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ERRATUM

In Volume 21 (1993) the article “The Use of Signal Detection Theory to
Evaluate Aphasia Diagnostic Accuracy and Clinician Bias,” by Donald A.
Robin and Malcolm R. McNeil, was printed incompletely. The correct
version follows.

Diagnosing aphasia involves differentiating it from other speech-language
pathologies that resemble it. This differentiation is difficult because the
symptom complex required for most definitions of aphasia include a
variety of behaviors shared by other language and communication impair-
ments such as those associated with confusion, dementia, right hemi-
sphere disorders, traumatic brain injury, schizophrenia, malingering, and
some forms of motor speech disorders. The validity and reliability of the
differential diagnoses among the neurogenic and psychiatric pathologies
have been approached from a variety of perspectives. For example, Hal-
pern, Darley, and Brown (1973) used the pattern of performance across a
variety of speech, language, and other cognitive tasks to construct a
differential profile of performance for confused, demented, and aphasic
patients. Wertz and Rosenbek (1971) also profiled differentiation of apraxia
of speech from aphasia.

Recently, discriminant function analyses have been used to construct a
statistical profile for the differentiation of aphasia from conditions resem-
bling it. The Porch Index of Communicative Ability (PICA) (Porch, 1971) has
been used to differentiate aphasia from malingering (Porch, Frieden, &
Porec, 1977), normal (Brauer, McNeil, Duffy, Keith, & Collins, 1990), and
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from right hemisphere damage (Brauer et al., 1988). The Revised Token Test
(RTT) (McNeil & Prescott, 1978) has been used to differentiate left hemi-
sphere damaged-aphasic, right hemisphere damaged-nonaphasic and nor-
mal individuals using discriminant analyses (McNeil, Brauer, & Prescott,
1988).

While the statistical profile analyses provide useful clinical insight into
general areas of impaired and unimpaired functions, they have limited
information for generating differential diagnosis standards. The discrimi-
nant function studies offer information on the accuracy and bias of a
particular test; however, they provide no opportunity to evaluate individ-
ual clinicians. It would be useful to have a method of assessing the
accuracy and bias (the tendency to favor one outcome over another) for
individual clinicians. The theory of signal detection (TSD) quantifies accu-
racy and response bias for test or individual clinicians. This paper
(1) outlines the major tenets of TSD, (2) discusses TST application to
diagnosis in aphasia, and (3) presents the results of an initial application
of TSD in assessing accuracy and bias in aphasia diagnosis using PICA
test data.

OVERVIEW OF TSD AND ITS RELATION
TO DIAGNOSTICS

The assumption was made that no diagnostic system, test, or clinician is
perfectly accurate no matter how objective each may be. Moreover, the
valid evaluation of the accuracy and bias of diagnostic systems is critical
in understanding their potential clinical value and diagnostic accuracy
must precede the evaluation of treatment efficacy and cost-benefits (Swets,
1988; Swets & Pickett, 1982).

Statistical decision theory, translated into TSD, can be traced to Black-
well in the early fifties (Blackwell, 1953; Blackwell, Prichard, & Ohmart,
1954). For three decades Swets and colleagues (e.g., Green & Swets, 1966;
Swets, 1959, 1988; Swets & Pickett, 1982) have pioneered the theory’s appli-
cation to diagnostic systems. Originally developed in World War II to
assist in submarine detection, TSD has been used widely in psychophysi-
cal experiments (e.g., Gescheider, 1985; Green & Swets, 1966) in order to
assess the true accuracy of detecting a stimulus.

In any discrimination task there are two possible states: Noise (N) and
Signal-plus-Noise (SN). The observer’s job is to determine if SN is pres-
ent or just N. Noise arises from external sources (e.g., the wind, rain,
traffic or human noise such as speech or babble) as well as internal
sources (e.g., from the observer’s physiology). Given these two states (N
and SN), there are four possible judgment outcomes at any given time. As
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Table 1. Four Possible Outcomes When Presented With Signal Plus
Noise (SN) or Noise (N)

Subject Response
SN N
Actual SN HIT MISS
State
N FpP N

shown in Table 1, an observer may say SN when SN is present, a HIT
(correct detection or true positive). Or the observer may say N when SN
is present, a MISS (false negative). Likewise, the observer may say SN
when N is present, (a FALSE POSITIVE [FP] or false alarm) or the observer
may say N when N is present, (a TRUE NEGATIVE [TN] or correct
rejection).

Knowledge of the raw numbers in each of the cells compared to the
total number of trials allows one to calculate the probability of each event.
As shown in the hypothetical case in Table 2, there are a total of 200 trials:
100 are SN and 100 are N. The observer said SN 60 times and N 40 times
in 100 SN trials. Thus, in this example, the probability of a hit, P(hit), is .60
and the probability of a miss, P(miss), is .40. Of the 100 trials in which N
was present, the observer said SN 25 times and N 75 times; thus, P(FP) is
25and P(TN) is .75. P(miss) = 1 - P(hit) and P(TN) = 1- P(FP). Therefore,
the percent of hits and FPs are needed to determine true sensitivity
(accuracy) and bias. A point that cannot be overly stressed is that accu-
racy cannot be assessed based on percent correct (hits) alone; FPs must be
accounted for as well. This point will be elaborated below.

Knowledge of hits, misses, FPs, and TNs (hits and FPs) allows for TDS
application to evaluate a diagnostic system. Consider SN to be the abnor-
mal case (e.g., an individual with aphasia) and N to be any other state
(e.g., normal). How N is defined can be varied systematically to provide
different degrees of precision when evaluating a diagnostic system. Given
any diagnostic decision, the clinician is faced with the problem of choos-
ing SN or N, and any of the four outcomes (hits, misses, FP, TN) are
possible.

A hypothetical example of diagnostic accuracy will serve to demon-
strate the need for a better accuracy measure than percent hits alone.
Clinician Y is 100% correct in the identification of aphasia when aphasia
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Table 2. Hypothetical Data and Response Frequencies When
Presented With Signal Plus Noise (SN) or Noise (N)

Subject Response

SN N TOTAL #
Actual SN 60 40 100
State
N 25 75 100

P (HIT) = .60 P (MISS) = 40 P (FP) = .25 P(TN) = .75
P (MISS) =1 -P (HIT) P(TN)=1-P (FP)

is present (i.e., P[hit] = 1.0 and Plmiss] = 0.0). Clinician Z is only 70%
correct in saying aphasia is present when the person actually has aphasia
(P[hit] = .70 and P[miss] = .30). Y, under most traditional criteria, would
be considered superior. However, if you were also told that Y identified
90% of the normal persons who came into his clinic as aphasic (i.e.,
P[FP] = .9 and P[TN] = .1) and Z had a FP rate of only 5% (P[FP] = .05
and P[TN] = .95), you might reconsider your evaluation of the adequacy
of these individuals and be forced to conclude that Z was a better diag-
nostician than Y. Thus, the percent correct alone is an inadequate mea-
sure of accuracy. One must account for FPs as well as hits. As will be
shown, TSD allows one to derive a better measure of accuracy based on
hits plus FPs than percent hits alone.

TDS also considers a second importance area, the bias with which one
approaches a task. In TSD, bias conventionally refers to the tendency to
favor a positive outcome (hits). Both tests and individual clinicians have
biases. Numerous factors affect these biases, including: (1) a clinician’s
background and training, (2) the assumptions a clinician or test (or both)
brings to a given diagnostic situation, (3) a clinician’s environment (e.g.,
work setting), (4) a clinician’s mood, and/or (5) a clinician’s cost-benefit
assessment of a given situation.

Consider the following hypothetical diagnostic situation. General X is a
military radar operator with the job of detecting incoming missiles. Gen-
eral X has family living in the area of his surveillance and wants to make
sure that no missiles come close to populated areas, especially those
where his family live. Because of his personal and professional situation
he adopts a lenient response bias. That is, he wants to make sure that
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when a missile is detected, he will not miss it. Thus, even though a
defensive missile will be launched every time he detects an incoming
missile, he launches his defensive missile any time he detects a signal on
his radar screen. Because aircraft other than missiles are also detected on
the screen, the signal detected may or may not be a missile. As a result,
General X has a high FP rate, but never misses an incoming missile. For
the General, the cost of missing an incoming missile is greater than the
benefit of not taking down an allied or neutral plane. When General X
goes off duty, Private A assumes the radar watch. Although the defense
of the country from attack is paramount in both General X’s and Private
A’s minds, Private A's family is scheduled to arrive by air some time
during his work shift. He knows that every time he launches a defensive
missile he is likely to hit his target because they are very accurate. He also
reasons that the attack missiles are fairly inaccurate and the chance of
hitting a populated area is low. Private A adopts a bias that dictates that
he will launch a defensive missile only when he is absolutely positive that
the signal detected on the radar screen is an offensive missile. His hit rate
is lower than General X’s, but so is his rate of FPs. Private A’s bias dictates
that the cost of a FP far outweighs the benefit derived from identifying
every single incoming missile. The distributions of decisions based on N
and SN form the data on which TSD is computed.

Figure 1 shows two distributions that represent N on the left and SN on
the right. The distributions are similar in shape and their variance is
equal. (Note that TSD can handle nonparametric data as well.) Notice
that the two curves overlap to some degree. That is, in all situations there
are instances where one may report SN when only N is present or only N
when SN is present. One main index of accuracy, d', is represented by the
difference between the peaks of the N and SN distributions. The greater
the overlap of N and SN distributions, the less the distance between the
peaks, and the lower the d'. The distributions at the top of Figure 1 have
the highest d' and represent the highest accuracy. The bottom distribu-
tions with the most overlap have the lowest d' and represent the poorest
accuracy. The middle distributions represent some intermediary accuracy
level. Accuracy as measured by d' can range from complete overlap of the
distributions (d' = 0.00) to as high as about 4.67.

Figure 2 represents theoretical N (top) and SN (bottom) distributions.
The perpendicular line represents the response bias which in TSD terms
is called £3. Responses to the right of 8 are positive for SN (clinician says
yes, SN present) whereas those to the left favor N (clinician says no). At
the intersection of the two distributions £ is 1, which refers to equal bias
for SN and N. As 3 decreases, a more lenient criterion is adopted (hits
and FPs increase) and as 8 increases a more stringent criterion is adopted
(hits and FPs decrease). Also note that the areas of the distribution that
represent different cells in contingency Table 1 are shown in this figure.
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Figure 1. Three different theoretical distributions of noise (N) and signal-plus-
noise (SN). Accuracy (d') is defined as the distance between the two peaks of
the N and SN distributions. The further the distance between the two peaks,
the better the accuracy of and the higher the d'. Thus, the top N and SN distri-
butions represent the highest accuracy and d' is relatively large. The lowest N
and SN distributions are almost overlapping and accuracy is poor, d' is close to
0. Reprinted from G. A. Gescheider, Psychophysics: Method, theory and application
(2nd ed.), p. 87 with permission of Lawrence Erlbaum Associates, Hillsdale,
New Jersey.

These probabilities depend on one’s bias. Moreover, accuracy does not
change as a function of shifts in bias, although the relative percent of hits
and FPs do.

One other aspect of TSD needs to be discussed before the data are
presented. In order to apply TSD to diagnostic situations, receiver operat-
ing characteristic (ROC) curves—a plot of the P(hits) by the P(FP)-—need
to be developed. The measure d', reflects the distance between the N and
SN distributions, which is reflected in the position of the ROC curve on
the graph. Figure 3 is a graph of an ROC curve with a d' of 1.0. The
diagonal straight line is a d' of zero, where the two distributions have
complete overlap. The N and SN distributions that give rise to the posi-
tion of the ROC curve are shown along with three different biases (s)
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Figure 2. Theoretical distributions of noise (N) on top and signal-plus-noise
(SN) bottom. Note that the distance between the peaks represents accuracy or
d'. The perpendicular line represents bias (labeled as criterion in the figure) or
8. For responses to the right of the line the clinician says yes, SN present and
to the left of the line the clinician says no, SN not present (i.e., N present).
Note the areas of overlap between the two distributions. Thus, all four condi-
tions (Hit, FP, miss, and TN) are represented. Hits, (hit rate in figure [P=.77D
are shown by the lined portion of the SN distribution; FPs, false alarm in fig-
ure (P = .23), by the lined portion of the N distribution; misses, miss rate in
figure (P = .23), by the blank portion of the SN distribution; and TN, correct
rejection in figure (P = .77), by the blank portion of the N distribution. As the
perpendicular line moves to the left a more lenient bias is adopted, 8 goes up.
In this case both the hits and FPs increase. As the perpendicular line moves to
the right, 8 goes down and a more stringent bias is adopted. In this case both
hits and FPs decrease. Reprinted from G. A. Gescheider, Psychophysics: Method,
theory and application (2nd ed.), p. 90, with permission of Lawrence Erlbaum
Associates, Hillsdale, New Jersey.
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Figure 3. Relation between the ROC curve and the theoretical N and SN distri-
butions that represent a d' of 1.0. The straight diagonal represents a d' of 0 as
hits and FPs are equal. Each of the three data points represent a different bias
at the same accuracy level (the distance between the peaks of the N and SN
distributions is constant), only the perpendicular line moves. The most lenient
bias, highest 8 is represented by the upper distributions for which both hit and
FP rates are high. The most stringent bias, lowest 8 is represented by the bot-
tom distributions in which both hit and FP rates are low. Reprinted from G. A.
Gescheider, Psychophysics: Method, theory and application (2nd ed.), p. 95, with
permission of Lawrence Erlbaum Associates, Hillsdale, New Jersey.

that lie along the curve. Different points along the curve represent differ-
ences in bias or 8, with the same d'. Thus, d' is an accuracy measure
independent of bias. The construction of ROC curves allows an assess-
ment of accuracy and bias. The uppermost N and SN distributions have
the bias line far to the left, thus indicating a low 8 and a lenient bias.
Moving down the figure to the lower distributions, 8 increases, indicating
more stringent biases. Figures 4 and 5 show ROC curves for d's of 2.0 and
0 respectively, each with three bias points.

If diagnostician’s data are shown to fit the theoretical curves, then d'
and £ may be utilized without developing the entire curve. Convenient
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Figure 4. Same as Figure 3, but d' = 2.0. Reprinted from G. A. Gescheider, Psy-
chophysics: Method, theory and application (2nd ed.), p. 94, with permission of
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

tables for d' and 8 exist for any known hit and FP rate. To illustrate TSD
application to aphasia diagnostics and to explore its value, ROC curves,

d'and 8 data for individual clinicians using the PICA to diagnose aphasia
are presented.

METHOD

Judges

Four individual judges formally trained and experienced in the adminis-
tration, scoring, and interpretation of the PICA, evaluated item, subtest,
and overall scores from 246 different PICA tests. A fifth judge (subject 3)
was a PICA-trained, but generally inexperienced graduate student seek-
ing a master’s degree in speech-language pathology.
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Figure 5. Same as Figure 3, but d' = 0.0. Reprinted from G. A. Gescheider, Psy-
chophysics: Method, theory and application (2nd ed.), p. 96, with permission of
Lawrence Erlbaum Associates, Hillsdale, New Jersey.

PICA Data

To determine the accuracy of responses, one needs to know, apriori,
which PICA tests were derived from normal and which were from apha-
sic individuals. In other words, a gold standard for diagnosis is required.
Although much theory and philosophy underlies the final categorization,
only the general criteria and methods used for making the decisions are
discussed. First, the normal subject’s PICA performance was provided by
Duffy and Keith from their 1980 standardization for normal individuals.
Subjects met the criteria for normal as defined in that investigation. The
aphasic PICA data were derived from the speech-language pathology
patient records at the VA hospital in Madison, Wisconsin. The aphasia
diagnosis was made or certified by either Wertz, Rosenbek, or Collins.
Although the PICA was used in the patient’s diagnosis, in no case was
the categorization based solely on PICA data. A variety of other stan-
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dardized, unstandardized and informal assessment tools, interviews, case
histories, and medical records were also utilized to arrive at the final
diagnosis. Aphasia was defined in a manner similar to Darley (1982). That
is, all aphasic subjects had multimodality language deficits that were
disproportionate to other intellective deficits. Onset was sudden and
secondary to a focal dominant hemisphere lesion. Of the 246 total PICA
tests to be evaluated, 103 were from aphasic adults (SN distribution) and
143 were from normal non-brain-damaged individuals (N distribution).

Judges were first required to indicate whether the test presented was
from an aphasic or normal individual (subjects said yes for aphasia and
no for normal). The clinicians then rated the confidence of their decision
on a five-point equal-appearing interval scale from 1 (not very sure) to 5
(very sure). The rating scale method is a cost effective means of applying
TSD to clinical situations in order to generate the ROC curve and to test
the validity of the approach (Swets, 1988; Swets & Pickett, 1982). Each
point on the rating scale represents a different bias. An individual who is
very sure of a decision will have a stringent bias (8 will be high) while the
bias associated with a rating of not very sure will be very lenient (8 will be
low). In this manner up to four points along an ROC curve, each with
differing bias, were obtained. The maximum number of points is four as
the most lenient criterion associated with the rating of 1 will always result
in a P(hit) and P(FP) equaling 1.0.

From the rating scale data, the P(hit) and P(FP) for each person at the
different biases were determined. ROC curves for each person were plot-
ted and the data were compared to the theoretical curves. From these,
accuracy and bias measures were derived. The d' and £ for each person
representing their typical levels were determined.!

RESULTS AND DISCUSSION

Table 3 shows each subject’s d' and 8 for the diagnostic decision (yes/no
portion of the study). These data generally are thought to reflect the
typical accuracy and bias of each judge. High accuracy is indicated by a d'
better than 3.5. None of these subjects were close to achieving a high
accuracy. The highest d' was 2.78. This judge, subject 5, had the least
experience with aphasia and the PICA other than the student. Subject 4
with approximately 12 years of experience with the PICA, who uses it as a

1. The computer program to calculate the best fit for the data and determine accuracy and
bias were kindly provided by Drs. Donald D. Dorfman and Kevin Burnbaum at the Univer-
sity of lowa in the Departments of Psychology and Radiology, respectively. The original
program can be found in Dorfman and Alf (1969).
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Table 3. Accuracy (d") and Response Bias (8) for Each Subject at
Typical Response Level

SUBJ # d’ 8
1 1.96 410
2 2.66 2.56
3 242 3.60
4 1.00 0.46
5 2.79 1.72

Note: Subject 3 was a student.

primary diagnostic tool, had a very low d' of 1.0. At this low level of
accuracy, at typical bias, this judge had a P(hit) of .86 and a P(FP) of .62.
Thus, this judge identified 86% of the aphasic tests as aphasic but also
identified 63% of the normal tests as aphasic. By contrast, subject 5, who
had the highest accuracy, had a P(hit) of .89 (89% correct aphasic identifi-
cation) but a P(FP) of only .06 (6% incorrect identification of normal
subjects) at their typical bias. The student clinician (subject 3) had a
similar accuracy level to most of the other judges.

Table 3 also shows the bias with which the subjects typically approached
the task. While 8s were generally indicative of a relatively stringent bias
(>1.0), there was a range of biases among the subjects. Subject 4 had a
very lenient bias (8 = .46) while Subject 1 was fairly stringent (8 = 4.10).
Thus, some individuals were more willing than others to identify an
individual as having aphasia given the PICA information they reviewed.

Figure 6 shows the ROC curves for Subjects 4, triangles, and 5, circles.
The dotted and solid lines represent the theoretical curves for a d' of 1.00
and 2.79, respectively. The diagonal line is a d’ of zero. These data produce
a good fit with the theoretical curves; in fact, each of the 5 subjects’ data
produced a good fit with the theoretical curves. It is interesting to note
that Subject 4 reported using a relatively lenient response bias (typical
R = .46) and that this bias caused the high degree of inaccuracy. Recall,
however, that d' is independent of bias. At subject 4's most lenient bias
(8 = .32), d' was the same as at his more stringent biases (3 = .43, 46, or
.70). Subject 5's data illustrate that one may adopt a stringent bias (8 = 6.78)
and have only 75% correct, or one may use a lenient bias (8 = .48) and
achieve a 96% hit rate but produce the same accuracy. Comparison of
Subjects 4 and 5 at the similar bias (8 = 46 and .53, respectively) was
independent of their very different accuracy levels (d' = 1.0 and 2.78,
respectively). Thus, bias can be assessed independently of accuracy using
TSD.

Figure 7 represents the theoretical ROC curves for each of the five
subjects. Notice how the position of the ROC curve varies as a function of
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Figure 6. ROC curves for subjects #4 and #5 generated from actual data and
theoretical data.

accuracy. As d' is lowered, the curve approaches the zero line. Different
points along each curve represent differing biases. All subjects achieved a
hit rate of 80%-90% using their typical bias. Their FPs varied, however,
and thus accuracy differed among them.

In summary, TSD provided a method of investigating accuracy and
bias in aphasia diagnosis. PICA tests alone did not result in acceptable
accuracy levels given the extant literature suggesting that a d' greater
than 3.5 is achieved in most good diagnostic systems. However, individ-
ual clinicians can use TSD to check their own bias and accuracy. Future
studies could systematically evaluate accuracy and bias when differing
amounts of information are available to the diagnostician. For instance,
accuracy and bias could be determined when other standardized aphasia
test data are added to those of the PICA. Accuracy and bias could then be
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Figure 7. Best fit theoretical ROC curves for all subjects based on actual data.

determined when a case history or a brain scan is part of the information
provided. One could vary noise by asking judges to determine if aphasia
is present or if the patient is normal, has dementia, or has right hemi-
sphere involvement. Accuracy and bias will vary as a function of the
amount of information provided and the amount of noise in the system.

TSD is also useful in cost-benefit assessment. One can objectively deter-
mine which measures give the highest accuracy. The minimum amount of
information that provides the highest accuracy measures can be deter-
mined for any given diagnostic decision.

This paper examined the basic principles of TSD and its application
to aphasia diagnosis. Future studies will examine if the assumptions of
d' (equal variance of N and SN) hold true. If not, other measures of
accuracy may be more appropriate. Moreover, instead of using 8 as the
bias measure, Inf8 (natural log of ) may prove to be a better metric as
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lenient biases are indicated by £8s between 0 and 1.0 and stringent biases
by £ greater than 1.0. The investigation of these and several related meth-
odological issues in the application of TSD to aphasia assessment should
assist the clinical aphasiologist in their selection of the most sensitive and
specific tools and procedures for their clinical practice.

REFERENCES

Blackwell, H. R. (1953). Psychophysical thresholds: Experimental studies of methods
of measurement. Bulletin of the Engineering Research Institute, No. 53, University
of Michigan.

Blackwell, H. R., Prichard, B. S., & Ohmart, T. G. (1954). Automatic apparatus for
stimulus presentation and recording in visual threshold experiments. Journal of
the Ophthalmology Society of America, 44, 322-326.

Brauer, D., McNeil, M. R., Collins, M. ]., Deal, J. L., Duffy, J. R. and Keith, R. (1988).
Discriminating normal, aphasic and right hemisphere performance with the
PICA. (Abstract) ASHA, 30(10), 173.

Brauer, D., McNeil, M. R, Duffy, J. R., Keith R. L., & Collins M. J. (1990). The
differentiation of normal from aphasic performance using PICA discriminant
function scores. In T. E. Prescott (Ed.), Clinical Aphasiology, 18, 117-129,

Darley, F. L. (1982). Aphasia. Philadelphia: W. B. Saunders.

Dorfman, D. D. and Alf, E., Jr. (1969). Maximum likelihood estimates of parame-
ters of signal-detection theory and determination of confidence intervals-
Rating method data. Journal of Mathematical Psychology, 6, 487-496.

Duffy, J. R. & Keith, R. (1980). Performance of non-brain injured adults on the
PICA: Descriptive data and a comparison to patients with aphasia. Aphasia-
Apraxia-Agnosia, 2(2), 1-30.

Gescheider, G. A. (1985). Psychophysics: Method, theory, and application (2nd ed.).
Hillsdale: Lawrence Erlbaum Associates.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. New
York: Wiley. (Reprinted 1974, Huntington, NY: Krieger).

Halpern, H., Darley, F. L., & Brown J. R. (1973). Differential language and neuro-
logical characteristics in cerebral involvement. Journal of Speech and Hearing
Disorders, 38, 162-173.

McNeil, M. R., Brauer, D. & Prescott, T. E. (1988). Discriminating normal, aphasic
and right hemisphere performance with the RTT. (Abstract) ASHA, 30(10), 161.

McNeil, M. R., & Prescott, T. E. (1978). Revised Token Test. Austin: PRO-ED.

Porch, B. E. (1971). Porch Index of Communicative Ability. Palo Alto: Consulting
Psychologists Press.

Porch, B. E., Frieden, T., & Porec, ]. (1977). Objective differentiation of aphasic
versus nonorganic patients. Paper presented to the International Neuropsy-
chology Association, Santa Fe, NM.

Swets, J. A. (1959). Indices of signal detectability obtained with various psycho-
physical procedures. Journal of the Acoustical Society of America, 31, 511-513.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240,
1285-1293.

Swets, ]. A., & Pickett, R. M. (1982). Evaluation of diagnostic systems: Methods from
signal detection theory. New York: Academic Press.

Wertz, R. T. & Rosenbek, J. C. (1971). Appraising apraxia of speech. Journal of the
Colorado Speech and Hearing Association. 5, 18-36.



