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Variance, a statistical term for variability, is central to the analysis of vari-
ance method and represents the average dispersion around the mean of
scores in a group. Table 1 shows how variance is calculated. To calculate
variance, subtract the mean for the group from each individual’s score,
square that result, add the squared scores together, and divide that sum
by the number of scores that were squared in the first place, or more
commonly, by N - 1, the degrees of freedom.

The data come from measuring the height of 10 hypothetical adults ran-
domly selected from a hypothetical crowd inside the Little Big Dollar Store
in Ottumwa, Iowa, and another 10 randomly selected adults from a group
gathered in front of the Holiday Inn in Kayenta, Utah. You can see that not
everyone is the same height because height ranges from 53 to 81 inches,
and the average heights for the groups are 66.2 and 68.6 inches, respec-
tively. The third column shows how each score’s deviation from the mean
is calculated and the fourth column shows these deviations squared and
added together. The variance is derived by dividing the total sum of squares
by the number of scores in the total. Note also that standard deviation is
the square root of variance.

So why aren’t our 10 people each 67.4 inches tall, the overall mean for
the group? Which is another way of saying, “What are the sources of
variability in height for this group?” In any randomly selected group of
people, there are a multitude of sources of variability in height, age, sex,
genetic profile, and so forth. All these unmeasured variables contribute to
the dispersion of scores around the mean. The experimental variables
manipulated in the experiment are another source of dispersion. In the
height example, differences in location of subject recruitment is such a
source.

The unmeasured variables are sometimes called nuisance variables because

~ w4imey add noise and confusion to the data, making it hard to see the effects
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TABLE 1. HOW VARIANCE IS CALCULATED

GROUP1

Subj. Height Hgt.-M (Hgt.-M)?
1 70 3.8 14.44
2 62 -4.2 17.64
3 69 2.8 7.84
4 54 ~-12.2 148.84
5 72 5.8 33.64
6 66 -0.2 0.04
7 78 11.8 139.24
8 64 -2.2 4.84
9 59 -7.2 51.84
10 68 1.8 3.24

Total 662 0 421.6

Mean = 66.2

Variance (S2) = 42.16

Standard Deviation (S) = 6.49

GROUP 2

Subj. Height Hgt.-M (Hgt.-M)?
1 76 7.4 54.76
2 62 -6.6 43.56
3 73 4.4 19.36
4 53 -15.6 243.36
5 78 9.4 88.36
6 67 -1.6 2.56
7 81 12.4 153.76
8 64 ~4.6 21.16
9 58 -10.6 112.36
10 74 5.4 29.16

Total 686 0 768.4

Mean = 68.6

Variance (52) = 76.84

Standard Deviation (S) = 8.74

of experimental manipulations. The noise and confusion caused by nui-
sance variables is called error or error variance in the analysis of variance. It
represents the overall effects of all the uncontrolled nuisance variables

- that affect the scores.

Error variability comes from two primary sources. The first source is the
effects of uncontrolled (and in many cases unmeasured) differences among
subjects. In the case of aphasic subjects, differences in aphasia severity,
time postonset, general health, mood, blood-sugar level, and any of a
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multitude of other differences can cause variability in performance across
subjects.

The second source of error variability is variability in experimental pro-
cedures from subject to subject or from test occasion to test occasion.
Differences in scoring criteria, unreliability in scoring, differences in tim-
ing of stimulus delivery, and variability in instructions or feedback are a
few of the large number of potential procedural sources of error variability.

The most common, but messiest, way of dealing with variables that
contribute to error variability is random assignment of subjects to groups
or levels of treatment so the effects of nuisance variables will be distrib-
uted equally across groups or levels. However, the error variability is not
removed, nor, in most cases, is it reduced by random assignment. It is still
there with the potential to affect the interpretation of results. A better way
of dealing with nuisance variables is to control them—to hold them at a
constant level, so they do not affect the measures. This is why we attempt
to match subjects on characteristics that may affect their performance in
experimental tasks, and why we attempt to keep experimental procedures
exactly the same from subject to subject and from test occasion to test
occasion.

Another way of dealing with nuisance variables is to make them into
experimental (independent) variables. Consider what happens when a
nuisance variable is changed into an independent variable. Suppose that
half of the 10 people in each group are men and half are women, and the
shortest 10 are women and the tallest 10 are men. Now the two groups of
10 can be partitioned into four groups of 5 each. Table 2 shows the data for
Group 1partitioned by sex.

Now there are two means—one for men and one for women. And the
variance of scores is reduced from 42 inches for the mixed-sex group to 13
inches and 18 inches, respectively for men and women. Partitioning the
group decreased the dispersion in scores, made the mean a better predic-
tor of individual scores, and increased the likelihood of getting a signifi-
cant effect from any treatments introduced. The movement of variability
from unexplained to explained variability is summarized in Table 3 for
analyses of variance for the unpartitioned group and the groups parti-
tioned by sex. The variability attributable to error in the unpartitioned
group (signified by the number 1,190) is broken into three parts in the
partitioned group, with about three-fourths of the original error now attrib-
utable to the new main effect and the new interaction.

It is important to remember that analysis of variance results are not
data. They are opaque in terms of portraying the magnitude of the effects
of independent variables. Consider the height by groups by sex analysis of
variance in Table 2. Neither the sum of squares nor the mean square for
groups gives any indication that group 1is 2.4 inches shorter, on the aver-
age, than group 2, and neither the sum of squares nor the mean square for
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TABLE 2. DECREASING ERROR VARIANCE BY PARTITIONING
A LARGE GROUP INTO TWO HOMOGENEOUS GROUPS

GROUP1: MALE

Subj. Height Hgt.-M (Hgt.-M)?

1 70 -1.4 1.96

2 69 -2.4 5.76

3 72 0.6 0.36

4 78 6.6 43.56

5 68 -3.4 11.56
Total 357 0 63.20
Mean = 714

Variance (52) = 12.64
Standard Deviation (S) = 3.55

GROUP 2: FEMALE
Subj. Height Hgt.-M (Hgt.-M)?
1 62 1.0 1.0
2 54 -7.0 49.0
3 66 5.0 25.0
4 64 3.0 9.0
5 59 -2.0 4.0
Total 305 0 88.0
Mean = 61.0

Variance (52) = 17.60
Standard Deviation (S) = 4.19

the interaction gives any indication that males in group 1 are 10.4 inches
taller than females. Analysis of variance tables or graphs (or analysis of
variance results described in the text of a paper) only supplement means,
standard deviations, ranges, or other measures of effect size—it never
substitutes for them.

Furthermore, the probability value assigned to an F-ratio (or any test
statistic) has no dependable relationship to the size of the experimental
effect it has been used to test. A probability value of p < .05 for one
comparison and a probability value of p < .001 for another does not mean
that the difference between the means in the second comparison is larger
than the difference in the first. You can get a highly significant F-ratio for
several reasons: when the difference between means is large, when the
variability of scores is small, and when the number of observations is
large.

The second major source of variability across observations in an experi-
ment is the effects of the independent variables. To show how the vari-
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TABLE 3. ANALYSIS OF VARIANCE SUMMARY TABLES FOR
UNDIVIDED SAMPLE (HEIGHT BY GROUPS) AND SAMPLE
DIVIDED BY SEX (HEIGHT BY GROUPS BY SEX)

HEIGHT BY GROUPS

Source of Variance SS df MS F p
Groups 28.80 1 2,880.00 0.43 52
Error 1,190.00 18 66.11

Total 1,218.80

HEIGHT BY GROUPS BY SEX

Source of Variance SS df MS F p
Groups 28.80 1 28.80 1.48 .24
Sex 845.00 1 845.00 43.44 .01
Group by Sex 33.80 1 33.80 1.74 .20
Error 311.20 16 19.45

Total 1,218.80

ability attributable to the effects of independent variables is analyzed, I
designed a hypothetical experiment and analyzed the results with analy-
sis of variance. The experiment is a study of the effects of three aphasia
treatment approaches—individual treatment by speech-language pathol-
ogists, group treatment by speech-language pathologists, and television-
based treatment in which patients watched reruns of Wheel of Fortune for
two hours per day, five days per week. Subjects were aphasic patients
meeting all the standard selection criteria. Twenty patients received each
treatment, and each treatment group was composed of 10 fluent and 10
nonfluent patients.

Figure 1 shows the effects of treatment. (Note that I'm not providing an
analysis of variance table.) The figure shows individual treatment was
better than group treatment, which was better than television treatment.

Figure 2 shows the means for groups according to aphasia type. It shows
that fluent patients did better than nonfluent patients. These two graphs
summarize the results of the main effects in the analysis of variance. The
main effects are the effects of the independent variables in the experi-
ment, and there are always as many main effects in the analysis of vari-
ance as there are independent variables in the experiment. But in any
experiment with more than one independent variable, the main effects
don’t always tell the whole story. Sometimes the effects of one independent
variable depend on the level of another independent variable. In our exam-
ple the effects of treatment might depend on the group to which the aphasic
patients belonged. Such an interdependency is called an interaction.



24

Clinical Aphasiology Vol. 21, 1992

Score

100

80

Individual

Group

Television

Treatment

Figure 1. Effects of treatments for hypothetical treatment study.
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Figure 2. Effects of aphasia type for hypothetical treatment study.
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Figure 3. Bar graph of aphasia type by treatment effects in hypothetical treatment
study. There is no interaction between the two factors.

Figure 3 helps to see if there was an interaction between the two inde-
pendent variables in this study. It shows that nonfluent aphasic patients
always did worse than fluent patients, regardless of which treatment they
received. Said another way, individual treatment was always better than
group treatment, which was always better than television treatment regard-
less of whether subjects were fluent or nonfluent. This is what we mean
when we say that there was no interaction between subject groups and
treatment types. A convenient way to visualize interactions is to graph
them with line graphs.

Figure 4 shows a line graph for the interaction we are presently examin-
ing. If there is no interaction, the lines in the graph should be close to
parallel. Marked deviations from parallel lines suggest the presence of an
interaction. The lines in Figure 4 are essentially parallel, confirming that
treatments and groups do not interact.

Table 4 shows how the results of the analysis look in an analysis of
variance table. As illustrated, the effects of the different treatments were
significant as were the effects of groups, and there was no interaction
between the two. Because there was no interaction, we can draw conclu-
sions based simply on analysis of the main effects of the independent
variables. This often involves what are called follow-up tests, which will
be addressed after we consider a different set of data for this experiment.
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Figure 4. Line graph of group by treatment effects shown in Figure 3. The lines
are essentially parallel, showing that no interaction is present.

TABLE 4. ANALYSIS OF VARIANCE SUMMARY
TABLE FOR DATA SET 1

Source of Variance SS df MS F p
Treatment 11,289.44 2 5,914.72 325.65 .01
Aphasia Type 13,741.06 1 13,741.06 756.54 .01
Treatment by Type 51.58 2 25.79 1.42 .25
Error 980.80 54 18.16

Figure 5 shows the effects of treatments for a new set of data. The
effects of treatment are similar to those for the first data set—individual
treatment is better than group treatment, which is better than television
treatment.

Figure 6 shows the effects of aphasia type. The effects of aphasia type
are also similar to those for the previous data set—nonfluent patients do
worse than fluent patients. At this point the effects of treatments and
aphasia types appear identical to those for the first data set. However,
when the interaction between treatments and groups is examined, we
find that something has changed (see Figure 7). For this data set, the
effects of aphasia type depend on which treatment was received. Fluent
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Figure 5. Effects of treatments: second hypothetical treatment study.
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Figure 6. Effects of aphasia type: second hypothetical treatment study.
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Figure 7. Interaction of treatment and aphasia type: Data set 2. The effects of
treatment depend on aphasia type.

subjects did better than nonfluent subjects when treatment was either
individual or group, but when treatment was television there was no
difference between them. Now we cannot make a simple, generic state-
ment about the effects of aphasia type on patients’ performance, because
the effect of aphasia type depends on which treatment the patients
received. Figure 8 shows the same interaction in a line graph. The lines
are no longer parallel—they converge in the third treatment condition,
confirming the presence of the interaction.

The point of all of this is that when an analysis of variance yields a
significant interaction between or among main effects, conclusions can-
not be drawn from the main effects alone and discussion of such main
effects must always be qualified by taking note of the interactions which
affect them. Interactions are explained by follow-up tests, just as main
effects involving two or more levels of an independent variable are.

Consider follow-up tests using the present study as an example. To
interpret significant main effects and interactions, calculate the signifi-
cance of differences between means, called pair-wise comparisons. Con-
sider the significant effect of aphasia type first. Because there are only
two levels of aphasia type there is only one difference between means to
consider—the difference between fluent and nonfluent subjects. Exam-
ination of the means or a look at the graph for this effect tells us that
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Figure 8. A line graph of the interaction shown in Figure 7. The lines converge,
showing that an interaction is present.

fluent aphasic subjects did better than nonfluent subjects, and the signifi-
cant main effect in the analysis of variance tells us that they did signifi-
cantly better.

Now consider the main effect for treatments. Three kinds of treatment
were involved in the experiment: individual, group, and television. The
significant main effect for treatments tells us only that at least one of the
three differed significantly from the others; it doesn’t tell us which ones.
Which means that of the possible differences between pairs of means
(1vs. 2, 1vs. 3, and 2 vs. 3) one, two, or perhaps all three represent sig-
nificant differences. Now consider the interaction. In the experiment
there were two groups and three treatment conditions, so there are nine
potential pairwise comparisons among the six means.

If one made all nine comparisons by running nine f tests, the outcome
of the tests would be compromised by a phenomenon called inflated
Type 1 error. Type 1 error (sometimes called alpha error and symbolized
by « ) refers to the probability of concluding that two means differ signifi-
cantly when, in fact, they do not. An « level of .05 means that no more
than 5 times out of 100 will one falsely conclude that two means differ.
The probability of Type 1 error increases with multiple tests because the
tabled « levels for tests such as the f test are set for a single comparison.
Running multiple tests of significance increases the likelihood of falsely
rejecting the null hypothesis in the same way as the likelihood of getting
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TABLE 5. EFFECTS OF MULTIPLE COMPARISONS
ON TYPE 1 ERROR

# Comparisons o =.05 a = .01 a = .001

1 .050 .010

2 .098 .020

3 143 .030

4 186 .039

5 227 .049

6 .265 .059

7 302 .068

8 337 077

9 370 .086

10 .401 .096 .010
20 .149 .020
30 .030
40 .039
50 .049

at least one red marble from a box containing 95 white marbles and 5 red
ones increases with the number of times one draws a marble from the box.
Table 5 shows what happens when one makes multiple, independent com-
parisons at a given Type 1 error level, and how the actual Type 1 error
escalates as the number of comparisons increases.

One way to deal with this problem is to set « for each test at a conser-
vative level in order to bring the overall Type 1 error down. There are
a dozen or more procedures for making multiple comparisons while
controlling the overall Type 1 error. Table 6 shows six popular ones.
Multiple-comparison procedures such as these differ in their conserva-
tiveness; some require larger differences between means before calling
the differences significant.

The conservativeness of multiple-comparison procedures has impor-
tant effects on their power. The power of a test can be defined loosely as its
ability to correctly reject the null hypothesis when the null hypothesis is,
in fact, false. The general rule is the more conservative a procedure is, the
less powerful it is. Multiple-comparison procedures designed for making
comparisons that were planned before the data were acquired usually are
more powerful than those for evaluating comparisons suggested by
examination of the data. Procedures that restrict comparisons to a subset
of means usually are more powerful than those permitting all possible
comparisons.

Multiple-comparison procedures differ in terms of their power, rela-
tive to a set of individual ¢ tests, run without controlling overall Type 1
error. Some procedures, e.g. the t test, Dunn’s test, Tukey’s test (HSD)

!
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TABLE 6. RELATIVE POWER OF SELECTED
MULTIPLE-COMPARISON PROCEDURES

Number of Comparisons

Procedure 2 3 4 5

t-test 1.00 1.00 1.00 1.00
Dunn test .87 .87 .87 .87
Newman-Keuls test 1.00 .83 .75 71
Tukey HSD .71 71 71 .71
Tukey WSD .83 .76 .73 71
Scheffé test .62 .62 .62 .62

and Scheffé’s test have the same power regardless of the number of com-
parisons made (Howell, 1987). The Newman-Keuls procedure and Tukey’s
HSD procedure are most powerful when a small number of comparisons
is made. Tukey’s HSD and Scheffé’s test are the least powerful on the
average; however, they maintain their power even when a large number of
comparisons is made. Dunn’s test may appear more powerful than the oth-
ers, but that’s because it’s designed for evaluating preplanned comparisons.
So, which multiple-comparison procedure should one use? The following
guidelines, based on Howell’s (1987) recommendations, are reasonable.

e If tests are planned in advance and you want to run only one or
possibly two comparisons, use a standard ¢ test.

e If you wish to run several (three to seven) preplanned comparisons,
use Dunn'’s test.

e If you wish to run two or three post-hoc comparisons, use Newman-
Keuls.

e If you wish to run three to seven post-hoc comparisons, use Tukey’s
WSD.

e If you wish to run more than seven post-hoc comparisons, use Scheffé’s
test.

Besides choosing an appropriate multiple-comparison procedure, you
can do other things to maintain Type 1 error at reasonable levels while
maximizing the power of the tests. One way is to plan comparisons in
advance. The experimental questions addressed usually make some com-
parisons important, while leaving others merely interesting or even trivial.
Deciding in advance which comparisons directly address the experimen-
tal questions posed, and limiting statistical tests to those comparisons,
permits you to use multiple-comparison procedures for preplanned com-
parisons that are more powerful than those for post-hoc comparisons.
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The second way to control Type 1 error is to limit the number of com-
parisons made. Evaluating a subset of all possible comparisons permits
you to use more powerful procedures such as Newman-Keuls or Tukey’s
WSD, rather than less powerful but more permissive procedures such as
Scheffé’s test.

The third way to limit Type 1 error is to make comparisons orthogonal.
Making comparisons orthogonal means that whether or not one of the
comparisons is significant has no effect on whether any other comparison
in the set is significant. A major problem with orthogonal contrasts is they
severely limit both the number and kind of comparisons among means
that are permitted. Orthogonal contrasts are much less widely used than
they were 10 or 20 years ago, partly because of their unforgiving nature
and partly because efficient and relatively powerful procedures for eval-
uating multiple, nonorthogonal comparisons are now available.

The last aspect of analysis of variance to be considered concerns nor-
mality of distribution and homogeneity of variance. As is well known,
analysis of variance is based on two assumptions: observations are drawn
from normally distributed populations, and variances of the groups are
equivalent. Moderate deviations from normality and moderate disparity
in variance across groups usually do not greatly compromise the analysis
of variance if sample sizes are equal. However, when the distribution of
scores is grossly abnormal and sample variances are grossly dispropor-
tionate, tests of significance may be seriously in error.

This is an important issue in disciplines such as ours, where the per-
formance of an impaired sample often is compared with that of an unim-
paired sample. It is not unusual that the normal group performs with few
or no errors, while the impaired group has high error rates. Consequently,
the scores of the impaired subjects have dispersion and often approximate
abell-shaped distribution. On the other hand, the scores of the non-brain-
damaged subjects often have no distribution because they all “topped
out” on the test. In such a situation, analyzing the performance of non-
brain-damaged subjects with an analysis of variance would be inappro-
priate because there is no variance to analyze. Even in less extreme cases,
when scores for a normal group of subjects are tightly clustered and the
distribution of scores is sharply peaked, it is not a good idea to run an
analysis of variance including both the normal and impaired groups. Instead,
a separate analysis of variance for each group may be appropriate if each
group has reasonable dispersion of scores and if the distributions are not
too wildly peaked or skewed.
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