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ABSTRACT

Economic activities unfold over time. How does timing influence our choices?
How do we control our timing? Economic agents are considered to satisfy their
preferences in an optimal fashion subject to constraints. Each chapter in this thesis
tackles a different one of these three elements where the timing of behavior is central.

In the first chapter, I study the impact of loss aversion on preferences for labor versus
leisure. In a real-effort lab experiment, I show that a worker’s willingness to perse-
vere in a task is influenced by information about task completion time. To directly
assess the location and impact of reference dependence, I structurally estimate labor-
leisure preferences with a novel econometric approach drawing on computational
neuroscience. Once participants exceed an expectations-based reference point, their
subjective values of time rise sharply, and they speed up at the cost of reduced work
quality and forgone earnings.

In the second chapter, I propose and implement a method to test the optimality
of individual deliberative time allocation. I also conduct experiments to study
perceptual decision making in both simple decisions, where the difference in values
between better and worse choices is known, and complex decisions, where this value
difference is uncertain. The test reveals significant departures from optimality when
task difficulty and monetary incentives are varied. However, a recently developed
model based on optimality provides an improvement in fit over its predecessor.

In the third chapter, I investigate the effects of memory constraints on choice over
sequentially presented options. In a study that combines experimental paradigms
used to analyze memory and judgment separately, I find a close link between
order effects in choice and in memory. I show that cognitive load stemming from
either an externally-imposed distractor or naturally-occuring fatigue substantially
weakens primacy effects. Thus disrupting memory encoding and consolidation can
potentially alleviate bias in judgment.
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C h a p t e r 1

OVERVIEW

Economic activities unfold over time. Every one of us has a limited number of
moments to work, play, sleep, consume, and think. Although this is a fundamental
aspect of life, much remains to be scientifically explored at the interface between
time andmicroeconomic behavior. How does timing influence our choices? How do
we control our timing? Economic agents are considered to satisfy their preferences
in an optimal fashion subject to constraints. Each chapter in this thesis tackles a
different one of these three elements where the timing of behavior is central. I
conduct experiments to closely measure individual behavior, and combine tools
from economics, psychology, and neuroscience to deeply analyze what results.

In Chapter 2, I study the impact of loss aversion on preferences for labor versus
leisure. Taking longer than expected to complete a laborious task can cause dis-
appointment if the expectation constitutes a reference point (Kőszegi and Rabin,
2006). This has the effect of a psychological tax on work which can be substantial
in magnitude. However, the value of time and therefore the impact of reference
dependence are hard to measure. When, and by how much, does loss aversion affect
preferences for time use?

In a real-effort lab experiment, I show that a worker’s willingness to persevere in
a task is influenced by information about task completion time. To directly assess
the location and impact of reference dependence, I structurally estimate labor-
leisure preferences with a novel econometric approach drawing on computational
neuroscience. Once participants exceed an expectations-based reference point, their
subjective values of time rise sharply, and they speed up at the cost of reduced
work quality and forgone earnings. Those who fall behind the reference point are
demoralized as measured by ratings of task satisfaction. Moreover, the value of time
rises at natural benchmarks partway to the primary reference point, indicating that
reference dependence may modify behavior outside of the loss regime.

In everyday life, people allocate time on the basis of their beliefs about time expen-
diture. These beliefs may arise endogenously as in the case of workers with flexible
hours (Camerer et al., 1997; Farber, 2015), or exogenously as when customers wait-
ing in service queues receive delay announcements (Hassin, 1986; Guo and Zipkin,
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2007). In the former setting, reference dependence can explain puzzling empirical
relationships between labor supply and realized income (Kőszegi and Rabin, 2006;
Crawford and Meng, 2011). In the latter setting, reference dependence may provide
a reason for why customer patience adjusts to expectations of waiting time (Zohar,
Mandelbaum, and Shimkin, 2002; Q. Yu, Allon, and Bassamboo, forthcoming).
Strikingly, loss aversion in time can sometimes have effects qualitatively oppos-
ing those of monetary loss aversion, such as occurs in congestion pricing (Yang,
Guo, and Y. Wang, 2014) because temporal and financial costs are inversely related.
Which force wins out depends on the relative strength of each. My estimates suggest
the former can be sizable.

In Chapter 3, I propose and implement a method to test the optimality of individual
deliberation. When we choose whether to swerve out of the way when spotting a
possible obstruction on the road orwhenwe choosewhat product to buy at a store, we
also implicitly choosewhen to stop processing information and actually take a course
of action. Such decisions involve a tradeoff between speed and accuracy. Economic
theory predicts that an optimal balance will be struck between the subjective costs
and benefits of time spent deliberating versus performance attained. Do models of
optimal deliberation accurately predict individual behavior?

I present a way of testing whether agents’ responses to changes in the costs and
benefits of deliberation are consistent with expected utility maximization. I also
conduct experiments to study perceptual decision making in both simple decisions,
where the difference in values between better and worse choices is known, and com-
plex decisions, where this value difference is uncertain. The test reveals significant
departures from optimality when task difficulty and monetary incentives are varied.
This project includes the first test of new theoretical results by Fudenberg, Strack,
and Strzalecki (2015) that characterize the optimal decision rule for environments
with value uncertainty. I find that this theory fits behavior more closely than a
simpler version of the commonly-used drift diffusion model from cognitive science.

If expected utility maximization appropriately describes behavior, then we can con-
fidently construct models based on optimization and expect them to generalize well
across a range of circumstances. However, if this is not the case, then alternative
models must be sought to explain choices. If we moreover take expected utility as a
normative criterion, then interventions such as time limits have the potential to im-
prove welfare (Krajbich, Oud, and Fehr, 2014); for example, deadlines could prevent
chronic deliberation that yields little tangible benefit when options are similar in
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value. My results challenge optimality on absolute descriptive grounds. However,
some facets of it may improve our predictive ability, as the Fudenberg, Strack, and
Strzalecki (2015) model provides an improved fit over its simpler predecessor which
has the same number of parameters.

In Chapter 4, I investigate the effects of memory constraints on choice over sequen-
tially presented options. We commonly choose from items appearing in a sequence,
for example when judging a competition or evaluating multiple products pitched by
a salesperson. Empirical work in various settings has found that the items appearing
earliest and latest in the sequence tend to be chosen disproportionately often (e.g.
Mantonakis et al., 2009; L. Page and K. Page, 2010). This parallels a long-standing
body of research in the psychology of memory showing that the earliest and latest
items tend to be better remembered (Ebbinghaus, 1885). If these two findings can
be linked, then principles of memory should help us understand when these serial
position effects will occur and what kind of interventions will bias or de-bias judg-
ment. Can knowledge of order effects in memory guide our predictions of order
effects in choice?

In a study that combines experimental paradigms used to analyze memory and
judgment separately, I find a close link between order effects in choice and in mem-
ory, and observe evidence suggesting that memory causally influences choice. I
show that cognitive load stemming from either an externally-imposed distractor or
naturally-occurring fatigue substantially weakens primacy effects. Thus, reducing
the ability or willingness of decision makers to rehearse their available options can
potentially alleviate bias in judgment. Moreover, cognitive load selectively hand-
icaps options presented early in a sequence without undermining recency effects.
These results imply that effective decision making interventions could be built upon
the disruption of memory encoding and consolidation.

More cognitive processing does not always reduce bias, as order effects illustrate.
When one’s thinking is imbalanced, thinking harder may only exacerbate the im-
balance. This is a useful piece of knowledge when trying to assess what kinds of
factors are conducive to rationality. My findings are also helpful for the develop-
ment of interventions because while perfect memory cannot be feasibly attained,
they entail that impaired memory may offer a second-best solution. The integration
of memory and decision making holds many exciting practical and counterintuitive
possibilities.
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C h a p t e r 2

FALLING BEHIND: TIME AND EXPECTATIONS-BASED
REFERENCE DEPENDENCE

Aworker may take on a task if he believes the work will be swift, and a customermay
patronize a business if she anticipates prompt service and quick decision making.
But if more time than expected is spent, discontentment can arise even in the
absence of external penalties. In this paper, I evaluate the labor supply implications
of reference points based on expected time use.

Theories of reference dependence imply that outcomes below some reference level
are considered disproportionately undesirable. These theories are valuable because
they enrich predictions of economic behavior in an empirically plausible fashion at
the cost of minimal extra parameters. Nonetheless, to constrain their free parameters
we seek a disciplined way to determine the reference point. Expectations have been
increasingly studied as an attractive candidate for the reference point (e.g. Bell,
1985; Loomes and Sugden, 1986; Gul, 1991; Kőszegi and Rabin, 2006) because
they help us intuitively and elegantly explain a range of empirical findings which are
hard to understand using traditional assumptions (e.g. Pope and Schweitzer, 2011;
Eliaz and Spiegler, 2013; Pagel, 2013; Meng, 2014; Bartling, Brandes, and Schunk,
2015). However, expectations are difficult to observe in field settings, hindering
our ability to investigate their explanatory power. I run a controlled real-effort
experiment allowing me to exogenously influence participants’ beliefs and directly
test theoretical predictions about time allocation. Furthermore, I devise a method
to measure participants’ time-use preferences in order to clearly perceive the impact
of reference dependence.

To my knowledge, mine is the first real-effort experiment to test the theory of
expectations-based reference dependence with a reference point in the time domain.
Compared to other experiments that focus on reference points of money or goods,
my results speak more closely to field applications that rely specifically on temporal
expectations. Most notably, Kőszegi and Rabin (2006) and Crawford and Meng
(2011) build models to analyze the labor supply decisions of workers with flexible
daily schedules. Their models assume that workers have reference points based on
rational expectations of hours worked and income attained. As I discuss below, these
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assumptions are crucial for capturing empirical regularities found by Camerer et al.
(1997) and Farber (2005) and Farber (2008) which are inconsistent with neoclassical
models as well as simpler versions of reference-dependent models. Their claims
thus rest on the validity of reference points based on expected time use.

To directly establish the effect of reference dependence, I introduce a new technique
enabling structural identification of individual preferences for time use. The value of
time is generally harder to observe and quantify than the value of money. Money is
relatively fungible, liquid, and easy to save and exchange, so its worth is more well-
defined. The value of time lacks stable external benchmarks, especially when rooted
in non-market activities such as leisure andwhen influenced by such subjective forces
as reference dependence. As a result, the valuation of time poses a special challenge
to the econometrician. My novel approach helps tackle this challenge, allowing
me to exploit more fully the richness of my data and peer closely at individual
preferences. Reference points and their effects can thus be detected and quantified
through the lens of this structural model without assuming their existence a priori.

My experiment probes the theory from an angle that is different than normal in
order to complement past experiments. These past studies have tested theoretical
predictions by changing the location of the reference point. Abeler et al. (2011) do
so by altering a fixed payment that their participants receive with some probability
instead of their earned wage, while Ericson and Fuster (2011), A. Smith (2012), and
Heffetz and List (2014) do so by modifying the probability of being able to trade
endowments. Gill and Prowse’s (2012) participants face different probabilities
of winning as second movers in a simple sequential-move tournament. I instead
change the amount of information available to participants to vary the impact of
reference dependence. This type of variation also helps me to structurally estimate
the loss aversion parameter, whichmost other studies are not suited for. Moreover, in
contrast to the purely externally determined variation in other experiments, I include
a belief manipulation that generates changes in expectations due to direct personal
experience. This reflects how beliefs are spontaneously formed in many settings of
interest, and is a source of behavioral fluctuations that theories of expectations-based
reference dependence were designed to capture in the field.

Section 2.1 describes my real-effort experiment. Participants engage in many trials
of a perceptual decision making task in which more time spent working leads to
higher-quality choices. A tradeoff between speed and accuracy comes into play.
One can spend more time, gather more sensory information, and be more likely to
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answer correctly and get paid. Or one can spend less time on the task and have
more leisure time afterwards, but face a higher chance of being wrong and forgoing
payment. I manipulate the willingness to trade accuracy for speed by providing
some participants with information about how long the task will take. As further
variation, one set of participants are given experience in the same task beforehand.

Section 2.2 outlines my model of reference dependence and its empirical implica-
tions. Where a person sits on the time-accuracy spectrum depends on how much
they value time relative to reward. The optimal choice balances the marginal ben-
efit of spending more time working – which reflects increased chances of winning
monetary payoffs – with the marginal cost – which stems from the value of forgone
leisure. A personwho has reference-dependent preferences will be displeased if they
spend longer than expected on the task and will take steps to avoid these negative
sensations. That is, if they exceed their reference point, a psychological tax applies
to each additional moment of work. The theory predicts that to mitigate these loss
sensations, people will reduce time expenditure on the task. This reduction comes
at the expense of accuracy, decreasing one’s chances of monetary reward.

Participants who are provided common information about task completion time
should hold expectations that are concentrated around that signal. According to
the logic above, such participants will speed up and cut their time expenditure after
missing the reference point. On the aggregate level this leads to a characteristic
“piling up” of completion times as compared to the group given no such infor-
mation. If, on the other hand, reference dependence is not in effect, then there
should be no difference between the groups. Further, experience may lead to a
kind of dynamic sophistication that changes behavior before the reference point is
encountered, leading people to work at a faster pace.

Section 2.3 presents evidence in line with expectations-based reference dependence.
Completion times do cluster near the exogenous reference point significantly more
in the group with external information than in the group without, and this is accom-
panied by a decrease in their monetary payoffs. These participants finish the task
at discontinuously higher rates after they pass the reference point. Those who take
longer than the reference point exhibit more displeasure as measured by their ratings
of task satisfaction.

Section 2.4 lays out the structural estimation of the time allocation model. In order
to directly assess individual preferences, I engage in structural estimation of the
time allocation model. In the economic theory, I embed econometric structure
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derived from a mathematical model of stochastic information processing, the drift
diffusion model. The resulting structural model surmounts a problem for standard
empirical approaches in the present context. Because people endogenously choose
how much time to spend on each trial, we lack the exogenous variation in time
expenditure needed to estimate a typical model. However, the drift diffusion model
makes precise predictions about the joint distribution of time expenditure, costs, and
benefits in terms of deeper parameters. This additional layer of structure enables us
to infer individual preferences, and see how they change over time, and under the
influence of reference dependence.

One specific empirical puzzle that concerns my results involves the labor supply
of workers with flexible daily hours. Several studies of such populations have
documented responses to wage changes consistent with reference-dependent pref-
erences (Camerer et al., 1997; Chou, 2002; Fehr and Goette, 2007; Doran, 2014;
Leah-Martin, 2015). In particular, people seem discontinuously more likely to stop
working when they have met daily earnings targets, which in extreme cases can
lead them to work more hours on low wage shifts than high wage shifts. Further,
there appears to be large variation in realized earnings, which fixed earnings tar-
gets cannot account for (Camerer et al., 1997; Farber, 2005; Farber, 2008; Farber,
2015). This variation can, however, be accommodated by reference points based
on rational expectations of hours worked and income attained (Kőszegi and Rabin,
2006; Crawford and Meng, 2011), which naturally fluctuate with circumstances and
experience. In most of this empirical literature, reference points are either estimated
as latent variables or proxied by past outcomes. So that wemaymore clearly observe
the mechanisms at work, I exogenously vary beliefs about time use in a controlled
experimental setting. My study complements especially the analysis of Crawford
and Meng (2011) which invokes a structural model to address endogeneity issues.
I combine experimental variation with an alternative structural approach to theirs
to gauge the same central loss aversion parameter. Together these studies help
triangulate the impact of reference dependence in time on labor supply decisions.

These findings also apply to the literature on service queues and delay announce-
ments, a domain in which expectations-based reference dependence is starting to be
applied. Many papers study the choice of customers to abandon service queues based
on their beliefs about waiting time and the choice of firms to influence these beliefs
by providing delay information (e.g. Hassin, 1986; Guo and Zipkin, 2007; Q. Yu,
Allon, and Bassamboo, forthcoming). Firms walk a tightrope between departures
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due to customers who are not patient enough to wait as long as the announcement
indicates and customers who end up having to wait longer than expected and come
to disbelieve the information. My study investigates the claim that the latter group
will be disappointed and consequently more likely to abandon queues when the
announced time is exceeded. If valid, incorporating reference dependence may im-
prove existing theories. For instance, Yang, Guo, and Y. Wang (2014) theoretically
analyze queuing with customers who are loss averse relative to their expectations of
service delay and price. They find the emergence of multiple equilibria correspond-
ing to different patterns of expectations. They also discover that in some markets
loss aversion drives a wedge between profit- and welfare-maximizing prices that
would not otherwise exist. Thus reference-dependent preferences have meaningful
welfare implications.

2.1 Experimental Design
The experimentwas designed to facilitate precisemeasurement in the relevant choice
dimensions of time and accuracy. Participants engaged in two blocks each of 100
trials of perceptual decision making problems. The focal part of the experiment
consisted of the random dot motion task. This task is common in perception
research (e.g. Newsome, Britten, and Movshon, 1989; Britten et al., 1992; Gold and
Shadlen, 2007). In each trial, a hundred small moving dots are displayed in random
locations. A small number of these dots (“signal” dots; 12% in the experiment)
move deterministically either all left or all right, while the rest move in random
directions. The participant has to choose which direction, left or right, the signal
dots are moving in, and can respond at any time after the stimulus is first presented.
A schematic diagram of the stimulus is displayed in Figure 2.1. Humans are able to
reliably detect the correct answer under these circumstances, though some time is
required to increase accuracy.1 It is a simple task with choices that are made rather
naturally, but is tedious and therefore imposes subjective costs on participants.
They were paid $0.05 for each correct answer and nothing for each wrong answer.
Feedback was only provided as totals at the very end of the experiment to suppress
learning.

The experimental setup is depicted in Figure 2.2. Participants were divided into
two conditions based on the experience they would receive across the two blocks.

1The computerized experiment was programmed using the Psychophysics Toolbox in Matlab.
Explicit instructions explaining the task including examples were provided and the aperture (i.e. dot
field) was small (side length 540 pixels) and square shaped in an attempt to minimize the chance and
magnitude of training effects.
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Figure 2.1: Schematic diagram of the random dot motion task stimulus

In one condition individuals completed only a single block of the focal task (ran-
dom dot motion) in addition to one block of a different filler task (blurred image
categorization2) which served to stagger their start times, avoiding confounds due
to any real-time-correlated shocks. In the other condition individuals completed
two blocks of the random dot motion task. In both conditions after a minute-long
break between the first and second blocks were further instructions (documented in
Appendix A) containing a line stating that the second block “should take about 10
minutes to complete”, which constituted the experimental reference point.

Expectations-based theories rely on individual beliefs about likely outcomes. Thus,
in this experiment or others, whether or not people truly believe the provided in-
formation is critical for the application of such theories. The reference point was
selected because it was a natural unit of time that was feasible to attain and slightly
faster than the median time expenditure in pilot tests. Although beliefs were not
directly measured, there are several reasons that participants would trust the infor-
mation. Given the small size of the campus, participants recruited from the Caltech
population generally have firsthand or secondhand experiencewith the social science

2Participants were faced with a sequence of images of animals (raccoons and porcupines) which
were obscured using standard image processing filters. For each image they chose one of the two
categories. The images were from a machine learning image set collected from an online image
search. They were resized to approximately 200 by 300 pixels, converted to grayscale, and obscured
using a 40 pixel range Gaussian blur.



10

Figure 2.2: Experimental setup

laboratory. Many are used to engaging in behavioral tasks under specified financial
and temporal parameters with assurances from the experimenter, the laboratory,
and ultimately the institute. In line with the global prohibition of deception among
experimental economists, the laboratory consent information explicitly states that
“the use of deception by experimenters at SSEL is prohibited.” The Caltech Honor
Code also more broadly states that “no member of the Caltech community shall take
unfair advantage of any other member of the Caltech community.” This combination
of experience and regulations should foster participant trust.

Those who faced the random dot motion task only once were given the common
reference point right before that task to influence their expectations. They compose
a treatment group. Those who faced the random dot motion task in the first block
did so without any information and hence without a focal reference point. They
compose a baseline. The second time around these same individuals thus had
direct experience. They, too, were given the common informational reference point
right beforehand but might respond differently than the first treatment group due to
experience. Thus the presence of both external information and direct experience
were varied separately, permitting us to also study the interaction between them.

During all tasks the real-time clock and trial number were displayed onscreen. At the
end of the experiment participantswere asked howmuch they liked the task on a scale
of 1–10 (1 being very little and 10 being very much). They were asked to remain
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in their seats until at least 30 minutes had passed from the start of the experiment
before being paid but were allowed to browse the internet in the meantime once
they were finished. The marginal value of leisure was thus based on real leisure
(Corgnet, Hernán-González, and Schniter, 2015). For laboratory timing reasons the
experiment was set to end after 35 minutes and participants were informed of this.

Participants were 35 students from Caltech recruited via the online system in the
Social Science Experimental Laboratory (SSEL). Seventeen people were assigned
to the inexperienced condition and 18 people to the experienced condition. Two
outliers from the experienced group were excluded from analysis since they took too
much time and did not complete the task, and the two participants with the longest
dot motion task times in the inexperienced group were also excluded to compensate.
All participants received a $5 show-up fee in addition to their earnings.

2.2 Theoretical Predictions
In this setting a person chooses the amount of time, t, to spend on each trial of
the task which leads to an accuracy of a(t). This accuracy function a : R+→ [0, 1]
is increasing in t, concave, and bounded, and can be interpreted as the probability
of choosing the correct answer. Each correct answer yields a payoff of wage
w. However, time expenditure comes at an opportunity cost of rate π. (The
predictions do not qualitatively change if we instead impose the weaker assumption
that the opportunity cost of time is a positive, nondecreasing, convex function π(t).)
Assuming additive separability, the expected utility function is U (t) = wa(t) − πt.
The optimal choice balances the marginal benefit of increased accuracy, wa′(t)
(supposing differentiability), with the marginal cost of spent time, π.

People with reference-dependent preferences feel a loss when they have spent longer
than the time-based reference point. When the total amount of time used has
exceeded the reference point, time expenditure comes at a premium. The cost of
time is then scaled up by the coefficient of loss aversion, λ > 1. Letting ti be the
time spent in each trial i, the reference-dependent utility function in trial τ is

U (t |r) = wa(t) −



πt if
∑τ

i=1 ti < r

λπt if
∑τ

i=1 ti ≥ r .

Figure 2.3 illustrates the effect of reference dependence assuming agents are not
forward looking.3 Before the reference point has been passed, time tEU in each trial

3This assumption applies to agents who have limited experience. Appendix B states and explores
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is chosen such that wa′(tEU ) = π, the same as a standard economic agent. Time
spent in trials occurring after the reference point is penalized at a higher rate, and
so time tRD is spent such that wa′(tRD) = λπ. Since a′′ < 0 and λ > 0, this implies
tRD < tEU as is evident in Figure 2.3. It is also clear that tRD is decreasing in λ,
all else equal. Thus time expenditure is curtailed in trials after the reference point
is hit so that people avoid incurring dramatically higher marginal costs, and the
magnitude of this reduction is related to the severity of loss aversion. The drop in
work time should also be accompanied by a decline in accuracy.

A signature prediction of reference dependence among a population affected by a
common temporal reference point is a “piling up” of time expenditure near that
point. This occurs due to the steep change in utility once the reference point is
passed. For example, Allen et al. (forthcoming) report that the finishing times of
marathon runners tend to bunch up at round number goals, and Markle et al. (2014)
find discontinuities in satisfaction at individually-elicited marathon time goals. By a
similar intuition, in my experiment, common information should lead participants’
aggregate completion times to cluster near the reference point due to dissatisfaction
from taking longer than expected, whereas those without such information should
not fixate on this point.

2.3 Empirical Results
The data agrees with the theoretical predictions. Figure 2.4 presents the decision
time distributions for the groups facing the random dot motion task for the first
time. Those given the reference point appear to be clustered near it more tightly.
This is confirmed by a permutation test comparing the absolute differences between
time expenditure and the reference point across groups (p = .024), which randomly
regroups the data in order to nonparametrically generate a null distribution under
the hypothesis of equal mean deviations.

Result 1: Decision times are closer to the reference point in the group given
information than in the group without it, holding experience constant.

Importantly, this difference in quitting behavior appears to be driven by the reference
point. Figure 2.5 shows the empirical distribution functions depicting the cumulative
probabilities of stopping across the same groups. Those given the reference point
stop at a higher rate, as indicated by a Cox proportional hazards model (H R = 2.45,

the dynamic problem for forward-looking agents. It also explores the implications of different
accuracy functions.
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p = .032). In particular, the hazard rate is significantly elevated only after the
reference point is hit (H Ra f ter = 3.38, p = .021; H Rbe f ore = 1.39, p = .620).

Result 2: The stopping rate is higher after the reference point is hit in the group
given information compared to the group without it, holding experience constant.

Because the reference point is feasible but a little challenging to attain, participants
reduce the amount of time they spend. The mean time of 663s in the group given the
reference point is lower than the mean time of 804s in the group without it, which
should be associated with a corresponding drop in accuracy. Figure 2.6 shows the
percent of correct answers in each group for individuals active before and after the
reference point, with exact 95% confidence intervals. Before the reference point,
both groups responded correctly about 80% of the time. Afterwards, however, those
given the reference point scored 7.7 percentage points lower than those who were
not (p = .026, Z test for difference in proportions).

Result 3: Accuracy is lower after the reference point is hit in the group given
information than in the group without it, holding experience constant.

The most direct evidence of displeasure comes from participants’ post-experiment
ratings of howmuch they liked the task on a scale from 1 to 10with 1 being very little
and 10 being very much. Figure 2.7 displays the relationship between satisfaction
ratings and task completion time, with 95% nonparametric bootstrap confidence
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Figure 2.7: Subjective task satisfaction ratings among inexperienced participants

intervals shown. Inexperienced participants who spent longer than 10 minutes rated
the task on average 3.3 points lower than those who finished quicker, a statistically
significant difference according to a permutation test (p = .044).

Result 4: Participants who are given information without experience and spend
longer than the reference time on the task exhibit lower task satisfaction ratings than
those who spend less time.

With experienced participants (those who went through an extra block of the same
task) the effects of training prevent the most direct comparisons of speed and accu-
racy from being made. Despite efforts to minimize training effects participants did
seem to improve in that they completed the task more quickly but with comparable
accuracy. Nevertheless, as seen in Figure 2.8 in contrast to Result 4, experienced
participants who spent longer than 10 minutes rated the task a non-significant 0.5
points lower than those who finished quicker (p = .566, permutation test). Thus the
experimental reference point did not appear to mark a shift in participant attitudes.

Result 5: Participants who are given experience in addition to information and
spend longer than the reference time on the task do not exhibit lower task satisfaction
ratings than those who spend less time.

Although these findings are in line with the theory, we would like to assess the
impact of the treatment on preferences as directly as possible. For this, I turn to a
structural approach.
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Figure 2.8: Subjective task satisfaction ratings among experienced participants

2.4 Structural Analysis
The value of time is subjective and not directly observable in this setting. This poses
a challenge to our ability to quantify how loss aversion affects the value of time.
We have one constraint – the first-order condition – to guide our inference. Since
we observe time choices, identification of the opportunity cost of time rests on our
ability to estimate the marginal benefit of working. This benefit stems from the
connection between time and accuracy since the more time is spent accumulating
information, the higher are one’s chances of answering correctly and earning a
payoff.

To estimate the marginal benefit of time, a few possibilities naturally suggest them-
selves. One could try to predict accuracy from decision time across an individual’s
trials by running a logistic, polynomial, or nonparametric regression. Some of these
have obvious issues here; a polynomial regression is clearly misspecified since the
fitted model will predict probabilities outside the [0, 1] bounds and will have deriva-
tives that grow extreme or fluctuate noisily in sign, and nonparametric techniques
are known to perform poorly when applied to the derivatives with which we are
primarily concerned. However, all of these methods suffer from a more serious
flaw in the present setting: the link between time and accuracy is hidden due to
endogeneity of the decision rule. Because people choose of their own accord when
to stop accumulating information, we do not have the exogenous variation that would
be required to estimate how their time expenditure translates into performance. If
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participants were exogenously forced to stop and give their best guess at various
points in time (in what is known as an “interrogation” paradigm), they would indeed
be more accurate when stopped after more time. But if participants have control
over when to stop (as in the “free response” paradigm I use), this relationship no
longer holds. Any superficial correlation does not reflect their deeper connection,
even one that is ostensibly positive.

If we were to persist with a naïvely direct approach, we would find that the amount of
time people spend on each trial appears largely unrelated to their earnings. Logistic
regressions attempting to predict accuracy from time for each participant in each
group hold almost no predictive power. For these individual-level regressions,
Figure 2.9 shows the histogram of likelihood ratio statistics that assess the goodness
of fit of the model including time as a predictor as compared to the null model.
Figure 2.10 shows the histogram of Z statistics that assess the statistical significance
of the time coefficient in each logistic regression. Including time in the regression
model yields no statistically significant benefit in 85% of cases according to these
model and coefficient significance tests. In only a single case is the coefficient on
time positive and statistically significant. Attempts to directly estimate the accuracy
function thus seem ill-fated.

I follow an alternative route and use clues from psychology and neuroscience to
capture the data generating process more fully. The random dot motion task at
the center of this experiment is used often in perception research (e.g. Newsome,
Britten, and Movshon, 1989; Britten et al., 1992). Patterns of choice, response
times, and neural activity in this kind of setup are mathematically well-described
by the drift diffusion model, in which information is accumulated with noise until
confidence in one or another answer reaches a threshold, at which point the choice is
made (Gold and Shadlen, 2007). This model provides a precise statistical account of
how deeper cognitive parameters give rise to time spent and performance attained,
and in so doing, allows for a richer interpretation of the same data.

The drift diffusion model (DDM) is a neurally plausible descriptive model of de-
cision making in discrete choice situations. It was originally developed half a
century ago (Stone, 1960; Laming, 1968; Ratcliff, 1978) and is the earliest and most
well-characterized theory in a class of stochastic accumulation models that predict
the joint distribution of choice probabilities and response times (Busemeyer and
Townsend, 1993; LaBerge, 1962; Pike, 1966; Vickers, 1970; Usher and McClel-
land, 2001; Shadlen and Newsome, 1996; X.-J. Wang, 2002). Beyond behavioral
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evidence showing that the DDM closely fits patterns of choice and response times
in a variety of decision tasks, direct recordings of neural activity demonstrate that
neurons in various brain regions implement evidence accumulation processes that
match the model’s structure (Gold and Shadlen, 2002; Hanes and Schall, 1996;
Shadlen and Newsome, 2001; Ratcliff, Cherian, and Segraves, 2003; P. L. Smith
and Ratcliff, 2004). Indeed, the basic functioning of neurons involves transmitting
all-or-nothing signals that are triggered by inputs reaching a critical threshold. While
the DDM is commonly used to study perceptual choice (Ratcliff and Rouder, 1998;
Ratcliff, Cherian, and Segraves, 2003; Ratcliff and P. L. Smith, 2004; P. L. Smith
and Ratcliff, 2004; A. Voss, Rothermund, and J. Voss, 2004; Philiastides, Ratcliff,
and Sajda, 2006; Gold and Shadlen, 2007; Ratcliff, Philiastides, and Sajda, 2009),
recent work extends it to value-based settings such as consumer purchasing deci-
sions and intertemporal choice (Krajbich, Armel, and Rangel, 2010; Milosavljevic
et al., 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012).

According to the DDM, the agent integrates evidence over time for one alternative
or another until an evidence threshold is reached, and the corresponding decision is
made. This accumulation includes inherent sensory noise and hence is modeled as
a stochastic differential equation,

dx = Adt + cdW,

where x(t) is the difference in evidence between the two alternatives (with x(0) = 0
in an unbiased decision), A is the accumulation or drift rate, and c represents the
noise component.4 The change dx over the small time interval dt is broken up
into the constant drift Adt and the Gaussian white noise cdW with mean 0 and
variance c2dt. When the accumulated evidence x reaches the critical threshold ±z,
the corresponding choice is made.

This process generates a speed-accuracy tradeoff governed by the confidence thresh-
old (z). A higher threshold entails a more stringent standard of evidence and re-
duced susceptibility to errors at the cost of greater decision time. Conversely, a
lower threshold requires weaker evidence and thus less time to make a decision but
increases the error rate. The drift rate (A) and noise (c) parameters describe an
individual’s information processing faculties, and in this economic context can be

4The DDM can be formulated equivalently in Bayesian terms (e.g. Arrow, Blackwell, and
Girshick, 1949; Bitzer et al., 2014), and is optimal in the sense that it is the continuous sampling
limit of the sequential probability ratio test, which minimizes response time for a given error rate in
a Bayes optimal way.
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interpreted as measures of worker ability. Higher drift rates and lower accumulation
noise mean superior performance in terms of higher accuracy rates with the same
threshold. These parameters can be estimated by methods known in psychometrics,
one of which is given below.

We can refine our view of the endogeneity problem in light of this model. People
choose when to stop accumulating evidence based partly on their belief about the
state of the world (in this task, the direction of dot motion). They respond when they
are sufficiently confident in the quality of their answer. However, this confidence
level is also statistically related to the accuracy of their response. Without a measure
of the beliefs that give rise simultaneously to time and accuracy, we are afflicted by
endogeneity. In fact, the simple version of the DDM (which applies here) implies
that observed speed and accuracy are superficially independent (e.g. Stone, 1960;
Fudenberg, Strack, and Strzalecki, 2015), which explains the null pattern we see in
the data as displayed in Figures 2.9 and 2.10. Intuitively, this happens because every
decision is triggered by the same level of confidence, irrespective of how much time
was taken to reach that point. As a result, conditioned on the fact that a decision
was made, time expenditure does not carry any additional information with which
to predict accuracy.5 The structure of the DDM allows us to infer the confidence
threshold and provides us with the measurement of beliefs we can use to address
endogeneity.

I recast the decision problem in terms of the DDM parameters to exploit its underly-
ing structure. While estimating the benefit curve as a function of time is problematic,
estimating the benefit curve as a function of the decision threshold turns out to be
feasible. Given our mathematical understanding of the DDM, the entire utility
function can be formulated with the decision threshold substituting for time as the
choice variable. This adapted utility function can be optimized as normal to obtain a
first-order condition. The resulting condition is enough to infer the economic costs
and benefits from the DDM parameters, which can be estimated in a first stage using
methods from psychometrics.

5Choice patterns represented by the model can potentially exhibit a positive, neutral, or negative
relationship between time and accuracy, depending on the shapes of the decision threshold and cost
function (Fudenberg, Strack, and Strzalecki, 2015). In a commonly used extension (Ratcliff, 1978),
response times could be higher on incorrect trials, inducing a negative relationship between time and
accuracy. For instance, suppose some trials happen to be subjectively harder than others. Prolonged
responses would indicate hard trials which are not worth spending too much time on and are thus less
likely to be answered correctly. If anything, we see minor indications of this negative association in
the logistic regressions as shown in Figure 2.10.
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Key mathematical properties of individual performance conditional on the DDM
parameters have been characterized, including the accuracy as a function of the de-
cision threshold. These properties come from solutions to the first passage problem
in which the stochastic accumulation process crosses the decision threshold. In the
current simple setup,6 a closed-form expression exists for the error rate, ER (e.g.
Ratcliff, 1978; Rafal Bogacz, E. Brown, et al., 2006):

ER =
1

1 + e2Az/c2 .

The accuracy function we want to estimate is simply the complement of this error
rate. Accuracy is thus a logistic function of the threshold, rather than a function of
time directly. When multiplied by the payoff for a correct answer, this yields the
benefit curve.

To fully rework the utility function, we also need to revise its cost segment, requiring
a definition of time expenditure in terms of the DDM parameters. In addition to the
error rate, we make use of the closed-form expression for the mean decision time as
well, DT (e.g. Ratcliff, 1978; Rafal Bogacz, E. Brown, et al., 2006):

DT =
z
A

tanh
(

Az
c2

)
.

We can combine the DDM with the economic model presented earlier by using the
latter as a shell and appealing to the DDM to detail the functional forms generating
accuracy and time. The decision threshold becomes the basic dimension of choice
and time becomes implicit.

U (z |r) = wa(z) −



πt(z) before reference point

λπt(z) after reference point

= w(1 − ER) − πDT ×



1 before reference point

λ after reference point

U (z |r) = w *
,

e2Az/c2

1 + e2Az/c2
+
-
− π

(
z
A

tanh
(

Az
c2

))
×




1 before reference point

λ after reference point.

A subtle assumption is being made here. The DDM supposes a constant decision
threshold within trials. While there is some contention surrounding this property,

6Additional parameters dealing with, for example, variation in drift rate across trials are some-
times incorporated in the extended DDM.
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it is justifiable on both theoretical and empirical grounds. Theoretically, a constant
threshold is indeed optimal in the present task for a Bayesian decision maker (e.g.
Shiryaev, 1969; Fudenberg, Strack, and Strzalecki, 2015). Empirically, the cross-
paradigm reanalysis of Hawkins et al. (2015) find evidence primarily in favor of a
fixed threshold.

The standard optimization criterion is equivalent to the Bayes Risk criterion devel-
oped by Abraham Wald and Wolfowitz (1948) and Edwards (1965) which assumes
decision makers minimize the cost function BR = c1DT + c2ER and is known to
have a unique solution. The first-order condition with respect to z yields

∂U
∂z
= 0 = w *

,

2Ae2Az∗/c2

c2(1 + e2Az∗/c2 )
+
-︸                 ︷︷                 ︸

φ(z∗,A,c)

−

[
z∗

c2 sech
(

Az∗

c2

)
+

1
A

tanh
(

Az∗

c2

)]

︸                                       ︷︷                                       ︸
ψ(z∗,A,c)

π ×



1 before r.p.

λ after r.p.

λ̂π =
wφ(z∗, A, c)
ψ(z∗, A, c)

=
wA2

2Az∗ + c2 sinh(2Az∗/c2)
. (∗)

In this way the opportunity cost of time is identified for each person from the decision
threshold (z), drift rate (A), and accumulation noise (c) parameters which can be
estimated from individual accuracy and response time data.

This indicates a two-step procedure for estimating opportunity costs on an individual
level, which can be subsequently compared across treatments to estimate the loss
aversion parameter. First, the DDM parameters for each person are estimated with
any of several techniques regularly used in the psychometrics literature, and second,
the resulting parameter values are plugged into the rearranged first-order condition
(∗) to back out each person’s opportunity cost.

In the first step, for simplicity I use the EZ-diffusion model approach to estimate the
DDM parameters (Wagenmakers, Van Der Maas, and Grasman, 2007). This entails
closed-form solutions for the parameters based only on the proportion of correct
decisions (P) and the variance in response times for correct decisions (V RT). We can
see indications here of the DDM’s greater interpretive power in that the procedure
makes use of the variance in decision times rather than simply the mean, and does
so in an intricate nonlinear fashion. The drift rate A and decision threshold z are
given by

A = sign
(
P −

1
2

)
c




logit(P)
[
P2logit(P) − Plogit(P) + P − 1

2

]

V RT




1
4
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Figure 2.11: Mean estimated DDM parameters

z =
2c2logit(P)

A
.

where logit(P) = log(P/1 − P). The properties of the DDM depend only on the
ratios z/c and A/c rather than their absolute values so c = .1 is assumed in estimation
as is standard practice.

The resulting estimates from this step are shown in Figure 2.11 with 95% non-
parametric bootstrap confidence intervals. The ability parameter is matched across
groups, though it exhibits a mild increase likely due to improvement from experi-
ence. However, the decision threshold drops after the reference point is hit for the
group providedwith the information (p = .001, across-group permutation test). This
structurally entails a reduction in time spent at the expense of accuracy. Since the
decision threshold is considered the choice variable, this gives us some confidence
that the components of the modeled mechanism are moving as they should.

In the second step, as we have seen, the utility function includes accuracy as a
function of the DDM parameters. The first-order condition gives us the optimal
decision threshold conditional on the other parameters. It provides an estimating
equation that links all of the parameters together. We can then plug in our estimates
of the parameters obtained in the first stage to obtain the remaining unknown value:
the value of time.

I use this procedure to estimate the value of time for participants in both groups
based on their trials before and after the reference point was passed. Thus the
people represented in each group are the same across periods in this analysis. To
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Figure 2.12: Mean estimated values of time

keep noise low in these estimates, I include participants who spent enough time
to face at least 20 trials after the reference point came into effect. The values
resulting from the procedure on a $/hr scale are shown in Figure 2.12 with 95%
nonparametric bootstrap confidence intervals. The numbersmay be somewhat lower
than anticipated, which happens because only the most direct financial motivation,
the piece rate payment, is accounted for. Any additional motivation for work, such
as an intrinsic desire for success, would imply higher values.

Table 2.1 contains the results of regressions predicting the values based on pe-
riod (pre- vs post-reference point, coded as 0 and 1 respectively) and group (no-
information control vs reference point information treatment, coded as 0 and 1
respectively). As is apparent from the figure as well as the significant positive in-
teraction between the two variables, the value of time rose dramatically only among
those who were provided information and only after they exceeded the reference
point. Before the reference point was passed, the value of time was the same regard-
less of whether groups were provided information. After the reference point was
passed, the control group remained the same, passing a placebo test.

We can compare opportunity costs both between groups and within individuals to
estimate the strength of loss aversion. Under the model as specified in Section
2.2, the loss aversion parameter λ is given as the ratio between opportunity costs
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Table 2.1: Effect of reference dependence on value of time

Dependent variable:

Value of Time
(1) (2)

Constant 2.636∗∗∗ 3.187
(0.782) (1.892)

Treatment −0.138 −2.149
(1.219) (2.702)

Period −0.365 −0.365
(1.106) (1.141)

Treatment × Period 4.388∗∗ 4.388∗∗
(1.723) (1.778)

Individual Fixed Effects No Yes
Observations 34 34
R2 0.334 0.646

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

when loss aversion is and is not in effect. Note that because the value of a correct
response factors in multiplicatively as seen in (∗), this is robust to assumptions
about the utility of winning, including heterogeneous risk attitudes or psychological
success bonuses. The within-person estimate is based on the ratio of post-reference
point to pre-reference point opportunity costs for each individual in the treatment
group. The between-group estimate is based on the ratio of treatment to control
group opportunity costs after the reference point. Although we cannot observe
the post-reference point behavior of individuals who finish the task too quickly, if
the loss aversion parameter is independent of the baseline opportunity cost, these
assessments will provide unbiased estimates of loss aversion in the population. They
agree with each other reasonably well. The mean within-person estimate is λ̂W =

3.330 with a 95% nonparametric bootstrap confidence interval of [1.337, 6.410],
and the mean between-group estimate is λ̂B = 2.871 with a confidence interval of
[1.450, 4.939].

These quantities summarize how intensely shortfalls of time are felt compared to
surpluses. The figures here appear similar in magnitude to the most comparable
figures from the fewother time-based studies that exist. The best fitting specifications
of Crawford and Meng’s (2011) structural analysis yield values of 1.671, 2.309, and
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2.886, and Abdellaoui and Kemel’s (2014) find mean values of 2.54 and 3.80.7 To
visually compare these figures, I calculate the mean post-refererence-point values
of time that would result from each estimate of loss aversion, and plot the values in
Figure 2.12, denoted as CM and AK. Crawford andMeng’s numbers may be smaller
because they examine loss aversion in time and money simultaneously. Notably, my
estimates are at least as strong as commonly cited numbers reflecting loss aversion
in the monetary domain. Thus we see quantitative evidence beginning to converge
on the strength of loss aversion in the time dimension.

The above analysis was conducted with a particular reference point in mind. How-
ever, the technique discussed can be used to not only measure the strength of loss
aversion, but also to detect the location of reference dependence. Rather than divid-
ing the data into pre- and post-reference point, I estimate time-use preferences in a
sliding window. Displayed in Figure 2.13 is the 10% trimmed mean of the value of
time in each group based on a 3-minute window for the period of time in which at
least 3 individuals were active.8 The inferred preferences are relatively stable and
comparable in both groups until the reference point is hit. At that point, the mean
value of time among the remaining participants given the reference point sharply
rises. The bar above the data denotes a statistically significant difference in group
means at the 10% level according to a permutation test. Thus reference points can be
identified from the data itself. Intriguingly, if I shrink the data window to 2 minutes,
which increases the signal at the expense of noise, additional points of interest are
revealed, shown in Figure 2.14. In particular, jumps are observed approximately
halfway to and one minute before the reference point. Though not proposed be-
forehand, the location of these jumps suggests that they may be benchmark effects.
These timings are natural markers that could be used to set one’s pace, triggering
changes in speed for those who feel they are behind.

An agent who takes advantage of benchmarks is behaving in a sophisticated fash-
ion. Although there are hints of this occurring among inexperienced participants,
individuals who have experience in the time allocation task may be better at pac-
ing themselves. Figure 2.15 shows the distribution of completion times among

7Note that Crawford andMeng’s (2011) parameter includes a coefficient that reflects the strength
of reference dependence, and Abdellaoui and Kemel’s (2014) study involves framed gambles over
amounts of time that participants were made to spend in a room later without entertainment, and are
therefore not perfectly comparable to my estimates. De Borger and Fosgerau (2008) quantitatively
assess loss aversion from hypothetical travel time choices but do not estimate a comparable parameter.

8I exclude each individual’s 100th trial and maximum estimated value of time, due to a sizable
drop in performance specific to the last trial, and to ensure the results are not driven by other outliers.
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Figure 2.15: Kernel density estimate of completion time data with experienced
participants

experienced participants, which peaks before the reference point is hit. Further-
more, the mean value of time shown in Figure 2.16, which accounts for changes in
ability, is generally higher among those who are experienced, and peaks near the
halfway point. These are not definitive markers of sophistication; they could stem
from convexities in subjective cost due to fatigue or boredom from task repetition.
Nonetheless, they are also consistent with forward-thinking agents, and suggest that
reference dependence in time has the possibility to influence time allocation even
outside of the loss regime.

The speed at which reference points adjust remains an unresolved issue in the
empirical literature. To checkwhether experienced agents are influenced specifically
by their previous behavior, I also plot in Figure 2.17 their values of time locked to
their completion time in the first stage, along with 95% nonparametric bootstrap
confidence intervals. Beyond a mild upward trend, no clear systematic reference
point or benchmark effects are apparent before the first-stage completion time is
reached. This suggests people may not be quickly adjusting their reference points
based on direct experience. However, since little data is observed after the first-stage
time passes, this remains inconclusive.
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2.5 Conclusion
People often have beliefs about how long tasks will take to complete and become
discontent if their expectations are violated. According to theories of reference-
dependent preferences (e.g. Bell, 1985; Loomes and Sugden, 1986; Gul, 1991;
Kőszegi and Rabin, 2006), people will try to avoid falling too far behind these
expectations even if it means forgoing monetary payoffs. I conducted a real-effort
experiment to test the theory’s predictions, finding support. Most directly, values
of time more than doubled after participants exceeded the reference point based on
external information, and work speed increased at the cost of reduced monetary
earnings. Participant task completion times tended to cluster near the reference
point. Those who fell behind were distinctly more dissatisfied, but not if they
had prior experience in the task, suggesting that their reference points incorporated
varied kinds of information. These findings strengthen the case for expectations-
based reference dependence and the practical expansion of its domain to expectations
in time.

My results apply to literatures on labor supply choices. I find evidence that the
quantity and quality of labor supply are influenced by workers’ beliefs independent
of a link to pecuniary outcomes. Theories of reference-dependent preferences
predict that among workers with flexible daily hours, stopping probabilities are
related to income earned in a given day. Several studies show this pattern (Camerer
et al., 1997; Chou, 2002; Fehr and Goette, 2007; Doran, 2014; Leah-Martin, 2015),
but observed levels of variation in earnings are not fully explained by a fixed earnings
target (Camerer et al., 1997; Farber, 2005; Farber, 2008; Farber, 2015). Reference
points assumed to be based on expectations in both time and money may, however,
be able to account for this by admitting flexibility in response to contextual variation
(Kőszegi and Rabin, 2006; Crawford and Meng, 2011). My study provides a check
on these assumptions, and the results help justify use of the theory. My quantitative
estimates of the strength of time-based loss aversion also accord with the closest
figures in the empirical literature based on an alternative structural model, further
validating a reference dependence approach.

I also take a methodological step forward by exploiting a cognitively-inspired struc-
ture to identify parameters of economic interest. Variables not commonly used by
economists can be powerful tools in understanding behavior, even variables that are
simple to measure. My approach is in line with the recommendations of Rubinstein
(2007) and Spiliopoulos and Ortmann (2014) to exploit response time data, but goes
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farther by interpreting those response times through the lens of a neuroeconomic
model. The drift diffusion model implies a complex underlying structure where
error enters via the belief updating process. This combined with economic motives
generates observed patterns of choice. Building on ideas expressed in Clithero and
Rangel (2013), I embed the drift diffusion model into a fuller theory, allowing us
to estimate economic parameters which we would otherwise be unable to discern.
Drawing on work from other disciplines in this manner is one way to create and
justify theoretical structure. There are more opportunities in this rich vein slowly
starting to be mined (Webb, 2013; Woodford, 2014). Neuroeconomic parameters
are particularly “deep” in the sense of the Lucas critique; they describe the funda-
mental “technology” of decision making. These insights can be instrumentally, as
well as intrinsically, useful.
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C h a p t e r 3

A STATISTICAL TEST FOR THE OPTIMALITY OF
DELIBERATIVE TIME ALLOCATION

We are often tasked with choosing from multiple options. A subtle but essential
part of the choice we make in selecting a job candidate or a consumer product is
when to stop deliberating and pick an option. Such decisions involve an inverse
relationship between speed and accuracy; we can make judgments that are fast
but error-prone, or slow but high quality. Over the last half century, research in
psychology and neuroscience has indicated a class of mathematical models of the
deliberative process – diffusion models – that seem to well describe neural and
behavioral data. However, while these models generate a speed-accuracy tradeoff,
their applications are often agnostic as to how agents actually negotiate this tradeoff.
One prominent hypothesis is that an agent’s stopping criterion optimally balances
the costs and benefits of spending time.

Do people optimally balance the costs and benefits of time spent and accuracy
attained? When conditions change, does behavior change commensurately? The
answers to these questions are important because they inform us about how we can
best generalize, predict, and influence a person’s behavior across various contexts.
If people are behaving optimally, we can predict their behavior precisely using op-
timization models even when task demands move outside of their original confines.
If, on the other hand, people are not behaving optimally, then alternative models
will furnish better predictions, and there may be room for interventions to improve
the efficiency of decision making. For instance, time limits could prevent people
from spending excess time on chronic deliberation between similar courses of action
where deliberating yields little return.

The answers are also challenging to determine, though, because costs and benefits
are subjective. How one feels about spending time towards some end varies from
person to person. Lacking ways to overcome this challenge, classic theoretical
predictions derived from natural modeling approaches remain understudied. Past
tests of optimality have been based on criteria that either neglect subjectivity or only
coincidewith expected utility theory under restricted circumstances. Nonetheless, to
fully explore individual decision making, we must allow for individual preferences.
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In this paper, I propose a flexible way to test expected utility maximization in
stochastic time allocation settings. This test can be applied in a variety of scenarios
spanning perceptual tasks or value-based decision making. In tandem, I conduct
experiments in the perceptual domain to investigate optimality according to the most
well-known of diffusion models, the drift diffusion model. The experiments include
both simple decisions, in which the agent knows the difference in values between
better and worse choices, as well as more complex decisions, in which the value
difference is uncertain. The latter involves the first test of new theoretical results by
Fudenberg, Strack, and Strzalecki (2015) characterizing the optimal decision rule
for the uncertain-difference drift diffusion model.

I find that when the value difference is known, a substantial fraction of participants
do not appear to respond optimally to changes in task difficulty. Furthermore,
when the value difference is uncertain, although the optimal decision rule provides
an improvement over the standard fixed threshold assumption, participants do not
appear to be sensitive to changes inmonetary incentives. Thus there is still significant
room for improvement in understanding the process of deliberation.

3.1 Background
Among countless studies of decision making, a moderate number invoke math-
ematical portrayals of the deliberation process itself. A great deal of research
measuring behavioral and, more recently, neural patterns has provided support for
diffusion models (Ratcliff, 1978; Busemeyer and Townsend, 1993; LaBerge, 1962;
Pike, 1966; Vickers, 1970; Usher and McClelland, 2001; Shadlen and Newsome,
1996; X.-J. Wang, 2002). These models describe decision making as one or more
stochastic processes representing the evolution of confidence in one’s answer as
noisy information is processed. Once confidence reaches a particular threshold
level, the agent stops processing information and commits to a choice. Originally
developed in the mid 20th century, the drift diffusion model (DDM) is the oldest and
most famous in this class of models (Stone, 1960; Laming, 1968; Ratcliff, 1978).
Many pieces of behavioral evidence show that the DDM closely matches configu-
rations of choice and response times in a variety of tasks ranging from perceptual
discrimination (Ratcliff and Rouder, 2000; Ratcliff, 2002; P. L. Smith, Ratcliff, and
Wolfgang, 2004) to recognition memory (Ratcliff, 1978; Starns and Ratcliff, 2014),
and recent work extends it to value-based judgment (Krajbich, Armel, and Rangel,
2010; Milosavljevic et al., 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al.,
2012). Moreover, direct measurements of neural activity reveal the implementation
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of evidence accumulation processes that fit the model’s structure (Hanes and Schall,
1996; Shadlen and Newsome, 2001; Gold and Shadlen, 2002; Ratcliff, Cherian, and
Segraves, 2003; P. L. Smith and Ratcliff, 2004).

Part of the DDM’s original motivation was its formal analogy with efficient sta-
tistical algorithms. Importantly, the DDM was built as the continuous-time limit
of the sequential probability ratio test (SPRT; A Wald, 1947) and is often theoret-
ically characterized as inheriting its optimal stopping properties. For instance, it
attains the speed-accuracy frontier (Abraham Wald and Wolfowitz, 1948; Arrow,
Blackwell, and Girshick, 1949); that is, it achieves the highest accuracy for any
given response time, and the quickest response time for any given accuracy level.
Therefore questions of optimality bear upon the core identity of the model. We
would like to understand how far the DDM’s optimality extends in practice.

To be more specific, in a two-alternative forced choice, the key outcomes about
which decision makers are thought to care are time spent and performance attained.
The former is penalized due to objective or subjective costs of time, and the latter is
rewarded by association with some payoff. In the special but commonly encountered
case that occurs when the rewards from the correct and incorrect options are fixed,
performance reduces to accuracy, the probability of choosing the correct option.
There are then two natural criteria for optimality based on these central elements.

The first criterion is to minimize a weighted sum of error rate and decision time,
which is known as the Bayes Risk (Abraham Wald and Wolfowitz, 1948):

min
x∈X

BR(x; y) = ER(x; y) + ψDT (x; y),

where x and y are choice variables and fixed parameters, respectively, that determine
the outcomes. The optimal choice depends on the free preference parameter ψ that
determines how much importance is placed on time relative to performance, and
which may include a sizeable subjective component that is not directly observable.
Thusψ is interpretable as the subjective flow cost of time. TheBayesRisk expression
is a special case of expected utility maximization when the reward depends only on
whether the response is correct; more generally, the decision maker is assumed to
solve maxx∈X E[reward(x; y) − cost × time(x; y)]. This is generally considered
the most appropriate optimization criterion.

The second criterion is to maximize the ratio between accuracy and decision time,



38

which is the Reward Rate (Gold and Shadlen, 2002):

max
x∈X

RR(x; y) =
1 − ER(x; y)

DT (x; y) + T0 + D + ER(x; y) × Dp
,

whereT0 is the time required for sensory andmotor processing, D is the time interval
between a correct response and the following stimulus, and Dp is the additional time
delaywhich penalizes an incorrect response on top of D. This expression is relatively
more common in psychology and ecology due to its origins in reinforcement rate
analysis, but remains rarely used outside of those fields. The optimal choice here
does not require the specification of any free parameters.

If the environment is homogeneous in difficulty, then the SPRT (and DDM) maxi-
mizes any reward criterion based on error rate and decision time that ismonotonically
nonincreasing in decision time (Rafal Bogacz, E. Brown, et al., 2006). Thus the BR
and RR optimal solutions happen to coincide perfectly. However, this is not the case
in general. Because Reward Rate maximization is parameter-free, empirical tests
of optimal choice have focused almost exclusively on this criterion (Simen et al.,
2009; Rafal Bogacz, Hu, et al., 2010; Starns and Ratcliff, 2010; Starns and Ratcliff,
2012; Zacksenhouse, R Bogacz, and Holmes, 2010; Balci et al., 2011; Karşılar
et al., 2014; Drugowitsch, Moreno-Bote, et al., 2012; Drugowitsch, DeAngelis,
Klier, et al., 2014; Drugowitsch, DeAngelis, Angelaki, et al., 2015). Optimality
in the Bayes Risk sense has thus been empirically neglected despite its theoretical
importance.

I seek to rectify this imbalance by introducing a method to test expected utility
maximization (and thus Bayes Risk optimality) in such stochastic decision settings.
The test comprises a check for consistency of preferences across different condi-
tions. The idea is that when changes occur in environmental parameters such as
external incentives or problem difficulty, optimal behavior should change commen-
surately to reflect consistent underlying subjective preferences. Suppose, as in the
following section, that we are interested in studying whether people can optimally
adjust their deliberative behavior according to the difficulty of decision problems.
Although problems of varying difficulties will lead to different ability levels and
decision rules (which in the drift diffusion model are captured in the drift rate
and confidence threshold) these differences should nonetheless reflect a consistent
underlying preference. This consistency can be checked by estimating preference
parameters across different sets of problems characterized by difficulty level, and
testing whether preferences are the same even when difficulty varies.
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That is, suppose one has data from two sets of problems, one with uniformly low
difficulty and one with uniformly high difficulty. A person’s ability is likely lower
among the high difficulty problems. The optimal decision rule in each set will be
based on one’s ability and preference (for time versus accuracy). If we have reason
to believe their preferences are the same across these sets (or at least hold some
specific relation to each other), then the estimated decision rule in conjunction with
the estimated ability in each set should imply the same preference across sets. This
is the core of what is tested. While estimates of ability and decision rule will vary
due to task difficulty, they should jointly indicate the same inferred preference if
people are indeed optimally balancing the costs and benefits according to expected
utility maximization.

Formally, as long as preferences can be identified using a type of likelihood estima-
tion, consistency can be assessed using a likelihood ratio test where the restriction
comes from the specified relation between preferences. In particular, if preferences
are believed to be the same across multiple conditions, the restricted likelihood is
based on equality between the preference parameters. Alternatively, weaker re-
strictions based on inequalities can be made if one only wants to assume ordinal
relationships between conditions.

This method is in the spirit of economic tests of revealed preference; it attempts to
rationalize behavior under some specified theory without making any claims about
the intrinsic reasonableness of possible preferences beyond basic consistency. This
constitutes a relatively minimal standard for rationality – consistency is necessary
but not sufficient, and failure to reject the null hypothesis of consistency is not
definitive evidence that the agent is behaving optimally.

The approach has natural advantages and limitations. The test relies on auxiliary
assumptions about individual preferences. Because it is a consistency check, data
is needed from multiple distinct but comparable conditions such that the analyst be-
lieves in some specific relationship between preferences across environments. Since
preferences are allowed to be idiosyncratic, this imposes a meaningful constraint on
when the test can be applied in practice. However, the test is flexible and can be
applied in a general form with any model that makes precise predictions about the
joint distribution of decision time and performance. The auxiliary assumptions can
also be flexible; a variety of preference classes are permitted. This adaptability en-
ables even more complicated models to be studied, including the Fudenberg, Strack,
and Strzalecki (2015) DDM that I investigate in Section 3.3.
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3.2 Variation in Difficulty
The choices we make often vary in their difficulty level. Some decisions are quick
and obvious, while others are protracted and unclear. Can people optimally adjust
their deliberative behavior according to the difficulty of decision problems? This
ability is important for students taking their SATs or radiologists assessing the results
of medical scans, all of whommust allocate time appropriately across easy and hard
cases. I study this question in a common perceptual judgment paradigm, the random
dot motion task, in which behavior and brain activity have been shown to fit the
structure of the drift diffusion model.

Methods
In each trial of the random dot motion task, 100 white dots are displayed on a
screen. As illustrated in Figure 3.1, a large fraction of them are “noise dots” moving
in random directions (depicted as empty circles), while the remaining few are “signal
dots” moving in a consistent direction (depicted as filled circles) –– either all to the
left or all to the right. The agent must determine in which direction the signal dots
are moving. This is a common task in perceptual decision making experiments (e.g.
Newsome, Britten, and Movshon, 1989; Britten et al., 1992) and is straightforward
enough that similar versions have been administered to a range of nonhuman animals
including rats and mice (Douglas et al., 2006), pigeons (Nguyen et al., 2004), and
rhesus macaques (Kim and Shadlen, 1999).

Twenty-three human participants recruited from the Caltech SSEL population en-
gaged in 100 trials of the standard randomdotmotion task. Difficultywas determined
as usual by the number of dots moving in a consistent direction (the coherence).
Trials were of 4 difficulty levels defined by coherences set at 10%, 12%, 14%, or
16% occurring uniformly at random throughout the block. Participants were paid
a fixed amount of $0.05 for each correct answer and nothing for wrong answers,
in addition to a $5 show-up fee. The timeline is depicted in Figure 3.2. Preced-
ing each dot motion trial was a 1.5 second fixation cross. After each dot motion
trial they received feedback as to which direction was correct in order to facilitate
optimal behavior. The direction of coherent motion was determined with equal
probability randomly across trials. The task was programmed and displayed using
the Psychophysics Toolbox in MATLAB, with 5-pixel-width circular dots moving
in a 960x960 pixel square aperture.
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Figure 3.1: Schematic diagram of the random dot motion task stimulus

Figure 3.2: Timeline of experimental stimuli
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Certain-Difference Drift Diffusion Model
The DDMmodels the process of choice as a stochastic accumulation of net evidence
hitting an absorbing boundary. The model consists of four elements: the difference
in evidence between the two alternatives at a point in time (x(t)), the drift rate that
captures the agent’s speed in integrating evidence (δ), the noise in the accumulation
process (σ), and the threshold that stops the accumulation process (±z). Evidence
for an option is integrated noisily in continuous time as represented by a Wiener
process,

dx = δdt + σdW,

that begins at x(0) = 0 in an unbiased decision, and stops as soon as it hits the
decision threshold ±z, at which time a choice is made according to whether +z or
−z was hit. This threshold governs the speed-accuracy tradeoff. If it is set high, then
the standard of evidence required to make a decision is stringent, and the resulting
decision will be slow but accurate. If it is set low, then only weak evidence is
needed, and the decision will be fast but inaccurate. This confidence threshold is
chosen depending on one’s preferences for time and accuracy; if optimal, it solves
the Bayes risk minimization problem.

The properties of this model are well understood. Mathematically, its predicted
outcomes arise as solutions to a first passage problem in stochastic processes ––
when does a Wiener process with drift first hit an absorbing boundary, and which
does it hit? Analytical characterizations of accuracy and time contingent on its
parameters are available due to its tractability (Rafal Bogacz, E. Brown, et al.,
2006). The error rate is given as

ER =
1

1 + e2δz/σ2 ,

and the mean decision time is given as

DT =
z
δ

tanh
(
δz
σ2

)
.

The optimal decision threshold z∗ is thus

z∗ = arg min
z∈R++

BR(z;σ, δ, ψ) = arg min
z∈R++

ER(z) + ψDT (z),

and is the solution to

1
ψ

2δ2

σ2 −
4δz∗

σ2 + e−(2δz∗/σ2) − e2δz∗/σ2
= 0.
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Although this does not produce a closed form solution, it is known to uniquely
determine z since the equation can be written as an equality between increasing and
decreasing functions (Rafal Bogacz, E. Brown, et al., 2006).

Test Procedure
The optimality test centers on checking for consistency of individual preference
parameters across difficulty levels (i.e. coherences). To do so, the DDM parameters
(zi, δi, σi)i∈{10,12,14,16} must be estimated in each condition via one of several known
psychometric methods. From each of these estimates, the corresponding preference
parameters (ψ10, ψ12, ψ14, ψ16) can be recovered supposing the optimal decision
threshold balances the subjective costs and benefits of time and accuracy which are
summarized by the preference parameter: z = arg min BR = arg min a(z) + ψt(z).
Finally, these estimates of ψ can be checked for consistency, ψ10 = ψ12 = ψ14 = ψ16.
Intuitively, this is checking that the subjective cost of time implied by behavior is
the same across levels of difficulty.

I propose and implement a general hypothesis testing approach that relies on a
combination of highly flexible tools and can thus be applied to a wide range of
models. This approach is applicable as long as the model makes specific predictions
about the joint distribution of time expenditure and accuracy, even if that distribution
is analytically intractable.

1. Construct and maximize a likelihood-type function based on distributions f (t, θ)
simulated with Monte Carlo methods to estimate the model parameters θ for each
condition:

logL(θ) =
∑

log f (t, θ).

2. Test for differences in the cost of time parameter ψ across conditions using a
likelihood ratio test in which the unrestricted likelihood, Lur , allows ψ to be free
in each condition while the restricted likelihood, Lr , forces ψ to be equal across
conditions (with degrees of freedom dfur and dfr equal to the number of model
parameters under each assumption):

2(logLur − logLr ) ∼ χ2
dfur−dfr .

To implement this procedure and characterize the full likelihood function, first I
simulate time-accuracy distributions contingent on values of the model parameters
θ = (ψ, δ, σ). These parameter values are taken from a 30x20 grid with ψ varied
from 0.001 to 0.030 by increments of 0.001 and δ varied from 0.005 to 0.1 by
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increments of 0.005. The properties of the model are known to depend only on the
relative values of the parameters, so as is customary, σ is taken to be 0.1. In order
to generate each distribution, as described below I simulate a first passage problem
using a random walk approximation (Tuerlinckx et al., 2001). Wiener processes are
often described as the continuous time limit of a discrete random walk (e.g. Feller,
1968; Cox and Miller, 1977), which lends itself naturally to simulation. A random
walk on a discrete state space with tiny displacements and tiny time intervals can
be used to simulate a Wiener process with drift δ and variance σ2 as follows. In
every time interval τ, the state increases by a fixed displacement ∆ = σ

√
τ with

probability p and decreases by ∆ with probability 1 − p, where

p =
1
2

(
1 +

δ
√
τ

σ

)
.

As τ converges to zero, this approximation increasingly resembles the continuous
time stochastic differential equation, but the algorithm’s computational burden also
grows. I set τ = 10ms to produce the most accurate representation possible in
a reasonable amount of computing time. The time-accuracy distribution is then
computed based on how many time steps the random walks take to first cross
the decision threshold ±z∗ that stems from the grid point values ψ and δ (and
σ) and which threshold of +z∗ or −z∗ is crossed first. This produces a simulated
distribution f (t) for each grid point θ. I generate 10,000 randomwalks per parameter
grid point to construct these distributions. This process is depicted in Figure 3.3;
sample randomwalks are shown hitting either the correct (top) or incorrect (bottom)
nonlinear decision threshold at various time points, which gives rise to a simulated
time-accuracy distribution.

The simulated time-accuracy distributions for candidate model parameters are then
comparedwith the data to create a likelihood-type function. I use quantile maximum
probability estimation (QMPE; Heathcote, S. Brown, and Mewhort (2002), Heath-
cote, S. Brown, and Cousineau (2004), and S. Brown and Heathcote (2003)), which
is a more robust alternative to standard maximum likelihood estimation. QMPE
groups data into bins based on response time quantiles, qj=0,...,m, so that the pre-
dicted probability of a data point is given by the proportion of samples falling into
its bin, π j (θ) ≡

∫ qj

qj−1
f (t, θ)dt. To achieve a reasonable balance between robustness

and efficiency, I construct bins from deciles (m = 10). The function to bemaximized
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Figure 3.3: Illustration of random walk simulations

then takes the form of the multinomial log likelihood:

logL =
∑

condition

m∑
j=1

(N j,Correct log π j,Correct + N j,Error log π j,Error).

This yields parameter estimates θ̂ that are consistent and asymptotically normally
distributed (Menéndez et al., 2001; S. Brown and Heathcote, 2003). Figure 3.4
depicts a likelihood function created using this procedure.

QMPE has been shown to exhibit superior performance compared to standard ML
approaches when applied to response time distributions (Heathcote, S. Brown, and
Mewhort, 2002; Heathcote, S. Brown, and Cousineau, 2004), and has attained great
popularity in the perceptual decision making literature due to its merits. Because
the method is grounded in order statistics, it is relatively robust to outliers and
contamination; one can easily see that making extremal data points even more
extreme will not affect the estimate. The binning process will furthermore help
smooth over bumps in the simulated distributions. However, superior performance
may also be linked to hidden theoretical advantages of the estimator.

QMPE turns out to be a branch of maximum product of spacings estimation (MPS;
Cheng and Amin, 1983; Ranneby, 1984). MPS is predicated on the fact that
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the percentiles of any continuous distribution are themselves uniformly distributed,
based on the probability integral transform. WhereasMLE tries to directlymaximize
the fit of the predicted distribution to the data, MPS tries to maximize the fit of the
uniform distribution to the data percentiles. The estimator maximizes the log of
gaps between values of the distribution function at adjacent data points; that is,
if an ordered sample x (1), . . . , x (n) comes from a cumulative distribution function
F (x; θ0), spacings are defined as Di (θ) = F (x (i); θ) − F (x (i−1); θ), and the MPS
estimator is θ̂ = arg maxθ∈Θ

∑
i lnDi (θ). This can be derived as an alternative

estimator of the Kullback-Leibler divergence (Ekström, 2008). While MPS is
generally asymptotically equivalent to MLE (Anatolyev and Kosenok, 2005) and
shares its properties when the MLE exists, MPS can remain consistent and efficient
even when MLE fails. In practice, Monte Carlo simulations provide evidence of
greater efficiency and lower bias inQMPestimates compared toMLE among settings
that characterize perceptual decision making (Heathcote, S. Brown, and Mewhort,
2002; Heathcote, S. Brown, and Cousineau, 2004).

Finally, based on the simulated likelihood function, a likelihood ratio test (LRT)
can assess whether the preference parameter ψ is consistent across conditions.
The restricted likelihood accordingly assumes the null hypothesis H0 : ψ10 =

ψ12 = ψ14 = ψ16, and the unrestricted likelihood assumes the alternative hypothesis
H1 : ψ10 , ψ12 , ψ14 , ψ16. The test has degrees of freedom dfur − dfr based
on the difference in the number of unrestricted and restricted model parameters.
The former allows a different preference parameter ψ for each condition, whereas
the latter requires the same single parameter in each condition, so the difference is
equal the number of conditions less one (in this case, df = 3). The test statistic
2(logLur − logLr ) is then distributed χ2

dfur−dfr
. LRTs are quite general and

accommodate multiple parameters and multiple conditions. Due to the generality
of Wilks’s (1938) theorem which implies that likelihood ratio test statistics are
distributed as χ2, most likelihood-type estimation techniques should lend themselves
well to this test. MSP shares the asymptotic properties of MLE, indicating that an
LRT remains suitable (Ekström, 2013).

Beyond this, due to ceiling (100%) accuracy among many of the participants in
several of the conditions, I employ an imputation scheme in which an extra data
point is appended. This imputed trial comprises an erroneous choice that occurs
in the lowest response time quantile. In line with the speed-accuracy tradeoff,
the idea is that a participant would make a mistake if they had responded even
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quicker than their quickest observed time. This imputation was applied to the 14
of 23 participants who exhibited ceiling accuracy in at least one condition due to a
combination of low difficulty and few data points per difficulty level. Regardless,
the test rejects optimality for approximately the same proportion of individuals even
when considering only the subset who required no imputation.

Results
Figure 3.4 shows for each difficulty condition the likelihood functions of a sample
individual for whom optimality was rejected. White grid points denote the best
fitting parameter configuration, and surrounding yellow areas represent the χ2

2 95%
confidence region. The drift rate parameter which captures one’s information accu-
mulation ability can be seen to rise as the difficulty level drops, as would be expected
if the experimental treatment has an effect. The test, though, does not require com-
mitment to relationships between non-preference parameters and therefore does not
strictly depend on this. However, the preference parameter representing the subjec-
tive cost of time varies with difficulty, reflecting the kind of inconsistency the test is
intended to pick out.

This test was implemented for each individual in the sample. The histogram of
resulting test p-values is displayed in Figure 3.5. Optimality was rejected for 6 out of
23 people at the 5% significance level. We can diagnostically examine the estimated
parameters across conditions. Figure 3.6A reveals that overall the drift rates are
indeed increasing as the task becomes easier, while Figure 3.6B reveals greater
variation in estimated preferences among those the test rejected. This indicates that
people for whom optimality is not rejected are also affected by the treatment to some
degree. Thus the test is not merely detecting any kind of change due to the treatment
but is selectively picking out violations of preference consistency. Nonetheless, a
sizeable portion of the preference variation does appear to be related to the dramatic
effect of the hardest difficulty level. This suggests that stronger treatments inducing
greater differences in difficulty could reveal further inconsistency, highlighting the
point that the test is a relatively minimal criterion and individuals who do not fail it
may yet be found suboptimal under other circumstances.

As mentioned earlier, the test requires the relationship between preference pa-
rameters across conditions to be specified. Consistency in the present case was
taken to mean that preferences should be identical across difficulty levels; that is,
ψhigher difficulty = ψlower difficulty. However, we may believe that time spent on harder
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Participant 6, Difficulty Level 3
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Log Likelihood Function

Participant 6, Difficulty Level 4 (easiest)

Preference Parameter 

D
rif

t R
at

e 
P

ar
am

et
er

0.
00

5
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09
0.

1

0.05 0.13 0.21 0.29 0.37 0.45 0.53 0.61 0.69 0.77 0.85 0.93

Figure 3.4: Example of simulated likelihood functions

problems could feel subjectively worse than the same amount of time spent on
easy problems. This would imply that preferences can change and still reflect an
underlying consistency, constituting an alternative definition of consistency which
could rationalize the behavior of some individuals who were previously judged to be
inconsistent. In fact, the test can be adapted to this alternative criterion by relaxing
the equality restriction while maintaining the same general approach. Rather than
assuming ψhigher difficulty = ψlower difficulty, I enforce an order-restricted hypothesis,
ψhigher difficulty ≥ ψlower difficulty.1 Using a conservative bound, the test still rejects

1Under such conditions, theoretical results imply that the LRT statistic is no longer distributed
as χ2. Instead the test statistic is usually distributed as χ̄2, which is a mixture of χ2 distributions
with varying degrees of freedom (e.g. Robertson, 1978; Robertson, Wright, and Dykstra, 1988).
Intuitively, the χ̄2 distribution formalizes what can be thought of as a χ2 distribution with non-
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optimality for at least two individuals.

3.3 Variation in Incentives
A central tenet of economic reasoning is that incentives – usually monetary in
nature – matter. Do people respond optimally to changes in monetary incentives
in a deliberative context? I move beyond the usual paradigm by further studying
optimal time allocation in an environment where the difference in payoffs between
alternatives is uncertain. I do so using a modified version of the random dot motion
task enabling me to conduct the first test of Fudenberg, Strack, and Strzalecki’s
(2015) theory, a new and precise characterization of collapsing thresholds derived
as the solution to an optimization problem. The task forms an intermediate step
between perceptual and value-based decision making in which I can test the theory
under precise and fitting circumstances.

In Section 3.2, the difference in values between a correct and an incorrect answer
was assumed to be fixed. Under this assumption, expected reward boils down to
accuracy. However, in many situations the difference in values may be variable
and uncertain. Such uncertainty often occurs in value-based decision making, to
which the DDM is increasingly being applied (Krajbich, Armel, and Rangel, 2010;
Milosavljevic et al., 2010; Krajbich and Rangel, 2011; Krajbich, Lu, et al., 2012).
For instance, an employer deciding between two potential employees is unsure not
only about which of them is better, but also by how much. One candidate might
substantially increase profits while the other ruins a project, in which case lengthy
deliberation is crucial – or both might be about equally effective, in which case
lengthy deliberation will not produce much additional value.

In the value-based DDM, the accumulation rate is based on the difference in values
between options. If one option is much better, then confidence tends to rise quickly.
Thus the confidence trajectory carries information about the value gap in addition
to option rank. Spending a long time deliberating without coming to a conclusion
accordingly implies that the options are similar in value. The agent should then
curtail their deliberation time. This means the optimal decision threshold will no

integer degrees of freedom. Consider that restricting two parameters to be equal to each other
removes a single degree of freedom; it follows that restricting one parameter to be weakly greater
than the other is less stringent and should in some sense remove only a fractional degree of freedom.
In practice, themixture weights for each χ2 component of the χ̄2 distribution are difficult to calculate,
nor do the most relevant results currently exist for order-restricted inference with MPS. However,
the χ̄2 critical value will be bounded by the χ2 critical value with the equality-restricted degrees of
freedom.
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Figure 3.7: Schematic diagram of the bi-directional randomdotmotion task stimulus

longer be fixed; it will instead collapse over time. But how fast should it collapse?
Fudenberg, Strack, and Strzalecki (2015) develop analytical results characterizing
the optimal threshold contingent on parameters including the cost of time parameter.
My proposed test is flexible enough to accommodate even this more complex theory.

Methods
Rather than the usual dot motion stimulus consisting of two groups of dots in each
trial – signal dots moving consistently left or right, and noise dots moving randomly
– the modified dot motion stimulus comprises three groups of dots – signal dots
moving consistently left, signal dots moving consistently right, and noise dots
moving randomly. This is displayed in Figure 3.7. Participants can choose left
or right, and the wage earned is proportional to the number of dots moving in the
chosen direction (the coherence). That is, if 30 dots are moving left and 20 dots are
moving right, picking left might earn $0.12 while picking right might earn $0.08.
Lam (2014) studies this task and finds that the difference between left- and right-
coherences is indeed what drives the accumulation process. In this way, the drift
rate is tied to value as assumed by the value-based DDM.

Twenty-four participants (less 1 excluded due to computer error) recruited through
the Caltech SSEL engaged in two blocks of 100 trials each. On top of a $10 show-up
fee, they earned points equal to the number of dots moving in the direction they
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chose. The pay rate in the first block was set at $0.02 per 10 points, and was
doubled in the second block to $0.04 per 10 points. In line with the theoretical
assumptions (laid out below), the numbers of signal dots moving in each direction
were drawn i.i.d. from a discretization of the normal distributionN (25, 7) of which
participants were explicitly informed. In order to facilitate optimal behavior, they
received feedback on the correct direction following each trial.

Uncertain-Difference Drift Diffusion Model
The agent is faced with two options, i = l, r , which have unknown values, (vl, vr ) ∈
R2. She holds a prior belief about these values, µ0 ∈ ∆(R2), and observes a signal
(Z i

t )r∈R+ which, as in the DDM, drifts according to the Wiener process:

dZ i
t = vidt + αdBi

t .

She continuously updates her belief about the values, holding a posterior mean for
vi denoted X i

t = E[vi |{Z i
s}0≤s<t] that is conditioned on the signal trajectory up to

each point in time.

The agent must decide both which option to select and when to stop deliberating.
She chooses the option with the highest posterior expected value when she stops,
and also chooses a stopping time t. A flow cost ψ > 0 is incurred for time spent
before an option is selected. Thus she confronts the Wald optimality problem

max
τ∈T
E

[
max
i=l,r

X i
τ − ψτ

]
.

A sufficient statistic for this decision is the difference in signal values,

Zt ≡ Z l
t − Zr

t = (vl − vr )t + σBt,

where σ = α
√

2 and Bt =
1√
2

(Bl
t − B2

t ) is a Brownian Motion.

Both the usual certain-difference DDM and uncertain-difference DDM can be mod-
eled in this framework; the key amendment lies in the prior belief. The certain-
difference model confines the state space to two possibilities, in both of which one
option is better than the other by a fixed positive amount. The agent knows she is
not indifferent even before coming to a conclusion. If she has spent a long time and
Zt is still close to 0, she essentially faces the same problem she started with, and is
thus as willing to continue with deliberation as she was at the outset. The current
value of the process Zt is a sufficient statistic for stopping (i.e. the past trajectory
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carries no additional useful information), and so the stopping threshold does not
change over time (Shiryaev, 1969).

The uncertain-difference model instead assumes a Gaussian prior on option value,
vi ∼ N (X0, σ

2
0). Then spending a long time without a conclusion implies the agent

is probably nearly indifferent between options, and should therefore cut short her
deliberation and decide quickly. Thus the stopping threshold decreases over time.
Fudenberg, Strack, and Strzalecki (2015) characterize the optimal stopping rule
and derive a functional form that approximates the solution well according to their
simulations:

z∗(t) =
1

2ψ(σ−2
0 + 2σ−2t)

.

This function declines asymptotically to zero, meaning that eventually the agent
chooses almost at random. It is hyperbolic as a function of time, and shaped by
the prior variance σ0, the signal noise σ, and, importantly for present purposes, the
cost of time ψ. Standard static threshold models formally encode prior information
primarily by biasing the starting point of the accumulation process. In contrast, prior
information actually affects the shape of the threshold in the uncertain-difference
model even though the accumulation process remains unbiased, as can be seen from
the role of σ0. For example, if the agent has a high-variance prior over value (i.e.
σ0 is large), she will require more evidence to make a selection in order to exploit
the high-value trials which she believes will occur frequently. Notice further that
this model does not nest constant thresholds as a special case, in contrast to the more
flexible collapsing threshold models that are usually applied (e.g. Hawkins et al.,
2015).

Test Procedure
The test proceeds in a roughly similar fashion as before, though experimental condi-
tions are determined by payoff regimes. The drift rate, denoted δ, varies by trial and
is proportional to the difference in the number of dots moving in each direction in a
given trial, which is known to the experimenter. I construct the likelihood function
by grid search to ensure global maxima are found. I simulate the time-accuracy
distributions for candidate model parameters ψ and σ (which are allowed to vary
across blocks) taking into account the assumed parameters δ and σ0 set experi-
mentally. The 90x90 grid varies ψ from 0.05 to 0.94 by 0.01, and σ from 10 to
188 by 2. I generate 10,000 random walks per parameter grid point (including the
variation in δ; thus approximately 400,000 random walks per (ψ, σ) combination)



54

Log Likelihood Function

Participant 10, Block 1

Preference Parameter 

σ 
pa

ra
m

et
er

10
22

34
46

58
70

82
94

10
8

12
4

14
0

15
6

17
2

18
8

0.05 0.13 0.2 0.27 0.35 0.43 0.5 0.57 0.65 0.73 0.8 0.87

Log Likelihood Function

Participant 10, Block 2

Preference Parameter 

σ 
pa

ra
m

et
er

10
22

34
46

58
70

82
94

10
8

12
4

14
0

15
6

17
2

18
8

0.05 0.13 0.2 0.27 0.35 0.43 0.5 0.57 0.65 0.73 0.8 0.87

Figure 3.8: Illustration of simulated likelihood function for uncertain-difference
model

to construct these distributions. These procedures are extremely computationally
intensive; to run the simulations and construct likelihood functions for all 23 par-
ticipants required on the order of 5,000 core-hours of computing time (4,000 and
1,000 core-hours respectively). This analysis was conducted in R, taking advantage
of parallel processing with Amazon EC2. Sample likelihood functions for one indi-
vidual are shown in Figure 3.8. As before, the white dot represents the best fitting
parameter set and the yellow area represents the 95% confidence region.

Results
As a check, increased coherence differences did indeed translate closely into im-
proved performance in a steady fashion, shown in Figure 3.9. (The transparency
level of the plotted points represents the amount of data in each bin.)

The preference parameter represents the cost of time relative to reward. When the
reward doubles, this parameter should then be cut in half. Figure 3.10 depicts how
the estimated preference parameter actually changes across payoff regimes. Only a
single person responds in line with this prediction represented by the null hypothesis
of ψ$ = 2ψ$$. Many people exhibit no response to the change in payoffs. Intuitively
this appears to be a kind of “stickiness”; these individuals are spending similar
amounts of time regardless of the environmental conditions. Several people exhibit
increased subjective costs. This may be due to fatigue caused by the task. This
highlights the centrality of auxiliary assumptions about preferences; the test requires
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Figure 3.10: Scatterplot of individual preference consistency
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Figure 3.11: Scatterplot of individual preference consistency allowing cost of time
to increase

some specific commitment to be made about how preferences should change across
conditions, and any factors one believes to be important need to be encoded in the
model and the test. Thus alternative specifications may be able to rationalize the
behavior of more people.

To account for the effect of fatigue on preferences, I estimate a more complex
model allowing the cost function to increase. The previous model assumed that
ψ = ψ$×(1+I(2nd block)ψ∆), and the test assessedwhetherψ∆ = 0. Now I consider
ψ to also increase linearly as trials pass so that ψ = ψ$× (1+ I(2nd block)ψ∆)+ψττ,
where τ is the trial number and ψτ is an additional parameter estimated on a grid
from 0 to 2e−3 by increments of 2e−5. (Sinceψ represents a marginal cost, allowing
it to increase linearly in trial number is similar to having a quadratic total cost of
time.) The test still assesses whether the change due specifically to the experimental
block, ψ∆ is 0. The results are shown in Figure 3.11. The test now rejects optimality
for 17 individuals, 74% of the sample. Although this is fewer people compared to
the simpler preference specification, the number remains high.
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Relative Fit
Because this is the first test of the Fudenberg, Strack, and Strzalecki (2015) uncertain-
difference DDM, I further study how well the model fits behavior relative to a
standard static threshold model. Whether constant bounds or time-varying bounds
should be preferred is a long-standing and contentious issue. Although many have
satisfactorily used fixed threshold models (e.g. Bode et al., 2012; J. W. Brown et
al., 2008; Ding and Gold, 2010; Ding and Gold, 2012; Forstmann, Dutilh, et al.,
2008; Forstmann, Anwander, et al., 2010; O’Connell, Dockree, and Kelly, 2012;
Ramakrishnan and Murthy, 2013; Ramakrishnan, Sureshbabu, and Murthy, 2012;
Ratcliff, Philiastides, and Sajda, 2009; Salinas and Stanford, 2013; Schall, 2003;
Schurger, Sitt, and Dehaene, 2012; P. L. Smith and McKenzie, 2011; Usher and
McClelland, 2001; X.-J. Wang, 2002; Wong and X.-J. Wang, 2006), a substantial
number have argued that collapsing thresholds fit data more closely (Sanders and
Ter Linden, 1967; Paolo Viviani, 1979a; Paolo Viviani, 1979b; P Viviani and
Terzuolo, 1972; Ditterich, 2006a; Ditterich, 2006b; Churchland, Kiani, and Shadlen,
2008; Cisek, Puskas, and El-Murr, 2009; Rao, 2010; Hanks et al., 2011; Bowman,
Kording, and Gottfried, 2012; Thura, Beauregard-Racine, et al., 2012; Thura and
Cisek, 2014; Zhang et al., 2014). Hawkins et al. (2015) carried out the most
comprehensive meta-analysis to date and found evidence primarily in favor of the
fixed threshold DDM as compared to the collapsing threshold DDM or urgency
gating model. The follow-up study of Voskuilen, Ratcliff, and P. L. Smith (2016)
concurred with this conclusion.

Time-varying thresholds in diffusion models are often defended on the basis of
optimality, though not always formally so (Hockley and B. B. Murdock, 1987), and
when formal, are usually predicated on RRmaximization (Ditterich, 2006a; Deneve,
2012; Drugowitsch, Moreno-Bote, et al., 2012; Thura, Beauregard-Racine, et al.,
2012; Moran, 2015). The main proposed reason for boundary collapse is between-
trial variation in difficulty (Drugowitsch, Moreno-Bote, et al., 2012; Moran, 2015),
though sometimes within-trial changes due to non-stationary accumulation (Ratcliff,
1980; Heath, 1982) or exogenously imposed time limits (Frazier and A. J. Yu, 2008;
Karşılar et al., 2014) are also cited.

Fudenberg, Strack, and Strzalecki (2015) provide the first precise model of collaps-
ing bounds derived as the solution to an optimization problem. Collapse in their
model is driven by value-linked variation in drift rate that naturally accompanies
economic decision making. As a result, the parameters that shape the threshold
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Figure 3.12: Relationship between accuracy and response time

are not arbitrarily free, but are functions of the primitive parameters defining the
accumulation process.

For model comparison, I estimate a static threshold pure DDM with parameters
representing decision threshold z and accumulation noise σ which are allowed to
vary across blocks. The candidate parameters come from a 100x100 grid varying z

from 50 to 446 by 4, and σ from 20 to 218 by 2, and the same simulation method is
used.

Plotting choice accuracy grouped by response time quintile as in Figure 3.12 reveals
a negative relationship between observed time and accuracy. This speed-accuracy
complementarity is a basic feature of the data that indicates something is amiss
according to the pure two-parameter DDM, which implies independence between
observed time and accuracy. Complementarity is predicted by collapsing thresholds
(Fudenberg, Strack, and Strzalecki, 2015) or by between-trial parameter variability
(Laming, 1968; Ratcliff, 1978).

In order to formally compare models, I calculate the Bayesian Information Criterion
(BIC) according to both models for every participant, BIC = −2 log L + m log n,
where L is the maximum log-likelihood, m (= 4) is the number of free parameters
in the model, and n (= 200) is the number of data points. The difference between
BICs provides a measure of relative fit. In this case because the two models have
the same number of parameters, the difference reduces to twice the difference in
log likelihoods, but Bayesian interpretations of this value remain. In particular it is
considered to approximate the Bayes factor, and Kass and Raftery (1995) provide
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recommendations for judging evidence strength accordingly. Figure 3.13 shows the
difference in BICs for every individual in each block along with Kass and Raftery’s
(1995) benchmarks. Overall, there is compelling support for the uncertain-difference
model, which is favored strongly or very strongly for 20 of 23 individuals in the
full dataset. This is not universally true, however; considering the first block alone,
the uncertain-difference model is favored strongly or very strongly for only 7 of 23
individuals, and the pure static model fits about the same for 6 individuals, if not
better by a slim margin.

The BIC values can also be used to compute posterior model probabilities in another
Bayesian analysis that accounts for uncertainty in model selection (Raftery, 1995;
Wasserman, 2000). This is the central model comparison technique in the large-
scale meta-analysis of Hawkins et al. (2015), and I employ it to weigh my results
more directly against theirs. Supposing a uniform prior over the two competing
models, the posterior probability of model j is

P(Mj |D) ≈
exp(−1

2 BICj )∑
k exp(−1

2 BICk )
.

I calculate these values for each individual based on data from the first and second
blocks independently and combined. Figure 3.14 displays the results. Each stacked
bar represents a single individual. The light and dark blue segments of each bar
represent the posterior probabilities for the certain- and uncertain-difference models
respectively. Participants are ordered by model probability separately in each subset
of data. Overall, the data supports the uncertain-differencemodel extremely strongly,
though less so in the first block alone, as before.

These analyses hint that the uncertain-difference model fits worse in the first block
relative to the second block. This indeed seems to be the case, as shown in Fig-
ure 3.15, which plots the log-likelihoods for each individual in both blocks, and
suggested by a paired t-test (p = .065). Such a difference could be due to greater
experience —- which might familiarize participants with the task or facilitate so-
phistication in threshold setting—- or greater incentives—- which might boost their
motivation to apply complex behavioral rules. Some additional evidence suggests
the former. In response to a post-experiment question, five individuals (marked red
in Figure 3.15) reported having taken part in a past experiment roughly similar to
the present one. The uncertain-difference model fit this subset of participants better
than others in the first block (p = .027, permutation test), but not in the second block
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(p = .421). This is consistent with basic task familiarity improving adherence to
the predictions of a sophisticated model.

The uncertain-difference collapsing bounds model enjoys far more support in my
data than the general collapsing bounds models do in the datasets assembled by
Hawkins et al. (2015). There are a few possible reasons for this discrepancy.

The models I use are less parameterized than theirs, out of theoretical suitability
and computational necessity. Their collapsing bounds DDM and simple DDM
respectively contain up to 14 and 12 free parameters to allow full between-trial and
between-condition parameter variability, while both of mine contain only 4. This
may shift the scales in favor of their fixed bounds model for two reasons. First,
their fixed bounds model contains additional parameters that are known to capture
realistic features of observed data. For example, they allow for variance in the drift
rate which could predict speed-accuracy complementarity. Thus the richness of
their simple DDM may be critical in soaking up variation that might otherwise be
attributed to boundary collapse. Second, their collapsing bounds model is penalized
more heavily for its extra degrees of freedom. The uncertain-difference DDM runs
on fewer parameters because its theoretical foundation connects threshold shape
to the basic DDM parameters. The sharpness of the uncertain-difference DDM’s
predictions may be a major advantage that enhances model fit at minimal expense
in terms of degrees of freedom.

In line with the second explanation and contrary to the first explanation, equalizing
the number of free parameters in all of the Hawkins et al. (2015) models by elimi-
nating between-trial variability for the more complex models increases the relative
performance of the collapsing bound and urgency gating models. However, even
with this equalization, the fixed bound model still performs at least as well in their
analysis as the collapsing bound and urgency gating models combined. That is, their
model with a static threshold and between-trial variability fits their data about the
same as their models with collapsing bounds and no between-trial variability. Thus
model degrees of freedom alone do not appear to fully explain the disparity in our
findings.

Besides parametric considerations, my experimental paradigm may be better suited
to elicit and measure threshold collapse. First, my random dot motion task involves
a substantially finer grid of difficulty levels. Since left- and right-coherences are
drawn from (rounded) Gaussian distributions withmean 25 and standard deviation 7,
the difference between them – which constitutes the difficulty level, and is tied to the
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drift rate – is also Gaussian with mean 0 and standard deviation 14. This means the
difference in coherences will take on magnitudes ranging from 0 to approximately
14 × 3 sd = 42 (in the data ranging from 0 to 38), which is six to ten times the
number of levels used for each of the Hawkins et al. (2015) datasets. My model
estimation does not collapse these levels into smaller, coarser bins, and instead fully
exploits this extra order of magnitude of richness. In addition, half of the trials are
expected to have coherence differences that lie between magnitudes 0 and 10. These
trials generate relatively low drift rates that lead to high variation in response time,
increasing the support of the data. Thus decisions both fast and slow are heavily
sampled, as desired to identify collapse.

Decisions in my task also take longer than in most other perceptual experiments.
For example, the 90th percentile response time was under 1.2 seconds in eight of
the nine datasets analyzed by Hawkins et al. (2015) and under 1 second in five of
the six experiments conducted by Voskuilen, Ratcliff, and P. L. Smith (2016). My
experiment by contrast had a 90th percentile response time of nearly 8 seconds.
This longer duration allows more scope for individual control over the decision rule.
Finally, my participants are humans explicitly informed of the coherence distribu-
tions. Thus they can tap this prior information in the construction of their decision
rule. Since these priors do not factor into simpler DDMs, any such information
usage will imply sophistication in the decision mechanism.

3.4 Conclusion
Diffusion models of deliberative time allocation have become hugely popular over
the last handful of decades. Part of their appeal lies in the optimal properties
they inherit from efficient statistical rules (Abraham Wald and Wolfowitz, 1948;
Arrow, Blackwell, and Girshick, 1949; Rafal Bogacz, E. Brown, et al., 2006).
The extent to which observed deliberation can be grounded in optimization is an
open question, but most attention to date has been focused on criteria that are not
universally appropriate definitions of optimality. I lay out a method to test expected
utility maximization in these settings that accommodates flexible characterizations
of subjective individual preferences. This method combines versatile statistical tools
to check for consistency of underlying preferences across different environmental
conditions, in the spirit of economic tests of revealed preference. The prime virtue
of the approach is its flexibility, while costs are paid in computational power and the
need to specify how preferences should manifest in varying environments.
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In conjunction, I run perceptual decision making experiments to empirically assess
optimal deliberation by varying problem difficulty and incentive structure. I find
that the hypothesis of optimality is rejected for about a third of the sample when
difficulty changes, and for nearly everyone when monetary stakes change. Since
consistency is a minimal condition for rationality, these figures should be taken as
lower bounds on the sample prevalence of suboptimality conditional on the models
studied. These results imply that existing theories of optimal deliberation aremissing
some meaningful piece of the picture. If the test rejects the null hypothesis, then
either preferences are correctly specified and the agent is behaving inconsistently, or
preferences are misspecified. More work is required to determine which is the case.

Further, one of my experiments is designed to investigate a new version of the
DDM (Fudenberg, Strack, and Strzalecki, 2015) which constitutes the first precise
model of collapsing decision thresholds developed as the solution to an optimization
problem. I conduct the first empirical test of this theory and compare it to a
standard static threshold model. The evidence strongly favors the new model,
particularly among participants with task experience. This contrasts past studies
in which collapsing thresholds fare worse than static thresholds. Strong theoretical
foundations may be key in producing complex models that make precisely accurate
predictions. Researchers are constructing versions of the drift diffusion model
inspired by economic applications. Such settings tend to involve lengthier decisions
and more scope for prior information to influence decision rules. These novel
theories may generate fresh and valuable insights in predicting deliberative behavior.
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C h a p t e r 4

ECHOES OF THE PAST: ORDER EFFECTS IN CHOICE AND
MEMORY

4.1 Introduction
Choices frequently must be made from options that appear in a sequence, such as
when consumers decide between presented products, employers evaluate prospective
job candidates, or judges appraise athletic or musical performances. Awide range of
competitive scenarios are characterized by winner-take-all incentives. With much
at stake, do outcomes reflect valid rankings of talent and value? In a consumer
choice setting, I experimentally study how constraints on memory systematically
bias preferences after sequential assessment, and how such biases may be alleviated
based on principles of memory.

An empirical finding has been documented across several settings that a contender’s
chances of being selected are systematically related to their serial position, i.e.
where they appear in the sequence of contenders. The very latest and the very
earliest to appear are more likely to win compared to intermediate contenders. This
is striking because if ordering is random, as is often explicitly the case in an attempt
to be fair, then rank should be unrelated to serial position. These order effects
have been found in the American Idol television franchise (L. Page and K. Page,
2010), the Eurovision Song Contest (Bruin, 2005; Bruin, 2006), the Queen Elisabeth
music competition (Flôres Jr and Ginsburgh, 1996; Glejser and Heyndels, 2001),
and across figure skating (Bruin, 2005; Bruin, 2006), gymnastics (Rotthoff, 2015),
synchronized swimming (Wilson, 1977), sales presentations (Wagner and Klein,
2007), environmental policy evaluation (Payne et al., 2000), and political ballots
(Meredith and Salant, 2013), with significant consequences for competitors’ careers
(Ginsburgh and Van Ours, 2003). Moreover, these effects seem to apply to choice
among consumer products where option attributes are objectively fixed and order is
experimentally randomized (Li and Epley, 2009; Mantonakis et al., 2009; Schosser,
Trarbach, and Vogt, 2013).

Order effects are often hypothesized to occur in large part due to properties of
memory. In the oldest memory paradigm used in psychology (beginning with
Ebbinghaus, 1885), lists of items (usually words) are presented to people who are
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later asked to recall them. The earliest and the latest items in these lists tend to be
best remembered. Serial position effects have been studied extensively and found
across a variety of materials and timescales. Such primacy and recency effects in
memory clearly parallel those in judgment. If memory limitations are responsible
for serial position effects in judgment, then principles of the former discovered over
the last century should predict when the latter will obtain and how strong they will
be. These principles can accordingly inform us about how to shape or de-bias
decision making.

Primacy and recency effects are believed to occur for different reasons. The earliest
items are favored in both memory and choice because judges can mentally rehearse
them more than later items, while the latest items are favored because they remain
fresh in judges’ memories. Intermediate items are weaker in memory because
they do not benefit from either of these forces and thus, as the hypothesis goes,
their mental impact fades and they receive worse evaluations. If these hypotheses
are true, the implications can be very counterintuitive. In particular, they entail
that interviewers who spend all available time deliberating and customers who are
especially attentive and involved will be most susceptible to these biases. Bias can
therefore be reduced by impairing an agent’s mental activity.

Various kinds of evidence in the memory literature support these claims. Some
experimental research explicitly tracks participant rehearsal patterns by asking par-
ticipants to say out loud what comes into their minds during memorization, known
as an “overt rehearsal” paradigm. These studies find that early items are indeed
rehearsed disproportionately often (e.g. Rundus, 1971; Brodie and B. B. Murdock,
1977; B. Murdock and Metcalfe, 1978; Tan and Ward, 2000; Ward, 2002). Many
other studies use what is called a “continuous distractor” paradigm in which a dis-
tracting task occurs in between item presentations. This body of work has found
that when the distractor task prevents rehearsal, primacy effects deteriorate while
recency effects remain (e.g. Bjork and Whitten, 1974; Glenberg, Bradley, Steven-
son, et al., 1980; Watkins, Neath, and Sechler, 1989; Howard andMichael J Kahana,
1999; Michael Jacob Kahana, 2012). Such results obtain across a wide range of
inter-stimulus intervals, from tenths of seconds (Neath, 1993) to days (Glenberg,
Bradley, Kraus, et al., 1983).

I conduct the first experiment testing the prediction that cognitive load inhibits
choice-based primacy effects by altering opportunities for memory consolidation. I
study the effects of two kinds of load which should reduce the ability or willingness
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of participants to rehearse items, disproportionately hindering those presented early
on. One source of load is a distraction in between stimulus presentations, and the
other is fatigue as the experiment progresses. In the experiment, participants are
shown sequences of digital art, after which they report their favorite, and take a
memory test. Thus in contrast to other experiments, I measure memory and choice
together to directly connect the two. I also observe the impact of artificially- and
naturally-occurring cognitive load. For half of the experimental blocks, a distracting
task occurs before and after each art piece is presented, in line with the continuous
distractor paradigm.

I observe strong primacy and recency effects for both choice and memory in non-
distractor trials early in the experiment, when participants would be most willing
and able to engage in rehearsal. However, the primacy effect is diminished in both
domains by the distractor task, and in the non-distractor trials in the later part of
the experiment. These findings indicate that disrupting encoding by increasing
cognitive load is a useful principle upon which to build interventions. When people
are less able or less inclined to rehearse items, they will exhibit smaller decision
primacy effects without disturbing recency effects.

Despite the appeal of the overall idea, notmuchwork has focused on tyingmemory to
judgment in this context. Kardes and Herr (1990) found that when participants were
motivated to remember the sequentially-presented attributes of two options, the early
presented attributes were weighed more heavily in choice and were better recalled.
Mantonakis et al. (2009) observed that the last wines tasted in a sequence were
preferred more only in longer sequences, when memory would be under a greater
load. Li and Epley (2009) showed that increasing the delay between presentation
and evaluation of a desirable individual painting led to lower evaluations. However,
even the existence of primacy versus recency effects in judgment varies substantially
across studies. Such inconsistencies could be reconciled based on subtle situational
differences thought to influence memory strength. For example, despite having
apparently similar setups, Mantonakis et al. (2009) reported both primacy and
recency effects, while Li and Epley (2009) observed only recency effects. This
may have been caused by procedural differences, as participants in the former
study merely waited for a period of time in between stimulus presentations while
participants in the latter study engaged in filler tasks.

The current project also contributes to a broader research program in neuroeco-
nomics. Many studies in neuroeconomics concentrate on choices stemming from
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habitual learning, with experiments that involve repeated presentation of a few stim-
uli arbitrarily linked to value. However, evidence is emerging of decision making
based on alternative systems that invoke memory for items that are only presented
once (e.g. Wimmer and Shohamy, 2012; Wimmer, Braun, et al., 2014). Such
systems may be more applicable when choices must be made with limited direct
experience and associations must be flexibly made over extended periods of time.
My investigation centers on a phenomenon stemming from memory for trial-unique
stimuli. I produce data on preferences in a paradigm that taxes memory over longer
intervals than standard reinforcement learning studies. My work may thus be a
useful behavioral stepping stone for future neuroeconomic analyses.

4.2 Experimental Design
This experiment was designed to study the interaction between memory and judg-
ment. To connect existing bodies of work as directly as possible, I retained the
central design elements of related memory and judgment paradigms. Participants
were shown sequences of art pieces and subsequently selected their favorite, similar
to Li and Epley (2009). However, in some blocks they were given a distractor task
between each stimulus presentation, according to the continuous distractor paradigm
(Bjork and Whitten, 1974). After each sequence, they were also given a recognition
memory test to assess the strength of their memories. I assess the consequences of
two kinds of cognitive load on the primacy effect: one imposed by the distractor
task, and the other resulting from fatigue. Both should reduce the ability or will-
ingness of participants to engage in rehearsal that would disproportionately benefit
early options.

The setup is depicted in Figure 4.1. In each of 36 blocks, participants were shown
a sequence of 5 abstract digital art images, each displayed for 5 seconds and shown
in only a single block. The images were chosen to be complex visual stimuli
which must be evaluated holistically. Thus, importantly for present purposes, the
exact nature and evoked feeling of each image cannot be perfectly remembered.
Responding to a post-experiment question about strategies used to remember the
images (see Appendix C), participants did indeed report condensing images to their
attributes such as color and shape or associating them with evocative names.

After each sequence, participants were asked to indicate which image they liked the
most. They did so by hitting the number key corresponding to its serial position,
i.e. hitting “1” for the 1st image shown, “2” for 2nd image, and so on. They could
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Figure 4.1: Experimental setup

also hit “0” to represent indifference between all 5. This indifference option serves
two purposes. First, it provided a convenient default to ensure choices of 1 through
5 were intentional. Fortunately, only a small minority (7%) of choices were of
this option after removing a single individual who selected it exclusively. Second,
it enables me to measure a possible cost of cognitive load. Cognitive load might
distract participants, impairing their ability to evaluate and discriminate between
options. This impairment could otherwise lead to greater noise in people’s choices,
masking the hypothesized effects.

Before and after every image in a block, participants faced either timed delays or
distractor task trials. Half of the blocks (randomly chosen) exclusively involved
delays and the other half exclusively involved distractors. The timed delay consisted
of an otherwise black screen saying “Please wait” for 2 seconds followed by a pure
black screen for 4 seconds. The distractor task was styled after existing studies
of order effects in psychology, which normally include simple arithmetic problems
such as 23 + 55 (e.g. Bjork and Whitten, 1974). To avoid possible anchoring effects
that might bias valuation, I instead used a task wherein participants were shown a
random letter on the screen and responded by hitting the key of the alphabetically
preceding letter (e.g. if “r” was shown, they should hit “q”). Three of these trials
occurred in every interval, separated by a 0.3 second fixation cross. They had to
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respond within 3 seconds and earned $0.01 for a correct answer. Participants on
average achieved over 80% accuracy. Distractor trials were closely matched with the
delays in terms of elapsed time. On average, distractor intervals took 5.61 seconds,
with 80% taking between 4.12 and 7.28 seconds, close to the 6 seconds of empty
delays.

After the image selection occurred, participants engaged in a recognition memory
test to gauge memory strength. In every block, they were shown 10 blurred images
in random order, each on screen for 0.8 seconds after a 0.5 second fixation cross.
Five of these were versions of the images just displayed in the preceding sequence,
while the rest were not shown at all in the experiment. After each image, participants
had to indicate whether or not they had seen it before, and if they had, in which
position it was displayed. They hit the key “0” if they believed the image was new,
or a key from “1” to “5” to note its position if they believed they had encountered it
previously. Although serial memory paradigms tend to test memory by free recall,
this was not possible given the kind of stimulus used. Participants had to respond
within 4 seconds and earned $0.04 for a correct answer. In line with previous
memory research, many participants explicitly stated that they rehearsed the items
in order of appearance. Several also noted that the distractor task did indeed impair
their ability to do so, and some informally admitted that they became tired or bored
in the later part of the experiment.

This group of tasks was repeated 36 times for each individual (on top of a sample
block to familiarize participants), and half of these blocks (randomly dispersed)
involved distractors. The experiment was long (60-–75 mins) and fatigue-inducing
due to the large number of decisions that needed to be made in short periods of
time. Participants were 69 individuals recruited through the Caltech SSEL. In the
following analyses, two participants are excluded, one who selected the indifference
option in every block and the other who wrote notes on paper as a memory aid.

4.3 Results
As expected, substantial order effects are observed in the behavioral data. The
aggregate distribution of stated preferences in the first half of the no-distractor blocks
—- i.e. under no cognitive load –– is shown in Figure 4.2 with 95% confidence
intervals for proportions. Both primacy and recency effects are strongly present,
and a chi-square test rejects uniformity of the distribution (p = 1 × 10−5, omitting
the indifference option). This result replicates previous findings of order effects in
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judgment (Mantonakis et al., 2009; Li and Epley, 2009). Notice that these previous
experiments present each participant with only a single sequence of items. Thus
primacy effects in their studies could in principle be caused by a novelty bias,
meaning that the earliest item is favored because it is a novel stimulus type to which
people quickly become accustomed. Such a confound does not apply here.

Figure 4.3 depicts the effects of cognitive load from the distractor task and fatigue. It
compares the choice distribution under no load to the distractor blocks in the same,
first, half (holding fatigue fixed) and the second-half no-distractor blocks (holding
distraction fixed). These distributions appear to be significantly different from the
no-load baseline. In particular, there seem to be selective reductions in the primacy
effect; the advantage of the first option relative to intermediate options erodes.
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I analyze the primacy effect in depth. To make the trends more apparent, I also
display the data with blocks grouped into sets of 3. Figure 4.4 depicts the aggregate
probability of choosing the first option, Figure 4.5 depicts the overall accuracy and
average response time on the memory test for the first option, and Figure 4.6 depicts
the overall accuracy and average response time on the distractor task.

In every block in the first half of the experiment, the probability of choosing the
first option under no load is higher than or at least as high as under distraction.
The overall choice frequency for the first position is 25% at baseline (significantly
different from the uniform probability of 20%; p = .002, Z-test) compared to
21% in distractor blocks (not significantly different from 20%; p = .482, Z-test).
This reduction in the primacy effect is confirmed by a paired t-test comparing the
choice probabilities within blocks (p = .009). The same result obtains with a more
robust nonparametric permutation test based on the same t statistic, which randomly
relabels the data under the null hypothesis that the distractor task has no effect on
choice frequency (p = .009). This analysis effectively controls for within-block
variation. Intriguingly, controlling also for individual identity markedly weakens
the effect (yielding p = .097, permutation test), suggesting high levels of individual
heterogeneity, and indicating that the distractor effect is not very consistent on a
within-individual basis. People also respond to first items more slowly and less
accurately on the memory test in distraction blocks (p = .004, t-test; p = .004,
permutation test), and exhibit below-average accuracy on the distractor task itself
(p � .001, Z-test for equality of proportions across experimental halves).

In the second half of the experiment, the probability of choosing the first option
under no load drops significantly compared to the first half, from 25% to 18%
(not significantly different from 20%; p = .354, Z-test). This is confirmed by a
Z-test for equality of proportions (p = .006), and the same result obtains with a
permutation test based on the same Z statistic, which randomly relabels the data
under the null hypothesis that fatigue has no effect on choice frequency (p = .004).
In this case, controlling for individual identity makes virtually no difference in the
effect’s statistical significance (yielding p = .005, permutation test). Consistent
with a drop in motivation near the experimental midpoint, accuracy in the memory
test falls (p = .028, Z-test; p = .020, permutation test) and accuracy in the distractor
task stops improving and appears to start gradually declining.

Figure 4.3 also reveals a potential downside of cognitive load. Although load reduces
primacy effects, in the process of hindering cognition it may reduce people’s ability
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to evaluate options. This side effect can be measured by the frequency with which
people choose the indifference option. While fatigue seems to be associated with
a significant rise in indifference (3.5% vs 7.8%; p = .002, Z-test for equality of
proportions), the distractor task does not seem to produce any such change (3.5%
vs 4.8%; p = .312). Hence, at least as perceived by individuals themselves, the
distractor task does not appear to reduce their ability to discriminate between options.

In general, if order effects in choice are driven by differences inmemory, comparable
effects should be seen in both domains. Memory strength under no cognitive load
is displayed in Figure 4.7 for each position, paralleling Figure 4.2’s depiction of
choices. Similar to choice behavior, memory test accuracy and response time
exhibit a “U” (or inverted-“U”) shape in the aggregate. In other words, participants
answer both quickly and accurately when prompted with early and late items, and
slowly and inaccurately with intermediate items. To ensure that the variation in
memory is not due to chosen items being better remembered, I also plot memory
strength split by position for the subset of items which were not chosen in each block.
This depicts the relationship between position and memory undistorted by choice.
The same “U” shape remains, indicating a direct causal pathway from position to
memory.

The recency effect appears to be attenuated in both cases, though. This is in
line with past memory research, and in the present work relates to a natural limit on
experimental design. Recency effects are known to be reducedwhen thememory test
is delayed beyond the end of the item study period (Bjork andWhitten, 1974; Poltrock
and MacLeod, 1977; Glenberg and Kraus, 1981; Talmi and Goshen-Gottstein,
2006). In this experiment, the assessment of decision making was prioritized over
the measurement of memory. Therefore the choice period occurred immediately
after item presentation, forcing the recognition test to be delayed as a consequence.
Thus, as a caveat, the recognition test may not be ideal for capturing recency effects,
but should adequately portray primacy effects.

Figure 4.8 depicts how cognitive load modulates the impact of position on recog-
nition test accuracy and response time. (The last position is grayed out to signify
that it is an inaccurate measurement of the underlying phenomenon.) As above,
this comprises the subset of data for which the position was not chosen. The ac-
companying regressions (which exclude data for the last position) reported in Table
4.1 predict memory test performance by the position of the item, and whether the
block was a distractor block and in the second half of the experiment. The dis-



76

●
●

●

● ●
●

1 2 3 4 5 6

0.
10

0.
20

0.
30

Block group

P
(f

irs
t o

pt
io

n)

●
●

●

● ●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

5 10 15

0.
10

0.
20

0.
30

Block

P
(f

irs
t o

pt
io

n)

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●Distractor Task No Distractor Task

Figure 4.4: Changes in primacy effect due to cognitive load. Top row: blocks
grouped into sets of three. Bottom row: individual blocks.



77

1
2

3
4

5
6

0.40.50.60.70.8

B
lo

ck
 g

ro
up

Accuracy

1
2

3
4

5
6

0.50.70.91.1

B
lo

ck
 g

ro
up

Response Time
5

10
15

0.450.550.650.75

B
lo

ck

Accuracy

5
10

15
0.50.70.9

B
lo

ck

Response Time

D
is

tr
ac

to
r 

Ta
sk

N
o 

D
is

tr
ac

to
r 

Ta
sk

Fi
gu

re
4.
5:

C
ha
ng
es

in
m
em

or
y
fo
rfi

rs
to
pt
io
n
du

e
to
co
gn

iti
ve

lo
ad
.T

op
ro
w
:b

lo
ck
sg

ro
up

ed
in
to
se
ts
of

th
re
e.

B
ot
to
m
ro
w
:i
nd

iv
id
ua
l

bl
oc
ks
.



78

1
2

3
4

5
6

0.760.800.84

B
lo

ck
 g

ro
up

Accuracy

1
2

3
4

5
6

1.451.551.651.75

B
lo

ck
 g

ro
up

Response Time

5
10

15

0.740.780.820.86

B
lo

ck

Accuracy

5
10

15

1.451.551.651.75

B
lo

ck

Response Time

Fi
gu

re
4.
6:

C
ha
ng
es

in
di
st
ra
ct
or

ta
sk

pe
rfo

rm
an
ce
.T

op
ro
w
:b

lo
ck
sg

ro
up

ed
in
to

se
ts
of

th
re
e.

B
ot
to
m

ro
w
:i
nd

iv
id
ua
lb

lo
ck
s.



79

1 2 3 4 50.
50

0.
60

0.
70

0.
80

Position

A
cc

ur
ac

y

1 2 3 4 5

0.
6

0.
8

1.
0

1.
2

Position

R
es

po
ns

e 
T

im
e

1 2 3 4 50.
45

0.
55

0.
65

0.
75

Position

A
cc

ur
ac

y

1 2 3 4 5

0.
6

0.
8

1.
0

1.
2

Position

R
es

po
ns

e 
T

im
e

Figure 4.7: Baseline order effect in memory. Top row: all data. Bottom row:
excluding data from items chosen in same block.

tractor task disproportionately slowed down responses to images that were shown
in earlier positions, indicated by the negative coefficient on the interaction between
distractor and position, though it has no comparable statistically detectable effect
on accuracy. Similarly, fatigue disproportionately reduces accuracy on images that
were shown in earlier positions, indicated by the positive coefficient on the interac-
tion between block location and position, though it has no comparable statistically
detectable effect on response time. These trends can also be observed in Figure 4.8.
Cognitive load overall thus seems to modulate the effect of position on memory,
disproportionately impairing the earliest items as expected.

Having established a link between position and memory, I look at the link between
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Figure 4.8: Effect of cognitive load on memory × position interaction

memory and choice. Althoughmemory strength consists of absolute measurements,
choice is relative, so I construct an individual-level index of relativememory strength
with which to predict choice probabilities. I define this index for each position to
be the test accuracy of items presented in that position normalized by the sum of
accuracies for items in all positions. Thus, for example, if a person responded to the
first position correctly 8 times out of 10 and responded to all positions correctly 30
times out of 50 in total, their relative memory strength for the first position would
be 8/30 = 0.267, while if they responded correctly to 20/50 in total, it would be
8/20 = 0.400. This calculation transforms the independence of memory into the
comparative nature of choice.

I regress choice probabilities on relative memory strength for each position and
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Table 4.1: Position-linked effect of cognitive load on memory strength

Dependent variable:

Memory Test Performance
Accuracy Response Time

Constant 1.725∗∗∗ 1.103∗∗∗
(0.107) (0.027)

Distractor −0.675∗∗∗ 0.112∗∗
(0.193) (0.052)

Second Half −0.043∗∗∗ −0.010∗∗
(0.013) (0.004)

Distractor × Second Half 0.028 −0.003
(0.017) (0.005)

Distractor × Position −0.036 −0.054∗∗
(0.062) (0.022)

Second Half × Position 0.012∗∗∗ −0.001
(0.004) (0.002)

Distractor × Second Half × Position −0.005 0.0003
(0.006) (0.002)

Individual and Position Fixed Effects Yes Yes

Note: SEs clustered by individual. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

individual in each condition. The data is plotted in Figure 4.9. If there were
no systematic relationship between memory and choice, then the only correlation
between the variables would be due to noise. The regression in Table 4.2 reveals
a strong positive relationship, although the standard errors are inappropriate due
to adding-up constraints; a positive relationship between memory strength and
choice for one given position will imply a positive relationship for other positions,
artificially amplifying the correlation. A permutation test in which the relative
memory strengths are randomly reshuffled for each individual corrects for this by
constructing the test statistic distribution without the same parametric assumptions,
and indicates the observed magnitude would be extremely unlikely under the null
hypothesis that memory and choice are not connected (p = .0001). In conjunction
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Figure 4.9: Relationship between memory strength and choice probability

Table 4.2: Estimated relationship between memory strength and choice probability

Dependent variable:

Choice Probability

Constant 0.057∗∗
(0.026)

Relative Memory Strength 0.660∗∗∗
(0.132)

Distractor 0.019
(0.032)

Relative Memory Strength × Distractor −0.109
(0.158)

Note: SEs clustered by individual. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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with the link between position and memory, this positive correlation provides some
evidence that position causally influences choice through a path modulated by
memory.

4.4 Conclusion
When people choose from options that are presented in a sequence, they tend to
prefer the earliest and latest items. Such order effects have been found across a
range of decision contexts, and resemble serial position effects found in studies of
memory. If memory and choice are indeed connected, then factors influencing the
former should also affect the latter. I conduct an experiment that connects design
elements of choice and memory tasks in order to speak as directly as possible to
the connection between domains. People indicated preferences over pieces of art
presented to them sequentially. In addition to observing large order effects, I find
that cognitive load, imposed by a distractor task and by natural fatigue, appears to
substantially reduce primacy effects. This change is targeted and does not appear
to weaken recency effects. Thus contextual factors or interventions that impair the
ability or willingness of decision makers to rehearse options can selectively alter
order effects.

This research has implications for contest organizers or employers trying to amend
their selection procedures to select the best candidate, as well as for marketers cu-
rating product presentation in order to guide consumer choice. Minor procedural
differences could remain unnoticed in many scenarios but nevertheless substantially
alter overall outcomes. Consider for instance that there are commonly breaks for
deliberation between sequential interviews. Despite enabling more information pro-
cessing, such breaks may actually make decisions more biased due to an imbalance
in which information can be processed. The kind of bounded rationality described
here is natural and difficult to alleviate, but, counterintuitively, increasing the cog-
nitive burden on agents can lead to more accurate evaluation and better decisions.
This knowledge is useful because cognitive processing is in general far more easily
impaired than improved. It opens up a suite of small, practical interventions that
may prove useful in many important settings. Since order effects in memory have
been found over a vast range of timescales, these insights could be widely applicable.

More broadly, bounded memory could also influence sequential search, in which
decisionmakers themselves control howmany options or howmuch information they
are exposed to (e.g. Salant, 2011; Mogilner, Shiv, and Iyengar, 2013). Especially
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when people are under cognitive load, good alternatives in the past may be penalized
because they are not recalled with full force. These options would be undervalued.
Peoplemay also stop searching earlier than they otherwise would, since thememory-
distorted historical value distributionwould be depressed. Theoretical work building
on these themes could generate novel predictions about how features of memory
alter sequential judgment.

Decision theoretic models generally assume choices are made from elements in a
mathematical set, in which item order is by definition irrelevant. This simplification
is theoretically useful, but it is clear that order often matters in practice. The
idea that value can be generated from various kinds of memory that may decay or
be transformed with experience is straightforward. However, much remains to be
discovered about the mechanisms that give rise to such evaluations. Memory is
among the earliest pillars of experimental psychology, and exhibits many unusual
and counterintuitive properties. Research in decision making has much to learn
from over a century of accumulated knowledge regarding memory.
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A p p e n d i x A

EXPERIMENTAL INSTRUCTIONS FOR CHAPTER 2

Experienced condition:

‘Welcome to this experiment in perceptual decision making. It consists of two
blocks with a short break in between. When you complete the experiment, please
remain seated until half an hour has passed from the beginning of the experiment.
You may browse the internet in the meantime. After 35 minutes the experiment
will automatically conclude. Please slide out the partitions beside you. Adjust the
height and position of your chair so that your eye level is at two-thirds of the screen
height. When you are ready, hit SPACE to continue.’

‘This part of the experiment involves categorizing dot motion. It consists of 100
trials. In each trial, many dots will appear on the screen, moving in different
directions. Some of the dots are signal dots moving in a consistent direction. Noise
dots with randommotion are overlaid on top of the signal dots. The task is to choose
the signal dot direction. If you think they are moving to the left, hit “1”. If you
think they are moving to the right, hit “2”. Two examples will be displayed on the
next screens. At the end of the experiment you will receive $0.05 for each correct
answer and nothing for each incorrect answer. When you are ready, hit SPACE to
continue.’

‘The following two trials do not count toward your final totals. A left trial will
appear first, and then a right trial. When you are ready, hit SPACE to continue.’

‘Some of the dots are signal dots moving in a consistent direction. The task is to
choose this direction. Hit “1” or “2” to continue.’

‘Noise dots with random motion are overlaid on top of the signal dots. This is
what you will see. The task is to choose the signal dot direction. Hit “1” or “2” to
continue.’

‘Tip: Try not to focus on individual dots. Instead, look for spread out sets of dots
that are moving rigidly together, and follow them as a whole. The set of dots may
emerge, or "pop out" from the rest. When you are ready, hit SPACE to continue.’

‘The real trials begin now. When you are ready, hit SPACE to continue.’



99

(Block 1)

‘Take a one minute break. After a minute, instructions for the next part will
automatically appear.’

‘This is the final part, and should take about 10 minutes to complete. It is the same
as the previous part, categorizing dot motion. When you are ready, hit SPACE to
continue.’

(Block 2)

‘Before we finish, please answer the following few questions. Hit SPACE to con-
tinue.’

‘On a scale of 1 to 10, how much did you like the task, with 1 being very little and
10 being very much? Use your mouse to answer.’

‘What percentage of answers do you think you got correct in the first task block?
(Bear in mind that random choices would lead to 50% accuracy.) Use your mouse
to answer.’

‘What percentage of answers do you think you got correct in the second task block?
(Bear in mind that random choices would lead to 50% accuracy.) Use your mouse
to answer.’

‘Have you ever participated in this kind of task before in another experiment? Use
your mouse to answer. (0 = No, 1 = Yes)’

‘Thanks for your participation. Remember to wait in your seat until directed other-
wise. You may browse the internet in the meantime. Hit SPACE to finish.’

Inexperienced condition:

‘Welcome to this experiment in perceptual decision making. It consists of two
blocks with a short break in between. When you complete the experiment, please
remain seated until half an hour has passed from the beginning of the experiment.
You may browse the internet in the meantime. After 35 minutes the experiment
will automatically conclude. Please slide out the partitions beside you. Adjust the
height and position of your chair so that your eye level is at two-thirds of the screen
height. When you are ready, hit SPACE to continue.’
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‘This part of the experiment involves categorizing blurred images. It consists of
100 trials. Each image contains either a raccoon or a porcupine. If you think it is a
raccoon, hit “1”. If you think it is a porcupine, hit “2”. At the end of the experiment
you will receive $0.05 for each correct answer and nothing for each incorrect answer.
Examples will be displayed on the next screens. When you are ready, hit SPACE to
continue.’

‘The following two trials do not count toward your final totals. A raccoon image
will appear first, and then a porcupine image. The real trials will be blurred and
grayed images. Hit either “1” or “2” to end each trial. When you are ready, hit
SPACE to continue.’

‘The real trials begin now. When you are ready, hit SPACE to continue.’

(Block 1)

‘Take a one minute break. After a minute, instructions for the next part will
automatically appear.’

‘This is the final part, and should take about 10 minutes to complete. It involves
categorizing dot motion, and consists of 100 trials. In each trial, many dots will
appear on the screen, moving in different directions. Some of the dots are signal
dots moving in a consistent direction. Noise dots with random motion are overlaid
on top of the signal dots. The task is to choose the signal dot direction. If you think
they are moving to the left, hit “1”. If you think they are moving to the right, hit “2”.
Two examples will be displayed on the next screens. At the end of the experiment
you will receive $0.05 for each correct answer and nothing for each incorrect answer.
When you are ready, hit SPACE to continue.’

‘The following two trials do not count toward your final totals. A left trial will
appear first, and then a right trial. When you are ready, hit SPACE to continue.’

‘Some of the dots are signal dots moving in a consistent direction. The task is to
choose this direction. Hit “1” or “2” to continue.’

‘Noise dots with random motion are overlaid on top of the signal dots. This is
what you will see. The task is to choose the signal dot direction. Hit “1” or “2” to
continue.’

‘Tip: Try not to focus on individual dots. Instead, look for spread out sets of dots
that are moving rigidly together, and follow them as a whole. The set of dots may
emerge, or "pop out" from the rest. When you are ready, hit SPACE to continue.’
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‘The real trials begin now. When you are ready, hit SPACE to continue.’

(Block 2)

‘Before we finish, please answer the following few questions. Hit SPACE to con-
tinue.’

‘On a scale of 1 to 10, how much did you like the task, with 1 being very little and
10 being very much? Use your mouse to answer.’

‘What percentage of answers do you think you got correct in the first task block?
(Bear in mind that random choices would lead to 50% accuracy.) Use your mouse
to answer.’

‘What percentage of answers do you think you got correct in the second task block?
(Bear in mind that random choices would lead to 50% accuracy.) Use your mouse
to answer.’

‘Have you ever participated in this kind of task before in another experiment? Use
your mouse to answer. (0 = No, 1 = Yes)’

‘Thanks for your participation. Remember to wait in your seat until directed other-
wise. You may browse the internet in the meantime. Hit SPACE to finish.’
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A p p e n d i x B

MODEL INVESTIGATIONS FOR CHAPTER 2

B.1 Accuracy comparisons
Figure B.1.1 illustrates the effect of different accuracy functions on time choice. The
effect of shifting accuracies is ambiguous. Roughly speaking, a “more accurate”
personwill spend less time than someonewho is less accurate, and conclusions about
overall accuracy cannot be drawn (Fig 2a), unless there is time pressure from the
reference point, in which case the reverse may hold (Fig 2b). This applies even when
“more accurate” entails a strictly greater accuracy for any given time expenditure.
This occurs because under time pressure, the less accurate person may be unable to
produce accuracy quickly enough, so to speak, to justify spending as much time in
the attempt. What determines whether or not there is time pressure is the crossing
point between the marginal accuracies – the time at which the marginal accuracies
are equal. Under the assumption that each person has the same baseline accuracy
a(0) and asymptotic accuracy limt→∞ a(t) as everyone else, there always exists at
least one such point for each pair of accuracy functions,1 though it is not generally
the same point in different pairs. If there are fundamentally different capabilities
in baseline or asymptotic terms, then a crossing point doesn’t necessarily exist,2
and it is possible to have improvements in accuracy capability which lead to an
unambiguous weak increase in time spent and consequently in accuracy; the time
pressure result holds without time pressure (Fig 2c).

1Suppose ah (t) and al (t) are two accuracy functions such that there is no t for which a′
h

(t) =
a′
l
(t), so wlog a′

h
(t) > a′

l
(t). Then by the fundamental theorem of calculus, limt→∞ ah (t) − ah (0) =∫ ∞

0 a′
h

(t)dt >
∫ ∞

0 a′
l
(t)dt = limt→∞ al (t) − al (0), contradicting the assumption.

2Having no crossing point requires limt→∞ ah (t) − ah (0) > limt→∞ al (t) − al (0). If everyone
asymptotes at the same accuracy, then ah (0) < al (0) is necessary for no crossing point; the higher
marginal accuracy individual must have worse baseline accuracy. If everyone begins with the same
accuracy, then limt→∞ ah (t) > limt→∞ al (t) is necessary for no crossing point; the higher marginal
accuracy individual must have better asymptotic accuracy.
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Figure B.1.1: Comparison of behavior across different accuracy functions
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B.2 Dynamic modeling
To illustrate the behavioral dynamics of a farsighted agent, I first write out a simple
version of a dynamic model. The reference-dependent utility function is

U (t |r) = wa(t) +



−πt if t < r

−πr − λπ(t − r) if t ≥ r

where λ is the coefficient of loss aversion. The marginal utilities in each case are:

t < r :
∂U
∂t
= wa′(t) − π

t > r :
∂U
∂t
= wa′(t) − λπ

Three cases can occur that are distinguished by how quickly an agent with reference-
dependent preferences would finish compared to their standard expected utility
counterpart.3 A standard economic agent chooses t̃ such that wa′(t̃) = π. If t̃ ≤ r ,
meaning that the individual would finish before the reference point is hit even in
the absence of loss aversion, then the reference point does not threaten them at all
and so they will make the same choice,4 t∗ = t̃ (Figure B.2.2a). If t̃ > r then the
individual faces an added psychological cost when exceeding the reference point.
They will curtail their time expenditure to avoid being subjectively penalized at a
higher rate, choosing t∗ < t̃. Within this regime, if t̃ is not too much greater than
r , the individual will work right up until the reference point and stop due to the
discontinuous jump in cost, so t∗ = r (Figure B.2.2b). If t̃ is significantly greater
than r , they will continue to work even past the reference point, although still less
than their standard counterpart (Figure B.2.2c).5 Reference dependence restrains
people from exceeding the reference point due to dramatically higher marginal costs.
And since these people are spending less time than they otherwise would have, they
become less accurate. The strength of these effects is tied to the severity of loss
aversion.

3Appendix B contains preliminary investigations into accuracy function comparisons and choice
dynamics.

4Although in this simple formulation there is no difference for those who would normally finish
sufficiently quickly, introducing noise such as trembles in performance would induce time shading to
reduce the risk of missing the reference point. This expands the prediction’s range of effectiveness.

5To be more precise, let t1 and t2 be the points where the marginal benefit curve intersects the
potential marginal cost curves such that wa′(t1) = π and wa′(t2) = λπ. Clearly t1 > t2 given λ > 1.
If the reference point is above t1, then t1 is chosen. If the reference point is between t1 and t2, then
time is spent just up to the reference point. If the reference point is below t2, then t2 is chosen.
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In the more complex dynamic version of this model, the agent maximizes his total
expected payoff from the current trial through the remaining L trials. He may
have different accuracy functions in every trial, which could occur due to learning,
training, or boredom. He does not necessarily know what they will be, but has
a belief over each of their distributions, though these beliefs may be mistaken.
The expectation for each of these distributions gives rise to an accuracy function
which has the desired properties; it is concave, increasing in t, and bounded. His
expectation at trial j looking forward to trial `’s accuracy function is denoted
E j[a` (t)]. It is supposed that E j[Ek[a` (t)]] = E j[a` (t)] for j ≤ k ≤ `, which is a
natural consistency requirement. If the agent believed he would change his mind, he
should alter his beliefs to be consistent in the first place. He thus faces the following
problem:

max{t` }L`=1

L∑
`=1

wE1[a` (t`)] +



−πt` if
∑L
`=1 t` < R

−πR − λπ
(∑L

`=1 t` − R
)

if
∑L
`=1 t` ≥ R

As in the simpler version, the solution breaks down into three cases. In all cases, the
agent chooses to allocate time such that expected marginal accuracies are equalized
across all trials: E1[a′

`
(t∗
`
)] = E1[a′m(t∗m)] ∀ `,m. In the first case, the optimal choice

is {t∗
`
} such that wE1[a′

`
(t∗
`
)] = π ∀ ` as long as

∑L
`=1 t∗

`
< R. In the second case, the

optimal choice satisfies wE1[a′
`
(t∗
`
)] = λπ ∀` as long as

∑L
`=1 t∗

`
≥ R. If the tentative

values of t∗
`
are inconsistent with the reference point condition in both cases (that is,

if the {t∗
`
} satisfying the equality does not satisfy the inequality), then

∑L
`=1 t∗

`
= R is

the constraint which must be satisfied while equalizing marginal accuracies. Notice
that if the accuracy function does not change, then the model effectively reduces to
the one-period model with r = R/L.

Suppose the third case obtains, which reflects most clearly the impact of reference
dependence. For similar reasons as when comparing different accuracy functions in
the static setup, unambiguous predictions about overall accuracy in high versus low
capability trials are unavailable. If, for illustration, we assume higher capability trials
exhibit greater baseline accuracy, strictly higher marginal accuracy, and stronger
concavity of the accuracy function (i.e. marginal accuracy curve is more strongly
negatively sloped), an agent who anticipates improvement over the course of trials
will spend less time and be accordingly less accurate on earlier trials.

We can say a bit more, though. Making the reference point a little tighter (i.e.
shortening the time) leads the agent to cut back on time differently in each trial.
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He cuts back more severely on trials in which a′(t∗) is flatter, which is when the
accuracy function diminishes at a slower rate. Generally speaking, this describes
worse accuracy functions, which are less strongly concave. Thus when increasingly
pressured, the agent disproportionately takes time away from trials on which his
abilities are relatively poorer.

A tightening of the reference point is similar to what the agent faces when he makes
a miscalculation and overestimates how much time he has left or how much he
will improve by. Suppose he continually makes this misperception. In the simplest
case, his accuracy function is stationary and he recognizes this. Then he will of
course continually spend less and less time as he keeps realizing he would otherwise
miss the reference point, and get less and less accurate as trials pass. Or, under
the plethora of illustrative assumptions above, the agent will continually shave his
current trial down from what he had been expecting before. This will attenuate the
upward trend in time and accuracy.
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A p p e n d i x C

SELF-REPORTED MEMORY STRATEGIES FOR CHAPTER 4

Response

I tried to associate a short word w/ each picture & repeated the words in order in my
mind
I tried to remember a 1 word description for each image
I tried a few different thing:
-Usually I tried to assign an object to each image that looked vaguely like the image
-I tried to remember the colors
-Sometimes I traced the image with my hands
I tried to think of names to associate with each image. The name was a color or
shape or both
Tried assigning 1-word description to each image to remember later
-Attempt to associate images w/shape (i.e. any evident curves) color palette (i.e.
light & dark contrast) texture (i.e. “lasers”)
I associated each image with a word to reduce the problem to remembering a phrase.
I tried to assign each fractal a one- or two-word phrase based on its color or shape.
I then repeated these phrases in order as I progressed through the round.
I tried to give the paintings titles and I placed a finger on each number as it appeared.
Singing the alphabet also helps.
1st: Colors were associated with order
2nd: Then shapes
3rd: Finally, if the image reminded me of anything.
color - most prominent shape (rectangle, circle, lines)
I tried to remember empty spaces + shapes
Try to relate to real images. For instance
-Looks like leaves
-Looks like a sun & moon
-Looks like building
or
-One half of it is solid colors
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-Would focus on overall shape & not the details that could not be seen when blurred.
tried to remember colors and likening shapes to pictures I was already familiar with.
I tried to relate the pictures I see to lightening, circles, letters, the moon, etc
At the beginning:
-For ones including letter exercise: Focused more on letters and not so much on
pictures.
-For “please wait” exercises: tried coming up with 1-word descriptions of pictures
and making a sentence with them.
By the end:
-For ones including letter exercise: tried going through letters as quickly as possible
so pictures stayed in my mind.
-For “please wait” exercises: just focused on whether I liked the picture or not.
Associate each image with a word or words; then make a story consisting 5 images
in order.
-Colors dominating each image
-reference to remind of a scene or event
I tried to associate the picture with some familiar object
I tried to remember distinctive features of each photo.
I tried to remember some special shapes or color distribution in the images
Give the pictures a title or imagine seeing them as a figure, or character, or object
I tried to match descriptive words to each picture (e.g. scales, ripple, fire, Julia, bug
(yay fractals!)). Remembering was hard though.
Tried to remember color scheme by relating it to an object (fire, beach, leaves, etc)
I tried to think of an object that resembled to image, either in shape or in color. Then
I would be able to form a string of 5 words to try and remember the images & their
order.
Generalized color and/or color scheme and shape
e.g. yellow spiral, pink + grey, GREEN
For each image, come up with word/short phrase to help remember it later on
eg fish, green-gold, circles, wave, etc
and then keep the ordering of words in my mind so I know which number to click
I tried to keep repeating the main colors in my head
I associated a word with each image and repeated the words in sequence in my head.
First word in my head for each picture
try to make a story



110

I tried remembering the color & a descriptive word about each image & tried to
associate those words/color with the number of the image (1-5). Sometimes I’d
remember less if the shape was super simple, or more if i felt it necessary. eg. “blue
cross”, “red crescent”, “teal dots”, &c.
Imagine scenario for the picture
Imagine downloading picture into a finger (1-5)
Imagine 5 pics around my hand to remember.
1-2 word description of what the images resembled, e.g. “yellow seahorse”
To begin I didn’t understand the instructions fully and put 0 for everything. Once
I did understand though I tried to remember a word the image reminded me of to
recall the image and position
identify shapes/significant features/colors in each image
I tried to memorize by geometric representations of objects (triangles, circles, etc.)
and also via symmetry. I tried using color as well, but I didn’t think that worked too
well.
I associated words of what the pictures looked liked, and repeated them in my head
in order.
match the image with a word
memorize the word
Using color, texture, shape
Associating w/words + telling a story
I tried to remember a sequence of one or two word descriptions of the images, such
as “lightning” or “green swirl”. I recited them to myself as I progressed through
each block, though the letters usually got in the way.
Came up w/ name/description to remind me of each [?]
For ones without letters between, I just tried to remember a single distinctive feature
(large black blob or something)
If there were letters in between, I tried to remember the last one and guessed ‘0’ for
everything else
tried to come up with short phrases to remember the pictures.
Tried to associate images with patterns/objects I saw to remember them.
1) remembered colors
2) remembered side w/largest concentration of stuff
-visualized my home as if art was hanging on wall
-used names on fingers “shape of mandelbrot set”
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-connected images to those of sexual ones (really)
-imagined if paintings were hung in this room
I was unsure from the initial description whether we were allowed to memorize
things like color and shape, but by the middle I did, trying to remember phrases like
“blue and white CDs” or “red and white virus” to recall colors and defining forms.
First I tried associating each image with a word and to remember the word with the
number of image it was. Then I tried remembering the color and pattern of each
image.
-To remember the order of images I associated a word with each one of them and
repeated the words in my head while doing the experiment.
-Before each new section I repeated the alphabet in my head to help me remember
the correct order of letters.
memorize color. Use word like lightning, sun, big bang, star, seahorse or so
Color, defining figures/shapes, ignored alphabet
I tried to remember a key word to remember the images, such as “leaf” or “neurons”
or “firework”. It was difficult because most of the images were fairly abstract so
there was not something that they always remembered. I would think “fractal”, but
then 3 of the 5 would look like fractals so that became a useless description.
I would try to remember what the shapes reminded me of. If that didn’t work, I
would recognize the actual shape and then the color.
Associate pictures by color or object
1. Try to make story from seq of pics
2. keep finger on number keys to keep track of which index was shown, i.e. finger
on 4 if this is 4th pic
I tried to remember colors/shapes
I also tried to assign a word to pictures & tried to remember the word sequence.
I remember images using objects that fit the main features. e.g. snow [?], five
flames, fractle, etc.
tried to associate words w/ images. This included themes, colors, etc.
assigned each picture a name, memorized all the names.
I either made up a name for each picture, or chose a dominant color for each to
remember it by. I also kept my fingers on the number keys an touched the key when
I thought the name/color.
attempted to come up w/ one word description and remember that
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I tried to repeat color & general shape in my head in order (e.g. rainbow triangle-y
shape, white blue spiral). Sometimes I also tried to add the numer to this short
description to remember. A few rounds I tried to only look and not think too hard,
just implant an impression of the image in my mind (this only worked when I didn’t
need to type letters in between).
I tried to give a title to each art piece that was descriptive but short. Alternatively, I
would try to imagine the art as a physical 3D object.
repeating characteristics of the image
“black star”, “green fern”, etc.
Memorizing the dominant shapes in the images and repeating them in my head
Strategy: (for images)
-Find one or two words that characterize the dominating features of the image, such
as “red twist”, “pastel spiral”, “double mandelbrot”, etc . . .
-if no word comes to mind immediately, make anything up.
-Touch fingers to the key that corresponds to the images during memorization pro-
cess, i.e. touch “1” when first image is shown, etc...
I tried to assign a color and one word description to each picture, then memorized
the sequence so I could recall if the picture was shown before. But when the pictures
were interspaced with the letters I couldn’t remember as well
Tried to remember some of the specifics of each image.
I tried to relate images with real life objects like fire, lightning, universe, earth,
leaves, etc. Then try to make a story connecting them in order.
Strategies
-Shutting one eye & seeing how image would look blurred.
-On seeing that, try & give it a name based on how it looks
-keep making a story for each block as new images are shown
-chant that story while typing the letters so you don’t forget
-ex. “On black planet there were pieces of sea and colorful leaves, so white air god
turned it into yellow lava.”
-Additionally, remember the 3rd image/name to keep track of numbering.
-While typing letters, try to remember position for each letter shown. for example
for ‘k’, I typed ‘j’ & for ‘l’, I typed ‘k’. j-k-l are together on keyboard, so remember
the position for next time
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Halfway through, I tried to map the letters on the keyboard, backwards. So without
having to think much I could press the correct letter. For images, mostly looked at
color, symmetry and pattern.
Remember colors/associated with life events (rising to top, etc, grey -> sadness)
-remember the first 4 images & 5th one just needed to be blurred out from memory.
-basically only f,u,k was posing problem initially but then I knew it appeared more
than any other letter, so got hold of it.
I tried create stories when “please wait” set was on. and when the other type of
block was on I tried to remember 1st and last images.
-Tried to describe the image in a couple of words and remember in that sequence.
-Tried to recall shapes too when possible.
-Called each artwork a particular name
-Recognized common Math patterns (elliptic curves, Mandelbrot sets, fractals, etc)
-Tuned out internal abcdef. . . song for letters.


