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Feedback and Feedforward Control in Speech Production in Apraxia of Speech and 

Aphasia 

 

 

Background 

 

Apraxia of speech (AOS) is considered to be a speech motor planning impairment (e.g., McNeil 

et al., 2009), but the nature of this impairment remains poorly understood. The present study was 

designed to test two hypotheses about the nature of AOS, framed in the DIVA model (Guenther 

et al., 2006). The DIVA model assumes that speech targets are regions in auditory space, and 

combines two control mechanisms to reach those targets: feedback control and feedforward 

control. The feedback mechanism generates corrective motor commands when the actual speech 

sound deviates from the intended speech sound. The feedforward mechanism generates 

predictive motor commands based on past experiences with the speech target.  

 

In the context of the DIVA model, we developed two hypotheses about possible underlying 

deficits in AOS. The Feedforward Control Impairment (FF) hypothesis states that feedforward 

control is impaired in AOS, with consequently a greater reliance on feedback control (Jacks, 

2008). The Feedback Control Impairment (FB) hypothesis states that feedback control is 

impaired in AOS; concurrent feedback may be disruptive (cf. Ballard & Robin, 2007).  

 

We tested these hypotheses by measuring acoustic vowel contrast in two conditions: normal 

listening and auditory feedback masking. Under masking conditions, unimpaired speakers 

maintain segmental contrast (suggesting adequate feedforward commands to support speech 

without auditory feedback) even though contrast is somewhat reduced (suggesting on-line use of 

auditory feedback) (Perkell et al., 2007). The FF hypothesis predicts a greater reduction of 

segmental contrast with feedback masking in speakers with AOS than in controls, because 

effective removal of the auditory feedback control strategy will reveal the impaired feedforward 

commands. The FB hypothesis, in contrast, predicts increased segmental contrast with feedback 

masking, because removal of auditory feedback will allow the intact feedforward commands to 

produce adequate contrasts. One previous study that used feedback masking in AOS examined 

vowel duration and found longer vowels with masking in AOS and controls (Rogers et al., 

1996); the present study also examined vowel duration.  

 

 

Methods 

 

Participants 

 

Participants included six participants with AOS and varying degrees of aphasia, two speakers 

with aphasia without AOS, and nine age-matched control speakers (Table 1). AOS was 

diagnosed by three independent raters (one clinical researcher, two SLPs) based on presence of 

slow speech with longer segment and intersegment durations, dysprosody, distortions and 

distorted substitutions, and segmental errors that were relatively consistent in type (distortions) 

and location within the utterance. Normal rate and prosody were exclusionary criteria for the 

diagnosis of AOS (Wambaugh et al., 2006).  
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Materials & Procedures 

 

Targets were five vowels /i ɛ æ ʌ u/ in /bVt/ words in a carrier phrase (“a        again”). 

Participants saw the phrase and associated picture and waited for a go-signal to say the phrase 

(Figure 1). In the masking condition, speech-shaped noise was presented over headphones at 95 

dB-SPL (Perkell et al., 2007) during production, effectively removing self-produced auditory 

feedback. A sound level meter was used to maintain comparable loudness between conditions. 

Phrases were presented in random order within each block, and the 16 blocks alternated between 

normal (Silence) and masking (Noise) blocks.  

 

Analyses 

 

Formant frequencies (F1 and F2) for perceptually correct tokens were extracted at three points in 

the vowel (20%, 50%, 80%; Jacks et al., 2010) using Praat (Boersma & Weenink, 2008), 

converted into Mel-space (Perkell et al., 2007), and used to derive the primary dependent 

measure Average Vowel Spacing (AVS: mean of Euclidian distances between all vowel pairs; 

Perkell et al., 2007). At the group level (AOS group and controls), AVS was analyzed with a 2 

(Group) x 2 (Condition) x 3 (TimePoint) ANOVA, and vowel duration with a 2 (Group) x 2 

(Condition) x 5 (Vowel) ANOVA, with Tukey posthoc tests. Each individual speaker (including 

speakers with aphasia without AOS) was further compared to controls using Crawford and 

Garthwaite’s (2007) single-case methods for main effects and interactions. Alpha level was 0.05 

for all analyses. 

 

 

Results 

 

Average Vowel Spacing (AVS) 

 

AVS data are presented in Figure 2. There was no main effect of Group (F<1), but there was a 

significant effect of TimePoint (F[2,26]=18.55, p<0.001) indicating lower AVS at 20% (326 

Mels) than at 50% (358 Mels) and 80% (361 Mels). A significant effect of Condition 

(F[1,13]=14.68, p=0.002) indicated greater AVS in the Silence condition (357 Mels) than in the 

Noise condition (340 Mels). Critically, the Group x Condition interaction was significant 

(F[1,13]=11.52, p=0.005), reflecting a contrast reduction for the AOS group (Silence 363 Mels 

vs. Noise 323 Mels) but not for controls (354 vs. 351 Mels). The absence of interactions with 

TimePoint (all Fs<1.3, ps>0.28) indicated that the Condition effect for the AOS group and the 

Group x Condition interaction were present at all time points. 

 

All speakers with AOS demonstrated the group pattern (greater contrast reduction than in 

controls) numerically; for three participants this pattern reached the level of a trend or 

significance. Neither speaker with aphasia without AOS demonstrated this pattern. 

 

 

Vowel Duration 
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Vowel duration data are presented in Figure 3. There was a significant main effect of Group 

(F[1,13]=11.66, p=0.005), indicating longer vowel duration for the AOS group (182 ms) than in 

the control group (142 ms). There was also a main effect of Condition (F[1,13]=24.77, p<0.001); 

vowels were longer in the Noise condition (168 ms) than in the Silence condition (148 ms). A 

main effect of Vowel (F[4,52]=25.91, p<0.001) reflected longer duration for /æ/ than for all 

other vowels, and the Condition x Vowel interaction (F[4,52]=4.38, p=0.004) indicated a 

difference between /Λ/ and /u/ in the Noise condition but not in Silence, and between /i/ and /Λ/ 

in Silence but not in Noise. All vowels showed the Condition effect (Noise>Silence). There were 

no interactions with Group (Fs<1.7, ps>0.16). 

 

Four speakers with AOS showed significantly longer vowels than controls in Silence and three in 

Noise. None of the speakers with AOS showed disproportionate Condition effects on vowel 

duration, except AOS_205 who showed a reverse pattern (longer vowel duration in the Silence 

condition). While Aph_304 showed a disproportionate Condition effect, neither patient with 

aphasia without AOS demonstrated longer duration than older controls. 

 

 

Discussion 
 

Compared with age-matched controls, speakers with AOS showed (1) comparable overall 

acoustic vowel contrast but a disproportionate reduction with noise masking, (2) longer overall 

vowel duration but a comparable lengthening effect under masking. Increased vowel duration 

was expected given previous literature (e.g., Kent & Rosenbek, 1983; Rogers et al., 1996).  

 

The disproportionate reduction in contrast in the AOS group compared to controls was predicted 

by the FF hypothesis, and is inconsistent with the FB hypothesis. Thus, the present findings 

delineate the nature of AOS and suggest that feedforward control is impaired (cf. Jacks, 2008). 

Speakers with AOS appear to rely to a greater extent than controls on auditory feedback to 

achieve and maintain adequate segmental contrasts. Neither of the two speakers with aphasia 

without AOS demonstrated this pattern, suggesting that this disproportionate contrast reduction 

may be specific to AOS and not attributable to aphasia.  

 

These findings highlight the importance of auditory feedback in AOS, and may enable 

development of more objective and specific diagnostic tools to identify underlying impairments 

in speakers with AOS, with possible implications for treatment candidacy considerations. 

Finally, this study supports the utility of current detailed models of speech motor control in 

understanding neurological communication disorders.  
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Table 1. Patient information. 

 AOS  Aphasia  
Controls (N=9) 

 200 201 203 204 205 206  301 304  

Age 58 68 67 56 59 72  68 64  68 (7) 

Sex M M M F F M  M F  3F, 6M 

Hand R R R R R R  R R  8R, 1L 

Education (yrs) 12 22 12 12 13 16  15 15  19 (2) 

Language AE AE SE SE AE AE  BE AE  8 AE, 1 SE 

Hearing
1 pass pass pass pass pass pass  pass pass  pass 

Time post (y;m) 4;6 6;9 2;7 5;6 5;1 7;6  7;10 2;10   

Etiology LH-CVA LH-CVA LH-CVA Tumor &  

LH-CVA 

LH-CVA LH&RH 

CVA 

 LH-CVA LH CVA   

Lesion B; I; 

PreC 

n/a I; PF; P FT n/a PT; P; IO  B; FT; P T; O; PF   

Aphasia Type
2 WNL Anomic Broca’s Broca’s Anomic Wernicke  Wernicke Conduction   

WAB AQ
2 94.2/100 93.2/100 50.3/100 58.7/100 82.1/100 69.3/100  74.9/100 2-3/5

2 
  

AOS severity
3 mild-

mod. 

mild mod.-

severe 

mild-

mod. 

mild-

mod. 

mild  none none   

AOS rating
4 2.7 3.0 3.0 2.7 2.3 2.0  1.0 1.3   

Dysarthria
5 none mild mild none mild mild  none none   

Oral apraxia
3 mild mild mild mild none mod.  mild none   

Limb apraxia
3 none mild mild mild none mod.  none none   

AE = American English; SE = Spanish-English bilingual; BE = British English; LH = Left hemisphere; RH = Right hemisphere; CVA = cerebro-vascular 

accident; n/a = not available; B = Broca’s area; I = Insula; PreC = Precentral gyrus; FP = Frontoparietal; PL = Parietal; FT = Fronto-temporal; PT = Posterior & 

middle Temporal lobe; IO = Inferior Occipital lobe; T = Temporal lobe; PF= Posterior Frontal lobe; O = Occipital lobe. 
1
 Pure tone hearing screening at 500, 1000, 2000, and 4000 Hz; pass at 45 dB level for better ear. 

2
 Based on WAB-R (Kertesz, 2006), except for Aph_304 (based on BDAE-3; Goodglass et al., 2000) 

3
 Based on ABA-2 (Dabul, 2000) 

4 
Mean rating across three diagnosticians (1 = no AOS, 2 = possible AOS, 3 = AOS) (cf. Haley et al., 2012). 

5
 Dysarthrias were diagnosed perceptually based on a motor speech exam (Duffy, 2005) and were all of the unilateral upper motor neuron type. 
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Figure 1. Experimental task overview. 
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Figure 2. Average Vowel Spacing (AVS; in Mels) across time points for age-matched controls 

(AMC) vs. AOS group (top), and individual patients vs. AMC group. Circles represent age-

matched control group data in all figures. Note different AVS range for Aph_304. 
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Figure 3. Vowel duration by condition, collapsed across vowels, for the age-matched control 

group, the AOS group, and individual patients. Error bars represent standard error. 

 


