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ABSTRACT

This thesis is a computational investigation on several aspects of the constant stress
and pressure rheology of dense polydisperse colloidal suspensions. Using bidisperse
suspensions as a model, we first study the influences of size polydispersity on short-
time transport properties. The hydrodynamic interactions are calculated using
a polydisperse implementation of Stokesian Dynamics (SD) via a Monte-Carlo
approach. We carefully compare the SD computations with existing theoretical
and numerical results, and critically assess the strengths and weaknesses of the SD
algorithm. For suspensions, we find that the Pairwise Additive (PA) approximations
with the Percus-Yevick structural input is valid up to volume fraction φ = 0.1. We
also develop an semi-analytical approximation scheme to predict the wavenumber-
dependent partial hydrodynamic functions based on the δγ-scheme of Beenakker &
Mazur [Physica 120A (1983) 388 & 126A (1984) 349], which is shown to be valid
up to φ = 0.4.

To meet the computation requirements of dynamic simulations, we then developed
the Spectral Ewald Accelerated Stokesian Dynamics (SEASD) based on the frame-
work of SD with extension to compressible solvents. The SEASD uses the Spectral
Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for
mobility computation with flexible error control, a novel block-diagonal precondi-
tioner for the iterative solver, and the Graphic Processing Units (GPU) acceleration.
For further speedup, we developed the SEASD-nf, a polydisperse extension of the
mean-field Brownian approximation of Banchio&Brady [J. Chem. Phys. 118 (2003)
10323]. The SEASD and SEASD-nf are extensively validated with static and dy-
namic computations, and are found to scale as O(N log N ) with N the system size.
The SEASD and SEASD-nf agree satisfactorily over a wide range of parameters for
dynamic simulations.

Next, we investigate the colloidal film drying processes to understand the structural
and mechanical implications when the constant pressure constraint is imposed by
confining boundaries. The suspension is sandwiched between a stationary substrate
and an interface moving either at a constant velocity or with constant imposed stress.
UsingBrownianDynamics (BD) simulationswithout hydrodynamic interactions, we
find that both fast and slow interface movement promote crystallization via distinct
mechanisms. The most amorphous suspension structures occur when the interface
moves at a rate comparable to particle Brownian motion. Imposing constant normal
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stresses leads to similar suspension behaviors, except that the interface stops moving
when the suspension osmotic pressure matches the imposed stress. We also compare
the simulation results with a continuum model. This work reveals the critical role
of interface movement on the stress and structure of the suspension.

Finally, we study the constant shear stress and pressure rheology of dense colloidal
suspensions using bothBDandSEASD-nf to identify the role of hydrodynamic inter-
actions. The constant pressure constraint is imposed by introducing a compressible
solvent. We focus on the rheological, structural, and dynamical characteristics of
flowing suspensions. Although hydrodynamic interactions profoundly affect the
suspension structure and dynamics, they only quantitatively influence the behaviors
of amorphous suspensions. The suspension becomes glassy, i.e., exhibits flow-arrest
transitions, when the imposed pressure is high, and reveals the Shear Arrest Point
(SAP) in the non-Brownian limit. From a granular perspective, we find that the
suspensions move away from the arrested state in a universal fashion regardless
of the imposed pressure, suggesting the critical role of the jamming physics. The
hydrodynamic simulations quantitatively agree with the experiments of Boyer et
al. [Phys. Rev. Lett. 107 (2011) 188301] with a volume fraction shift. The results at
all imposed stresses and pressures reveal a generalized Stokes-Einstein-Sutherland
relation with an effective temperature proportional to the pressure. We develop a
model that accurately describes the rheology and diffusion of glassy suspensions.
Our results show the critical role of pressure on the behaviors of dense colloidal
suspensions.
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2φ, in the dilute limit. . . . . 51



xvi

2.16 (Color online) The particle shear viscosity ηs/η0−1 as a function of φ
for very dense bidisperse suspensions with y1 = 0.5 and λ = 1, 2, and
4. The inset shows the logarithmic shear viscosity divergence, with
ε = 1 − φ/φm. Also presented in lines are the asymptotic behaviors,
Eq. (2.70), with fitted constants from Table 2.2 for λ = 1(solid),
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3.1 The bidisperse suspension partial radial distribution functions gαβ (r)

(upper panel) and partial static structure factors Sαβ (q) (lower panel)
for φ = 0.5, y = 0.5, and λ = 2, directly measured from the simu-
lations (open circles), and computed via the Percus-Yevick (PY) and
Rogers-Young (RY) integral equation schemes. Note that the function
S22(q) has been shifted upwards by one unit along the vertical axis
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3.2 Schematic representation of the effective medium concept. Straight
red, green and black lines indicate theαα, β β andα , β correlations,
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spectively. The interspecies partial hydrodynamic functions H12(q)
are shifted by 0.1 for y = 0.5 and by 0.2 for y = 0.9 for clarity
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rescaled δγ scheme with fα from Eq. (3.39) and fαβ from Eq. (3.34)
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3.5 The fitted q-independent scaling factors (a): f1, (b): f2, and (c): f12
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suspensions with λ = 2 and full hydrodynamics for volume fractions
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4.1 The number of far-field iterations, i.e., the number of the grand
mobility tensor M̃ evaluations, as a function of the GMRES residual
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4.2 The wave-space accuracy measured by e∞,r (E) [Eq. (4.78)] as a
function of the interpolation point P (a–c) and the CPU wall time
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√
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is orthogonal (γ = 0), and the particle size effects are accounted using
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4.4 (Color online) The overall accuracymeasured in e∞,r (E) as a function
of the splitting parameter ξa1 and the shape parametermwith M = 32
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point P = 9 (top row) and 15 (bottom row). The thick black lines
represent m =

√
πP. The simulation cell is orthogonal (γ = 0), and

the particle size effects are accounted using the hybrid approach. . . . 136
4.5 (Color online) The overall mobility accuracy measured in e∞,r (E) as

a function of the splitting parameter ξ with N = 50, 100, and 200,
and M = 32 (filled symbols) and 64 (open symbols) for (a): constant
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4.6 The accuracy of GPGPUmobility computation measured in e∞,r (E).
(a): the wave-space accuracy as a function of P for various m with the
same parameters in Fig. 4.2b. The GPU results are shown in black
lines, and the CPU results in Fig. 4.2b are reproduced in gray lines.
The values of m are annotated in the figure. The solid and dashed
lines represent the case of γ = 0 and 0.5, respectively. (b): The
overall mobility accuracy from the GPU (solid lines) and the CPU
(dashed lines) computations as a function ξa1 with rc = 4(ai + a j )
and m =

√
πP. The corresponding M and P are annotated in the
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4.7 (Color online) The wall times (in second) of 100 time steps in dy-

namic simulations at Pe = 1 as functions of the particle number N

using the conventional SD, SEASD, and SEASD-nf. The open sym-
bols represent the CPU mobility computation and the filled symbols
the GPU mobility computation. The dashed line show the O(N2.2)
scaling, and the dash-dotted line show the O(N log N ) scaling. The
suspension is bidisperse with λ = 2, y2 = 0.5, and φ = 0.45 starting
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tational self-diffusivities, dt

s,α and dr
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the total volume fraction φ for monodisperse and bidisperse hard-
sphere suspensions with λ = 2, y2 = 0.5. The results are scaled
with the single particle translation and rotational diffusivity, dt

0,α and
dr

0,α, respectively. The SEASD results are shown in symbols and the
conventional SD results from Wang & Brady [11] are shown as lines. 144

4.9 (Color online) The species far-field short-time translational and rota-
tional self-diffusivities, dt,ff

s,α and dr,ff
s,α , respectively, as functions of the

total volume fraction φ for bidisperse hard-sphere suspensions with
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The symbols are the computation results, and the dashed and the
dash-dotted lines are polynomial fittings for the small and the large
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4.10 (Color online) The scaled species instantaneous sedimentation ve-
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monodisperse and bidisperse hard-sphere suspensions with λ = 2
and y2 = 0.5. The single particle sedimentation velocity is U0,α. The
SEASD results are shown in symbols and the conventional SD results
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4.15 (Color online) Different contributions to the osmotic pressures of
monodisperse and bidisperse hard-sphere suspensions: (a) the Brow-
nian contribution scaled with nkBT , ΠB/(nkBT ), and (b) the flow
contribution scaled with η0γ̇, ΠH/(γ̇η0), as functions of Pe. The
volume fraction is φ = 0.45 in both cases, and the bidisperse compo-
sition is λ = 2 and y2 = 0.5. . . . . . . . . . . . . . . . . . . . . . . 155



xxii

4.16 (Color online) The normal stress differences: (a) the first normal
stress difference N1 and (b) the second normal stress difference N2

as functions of Péclet number Pe. The volume fraction is φ = 0.45
in both cases and the bidisperse composition is λ = 2 and y2 = 0.5. . 157
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5.1 (Color online) (a): A sketch of the colloidal film drying process.
Colloidal particles of radius a are sandwiched between a stationary
substrate at z = 0 and an interface at z = H , moving either at constant
velocity Uw or in response to a constant normal stress Σe in the −z
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5.2 (Color online) The terminal gap width H as a function of Péclet
number PeU for constant velocity interface movement. The error
bars corresponds to variations in 300 independent simulations. The
inset shows the gap width H as a function of the volume fraction
φ for the initial H0 and φ0 in the simulations. The H (φ) operating
curve is superimposed over the H-φ equilibrium phase diagram of
confined hard-sphere systems from Fortini and Dijkstra [30] (with
permission). The terminal gap widths in the simulations are also
shown as circles in the inset. . . . . . . . . . . . . . . . . . . . . . 184

5.3 (Color online) The interface position H/a as functions of the scaled
time taΣe/ζ for constant normal stress interface movement with
PeΣ = 0.5, 1, 2, 10, and 50, annotated in the figure with the same
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5.4 (Color online) The overall order parameter Ξ as a function of gap
width H/a with (a): constant velocity interface motion with PeU =
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motion with PeΣ = 0.5, 1, 2, 5, 10, and 50. The main figure and the
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5.5 (Color online) Cut-plane views of the simulation cells at z = H − a,
z = H − 2.7a, and z = a at different gap locations H for (a):
PeU = 0.1, (b): PeU = 2, and (c): PeU = 50. The crystalline
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5.6 (Color online) The average planar radial distribution function in the
xy-plane, gxy (rxy), measured at z = H − a for PeU = 0.1, 2, and
50 when the gap width H = 6a. The results at PeU = 2 and 50 are
shifted up by 2 and 4, respectively, for clarity. The insets show the 2D
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the middle column in Fig. 5.5a, 5.5b, and 5.5c. . . . . . . . . . . . . 192
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5.7 (Color online) The normal stress profiles Σzz/(n0kBT ) in drying
processes with constant velocity interface movement at (a), (b):
PeU = 0.1, (c), (d): PeU = 2, and (e), (f): PeU = 50. Simulation
measurements are shown in (a), (c), and (e), and continuum model
results are shown in (b), (d), and (f). To reduce noise, simulation
stress measurements are averaged over 0.01a. The normal stresses
on the moving interface are shown in red, and the stress profiles at
the denoted H/a are shown in blue. Near the boundaries, the contact
stress and the suspension stress are connected by green dashed lines,
visible only at high PeU due to stress concentration. . . . . . . . . . 194

5.8 (Color online) The normal stress profiles Σzz/(n0kBT ) in drying pro-
cesses with constant normal stress interface movement at (a), (b):
PeΣ = 0.5, (c), (d): PeΣ = 2, and (e), (f): PeΣ = 50. Simulation
measurements are shown in (a), (c), and (e), and continuum model
results are shown in (b), (d), and (f). Other arrangements are identical
to Fig. 5.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.9 (Color online) The scaled suspension stress on the moving interface
as functions of the gap width H/a for (a): Σm/(PeU n0kBT ) for drying
with an interface at constant velocity at (from right to left) PeU = 1,
2, 5, 10, and 50 and (b): Σm/(PeΣn0kBT ) for drying with an interface
subject to constant normal stress at (from right to left) PeΣ = 1, 2,
5, 10, and 50. The insets show the stress on the stationary boundary
Σs/(n0kBT ) as functions of gap spacing for the same PeU or PeΣ. The
simulations results are shown in solid lines and model computations
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5.10 (Color online) Local volume fraction profile φ(z) in drying process
with constant velocity interface movement at (a), (b): PeU = 0.1, (c),
(d): PeU = 2, and (e), (f): PeU = 50. Simulation measurements are
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6.1 (a): The suspension steady shear viscosity ηs/η0 (left triangles)
and the long-time self-diffusivity ds

∞/d0 (right triangles), with d0 =

kBT/(6πη0a), as functions of Peσ in constant shear stress and pres-
sure simulations at an imposed pressure Πa3/kBT = 5. The filled
(open) symbols represent the flowing (arrested) states. Typical accu-
mulated strain γ (top) and volume fraction φ (bottom) at Peσ = 0.5
(b), 5 (c), and 10 (d) as functions of dimensionless time tσ/η0 are
also presented, with the corresponding Peσ annotated in (a). . . . . . 213

6.2 (Color online) The steady shear rheology of hard-sphere colloidal
suspensions with constant shear stress and pressure, (a): µ = σ/Π as
a function of Iv = η0γ̇/Π and (b): µ as a function of φ. Simulations at
the same imposed pressureΠa3/kBT are shown in the same symbols.
For suspensions exhibiting flow-arrest transitions, the filled (open)
symbols represent the flowing (arrested) states. The raw and the
scaled data of Boyer et al. [19] are shown in diamonds and triangles,
respectively. In (b), the dashed lines outline the boundary of the
flowing region, and the solid lines are contours of the shear viscosity
ηs/η0. The Shear Arrest Point (φSAP, µSAP) is shown as a star. . . . 215

6.3 (Color online)Universal viscosity divergences (a): the shear viscosity
ηs/η0 and (b): the incremental normal viscosity ηn/η0 as functions
of (φm − φ), the volume fraction difference from arrest, for flowing
suspensions with Π̄ ≥ 3.5. The inset of (a) shows φm as a function
of Π̄. The legends are identical to those in Fig. 6.2. . . . . . . . . . 217

6.4 (Color online) The system size dependence on (a): the suspension
shear viscosity ηs/η0, (b): the long-time self-diffusivity ds

∞/d0. and
(c): themaximumof the dynamic susceptibilitymax( χ4) as functions
of Peσ for constant stress and pressure simulations at Πa3/kBT = 5.
The filled (open) symbols represent the flowing (arrested) suspension
states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.5 (Color online) The initial condition dependence on (a): the average
volume fraction φ and (b): the average strain rate γ̇a2/d0, with d0 =

kBT/(6πη0a), as functions of the number of independent simulations
in the group Nsamp. The simulations are performed at Πa3/kBT = 5
(open symbols) and 50 (filled symbols). The stress Péclet number
Peσ are annotated in on the graph. The dashed lines show the overall
average of all 50 independent runs. . . . . . . . . . . . . . . . . . . 222
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7.1 The suspension equilibrium osmotic pressureΠ/(nkBT ) as a function
of the volume fraction φ, computed using constant pressure Brownian
Dynamics simulations. The suspension size polydispersity p.d. =
0.1. The dashed line is the osmotic pressure from Carnahan-Starling
equation of state for monodisperse suspensions. The error in φ is
smaller than the symbol size. . . . . . . . . . . . . . . . . . . . . . . 235

7.2 (Color online) Simulation results as functions of the stress Péclet
number Peσ = 6πσa3/kBT at an imposed pressure Π̄ = Πa3/kBT =

50. (a): the shear and the normal viscosities, ηs and ηn, respectively,
and (b): the volume fraction φ. In (b), the arrested results are shown
as open symbol. The insets of (a) show the time evolution of the
accumulated strain γ at Peσ = 145 and 215. The inset of (b) presents
the corresponding time evolution of φ at the same Péclet numbers. . 236

7.3 Equatorial slices of pair distribution function in the velocity-velocity
gradient g12(r ), velocity-vorticity g13(r ), and velocity gradient-vorticity
g23(r ) planes at various Peσ with an imposed pressure Π̄ = 50. The
slice width is 0.7a. On the panel for g12(r ) at Peσ = 145 the com-
pressional and the extensional axis are also highlighted. . . . . . . . 238

7.4 (Color online) The peak values of the pair distribution function in the
compressional and the extensional axes, max(gcomp) andmax(gext) as
functions of Peσ at the imposed pressure Π̄ = 50. The vertical dashed
line represents the estimated yield Peσ beyond which the suspension
begins to flow. The inset presents the radial variation of gcomp(r)
(solid line) and gext(r) (dashed line) at various Peσ, which are also
pointed out by arrows in the main figure with their corresponding
color. The curves are shifted for clarity when Peσ ≥ 215. . . . . . . 240

7.5 The static structure factors S12(q), S13(q), and S23(q) at various Peσ
with an imposed pressure Π̄ = 50. Each panel depicts the structure
factor S(q) in the wave space from −10qa to 10qa in both directions. 241
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7.6 (Color online) Diffusive dynamics of suspensions as functions of Peσ
at Π̄ = 50. The dash-dotted vertical lines represent the estimated ar-
rest Peσ. The measurements in the vorticity direction, denoted by
subscript 33, are shown as filled symbols in the main figures and
solid lines in the insets. In the velocity gradient direction, denoted by
subscript 22, the results are shown as open symbols and dashed lines.
(a): The scaled long-time self-diffusivities, ds

∞,33/d0 and ds
∞,22/d0.

The inset shows the time evolution of the mean-square displacement
in the 3- and 2-directions,

〈
x2

3

〉
and

〈
x2

2

〉
, at various Peσ, which

are highlighted by arrows for flowing suspensions, and by vertical
dashed lines for arrested suspensions in corresponding colors. (b):
The scaled wave-number dependent diffusivities, D33(qmin)/d0 and
D22(qmin)/d0, where qmin is the smallest measurable wave number
in the unit cell. The inset shows the time evolution of the func-
tions f33(q, t) and f22(q, t) defined in Eq. (7.25) at various Peσ. (c):
The scaled α-relaxation times, τα,33d0/a2 and τα,22d0/a2, measured
from the decay of the self-intermediate scattering function Fs (q, t) at
qa = 3.5. The inset shows the time evolution of the corresponding
Fs (q, t) in different directions at various Peσ. (d): The maximum
of the dynamic susceptibilities, max( χ4,33) and max( χ4,22), mea-
sured at wave number qa = 3.5 in different directions. The inset
shows the time evolution of the corresponding dynamic susceptibili-
ties χ4,αα (q, t) in different directions at various Peσ. . . . . . . . . . 243

7.7 (Color online) The time evolution of the accumulated strain γ with
(Π̄, Peσ) = (50, 145). Different solid lines represent results from
different runs. The dashed lines are averaged from 50 independent
runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

7.8 (Color online) The probability distribution of the strain rate γ̇η0/σ

at various Peσ with the averaging time tmσ/η0 = 50. The imposed
pressures are Π̄ = 50 (a) and Π̄ = 5 (b). The inset shows the strain
rate distribution with different averaging time tm at the annotated Peσ. 248
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7.9 (Color online) The volume fraction, φ (a), and the stress scaled long-
time self-diffusivity in the vorticity direction, ds

∞η0/(a2σ) (b), as
functions of the time-averaged strain rate γ̇η0/σ in simulations at
Peσ = 145, 175, and 215 for Π̄ = 50 and at Peσ = 5, 8, 10 for Π̄ = 5.
The averaging time tmσ/η0 = 50. The crosses and pluses symbols
are results averaged from the entire simulations at these pressures.
The inset of (b) presents the corresponding non-Gaussian parameter
α2 as a function of γ̇η0/σ measured at tmσ/η0 = 50. . . . . . . . . 251

7.10 (Color online) Typical time evolution of a suspension at Peσ = 145
and Π̄ = 50 near an arrest-event transition: (top) the accumulated
strain γ; (center) the average radius of the minimum enclosing circle
of the particle trajectory 〈rMB〉; (bottom) the fraction of the fast
particles Nfast/N . In computing rMB, the trajectory of the past 50η0/σ

time units in the velocity gradient-vorticity plane are considered. The
transition from the flowing to the arrested states are highlighted, with
the arrows pointing out three time instances A, B, and C. The
horizontal dashed lines highlight the cutoff radius rc in the middle
panel and the lower and upper limiting fast particle fractions. . . . . . 253

7.11 (Color online) (Top panel) The probability distribution of the radius
of the minimum enclosing circle rMB at time instances A, B, and C

highlighted in Fig. 7.10. The cutoff radius rc is shown in the vertical
line. Also shown are the definition of rMB and a typical particle
trajectory, with more recent positions in darker color. (Bottom panel)
The suspension snapshots at instances A, B, and C. The “fast”
particles are shown in red in their full size, and the remainder are
shown as blue dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

7.12 The fraction of the neighboring particles of a fast particle that are also
fast, fn, as a function of the fraction of fast particles in the suspension,
Nfast/N , near the flow-arrest transitions at (Π̄, Peσ) = (50, 145) (filled
symbols) and (5, 5) (open symbols). The plus and cross symbols are
the results when the fast particles are randomly selected. The inset
highlights the difference fn − Nfast/N . . . . . . . . . . . . . . . . . . 256
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7.13 (Color online) The suspension shear viscosity ηs/η0 (a), the volume
fraction φ (b), and themacroscopic friction coefficient µ as functions
of the viscous number Iv over a wide range of the imposed pressure
Π̄. The shaded area bounded by dashed lines are from the rheological
model in Sec. 7.5, outlining the boundary of glassy suspensions. . . 258

7.14 (Color online) The stress-scaled normal stress differences N1/σ (a)
and N2/σ (b) as functions of viscous number Iv for a wide range of
imposed pressure Π̄. The symbols are identical those in Fig. 7.13. . 260

7.15 (Color online) The peak values of the pair distribution function
along the compressional and extensional axes, max(gcomp) (a) and
max(gext) (b), as functions of the viscous number Iv over a wide
range of imposed pressures Π̄. The symbols are identical to those in
Fig. 7.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

7.16 (Color online) Different characterizations of suspension dynamics as
functions of the viscous number Iv over a wide range of imposed
pressures Π̄. The symbols are identical to those of Fig. 7.13. In (a)–
(c) the diffusive quantities are characterized by the pressure diffusion
scale dΠ = Πa2/η0. All the measurements are taken in the vorticity
direction. (a): the long-time self-diffusivity ds

∞/dΠ; (b): the wave-
number dependent diffusivity measured at qmin, D(qmin)/dΠ; (c):
the α-relaxation time ταdΠ/a2 from the self-intermediate scattering
function at qa = 3.5; (d): the peak of the dynamic susceptibility
max( χ4). In (a), the shaded area bounded by dashed lines highlights
the glassy suspension behaviors from Eq. (7.43). . . . . . . . . . . . 263

7.17 (Color online) The wave-number dependent diffusivity measured at
qmin, D(qmin) (a), and the α-relaxation time τα (b), as functions of
the corresponding long-time self-diffusivity ds

∞ over a wide range of
imposed pressures Π̄. The symbols are identical to those of Fig. 7.13.
The solid line in (a) represents D(qmin) ∝ ds

∞ and in (b) represents
τ−1
α ∝ ds

∞. In the insets, the ratio, D(qmin)/ds
∞ (a), and the product,

ταds
∞ (b), are presented as functions of Iv. The solid lines in the insets

are horizontal. All measurements are taken in the vorticity direction. 266
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7.18 (Color online) The incremental volume fraction δφ = φm − φ (a) and
the incremental friction coefficient δµ = µ − µm (b) as functions of
the viscous number Iv for glassy suspensions with Π̄ ≥ 3.5. The
dashed lines in the main figures highlight the power law relation of
Eq. (7.36). The insets show the limiting volume fraction φm (a) and
the limiting friction coefficient µm (b) as functions of the imposed
pressure Π̄. The dashed line in the inset of (a) shows Eq. (7.37), and
the dashed line in the inset of (b) is the non-Brownian µSAP. The
legends are identical to those in Fig. 7.13. . . . . . . . . . . . . . . 268

7.19 (Color online) The macroscopic friction coefficient µ = σ/Π as
functions of the volume fraction φ for different imposed pressures Π̄
for constant stress and pressure simulations. The legends are identical
to Fig. 7.13. The shaded region bounded by the dashed lines are from
the rheology model outlining the region of glassy behavior. The
viscosity contours up to ηs/η0 = 103 are shown in solid lines with
annotated viscosity. The crosses show the arrest location (µm, φm) at
different imposed pressure, and the dash-dotted line outlines the yield
surface from Eq. (7.38). The Shear Arrest Point (SAP) is highlighted
as a star at the intersection of the arrested, the forbidden, and the
flowing region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

7.20 (Color online) The shear viscosity ηs/η0 as a function of the volume
fraction distance to the arrest δφ = (φm − φ) for glassy suspensions
with Π̄ ≥ 3.5. The yellow shaded region bounded by dashed lines
are predictions from Eq. (7.39). The legends are identical to those in
Fig. 7.13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

7.21 (Color online) The stress scaled long-time self-diffusivity in the
vorticity direction, ds

∞/dσ, with the stress diffusion scale dσ =

(a2σ)/η0, as functions of the inverse viscosity η0/ηs = γ̇η0/σ over
a wide range of imposed pressures Π̄. The symbols are identical to
those of Fig. 7.13. The shaded region bounded dash lines outlines
the glassy suspension state from the model. . . . . . . . . . . . . . 274
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7.22 (Color online) (a) The interaction friction coefficient, µI = µ − (1 +
5
2φ)Iv, as a function of the long-time Péclet number γ̇a2/ds

∞ = Pe
over a wide range of imposed pressure Π̄. The dashed line shows
the linear relation of Eq. (7.42). The inset shows the scaled product
ηIds
∞/(Πa2) as a function of the volume fraction φ, with the inter-

action viscosity ηI = µI/Iv. Also presented are the constant volume
Brownian Dynamics simulation results [51] at different φ. (b) The
peak difference∆p = max(gcomp)−max(gext) as a function of Pe. The
dashed line represents the linear relation ∆p = KpPe with Kp = 0.19.
In (a) and (b), the symbols are identical to those of Fig. 7.13. . . . . 276

7.23 The shear viscosity ηs (a) and the incremental normal viscosity η′n
(b) as functions of the volume fraction distance from arrest δφ̂ =
φ̂m − φ. The dashed lines present the algebraic viscosity divergence
{ηs, η

′
n} ∝ δφ̂

2. The inset shows the arrest volume fraction difference
∆φ = φ̂m−φm as a function of the imposed pressure Π̄, with φm from
the inset of Fig. 7.18a. The legends are identical to those of Fig. 7.13. 282

8.1 (Color Online) The constant stress and pressure rheology of a poly-
disperse suspension with polydispersity p.d. = 0.1 as functions of
Peσ at Π̄ = 1.5 [(a), (c)] and at Π̄ = 50 [(b), (d)]. In (a) and (c), the
results with full HIs are shown in open symbols in the main figure
and dashed lines in the inset, and the results with near-field Brownian
approximation are shown in filled symbols and solid lines. In (b) and
(d), the thin lines indicate the Peσ for the insets with corresponding
colors, and the black dashed line outlines the flow-arrest transition.
(a) The suspension shear viscosity ηs/η0. Inset: the time evolution
of the accumulated strains γ at Peσ = 0.3, 1.8, 7.1, 28.3, and 178.4.
(b) The suspension shear viscosity ηs/η0 (filled circle), the Brown-
ian contribution ηB/η0 (up triangle) and the flow contribution ηE/η0

(down triangle). Insets: time trace of the accumulated strain γ at
Peσ = 150 and 170. (c) The steady state volume fraction φ. Inset:
time traces of the instantaneous volume fraction at the same Peσ as
(a). (d) The steady state volume fraction φ. The arrested results are
shown in open circles and the flowing results in filled circles. Inset:
time trace of the volume fraction φ at Peσ = 150 and 170. . . . . . . 302
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8.2 Equatorial slices of the pair distribution function g(r ) on the velocity-
velocity gradient (12), velocity-vorticity (13), and velocity gradient-
vorticity (23) planes of suspensionswith an imposed pressure Π̄ = 1.5
at various Peσ. The suspension size polydispersity p.d. = 0.1. The
width of the slice is 0.7a. The compression and the extension axes
are also highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . 306

8.3 Equatorial slices of pair distribution function g(x) on the 12-, 13-
, and 23-planes of suspensions with imposed pressure Π̄ = 50 at
various Peσ. Other parameters are identical to Fig. 8.2. . . . . . . . . 307

8.4 (Color online) The maximum value of the pair distribution functions
on the compressional and the extensional axes, max(gcomp) (filled
symbols) and max(gext) (open symbols), respectively, as functions of
Peσ at (a) Π̄ = 1.5 and (b) Π̄ = 50. The insets show gcomp(r) (solid
lines) and gext(r) (dashed lines), obtained from the equatorial slices
of g(r ) in the 12-planewith a width of 0.7a, at selected Peσ annotated
by arrows in the main figure. The gcomp(r) and gext(r) results are
shifted for clarity. In (b) the estimated flow-arrest transition Peσ is
shown in the vertical dashed line. . . . . . . . . . . . . . . . . . . . 310

8.5 (Color online) Long-time self-diffusivity in the vorticity (3-) and the
velocity gradient (2-) direction, ds

∞,33/d0 and ds
∞,22/d0, respectively,

at (a) Π̄ = 1.5 and (b) Π̄ = 50. (a): ds
∞,33/d0 computed with full

HIs (open symbols) and with the near-field Brownian approximation
(filled symbols). Inset: the time trace of the mean-square displace-
ment in the 3-direction,

〈
∆x2

3

〉
at different Peσ. The solid lines are

from the near-field Brownian approximation and the dash-dotted lines
are from full calculations. (b): ds

∞,33/d0 (filled circles) and ds
∞,22/d0

(open squares) from near-field Brownian approximation as functions
of Peσ. Inset: the time trace of the mean-square displacement in
the 3-direction

〈
∆x2

3

〉
(solid lines) and the 2-direction

〈
∆x2

2

〉
(dashed

lines) at different Peσ. . . . . . . . . . . . . . . . . . . . . . . . . . 312
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8.6 (Color online) The suspension shear viscosity ηs/η0 (a), the volume
fraction φ (b), and the macroscopic friction coefficient µ = σ/Π

as functions of the viscous number Iv = γ̇η0/Π with different im-
posed pressures Π̄. Also presented are the non-Brownian results from
experiments [24] (black open diamonds) and Accelerated Stokesian
Dynamics (ASD) simulations at fixed strain rate γ̇ and volume frac-
tion φ [54] (black open left triangles). The shaded area bounded by
dashed lines are from the rheological model outlining the boundary
of glassy suspensions. The experimental results shifted upwards to
φSAP are also presented in (b) (black open down triangles). . . . . . . 314

8.7 (Color online) The first and the second normal stress differences
scaled with the shear stress, N1/σ (a) and N2/σ (b), as functions
of the viscous number Iv at various imposed pressures Π̄. Also
presented are the non-Brownian ASD simulation results [54]. The
legends are identical to those of Fig. 8.6. . . . . . . . . . . . . . . . 317

8.8 (Color online) The peak values of the pair distribution function
along the compressional and the extensional axes, max(gcomp) (a)
and max(gext) (b), as functions of the viscous number Iv at various
imposed pressures Π̄. The legends are identical to those of Fig. 8.6. . 319

8.9 (Color online) The long-time self-diffusivity in the vorticity direction
scaled with the pressure diffusion scale ds

∞/dΠ, where dΠ = a2Π/η0,
as functions of the viscous number Iv at various imposed pressures
Π̄. Also presented are the non-Brownian ASD simulation results [43,
54]. The yellow shaded region bounded by dashed liens are predic-
tions from Eq. (8.43). The legends are identical to those of Fig. 8.6. . 320

8.10 (Color online) The incremental volume fraction δφ = φm − φ (a)
and friction coefficient δµ = µ − µm (b) as functions of the viscous
number Iv for glassy suspensions with Π̄ ≥ 3.5. The dashed lines
in the main figures show Eq. (8.33) with parameters in Table 8.1.
The insets show the limiting volume fraction φm (a) and the limiting
friction coefficient µm (b) as functions of the imposed pressure Π̄.
The dashed line in the inset of (a) shows Eq. (8.34), and the dashed
line in the inset of (b) is the non-Brownian µSAP. Also presented are
the non-Brownian experimental results [24] in open black diamonds.
The legends are identical to those in Fig. 8.6. . . . . . . . . . . . . . 323
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8.11 (Color online) The macroscopic friction coefficient µ = σ/Π as
functions of the volume fraction φ over a wide range of imposed
pressures Π̄ for constant stress and pressure simulations. Also shown
are the original and shifted non-Brownian experiments Boyer et al.
[24], and the ASD simulations of Sierou and Brady [54]. The shifted
experimental results shift the volume fraction data by (φSAP − φc)
with φc = 0.585. The legends are identical to Fig. 8.6. The shaded
region bounded by the dashed lines are from the rheology model
outlining the region of glassy behavior. The viscosity contours up
to ηs/η0 = 103 are shown as solid lines with annotated viscosity.
The crosses show the arrest location (µm, φm) at different imposed
pressures, and the dash-dotted line outlines the yield surface from
Eq. (8.35). The Shear Arrest Point (SAP) is highlighted as a star at
the intersection of the arrested, the inaccessible, and the flowing region.326

8.12 The shear viscosity ηs/η0 and its flow and Brownian contributions,
ηE/η0 and ηB/η0 as functions of stress Péclet number in constant
stress and volume simulations at φ = 0.60 with the particle size
polydispersity p.d. = 0.1. The duration of each simulation is τ =
2000 with a step size ∆τ = 0.01. . . . . . . . . . . . . . . . . . . . . 328

8.13 (Color online) The shear viscosity ηs/η0 as a function of the volume
fraction distance to the arrest δφ = (φm − φ) for glassy suspensions
with Π̄ ≥ 3.5. The non-Brownian experimental results of Boyer et al.
[24] are also presented as black open diamonds. The yellow shaded
region bounded by dashed lines are predictions from Eq. (8.36). The
dash-dotted line shows an alternative viscosity divergence ∝ δφ−2.
The legends are identical to Fig. 8.6. . . . . . . . . . . . . . . . . . . 330

8.14 (Color online) (a) The interaction friction coefficient µI = µ − (1 +
5
2φ)Iv as functions of the strain rate scale γ̇a2/ds

∞. The dashed line
indicates the linear relation µI = Kd γ̇a2/ds

∞ with Kd in Table 8.1.
The black open left triangles are the non-Brownian ASD simulation
results [43, 54]. Inset: the product (ηIds

∞/(Πa2) as functions of
volume fraction φ. The interaction viscosity ηI = µI/Iv. (b) The
peak difference ∆p = max(gcomp) − max(gext) as functions of the
strain rate scale γ̇a2/ds

∞. The dashed lines represents a linear relation
∆p = Kpγ̇a2/ds

∞ with Kp = 0.19. In (a) and (b), the legends are
identical to those of Fig. 8.6. . . . . . . . . . . . . . . . . . . . . . . 331
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8.15 The mean far-field translational and rotational diffusion coefficients,〈
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〉
and

〈
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〉
, respectively, as functions of volume fraction φ for a

polydisperse suspension with polydispersity p.d. = 0.1. The dashed
and dash-dotted lines are cubic polynomial fit to the calculation re-
sults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

8.16 (Color online) The total suspension viscosity ηs/η0 and its flow and
Brownian contributions, ηE/η0 and ηB/η0, respectively, as functions
of the strain rate Péclet number Peγ̇ for a bidisperse suspension with
size ratio 2 and equal volume ratio at φ = 0.45. All computations are
from SEASD method with full hydrodynamic interactions. The lines
are from constant strain rate simulations [56]. The symbols are from
constant stress simulations with dimensionless step size ∆τ = 10−3

(filled symbols) and ∆τ = 10−2 (open symbols). . . . . . . . . . . . 339
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