web
page [20].

The paper is organized as follows. In Sec. II, we describe
the modeling of the system under study and the simulation
technique. In Sec. III we validate the methodology by (i)
comparing our results with those obtained employing standard
LD simulations, (ii) discussing the effect of choosing other
approximations for the diffusion coefficients and the effective
interaction of the CG objects, and (iii) discussing the ap-
plicability of our methodology comparing with experimental
results. The conclusions are presented in Sec. IV and some
technical issues are detailed in the Appendix.

II. FORMULATION OF THE MODEL

The system which we are interested in describing is
a colloidal dispersion of Np superparamagnetic spheri-
cal particles of diameter d in a volume V and volume

fraction φ0:

φ0 = Np

V

π

6
d3. (1)

In the absence of external magnetic field, the particles have
no magnetic dipole and there is no formation of chains (no
aggregation induced by the magnetic field). In the presence of
a magnetic field H , the superparamagnetic particles acquire
a certain magnetization M(H ). Since we are particularly
interested in the case of very strong magnetic fields (as in
the experiments of Ref. [9], for example), we consider that the
particles have a magnetic dipole moment ms (corresponding
to the saturation magnetization Ms of the particles) pointing
in the direction of the applied magnetic field (which we will
take as the z axis). The strength of the magnetic interaction
between particles as compared with thermal energy can be
characterized by the magnetic coupling parameter � defined
as

� = μ0m
2
s

2πd3kBT
. (2)

The behavior of superparamagnetic colloids under external
fields is controlled by the values of these two parameters (φ0

and �). In this paper, we are interested in situations (values
of φ0 and �) in which the external field induces formation
of linear chains of colloids which grow irreversibly with
time. Irreversible growth of linear chains has been found in
simulations and experiments investigating the ranges of �

between 40 and 3×103 and φ0 < 0.15 [16,17,22]. However,
other structures are found at different ranges of φ0 and �.
For lower values of �, an equilibrium state is possible, in
which colloids aggregate in linear (nonbranched) chains with
an equilibrium length given by

√
φ0e�−1 [17]. In the opposite

situation of larger values of φ0 and �, different aggregate
structures can be found, including thick chains (obtained
from lateral aggregation of linear chains), bundles, and more
complex fibrous structures [22]. All these more complex
situations, different from irreversible growth of linear chains,
will be left for future extensions of the model.

As key ingredients to retain the underlying physics of
irreversible chain growth, we consider both the diffusive
motion of particles and chains and their respective magnetic
and steric interactions. The main approximations of our model
will be to ignore the details of the particles forming the chains
and to replace the actual magnetic dipole-dipole interaction by
an effective short-range interaction, less demanding from the
computational point of view.

Our model to study the kinetics of chain formation in these
systems consists of CG objects which are chains made of
s particles, including the case s = 1, which corresponds to a
single particle. The first ingredient of the model is the diffusion
coefficient of the CG objects. For single, isolated particles
(s = 1) we have

D1 = kBT

3πηd
, (3)

where η is the viscosity of the fluid. A chain containing s >

1 particles exhibits anisotropic diffusion, characterized by a
diffusion coefficient D‖

s in the direction parallel to the long axis
of the chain and D⊥

s in the directions perpendicular to the long
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axis. There are several possibilities for the analytical form of
these diffusion coefficients, depending on the exact geometry
assumed for the chains and the degree of approximation of
the calculation. Here, in order to keep the model as simple
as possible, we consider the following expressions valid for
elongated objects (slender body theory [21]):

D
‖
s

D1
= 3

2s

[
ln(2s) − 1

2

]
, (4)

D⊥
s

D1
= 3

4s

[
ln(2s) + 1

2

]
. (5)

Strictly speaking, Eqs. (4) and (5) are valid only for large
s. Therefore we employ Eqs. (4) and (5) for chains with
s > 2 and use a simple interpolation between the diffusion
coefficients corresponding to CG objects with s = 1 [Eq. (3)]
and s = 3 [Eqs. (4) and (5)] for chains with s = 2. Such a
choice gives results indistinguishable from those provided by
more sophisticated and accurate expressions of the diffusion
coefficients (see Sec. III B).

The second ingredient of the model is the definition of
the effective interaction between CG objects. A CG object of
length s interacts with other CG objects through an excluded
volume interaction (hard core) corresponding to a cylinder
of length s × d and diameter d. They also interact through
dipole-dipole interactions. In order to simplify and speed up
the simulations, we have replaced the actual dipole-dipole
magnetic interaction between colloids by an effective, short-
range interaction between the CG objects. This interaction
is defined as follows. For a given CG object, we define two
spherical attractive regions of radius ra(s) (which depend on
the length of the chain s) located at the two ends of the chain.
As illustrated in Fig. 1, these regions are designed to mimic
the region at which the magnetic attraction between a chain of

particles (magnetized in the z direction) and an incoming test
dipolar particle is equal or stronger than the thermal energy
kBT . The values of ra(s) are calculated by finding the distance
in the z axis at which the magnetic interaction energy Emag

between a chain of s particles and a single test particle is equal
to −kBT . Therefore ra(s) is given by the solution of

Emag

kBT
= −�

s−1∑
n=0

1

[2ra(s)/d + 1/2 + n]3
= −1. (6)

The results of Eq. (6) for different values of � are also shown
in Fig. 1. Once we have defined the range of the interaction, we
need to define the strength of this interaction. In order to keep
our model as simple as possible, we simply assume that all
events in which a CG object enters into the interaction region
of another CG object will lead to instantaneous aggregation.
This rule has been employed previously in the interpretation
of experimental results and it has been suggested by direct
observations of chain formation under a microscope (see
Refs. [23,24]). As we will show in the next section, this rule
reproduces correctly the results obtained from LD simulations
in which the magnetic interaction is computed accurately.
The sensitivity of the results to the choice of ra will be also
discussed in Sec. III B.

Once the basic ingredients for the model (rules for motion
and interaction) are defined, it is necessary to specify the
algorithm for the numerical solution of the model. In our
case, the diffusive motion of the CG objects is simulated
using the Brownian dynamics technique [25]. At each time
step �t a random displacement in each direction is generated
with a Gaussian distribution with zero mean and variance
2Ds�t , where Ds is the diffusion coefficient of the object
(single particle or chain) in the direction of motion (x, y,
or z). Also, at each time step the distances between CG
objects are checked in order to detect penetration of a CG

FIG. 1. (Color online) (a) Two-dimensional (2D) map corresponding to the interaction energy between an incoming test dipolar particle and
a chainlike aggregate formed by five colloids with a magnetic coupling of � = 40. The black dashed line delimits the region with (E < −kBT ).
The region excluded by the finite size of the five spheres is shown in blue (the interaction energy map is not evaluated inside this region).
(b) Sketch of the attraction model implemented in the MAGCHAIN code. Each CG object has two attraction zones, modeled as a sphere of radius
ra [Eq. (6)] tangent to the edge of the aggregate. Any particle entering into these zones will immediately aggregate forming a longer chain. (c)
Dependence of the radius (ra) of the attraction regions on the aggregate size for two different values of the coupling parameter, � = 40 (open
symbols) and � = 247 (solid symbols). The attraction radius increases abruptly for short chains and tends to a constant value for longer chains.
All the distances are expressed in terms of the diameter d of the colloid.
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FIG. 2. (Color online) Sketch corresponding to the scheme
applied to avoid the overlap between CG objects during simulations. If
the random displacement performed on object B produces an overlap
between B and another CG object (A), the moving aggregate (B)
is placed in contact with the second aggregate (A) according to the
trajectory followed during the random displacement.

object inside the region of aggregation of another CG object,
as explained above, or to detect possible overlaps between
them. In the case of aggregation of two CG objects, a new
CG object is created (and the two previous CG objects are
erased from the simulation) with length s, obtained from
adding the lengths of the two aggregating chains and located
at the center of mass of the aggregating CG objects. In the
case of overlap between two CG objects without penetration
into the aggregation region, we consider that the two chains
collide. In this case, the moving CG object is placed in
contact with the other one (without overlapping) at the collision
coordinates defined by the trajectory previously followed (see
Fig. 2). Finally, it should be noted here that the selection of an
appropriate time step �t for the simulation is a crucial issue.
A detailed discussion on the selection of �t is given in the
Appendix.

Hence a typical simulation run is as follows. The simulation
starts from a pre-equilibrated system containing Np colloids
(CG objects with s = 1). As the simulation goes on, colloids
aggregate and chains with increasing values of s appear.
Consequently, the number of CG objects of the simulation
decreases with time and the simulation speeds up as the time
advances, as we will discuss in detail in the following section.
As a simulation output, we obtain the number of chains
containing s colloidal particles at time t , ns(t). During the
simulation, we also monitor the time evolution of the average
number of colloidal particles in a chain 〈N (t)〉 defined as
in [16,18]

〈N (t)〉 =
∑

s sns(t)∑
s ns(t)

= Np∑
s ns(t)

, (7)

and the probability of finding an aggregate of size s at a given
time, defined as

p(s; t) = ns(t)∑
s ns(t)

. (8)

III. VALIDATION AND APPLICATION OF THE MODEL

A. Comparison with Langevin dynamics simulations

Our objective in this section is to compare the performance
and results obtained using the model described in Sec. II
with standard LD simulations of the same system. Briefly
stated, Langevin dynamics simulations consist of solving
the Newton equations of motion for each particle taking
into account external forces, the interaction forces between
particles (magnetic and steric), the viscous drag from the
solvent, and a stochastic force arising from the thermal noise
due to the fact that the system is at a given temperature T .
This comparison between our simplified CG method and more
detailed LD simulations will help to clarify the validity of
the approximations introduced in our model, as described
in the previous section. In order to perform a significant
comparison between this procedure and the standard LD
simulation technique, we have selected two cases with very
different magnetic coupling � which were studied in previous
works. The details for these systems are summarized in Table I
and were denoted as case 1 and case 2.

Let us consider first case 1, which corresponds to a
dispersion of 100-nm superparamagnetic colloids at a volume
fraction φ0 = 5.23 × 10−4 which have a magnetic coupling
parameter � = 40 at saturation (i.e., under strong magnetic
fields). This system was studied employing LD simulations in
Ref. [17] by using the standard LAMMPS simulation package
[27] (version 21May2008). Now, we will compare these
published results obtained with the standard LD technique
with our CG methodology described in the previous section.
These simulations will be denoted as LD40 (the Langevin
dynamics case) and CG40 (our coarse grain methodology).
The parameters employed in the numerical algorithm are given
in Table II. For completeness, we also give the parameters
employed in the LD simulations. It should be noted that the
LD simulations require a small time step (of the order of
the ns). This small time step is needed in order to avoid a
simulation crash in simulations involving chains of colloids,
since the motion of colloids inside a chain involves very small
displacements which need to be resolved with high precision.
In our CG methodology (which does not consider the structure
of chains), we can use much larger time steps as shown in
Table II. A detailed discussion on the selection of the time step
in our methodology is given in the Appendix.

Typical snapshots of the simulation are shown in Fig. 3 and
the results for 〈N (t)〉 are shown in Fig. 4. The snapshots illus-
trate the different resolution employed in the CG40 and LD40
simulations. As seen in the snapshots, the LD40 simulation
resolves the individual particles making up the chains whereas
the chains are structureless in the CG40 simulation. It should
be noted that the chains obtained in the LD40 simulation
are almost perfectly linear and are not significantly different
from the coarse-grain objects of the CG40 simulation. As
shown in Fig. 4, the values of 〈N (t)〉 obtained from both
simulations (CG40 and LD40) are in excellent agreement.
For example, at t = 1 s, the mean aggregate size for the CG40
simulation is 〈N〉CG = 12.10 and the value calculated from LD
simulations is almost identical, 〈N〉LD = 12.14. Therefore we
can conclude that the simplifying approximations included in
this methodology (particularly those regarding the calculations
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TABLE I. Characteristics of the colloidal dispersions of superparamagnetic particles simulated with CG and LD techniques. φ0 and � are
defined by Eqs. (1) and (2), ρp is the density of a single colloid, d is its diameter, and D1 is its diffusion coefficient. T is the temperature of the
dispersion and η is the viscosity of the solvent (water) at this temperature.

� φ0 ρp (g/cm3) d (nm) T (K) η (Pa s) D1 (m2/s)

Case 1 40 5.23 × 10−4 1.0 100 300 1.0 × 10−3 4.39 × 10−12

Case 2 247 4.64 × 10−6 3.1 88 310 0.692 × 10−3 7.46 × 10−12

of particle-particle magnetic interaction) do not affect the
average size of chains.

We have performed a more detailed comparison between
both approaches by comparing the distribution of chains of
size s at certain times. In Fig. 5 we compare the corresponding
probability distribution [defined in Eq. (8)] at t = 1 s obtained
from LD40 and CG40 simulations. The agreement between
both results after 1 s is remarkable, and only slight differences
are observed. As shown in Fig. 5, the distribution of chain
sizes is very broad, with significant probabilities of finding
chains well above and well below the average length (including
isolated particles).

Now, let us consider the case denoted as case 2 in
Table I corresponding to one of the samples considered in
the experiments in [9]. In this case, the particles have larger
saturation magnetization (� = 247) but the dispersion is more
diluted (φ0 = 4.64 × 10−6). We have performed Langevin
dynamics simulations as well as simulations employing our
methodology, as in case 1. These simulations will be denoted as
LD247 and CG247, respectively. A list of relevant simulation
parameters for LD247 and CG247 simulations is given in
Table II. The results obtained for 〈N (t)〉 are also given in Fig. 4.
The results for the probability distribution p(s; t) at t = 5 s are
shown in Fig. 6. Again, we obtain a good agreement between
the predictions of both simulation methodologies, both in the
average size of chains and in the probability distribution of
chain sizes.

As shown in Table II, both for the case with � = 40 and � =
247, the computational cost of the CG simulation technique
is much lower than the corresponding LD simulation. For
example, we note that a production run of 6 s for the LD247
simulation requires about 4.5 days of calculations, with the
program running in parallel in an 8-core AMD Opteron Magny
Cours 6136 processor. In contrast, the CG247 simulation

requires less than 4 h to simulate the same physical time
using a single core of the same processor employed in the
LD247 run. In addition, we can reach surprisingly long time
scales in our CG247 simulation with a very low computational
cost (see Table II). In simulation CG247, we reach simulated
times up to 103 s in a 1-day calculation, a time scale two
orders of magnitude larger than that accessible using Langevin
dynamics simulations.

The CPU costs shown in Table II demonstrate that our
simulation technique allows us to perform simulations of
the two systems considered here with an extremely reduced
computational effort as compared to Langevin dynamics
simulations. Moreover, it is also important to notice that the
required CPU time for the CG approach to simulate a certain
time interval is reduced during a simulation, since the number
of CG objects decreases as the simulation advances. This effect
is clearly shown in Fig. 7 for the CG40 simulation. We also
show that the rate between the elapsed CPU time and the
corresponding real time simulated depends linearly with the
number of CG objects (see the inset Fig. 7). It should be noted
that in the LD simulations the opposite effect was observed;
the fact that the individual motion of the particles inside the
chains are fully resolved makes LD simulations increasingly
inefficient as time goes on.

B. Further discussion on the approximations of the model

1. Diffusion model

As it has been already mentioned, one of the two key
ingredients of the CG approach is the diffusion model adopted
to describe the motion of the coarse-grain objects. In order to
check the possible influence of the model selected, we have
also performed simulations with a different diffusion model
proposed by Tirado et al. [28] in which they describe the

TABLE II. Set of parameters used for numerical integration in the coarse grain (CG40 and CG247) and the Langevin dynamics (LD40 and
LD247) simulations. Np is the number of particles in the simulation, Lz and Lx = Ly are the sizes of the simulation box (in units of particle
diameters) in the directions parallel and perpendicular to the magnetic field, respectively (periodic boundary conditions were employed in all
simulations). �t is the time step and tf is the total simulated time. We also indicate the total amount of CPU time employed in the calculation,
calculated as the number of cores used times the total elapsed time. In all our calculations we have used an 8-core AMD Opteron Magny Cours
6136 processor.

Label System Np Lz Lx = Ly �t (s) tf (s) No. cores CPU cost

LD40 case 1 8000 200 200 1.02 × 10−9 2.04 8 998 h
LD247 case 2 4000 767 767 3.06 × 10−9 6.12 8 866 h
CG40 case 1 8000 512 128 2.280 × 10−4 5 1 25 h
CG247 case 2 8000 1534 767 1.038 × 10−4 1000 1 24 h
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FIG. 3. (Color online) Snapshots from simulations with � = 40 (case 1 of Table I). (a) Initial configuration of a simulation (t = 0).
(b) Snapshot from Langevin dynamics simulations (LD40) at t = 0.28 s. Note that the simulation resolves the individual particles building up
the chains. (c) Snapshot from coarse grain simulations at t = 0.28 s. Now the chains are the CG objects; individual particles are no longer
considered once they form part of a chain. Chains are colored according to their length for an easier visualization. Left and center images were
created using VMD [26]. Right image was created using our own visualization software available in the web [20].

translational motion of right circular cylinders also accounting
for the so called end effects. Following the same approach as
in [23], we have used the expressions

D
‖
s

D1
= 3

2s
[ln(s) + γ ‖(s)], (9)

D⊥
s

D1
= 3

4s
[ln(s) + γ ⊥(s)], (10)

where γ ‖ and γ ⊥are the end-effect functions defined as

γ ‖(s) = −0.21 + 0.90

s
, (11)

γ ⊥(s) = 0.84 + 0.18

s
+ 0.24

s2
. (12)

100

101

102

10-4 10-3 10-2 10-1 100 101 102 103

<
N

>

time (s)

CG40
LD40

CG247
LD247

FIG. 4. (Color online) Time evolution of the average number of
particles 〈N (t)〉 in a chain, Eq. (7). Comparison between the results
obtained from Langevin dynamics (solid symbols) and coarse grain
(open symbols) simulations for the two different systems studied.
Circles correspond to case 1 (� = 40, φ0 = 5.23 × 10−4) and squares
to case 2 (� = 247, φ0 = 4.64 × 10−6).

We have computed the mean aggregate size 〈N (t)〉 using
both diffusion models for the CG40 system and the results
obtained are plotted in Fig. 8. As it can be seen from these
results, no significant differences are found in the average
number of particles 〈N (t)〉 obtained with both diffusion
models. For this reason we can conclude that both models
are suitable for the description of the diffusive motion of the
chainlike aggregates in such systems and our selection of the
elongated rod model [Eqs. (4) and (5)] instead of Eqs. (9)–(12)
for the simulations was based on its major simplicity.

2. Effective interaction: Attraction radius

As explained in detail in Sec. II, we have defined the
aggregation regions for each CG object as the surrounding
space in which the magnetic interaction energy between the
CG object and a dummy single particle is equal to or smaller
than −kBT . As shown in Fig. 1, the attraction radius ra

defining this region depends on the size of the considered
aggregate and on the magnetic coupling parameter � [see
Eq. (6)]. It is observed that for small chains the attraction
radius increases with their size and tends to a constant value
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FIG. 5. (Color online) Comparison between the probability dis-
tribution to find an aggregate of size s [defined in Eq. (8)] at t = 1 s
obtained from LD40 and CG40 simulations.
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FIG. 6. (Color online) Comparison between the probability dis-
tribution to find an aggregate of size s at t = 5 s obtained from LD247
and from CG247.

for larger chains (the addition of a new particle into the same
aggregate does not significantly contribute to the interaction
magnetic energy). Here, we would like to demonstrate the
importance of accounting for the s dependence of ra(s) in the
simulations.

To this end, we have performed two additional simulations
in which the s dependence of ra(s) is ignored. A first simulation
(denoted as CG40-min) corresponds to a repetition of the
simulation CG40 of the previous section (see Table II) but
using ra = 1.46d for all chains. We also performed another
simulation (denoted as CG40-max) in which we employed the
value ra = 2.20d for all chains. These values correspond to
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FIG. 7. (Color online) Elapsed CPU time (open circles) and
number of CG objects (solid circles) as a function of the real simulated
time for the CG40 simulation. Inset: Rate between the elapsed CPU
time and the real simulated time as a function of the number of CG
objects present in the CG40 simulation.
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FIG. 8. (Color online) Comparison between the results obtained
from the elongated rod approximation [corresponding to Eqs. (4) and
(5) and represented by solid circles] and the cylinder approximation
with end effects [corresponding to Eqs. (9) and (10) and represented
by open circles] when computing the mean chain size of the aggregate
〈N〉 for the CG40 system.

the minimum and maximum values of ra(s) employed in the
original CG40 simulation (see Fig. 1).

All these approaches give us different dynamics of the
system as it is shown in Fig. 9 where the mean aggregate
size 〈N〉 is plotted as a function of time together with

100
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time (s)
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CG

LD

FIG. 9. (Color online) Comparison of the calculated mean chain
size 〈N〉 between two simplified versions of the coarse-grain model
(see main text for details) and the full version. Crosses correspond
to the CG40-min simulation, stars to the CG40-max simulation and
solid circles correspond to the CG40 (full version) simulation. We
also show the Langevin dynamics results (LD40, open circles).
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TABLE III. Set of parameters used for numerical integration in the coarse grain simulations of the same colloids described in case 2 in
Table I but for different volume fractions φ0. Np is the number of particles in the simulation, Lz and Lx = Ly are the sizes of the simulation
box (in units of particle diameters) in the directions parallel and perpendicular to the magnetic field, respectively. �t is the time step and tf is
the total simulated time. As in Table II, we also indicate the total amount of CPU time employed in the calculation.

Label Np Lz Lx = Ly φ0 �t (s) tf (s) CPU cost

CG247-00 8000 2436 1218 1.16 × 10−6 1.038 × 10−4 1221 130 h 1min
CG247-01 8000 1933 966.5 2.32 × 10−6 1.038 × 10−4 859 59 h 53min
CG247-02 8000 1534 767 4.64 × 10−6 1.038 × 10−4 616 29 h 35min
CG247-03 8000 1218 609 9.28 × 10−6 1.038 × 10−4 806 14 h 52min

the corresponding LD results. We observe that the CG40
simulation evolves from an initial behavior close to the
CG-min simulation to a behavior closer to the CG-max
simulation. Analogous calculations for the CG247 system
(not shown here) exhibit identical behavior. In consequence, is
important to take into account the full ra(s) dependence in the
simulations as described in our formulation of the model in
Sec. II.

C. An example of practical application: Chain growth
and T2 measurements

Our objective in this subsection is to illustrate the appli-
cability of the methodology developed here in situations of
interest for applications of superparamagnetic colloids. As an
example, let us consider the use of superparamagnetic colloids
as contrast agents in magnetic resonance imaging (MRI). An
important issue in this application is the possibility of chain
formation of colloids due to the strong magnetic fields applied
in the experiments. The formation of chains of colloids in the
sample increases the transversal relaxation time T2 of protons,
which is an undesired effect in practice. In a previous work, we
have employed a preliminary version of our simulation code to
analyze this possibility in MRI [9]. We have found that under
conditions of interest for MRI, significant chaining occurs.
We would like to discuss here the results of our simulations
as well as compare our results with the experiments in a
more direct way than the preliminary simulations presented in
Ref. [9].

The system considered here is a dispersion of superpara-
magnetic colloids in water with the physical properties of
case 2 in Table I but now we have considered four different
values of the initial volume fraction of colloids, according
to the experiments in Ref. [9]. The corresponding volume
fractions are given in Table III. The simulations of these
systems, performed with the methodology discussed in Sec. II,
have been labeled as CG247-00, CG247-01, CG247-02, and
CG247-03, respectively, and all the technical details are given
in Table III (note that the CG247-02 simulation in this table is
identical to the simulation CG247 of Table II).

The results for the average number of particles in a chain
〈N (t)〉 are given in Fig. 10 for the time scales relevant in the
experiments of Ref. [9]. In all cases we observe significant
chain formation even in the case of the smallest concentration.
Of course, the kinetics of chain formation is observed to slow
down as the concentration of colloids decreases.

The formation of chains has direct impact on the transversal
relaxation rate 1/T2 of water protons. Initially (t = 0), the
relaxation rate of water protons 1/T

(0)
2 is determined by

the presence of a random distribution of isolated (dispersed)
colloids. As time goes on, chains form and modify the T2

response of the surrounding water protons. Therefore the
experimentally measured T2 at a given instant t depends on
the distribution of chain sizes at that time t . As proposed in
Ref. [9], we can give a theoretical prediction of the relaxation
rate 1/T2(t) from our simulation results by computing the
following average:

1

T2(t)
= 1

Np

∑
s

sns(t)
1

T
(s)

2

, (13)

In Eq. (13), 1/T
(s)

2 is the relaxation rate of water protons
near a colloid forming part of a chain containing exactly s

colloids and ns(t) is the number of chains of size s at time t , as
defined in Sec. II. Our simulation results provide ns(t) whereas
the calculation of 1/T

(s)
2 requires an additional study of the

motion of water protons near a chain containing s colloids.
For the particles of the experiments (case 2 in our Table I), the
theoretical results for 1/T

(s)
2 were given in Fig. 9 of Ref. [9].
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FIG. 10. (Color online) Average number of colloids in a chain
〈N〉 as a function of time for the simulations described in Table III.
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FIG. 11. (Color online) Evolution of the relaxation rate 1/T2 of
water protons in four dispersions containing different concentra-
tions of superparamagnetic colloids. Solid lines correspond to the
predictions obtained from the simulations described in Table III
and Eqs. (13) and (14). Symbols correspond to experimental data
extracted from Fig. 5(a) in Ref [9].

These results can be well fitted to an analytical expression of
the form

1

T
(s)

2

= 1

T
(0)

2

s−a·sb

, (14)

where a fit to the calculations in Ref. [9] gives a = 0.0415
and b = 0.45. Now, making use of such a fit in Eq. (13)
and the values of ns(t) obtained from simulations CG247-
00, CG247-01, CG247-02, and CG247-03, we can make a
theoretical prediction for the relaxation rate 1/T2(t). The
results are compared in Fig. 11 with experimental results. The
simulations show a remarkable agreement between theory and
experiments for times corresponding to mean chain length 〈N〉
up to 50 colloids. It should be noted that in the case of very long
chains, the measurements are not reliable due to sedimentation
effects [9].

IV. CONCLUSIONS

In this paper, we have introduced an on-the-fly coarse-
grain model to describe the chaining phenomena observed
in dispersions of superparamagnetic colloids under strong ex-
ternal magnetic fields. We report simulation results with such
methodology, which show good agreement with those obtained
from more detailed Langevin dynamics (LD) simulations. The
great advantage of the methodology presented here is its low
computational cost in terms of CPU time. As a consequence,
we are able to run longer simulations, reaching time scales
not accessible in LD simulations. In order to illustrate the
applicability of the code in experimentally relevant situations,
we have considered the waiting time dependence of the
relaxation rate 1/T2 of water protons observed in magnetic
resonance experiments of dispersions of superparamagnetic
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FIG. 12. (Color online) Influence of the integration time step �t

in the simulations CG40 and CG247 (top and bottom, respectively)
on the time evolution of 〈N〉.

colloids [9]. Experimental results corresponding to waiting
times from 1 to 103 s were correctly predicted by our
simulations.

The model, in its present formulation, cannot be applied
to situations more complex than irreversible chain growth.
However, it seems possible to expand the model to consider
other situations of interest. A first generalization could involve
the inclusion of lateral interactions between the chains [29],
which are responsible for the formation of thick chains,
observed at volume fractions larger than those considered
here [22]. Optical microscopy observations [11] also show
the formation of thick chains and bundles in magnetophoresis
experiments (motion of magnetic particles under magnetic
gradients). Hence the inclusion of lateral interactions and
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deterministic motion of the CG objects will be needed in
order to extend our model to study magnetophoresis. Another
interesting extension, which is now under way, is the inclusion
of the possibility of chain breaking due to thermal fluctuations,
a mechanism relevant at low values of the magnetic coupling
parameter �. This extension of the model will allow us to study
in depth the equilibrium state described in Refs. [17,30].

A final improvement to the model could be taking into
account the full magnetic response M(H ) of the particles in
the simulation, in order to simulate situations in which the
external magnetic fields are not strong enough to saturate the
magnetic colloids. This is a typical situation in many published
experimental studies of aggregation of magnetic colloids (see,
for example, [23,24]), which focus on the linear magnetic
response regime of the colloids.
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APPENDIX: SELECTION OF THE INTEGRATION
TIME STEP

An important issue that one has to take into account when
performing Brownian dynamics simulations is the proper
selection of the integration time step. The typical diffusive
displacement 	 for a single colloid of diameter d and diffusion
coefficient D after a time step �t can be estimated by

	 ≈
√

6D�t = d
√

6�t/τ, (A1)

where we have defined the characteristic diffusion time
τ ≡ d2/D. In general, one selects a time step �t , which
results in a displacement 	 smaller than the relevant length
scales of the problem (typical separations between particles,

range of interaction forces, etc.). In our model, the length
scale of interactions is given by the radius of the attraction
zones (see Fig. 1). The typical diffusive displacement 	

corresponding to the selected �t [Eq. (A1)] has to be smaller
than the radius of the attraction zone ra of the CG objects.
In this way, CG objects will correctly explore the attraction
zone of other surrounding CG objects. As it is shown in
Fig. 1(c), the size ra of the attraction zone depends on
the chain length s (the smallest value of ra corresponds to
s = 1) and on the coupling parameter �. The dependence
on � is strong, so one has to take into account this fact in
selecting �t .

In order to check the effect of �t in the results of our
simulations at � = 40 and � = 247, we have repeated the
CG40 and CG247 simulations with three different time steps:
�t = 1.00τ , 0.10τ , and 0.01τ . These time steps �t corre-
spond to typical displacements of 	 	 2.4d, 0.8d, and 0.24d,
respectively [see Eq. (A1)]. The results of these simulations for
the average number of particles in a chain are shown in Fig. 12.
As can be observed, the effects of the selection of the time step
are critical for the CG40 system and irrelevant for the CG247
system. In order to understand the effect of these different
�t , one has to compare the 	 obtained for each �t with the
values of ra(s = 1) calculated for � = 40 and � = 247 [see
Fig. 1(c)]. In the CG40 simulation, the smallest radius of a
CG attraction zone is ra(s = 1) = 1.46d [see Fig. 1(c), case
� = 40], so the attraction sphere has a diameter similar to
the displacement 	 = 2.4d obtained for �t = 1.0τ . In this
case, colloids cannot explore properly the attraction zones and
many chain formation events are lost during the simulation
run. The other two �t give almost identical results since in
both cases 	 is smaller than ra(s = 1), and attraction zones
are explored properly. In the CG247 simulations, we observe
almost identical results for the three selected �t . In this case,
we have ra(s = 1) = 2.89d [see Fig. 1(c), case � = 247],
which is larger than the corresponding typical displacements
	. As a general rule, if the time step selected is too large,
the chains cannot properly explore the binding sites of the
surrounding chains and the chaining process is not correctly
simulated.
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