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Response Variability in Naming;:
A Computational Study
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PERFORMANCE VARIABILITY

Performance variability greatly complicates both the treatment of
aphasia and the design and execution of clinical studies of aphasia
recovery. Two different performance issues are involved in this prob-
lem. The first issue concerns clinical neuroanatomical correlation: Two
patients with apparently identical structural brain lesions can mani-
fest grossly disparate performance in language tasks. The second prob-
lem involves individual patients themselves: At two different times
of the day or under different environmental conditions, a patient can
demonstrate quite variable language skills.

Neuroanatomical Variability

Despite the recent proliferation of localization arguments in neuro-
linguistics (Damasio & Damasio, 1989; Kertesz, 1983), fueled by
advanced imaging techniques such as positron emission tomography
(Petersen, Fox, Mintun, Posner, & Raichle, 1988) and functional mag-
netic resonance (Belliveau et al., 1991), there remain strong reasons
to doubt strict neuroanatomical localization of language tasks (Jack-
son, 1878; Marie, 1906). Some recent studies have shown so much indi-
vidual variability in the neuroanatomy of naming that the authors
distinctly argue against all but the most general localization (Gordon
et al., 1990; Ojemann, Ojemann, Lettich, & Berger, 1989). Variability
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in neural representations extends also to the primary motor and sen-
sory areas, long thought to be a paradigmatic example of invariabil-
ity (Uematsu et al., 1992).

Behavioral Variability

Language processing variability by particular patients over time is well
known (Brain, 1961). Simple environmental manipulations and/or con-
stitutional alterations affect performance, and these have formed the
basis of efforts to improve communication for such patients. However,
as McNeil, Odell, and Tseng (1991) noted, neither variability nor
stimulability can be explained within the predominant neoclassical
theories of aphasia (Benson & Geschwind, 1989).

In her thesis, Crisman (1971) studied behavioral variability in naming
after ischemic stroke. Twelve patients were equally divided between
chronic (>3 months) and acute (<3 months) conditions and were tested
daily for 10 consecutive days on a picture naming task. Crisman selected
10 high-frequency words and 10 low-frequency words, all denoting
physical objects, and asked the patients to name each one from a black-
and-white line drawing. These words are shown in Figure 1, along
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cup
book
table

flower
lane
shovel
bucket
umbrella
camel
piano
sandwich
frog
butterfly
truck

Figure 1. The corpus of words used for testing response variability in
chronic aphasic subjects (Crisman, 1971) and in a damaged computer
model of naming, along with indices of their frequency of occurrence.
The black bars show the logarithm of the word frequencies in the written
corpus of Kiicera and Francis (1967) (KF Frequency) and the checked bars
show the familiarities of the pictures in the study of Snodgrass and
Vanderwart (1980) (SV Index).
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with the natural logarithm of their frequencies of occurrence (Gordon
& Caramazza, 1985) in standard written corpora (Kticera & Francis,
1967) and the familiarity of their pictorial form (Snodgrass &
Vanderwart, 1980). Individual patient responses were transcribed and
classified into 12 error types, and then compared statistically.

These comparisons demonstrated that (a) response variability is a
prominent feature of naming performance in aphasic subjects; (b) indi-
vidual patients.tend to make the same types of error responses over
time; (c) acute and chronic patients do not differ in their variability;
and (d) patients make more errors on low-frequency words than on
high-frequency words. This paper compares the response variability
of Crisman’s (1971) chronic aphasic subjects with that of a connectionist
computer model and offers a computational neurobiological explanation
that may partly explain response variability.

This approach is aimed at providing an analytical explanation for
the concept of variability. Without trying to assimilate empirical data
into a theory, one does not advance science. The use of a computer
simulation is a way to formalize theoretical concepts. In this case, it
is asserted that variability may be the result of imprecision in infor-
mation processing, which is normally not evident behaviorally because
of overlearning, redundant representations, and so forth.

CONNECTIONIST MODEL

Overview of Connectionist Modeling

Neural (connectionist) networks are being applied increasingly to
studies in cognitive neuroscience (Sejnowski, Koch, & Churchland,
1988). Connectionist models consist of simple computational elements,
or units, which communicate by sending their level of activation via
labeled links to other elements.! The units may have a small number

1. The activation value is the numerical value associated with a computation unit of a
neural network. In some networks, this activation is analogous to a strength of belief
in the item represented by the unit. In others, it is a neuronal potential. In this model,
each activation value in the input encodes the presence or absence of a particular semantic
feature. Each activation value of the output encodes the belief that one physical object
is encoded by the semantic features of the input. The hidden activation values do not
have such clear meaning as they encode the intermediate results of distributed pro-
cessing performed by the network in making its object identification. A full discussion
of the construction and use of artificial neural networks for models of communication
disorders can be found in Small (1994).
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of states, and compute simple functions of their inputs. Associated
with each link is a weight, indicating the significance of activation
arriving over that link. The overall behavior of the model is deter-
mined by the pattern of connections, the weights on the links, and
the unit functions. Figure 2 shows the main features of an artificial
neural network.

In some connectionist models, particularly parallel distributed pro-
cessing (PDP) models (McClelland & Rumelhart, 1986), the units are
arranged into layers, with the majority of interaction occurring between
adjacent layers (e.g., the top and middle layers or the middle and bottom
layers in Figure 3), rather than within layers or between spatially sepa-
rated layers (e.g., the top and bottom layers in Figure 3). Two layers
play special roles as input and output to the network. Between the
input and output are any number of intermediate layers of hidden units.
After determining a method of encoding (i.e., a representation) for the
desired input and output information, the network is provided with
a set of examples, or teaching data from which to learn the desired
mapping of input to output. For each set of input values in the teach-
ing set, the network uses a combination of unit values and weights to

inhibition

activation

computational
unit

Figure 2. A neural (connectionist) network, illustrating the basic features
of such networks, including units, excitatory connections, and inhibitory
connections. Note that connections can be unidirectional or bidirectional,
and can have different types of connections with different units.
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Figure 3. A three-layered feed forward connectionist network to perform
object naming. The network maps a collection of semantic features (the
input layer) into a single object (the output layer), using an intermediate
encoding (the hidden layer) that evolves through network learning.

produce values for the next layer.? The same procedure is used on
this layer to produce the next layer, and ultimately the output layer.
Until the network has learned the correct mapping, this output will
be wrong. The main trick of the PDP approach is to compare the desired
(or target) output with the actual output, and then to adjust the weights
in the network to minimize this difference. Several approaches to this
“supervised learning” have been devised, but the one most commonly
used is the back propagation algorithm (Rumelhart, Hinton, & Williams,
1985).°

When the network has finished adjusting the weights, it produces
the desired output for each input. In addition, for each input, the

2. The teaching set contains the associations that the network is being asked to learn,
comprising a large list of input—output associations. The input and output each consist
of a number of values, corresponding to the number of units in the input layer or out-
put layer to the network.

3. Back propagation is a “supervised learning” method (i.e., a learning method that
uses an explicit teacher to explain to the network which answers are the right ones
and which are the wrong ones). It can be used to teach the artificial neural network to
make associations. During the process of learning associations, the units that are nei-
ther input nor output units acquire activation values that encode the results of inter-
mediate processing stages. A full description of this algorithm in the context of the
study of language disorders can be found in Small (1994) or in mathematical detail in
Rumelhart et al. (1985).
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network produces values across each layer of hidden units. These
hidden unit values constitute an emergent feature of such networks,
and they can be analyzed directly and with methods from linear algebra
and statistics. Studies of such networks have demonstrated that, in
solving complex problems in cognitive neuroscience, the hidden layers
of these networks develop encodings that reflect interesting regulari-
ties of the input data. Examples in semantics (Hinton, 1986), natural
language (Elman, 1989; Small, 1990), and spatial reasoning (Zipser &
Anderson, 1988) have all led to interesting results. In the latter case,
the emergent representations led to hypotheses about the anatomical
structure of the parietal lobe.

Connectionist models of impaired language function involve construc-
tion of networks that perform some desired neurolinguistic mapping
and then damaging them in some methodical way and analyz-
ing the result. A number of models have been built, which account
for limited disciplinary data in one area of language processing, such
as lexical access (Small, Cottrell, & Tanenhaus, 1988), semantic prim-
ing (Kawamoto, 1988), acquired dyslexia (Hinton & Shallice, 1991),
spatial neglect in reading (Mozer & Behrmann, 1989), and temporal
processing in aphasia (Gigley, 1988). Previously, we have reported a
taxonomy of artificial lesions and a postulated correspondence between
artificial lesion types and human brain damage (Small, 1991).

Connectionist Model of Naming

We developed a computational model of naming (Small, Hart, & Gor-
don, 1992) and studied its performance under conditions of damage.
The model consists of a feed forward connectionist network of three
layers, in the manner of the parallel distributed processing approach
described above. These layers consist of an input layer of semantic
feature units, a middle (i.e., hidden) layer for computations, and an
output layer representing words. The network was trained to map from
a set of semantic features to specific objects. Phonological encoding,
a separate and difficult computational research question (Dell, 1986),
was not performed.

Seventy-one pictures, each showing a line drawing of a single physical
object, were represented in terms of 77 semantic features in the style
of the representation of Hinton and Shallice (1989). These included
pictures used in previous naming studies (Hart & Gordon, 1992) and
Crisman’s (1971) pictures. The input layer represented a picture in terms
of semantic features. Table 1 shows this semantic feature encoding for
four example pictures in the experimental corpus, including the high-
frequency words table and book and the low-frequency words shovel
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Table 1. The Semantic Features of Four Example Words from
the Experimental Corpus, Including Two High-Frequency
Words (Table and Book) and Two Low-Frequency Words

(Shovel and Camel)

Table

LIMBS-4

COLOR-variable
SIZE->1-foot-and-<2-yards
CROSS-SECTION-rectangular
FORM-rectangular
FORM-four-legged
MADE-OF-wood
MADE-OF-metal
MADE-OF-glass
MADE-OF-plastic
TEXTURE-smooth
NOISE-with-input
FUNCTION-esthetic
FUNCTION-cooking-and-or-eating
LOCATION-bedroom
LOCATION-living-room
LOCATION-kitchen
LOCATION-basement
LOCATION-farm
MOVEMENT-can-be-propelled

Shovel

LIMBS-0

COLOR-variable
SIZE->1-foot-and-<2-yards
CROSS-SECTION-circular
FORM-cylindrical
MADE-OF-wood
MADE-OF-metal
MADE-OF-other-manmade
TEXTURE-smooth
NOISE-with-input
FUNCTION-cleaning
LOCATION-basement
LOCATION-yard

Book

LIMBS-0

COLOR-variable

SIZE-<1-foot
CROSS-SECTION-rectangular
FORM-rectangular
MADE-OF-from-plant
TEXTURE-rough
TEXTURE-smooth
TEXTURE-leafy
NOISE-with-input
FUNCTION-esthetic
LOCATION-bedroom
LOCATION-living-room
LOCATION-kitchen
LOCATION-basement
LOCATION-farm
MOVEMENT-can-be-propelled

Camel

LIMBS-4

COLOR-brown
COLOR-yellow
SIZE->2-yards
CROSS-SECTION-circular
FORM-four-legged
MADE-OF-from-animal
TEXTURE-hairy
NOISE-on-its-own
FUNCTION-transportation
MOVEMENT-self-moving
MOVEMENT-grows

MOVEMENT-can-be-propelled
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and camel. The output layer consisted of one unit per word, so that
naming an object consisted of causing the activation of a (single) cor-
rect output unit.

This three-layered architecture is shown in Figure 3. The network
was trained such that the number of times each word was presented
to the network was proportional to the natural logarithm of its Kucera
and Francis (1967) frequency. After about 500 teaching cycles or stimulus
presentations, the network had learned all of Crisman’s words except
camel and shovel, two of the least frequent words in the corpus. The
learning curves for these two words, as well as two of the most fre-
quent words in the corpus, table and book, are shown in Figure 4. After
about a thousand cycles, all the words were learned to the output
threshold of 0.6, although perfect learning (to an output threshold of
0.9) was not achieved until about 1,500 epochs. At this stage, the net-
work was ready for the lesioning experiments.

The fully working network was lesioned by damaging the intermedi-
ate layer of hidden units (see Figure 3).* Network lesions involved either
deleting a proportion of the hidden units or adding noise to a proportion
of the hidden units. Six lesioned networks comprise the “patient popu-
lation” for the current study, and are shown in Figure 5.

Unlike typical connectionist networks, this network does not con-
tain any fixed weights or unit activation values. Instead, these numerical
values that give the network its particular behavior have an inten-
tionally imprecise (or “fuzzy”) character (Zadeh, 1965), with any par-
ticular activation level or weight differing by 10% from a mean value.
Although such imprecision gives these networks inherent error, it is
usually subclinical in undamaged networks, leading to consistent
performance. Thus, the amount of imprecision in the networks does
not change after damage, but the effects of the imprecision become
significant as a direct consequence of the damage.

EMPIRICAL STUDY OF THE ARTIFICIAL SUBJECTS

We used Crisman’s (1971) study design to test the lesioned networks.
The examiner presented the entire set of 20 pictures to each network

4. Lesioning can be either focal or diffuse, with a variety of different techniques avail-
able for damaging networks, as summarized in Small (1991). Focal lesions typically
involve a spatially coherent set of connections or units (as focal brain lesions involve
a set of neurons and axons in a particular location of the brain), and diffuse lesions
involve damage to units and connections spread over the entire network (by analogy
again with diffuse brain lesions). Damage can include deletion of units or connections,
attenuation of their values, and addition of noise to their processing.
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Figure 4. Graph depicting the different rates of learning for the names of
two high-frequency objects and two low-frequency objects. The high-
frequency words table and book are learned within the first 600 stimulus
presentations (i.e., epochs), but the low-frequency words camel and shovel
are not fully learned until more than 1,000 epochs. Note that an output
value of 0.9 indicates a maximally learned value.

on each of 10 successive test sessions. The network named each pic-
ture in one of three ways: (a) correctly, (b) incorrectly, or (c) without
a response. As we did not address issues of phonological encoding,
we collapsed Crisman'’s 12 categories of error into these three broader
classes. Analysis of the errors included (a) error frequency as a func-
tion of word frequency; (b) response variability over each of the 10
test sessions for each network; and (c) percentage agreement between
the responses during the first and last test sessions.

Figure 6 plots the mean number of errors for each of the six chronic
aphasic subjects and each of the six network subjects. Error bars show
the standard deviations of this error. Figure 7 shows the percent agree-
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Figure 5. Six “artificial subjects” (i.e., computer networks) participated in
the experiment. The black bars show the three networks from which
hidden units were deleted. The checked bars show the three networks that
had noise added to their hidden units.
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Figure 6. The results of the computational experiments demonstrate that
the mean number of naming errors by the human subjects and by the
networks are similar. The graph also shows that the standard deviations of
this error are likewise comparable.
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Figure 7. Response variability can also be demonstrated by comparing
specific results of two different testing sessions. This graph shows the
percent agreement between the 1st and 10th test sessions for the human
subjects and the networks. The human and artificial subjects have compa-
rable performance.

ment between the answers given by each subject during the 1st and
10th test sessions. These graphs demonstrate that within the constraints
of a simple computational model, it is possible to simulate response
variability such as that demonstrated by Crisman’s subjects.

The increased error by aphasic subjects on low-frequency words was
not reproduced in the model. However, Crisman’s words were not
normalized for length and a large proportion of the difference in number
of errors was caused by sound errors, which were not addressed by
the model. In addition, the data show that one human subject was
significantly worse in average performance than any of the computer
networks, yet the behavioral variability of this subject between Ses-
sion 1 and Session 10 was similar to that of the networks.

CONCLUSIONS

The conclusions of this study depend on how the model works, and
what its structure and function imply for understanding response
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variability in aphasic patients. To simulate performance variability,
one very simple change was made to the typical neural network archi-
tecture. Instead of using precise numerical values in the simulated
neurons and synapses, we made these values imprecise, subject to a
percent error in either direction.

The neurobiological speculation arising from this computational
experiment is that, in the human brain, such variables as axonal con-
duction and synaptic integration are likewise subject to random vari-
ation from the milieu intérieur, or internal homeostatic environment
(Bernard, 1865), and that this leads to variability in performance. Clinical
efforts to manipulate this environment, such as pharmacological
intervention and behavioral training, could serve to maximize the
amount of time a patient spends in a more favorable state. In the unim-
paired computer network, and possibly in normal people, many tasks
are so overlearned that response variability does not come into play.
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