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ABSTRACT

One main theme of this thesis is a connection between mathematical physics (in

particular, the three-dimensional topological quantum field theory known as

Chern-Simons theory) and three-dimensional topology. This connection arises

because the partition function of Chern-Simons theory provides an invariant of

three-manifolds, and the Wilson-loop observables in the theory define invari-

ants of knots. In the first chapter, we review this connection, as well as more

recent work that studies the classical limit of quantum Chern-Simons theory,

leading to relations to another knot invariant known as the A-polynomial.

(Roughly speaking, this invariant can be thought of as the moduli space of

flat SL(2,C) connections on the knot complement.) In fact, the connection

can be deepened: through an embedding into string theory, categorifications

of polynomial knot invariants can be understood as spaces of BPS states.

We go on to study these homological knot invariants, and interpret spectral

sequences that relate them to one another in terms of perturbations of super-

symmetric theories. Our point is more general than the application to knots;

in general, when one perturbs any modulus of a supersymmetric theory and

breaks a symmetry, one should expect a spectral sequence to relate the BPS

states of the unperturbed and perturbed theories. We consider several diverse

instances of this general lesson. In another chapter, we consider connections

between supersymmetric quantum mechanics and the de Rham version of ho-

motopy theory developed by Sullivan; this leads to a new interpretation of

Sullivan’s minimal models, and of Massey products as vacuum states which

are entangled between different degrees of freedom in these models.

We then turn to consider a discrete model of holography: a Gaussian lattice

model defined on an infinite tree of uniform valence. Despite being discrete, the

matching of bulk isometries and boundary conformal symmetries takes place

as usual; the relevant group is PGL(2,Qp), and all of the formulas developed

for holography in the context of scalar fields on fixed backgrounds have natural

analogues in this setting. The key observation underlying this generalization

is that the geometry underlying AdS3/CFT2 can be understood algebraically,

and the base field can therefore be changed while maintaining much of the

structure. Finally, we give some analysis of A-polynomials under change of

base (to finite fields), bringing things full circle.
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INTRODUCTION

This thesis consists of work that was originally published during my graduate-

school career in the form of a series of distinct papers [109, 111, 119, 133], as

well as a small amount of material from work that has yet to appear [110]. As

such, the various chapters range across several different and seemingly distant

topics; nonetheless, I feel that certain key themes underlie and unify all of

it. Chief among these themes is the idea of bridging the gap between the

disciplines now termed theoretical physics and pure mathematics.

Historically speaking, no distinction was generally made between these two

disciplines until the twentieth century. As the pace of scientific discovery and

concomitant specialization accelerated—and, in particular, as the project of

quantum field theory came to bear fruit, requiring physicists to accept tech-

niques such as renormalization whose basis in rigorous mathematics was ob-

scure at best—the gulf between the two grew to appear nearly insurmountable.

In 1972, Freeman Dyson quipped in his Gibbs memorial lecture that, “[as] a

working physicist, I am acutely aware of the fact that the marriage between

mathematics and physics, which was so enormously fruitful in past centuries,

has recently ended in divorce” [73]. Dyson’s classic lecture goes on to de-

scribe various instances in the history of science when the division between

these two fields impoverished both. In many cases, a subject of interest to one

group would have been advanced considerably by an influx of the ideas or the

expertise of the other; the advances in question were uncovered years—and

sometimes many years—later than they might have been. In closing, he rec-

ommended a selection of problems from quantum field theory and quantum

gravity to the attention of pure mathematicians.

Dyson was prophetic. The renewal of the dialogue between these two disci-

plines began in earnest not long afterwards. While there are many stones at

which one might point to mark the initial moment, C. N. Yang’s 1977 pa-

per [223], which pointed out the intimate connection between the physics of

gauge theories and the theory of fiber bundles studied in mathematics, seems

as good as any (at least from the viewpoint of someone who was not yet born

at the time).

At any rate, the rapprochement was well begun by the early eighties, when



2

Donaldson’s landmark 1983 paper [70] used ideas from gauge theory to con-

struct a powerful new invariant of smooth structures on four-manifolds. The

key idea of his work is simple enough to describe: One studies the smooth

space X by first producing a certain auxiliary space, M (X), which is the

moduli space of solutions to certain partial differential equations (the anti-self-

dual instanton equations) on X. The topology of this moduli space depends

sensitively on the smoothness structure with respect to which the PDEs are

defined; relatively crude topological invariants of M (X), such as its homol-

ogy, then become sophisticated and subtle invariants of X as a smooth space.

(Other papers from around the same time [5, 27] also evidence the renewed

mutual interest among members of both camps.)

Gauge theory soon made other related appearances in mathematics. Several

years later, using similar PDEs, Andreas Floer [80–82] defined the homol-

ogy theories for three-manifolds and Lagrangian intersections that bear his

name. It was noticed that the generalizations of Donaldson’s invariants to a

four-manifold X with boundary ∂X = Y were naturally valued in the Floer

homology groups of Y . In 1988, Edward Witten was able to interpret these

constructions from a physical perspective, showing that Donaldson’s invariants

were naturally computed by a particular truncation of a supersymmetric Yang-

Mills theory. Almost simultaneously, Sir Michael Atiyah [7, 8] gave axioms for

the general notion of a topological quantum field theory .

Topological field theory, or TQFT, is a fitting synecdoche for the interdisci-

plinary field that has continued to grow out of these early papers. TQFTs

are of interest to physicists as toy models that possess many of the essential

features of quantum field theory—or as truncated sectors of field theories of

physical interest—while remaining simple enough to be mathematically rig-

orous and exactly solvable. Mathematicians usually think of TQFT as an

organizing principle for existing invariants of manifolds, or a source of new

invariants. As evidenced by Donaldson’s theory, attempting to classify geo-

metric spaces using the data of how physical theories behave on those spaces

has proved enormously fruitful.

From either perspective, the definition of a topological field theory makes

intuitive sense, once one has chewed it over a bit. The geometrical setting in

which such a theory is defined is a cobordism category , in which the objects

are compact oriented (d − 1)-manifolds Y , and the morphisms from Y0 to Y1



3

are given by d-manifolds X with boundary Ȳ0 t Y1 (where the bar denotes

orientation reversal). Put succinctly, the morphisms are oriented cobordisms.

One is to imagine that, as in a usual physical theory, the state of the system

is specified on a codimension-one surface playing the role of a constant-time

slice, and the cobordism plays the role of a generalized time-evolution during

which topology change is possible.

As is usual in quantum mechanics, the data of the theory consists of kinematic

data (a description of its possible states) together with dynamical data (how

those states evolve in time). The collection of possible states of the system on

a space Yi forms a Hilbert space, which we will denote Hi. Time evolution

provides a mapping of states, so that we should be able to associate to each

cobordism X a mapping φX : H0 → H1. There are additional requirements

and possible variants of these axioms, but the essential structure is hopefully

clear.

In more mathematical language, one says that a TQFT is a symmetric mon-

oidal functor from a geometric category (the cobordism category Cob(d) de-

scribed in the previous paragraphs) to the linear category Vect. “Symmetric

monoidal” just means that the functor should preserve tensor products: it

carries the disjoint union of manifolds and cobordisms between them to the

usual tensor product of Hilbert spaces and linear maps. In the special case

where the d-manifold X has empty boundary, one gets a morphism between

empty (d − 1)-manifolds; this amounts to a linear map between copies of C,

which is a numerical invariant.

TQFTs fit into the general theme in mathematics of studying complicated,

abstract, or geometric objects, such as groups, by considering their linear rep-

resentations. Suppose that one were to consider an ordinary group G, viewed

as a category with one object and only invertible morphisms. One could then

ask for a functor from this category to Vect. This would amount to a choice of

vector space V , to be associated to the object, and a homomorphism from G

(which is the automorphisms of the unique object in the source category) to

the linear automorphism group of V . In other words, one recovers the usual

notion of a linear representation on an arbitrary vector space! It is easy to see

from this description that a TQFT generalizes the notion of linear represen-

tation to a rather different and more complicated source category.

Physicists have often been able to provide new understanding of the invariants
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defined by topological field theories, in the form of surprising and unexpected

conjectures. This is possible because the physical understanding of such an

invariant is rarely as an isolated construction. Rather, the TQFT describes

one piece of, or calculation in, a much larger and more baroque structure: a

quantum field theory. If one believes that the quantum field theory makes

sense, and can see how a mathematical object fits in as a piece of it, then

one has many new angles from which to look at that object, and many new

relations to expect between it and other pieces of the QFT.

One interesting example of an advance that was made using this kind of rea-

soning took place in 1994, when Seiberg and Witten [183, 184] analyzed the

infrared behavior of the N = 2 supersymmetric SU(2) Yang-Mills theory that

Witten had previously related to Donaldson’s invariants. Using standard phys-

ical techniques, they argued that the theory should undergo a phase transition

to a symmetry-breaking phase at low energy scales, in which the nonabelian

interactions of the SU(2) theory should be replaced by an effective descrip-

tion in terms of abelian U(1) gauge theory. One can think of this transition as

analogous to electroweak symmetry breaking in the Standard Model of particle

physics. However, Witten had previously argued that the twist of this theory

that produced Donaldson’s invariants was independent of scale; it followed

that the invariants should be able to be computed using the simpler effective

physics in the infrared [214]. For mathematicians, the end result was a new

set of seemingly unrelated partial differential equations (the Seiberg–Witten

equations), which were far easier to deal with than Donaldson’s equations, but

which could be used in similar fashion to compute invariants carrying nearly

identical information.

Another exemplar of this pattern happens to lie close to my own work. In 1984,

Jones [123] defined a new and powerful polynomial invariant of knots; this was

generalized to a family of “quantum group invariants,” associated to the data

of a semisimple Lie algebra g and a representation R of g. Witten [212] gave

the first physical construction of these quantum group invariants, identifying

them as the expectation values of Wilson loop operators carrying the represen-

tation R in Chern-Simons theory with gauge group G, considered as functions

of the level. (The level parameter k is the coupling constant of Chern-Simons

theory, which must be an integer for the theory to be gauge-invariant.) In

the case G = SU(2), Gukov [107] identified the knot invariant corresponding
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to classical Chern-Simons theory, which is called the A-polynomial. The zero

locus of this polynomial is the moduli space of solutions to the equations of

motion in SL(2,C) Chern-Simons theory. He further observed that quantiza-

tion should associate to this space a recurrence relation (the analogue of the

Schrödinger equation), whose solution is the set of “colored” Jones polyno-

mials associated to arbitrary representations of G = SU(2). This prediction

(now verified in special cases and checked in many examples) is known as the

AJ-conjecture.

In Chapter 1, taken from the work [111] by Gukov and myself, we give a

pedagogical review of these developments, discussing the connections between

knot theory and knot invariants, topological field theory, and quantization. We

also treat newer developments in the subject, related to categorified quantum

group invariants—i.e., knot homologies. From the perspective of physics, knot

homologies can be understood as spaces of BPS states in certain theories that

can be geometrically engineered from M -theory, taking the data of the knot

as an input. (This interpretation is reviewed later in the thesis, in §3.2.)

Chapter 2, written with Hyungrok Kim [133], explores the theme of using

the states or operators of a physical theory defined on a geometric space as

an algebraic model of that space. We focus on the simplest possible exam-

ple, supersymmetric quantum mechanics, pointing out that the approach to

homotopy theory over a field pioneered by Sullivan [190] is closely connected

to physics, and giving a new interpretation of Massey products in topology

as vacuum states in certain quantum-mechanical models (Sullivan’s minimal

models) that are entangled between different degrees of freedom.

I used some of the subtleties about supersymmetric quantum mechanics learned

from that project in the course of my next work [109], with Gukov, Nawata,

Stošić, and Su lkowski. The sections of that paper with which I was most in-

volved are reproduced in Chapter 3; due to its prohibitive length, the reader

interested in the remainder of the work is referred to the original paper. We

were interested in coming to a physical understanding of deformation spectral

sequences between different knot homology theories; in the end, we formulated

the general proposal that spectral sequences describe the effects of perturba-

tions of theories on their BPS spectra, in particular those that break sym-

metries and partially lift BPS degeneracies. While this pertains in particular

to theories whose BPS spectra reproduce knot homologies, the point is much
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broader and has nothing to do with knots per se.

In Chapter 4, based on [119] and written with Heydeman, Marcolli, and Stoica,

the same theme is expressed in a much different context. We were interested

in the question of how best to construct models of holography in which space-

time is discrete. This has been of interest recently in light of speculation that

tensor-network models, which reproduce certain features of conformal field

theory such as the entanglement entropy of the ground state, can be under-

stood as discrete analogues of hyperbolic bulk geometry. Our models appeal

to a different angle of generalization, inspired by previous work of Manin and

Marcolli: we formulate AdS3/CFT2 as algebraically as possible, and then con-

sider changing the underlying field in the construction of the spacetime to be

a p-adic field rather than C. The resulting bulk geometry is a p-adic maxi-

mally symmetric space: the Bruhat–Tits tree of SL(2,Qp). While this space is

naturally discrete, it does not break any symmetries; one can still make sense

of both bulk isometries and boundary conformal transformations, and identify

the two as is required for the normal holographic dictionary to work.

We demonstrate that, at least for massive free scalar fields in a fixed back-

ground geometry, the holographic dictionary can be developed exactly as in

the ordinary case. Certain features of AdS/CFT, such as the correspondence

between the holographic direction and the boundary RG scale, are present even

more sharply in our models than in the ordinary case. We also give arguments

that logarithmic scaling of the entanglement entropy should hold; given this,

an analogue of the Ryu-Takayanagi formula follows trivially from the geometry

of the tree. Based on this, we argue that the p-adic geometry (rather than the

archimedean geometry) is the natural setting in which to make contact with

tensor network models, and we offer some examples of constructions through

which this might be done.

Finally, in Chapter 5, I discuss the first project I worked on in graduate school,

which connects A-polynomials with a similar kind of arithmetic generalization

of physics to those proposed in Chapter 4. This work remains unpublished,

because it is largely experimental in nature and what results there are are

highly speculative; nonetheless, I offer some thought on directions for future

work along these lines.
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Chapter 1

QUANTIZATION AND CATEGORIFICATION IN
TOPOLOGICAL QUANTUM FIELD THEORY

1S. Gukov and I. Saberi. “Lectures on knot homology and quantum curves.”
In Topology and field theories . Edited by S. Stolz. Contemporary Math-
ematics 613. (American Mathematical Society. 2014). arXiv:1211 . 6075
[hep-th].

Foreword

The lectures in this chapter will by no means serve as a complete introduction

to the two topics of quantization and categorification. These words represent

not so much single ideas as broad tools, programs, or themes in physics and

mathematics; both are areas of active research, and are still not fully under-

stood. One could easily give a full one-year course on each topic separately.

Rather, the goal of these lectures is to serve as an appetizer: to give a glimpse

of the ideas behind quantization and categorification, by focusing on very

concrete examples and giving a working knowledge of how these ideas are

manifested in simple cases. It is our hope that the resulting discussion will

remain accessible and clear while shedding at least some light on these complex

ideas, and that the interest of the reader will be piqued.

Imagine the category of finite-dimensional vector spaces and linear maps. To

each object in this category is naturally associated a number, the dimension of

that vector space. Replacing some collection of vector spaces with a collection

of numbers in this way can be thought of as a decategorification: by remem-

bering only the dimension of each space, we keep some information, but lose

all knowledge about (for instance) morphisms between spaces. In this sense,

decategorification forgets about geometry.

Categorification can be thought of as the opposite procedure. Given some

piece of information (an invariant of a topological space, for instance), one

asks whether it arises in some natural way as a “decategorification”: a piece of

data extracted out of a more geometrical or categorical invariant, which may

carry more information and thus be a finer and more powerful tool. An answer

http://dx.doi.org/10.1090/conm/613/12235
http://arxiv.org/abs/1211.6075
http://arxiv.org/abs/1211.6075
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in the affirmative to this question is a categorification of that invariant.

Perhaps the most familiar example of categorification at work is the reinterpre-

tation of the Euler characteristic as the alternating sum of ranks of homology

groups,

χ(M) =
∑

k≥0

(−1)k rankHk(M) . (1.1)

In light of this formula, the homology of a manifold M can be seen as a

categorification of its Euler characteristic: a more sophisticated and richly

structured bearer of information, from which the Euler characteristic can be

distilled in some natural way. Moreover, homology theories are a far more

powerful tool than the Euler characteristic alone for the study and classification

of manifolds and topological spaces. This shows that categorification can be of

practical interest: by trying to categorify invariants, we can hope to construct

stronger invariants.

While the idea of categorification is rooted in pure mathematics, it finds a

natural home in the realm of topological quantum field theory (TQFT), as

will be discussed in §1.4. For this, however, we first need to understand what

“quantum” means by explaining the quantization program, which originated

squarely within physics. Its basic problem is the study of the transition be-

tween classical and quantum mechanics. The classical and quantum pictures

of a physical system make use of entirely different and seemingly unconnected

mathematical formalisms. In classical mechanics, the space of possible states

of the system is a symplectic manifold, and observable quantities are smooth

functions on this manifold. The quantum mechanical state space, on the other

hand, is described by a Hilbert space H , and observables are elements of a

noncommutative algebra of operators acting on H . Quantization of a system

is the construction of the quantum picture of that system from a classical de-

scription, as is done in a standard quantum mechanics course for systems such

as the harmonic oscillator and the hydrogen atom. Therefore, in some sense,

quantization allows one to interpret quantum mechanics as “modern symplec-

tic geometry.” We will give a more full introduction to this idea in §1.3.

One main application of the ideas of quantization and categorification is to

representation theory, where categorification, or “geometrization,” leads nat-

urally to the study of geometric representation theory [47]. Another area of

mathematics where these programs bear much fruit is low-dimensional topol-
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ogy, which indeed is often called “quantum” topology. This is the arena in

which we will study the implications of quantization and categorification, pri-

marily for the reason that it allows for many concrete and explicit examples

and computations. Specifically, almost all of our discussion will take place in

the context of knot theory. The reader should not, however, be deceived into

thinking of our aims as those of knot theorists! We do not discuss quantization

and categorification for the sake of their applications to knot theory; rather,

we discuss knot theory because it provides a window through which we can

try and understand quantization and categorification.

1.1 Why knot homology?

A knot is a smooth embedding of a circle S1 as a submanifold of S3:

k : S1 ↪→ S3, K =̂ im k. (1.2)

See e.g. Figs. 1.2 and 1.3 for some simple examples. Likewise, a link is defined

as an embedding of several copies of S1. Two knots are equivalent if the two

embeddings k and k′ can be smoothly deformed into one another through a

family of embeddings, i.e., without self-intersections at any time. One should

think of moving the knot around in the ambient space without breaking the

string of which it is made.

In studying a knot, one usually depicts it using a planar knot diagram: this

should be thought of as a projection of the knot from R3 = S3 \ {pt.}, in

which it lives, to some plane R2 ⊂ R3. Thus, a knot diagram is the image

of an immersion of S1 in R2, having only double points as singularities, and

with extra data indicating which strand passes over and which under at each

crossing. Examples of knot diagrams can be seen in Figs. 1.2, 1.3, and 1.4.

It should be clear that there is no unique diagram representing a given knot.

We could obtain very different-looking pictures, depending on the exact em-

bedding in R3 and on the choice of plane to which we project. Two knot di-

agrams should of course be seen as equivalent if they depict equivalent knots,

but this equivalence could be nontrivial and difficult to see. The situation is

made a little more tractable by a theorem of Reidemeister, which states that

two knot diagrams are equivalent if and only if they can be transformed into

one another by a sequence of three simple transformations. These basic trans-

formations are the Reidemeister moves, which are depicted in Fig. 1.1, and
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R1: ⇔ ⇔

R2: ⇔ R3: ⇔

Figure 1.1: The three Reidemeister moves, which generate all equivalences
between knot diagrams.

show replacements that can be made in any portion of a knot diagram to give

an equivalent diagram.

Finding a sequence of Reidemeister moves that changes one given knot diagram

into another, or showing that no such sequence exists, is still an ad hoc and

usually intractable problem. As such, in attempting to classify knots, more

clever methods are important. One of the most basic tools in this trade is a

knot invariant: some mathematical object that can be associated to a knot,

that is always identical for equivalent knots. In this way, one can definitively

say that two knots are distinct if they possess different invariants. The con-

verse, however, is not true; certain invariants may fail to distinguish between

knots that are in fact different. Therefore, the arsenal of a knot theorist should

contain a good supply of different invariants. Moreover, one would like invari-

ants to be as “powerful” as possible; this just means that they should capture

nontrivial information about the knot. Obviously, assigning the number 0 to

every knot gives an invariant, albeit an extremely poor one!

Since one usually confronts a knot in the form of one of its representative

knot diagrams, it is often desirable to have an invariant that can be efficiently

computed from a knot diagram. Showing that some such quantity associated

to a diagram is actually an invariant of knots requires demonstrating that it

takes the same values on all equivalent diagrams representing the same knot.

Reidemeister’s theorem makes this easy to check: to show that we have defined

a knot invariant, we need only check its invariance under the three moves in

Fig. 1.1.∗

∗Nonetheless, since a knot is intrinsically an object of three-dimensional topology that
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Given the goal of constructing knot invariants, it may be possible to do so most

easily by including some extra structure to be used in the construction. That is,

one can imagine starting not simply with a knot, but with a knot “decorated”

with additional information: for instance, a choice of a Lie algebra g = Lie(G)

and a representation R of g. It turns out that this additional input data from

representation theory does in fact allow one to construct various invariants

(numbers, vector spaces, and so on), collectively referred to as quantum group

invariants. A large part of these lectures will consist, in essence, of a highly

unorthodox introduction to these quantum group invariants.

The unorthodoxy of our approach is illustrated by the fact that we fail com-

pletely to address a natural question: what on earth do (for instance) the

quantum sl(N) invariants have to do with sl(N)? Representation theory is

almost entirely absent from our discussion; we opt instead to look at an alter-

native description of the invariants, using a concrete combinatorial definition

in terms of so-called skein relations. A more full and traditional introduction

to the subject would include much more group theory, and show the construc-

tion of the quantum group invariants in a way that makes the role of the

additional input data g and R apparent [175, 212]. That construction involves

assigning a so-called “quantum R-matrix” to each crossing in a knot diagram

in some manner, and then taking a trace around the knot in the direction of

its orientation. The connection to representation theory is made manifest; the

resulting invariants, however, are the same.

Example 1. Suppose that we take an oriented knot together with the Lie

algebra g = sl(N) and its fundamental N -dimensional representation. With

this special choice of extra data, one constructs the quantum sl(N) invariant,

denoted PN(K; q). Although it makes the connection to representation theory

totally obscure, one can compute PN(K; q) directly from the knot diagram

using the following skein relation:

qNPN(
??__

)− q−NPN(
??__

) = (q − q−1)PN(
oo //

). (1.3)

(Note that we will sometimes write PN(K) for the polynomial PN associated

to the knot or link K, suppressing the variable q; no confusion should arise.)

can be imagined without any use of diagrams, it might be hoped that one could give an
obviously three-dimensional construction of various invariants that does not require a choice
of a two-dimensional projection. As we discuss later in these notes, Witten’s physical inter-
pretation of the Jones polynomial in [212] does exactly this.
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For now, one can think of q as a formal variable. The subdiagrams shown

in (1.3) should be thought of as depicting a neighborhood of one particular

crossing in a planar diagram of an oriented knot; to apply the relation, one

replaces the chosen crossing with each of the three shown partial diagrams,

leaving the rest of the diagram unchanged.

To apply this linear relation, one also needs to fix a normalization, which can

be done by specifying PN for the unknot. Here, unfortunately, several natural

choices exist. For now, we will choose

PN( �� ) =
qN − q−N
q − q−1

= q−(N−1) + q−(N−3) + · · ·+ qN−1

︸ ︷︷ ︸
N terms

. (1.4)

This choice gives the so-called unnormalized sl(N) polynomial. Notice that,

given any choice of PN( �� ) with integer coefficients, the form of the skein

relation implies that PN(q) ∈ Z[q, q−1] for every knot.

Notice further that, with the normalization (1.4), we have

PN( �� ) −−→
q→1

N, (1.5)

which is the dimension of the representation R with which we decorated the

knot, the fundamental of sl(N). We remark that this leads to a natural general-

ization of the notion of dimension, the so-called quantum dimension dimq(R)

of a representation R, which arises from the quantum group invariant con-

structed from R evaluated on the unknot.

Equipped with the above rules, let us now try to compute PN(q) for some

simple links. Consider the Hopf link, consisting of two interlocked circles:

oo//

Applying the skein relation to the upper of the two crossings, we obtain:

qNPN

[
oo//

Hopf link

]
− q−NPN

[
oo//

two unknots

]
= (q − q−1)PN

[
oo//

one unknot

]
. (1.6)

This illustrates a general feature of the skein relation, which occurs for knots

as well as links: in applying the relation to break down any knot diagram into

simpler diagrams, one will generally need to evaluate PN for links rather than
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just for knots, since application of the relation (1.3) may produce links with

more than one component. This means that the normalization (1.4) is not

quite sufficient; we will need to specify PN on k unlinked copies of the unknot,

for k ≥ 1.

As such, the last of our combinatorial rules for computing PN(q) concerns its

behavior under disjoint union:

PN( �� tK) = PN( �� ) · PN(K), (1.7)

where K is any knot or link. Here, the disjoint union should be such that K

and the additional unknot are not linked with one another.

Caution: The discerning reader will notice that our final rule (1.7) is not

linear, while the others are, and so is not respected under rescaling of PN(q).

Therefore, if a different choice of normalization is made, it will not remain

true that PN(k unknots) = [PN( �� )]k. The nice behavior (1.7) is particular

to our choice of normalization (1.4). This can be expressed by saying that, in

making a different normalization, one must remember to normalize only one

copy of the unknot.

To complete the calculation we began above, let’s specialize to the case N = 2.

Then we have

P2( �� ) = q−1 + q =⇒ P2( oo// ) = (q−1 + q)2 = q−2 + 2 + q2. (1.8)

Applying the skein relation (1.6) then gives

q2P2( oo// ) = q−2(q−2 + 2 + q2) + (q − q−1)(q + q−1)

= q−4 + q−2 + 1 + q2,
(1.9)

so that

P2( oo// ) = q−6 + q−4 + q−2 + 1. (1.10)

We are now ready to compute the sl(N) invariant for any link.

From the form of the rules that define this invariant, it is apparent that de-

pendence on the parameter N enters the knot polynomial only by way of the

combination of variables qN . As such, we can define the new variable a =̂ qN ,

in terms of which our defining relations become

aPa,q(
??__

)− a−1Pa,q(
??__

) = (q − q−1)Pa,q(
oo //

), (1.11)
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Figure 1.2: The trefoil knot 31. (Image from [177].)

Pa,q( �� ) =
a− a−1

q − q−1
. (1.12)

Together with the disjoint union property, these rules associate to each ori-

ented link K a new invariant Pa,q(K) in the variables a and q, called the

(unnormalized) HOMFLY-PT polynomial of the link [88]. This is something

of a misnomer, since with the normalization (1.12) the HOMFLY-PT invari-

ant will in general be a rational expression rather than a polynomial. We have

traded the two variables q, N for q and a.

For various special choices of the variables a and q, the HOMFLY-PT polyno-

mial reduces to other familiar polynomial knot invariants:

• a = qN , of course, returns the quantum sl(N) invariant PN(q).

• With the particular choice a = q2 (N = 2), the HOMFLY-PT polynomial

becomes the classical Jones polynomial J(L; q) ≡ P2(q),

J(K; q) = Pa=q2,q(K). (1.13)

Discovered in 1984 [123], the Jones polynomial is one of the best-known

polynomial knot invariants, and can be regarded as the “father” of quan-

tum group invariants; it is associated to the Lie algebra sl(2) and its

fundamental two-dimensional representation.

• a = 1 returns the Alexander polynomial ∆(K; q), another classical knot

invariant. This shows that the HOMFLY-PT polynomial generalizes

the sl(N) invariant, in some way: the evaluation a = 1 makes sense,

even though taking N = 0 is somewhat obscure from the standpoint of

representation theory.
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Now, the attentive reader will point out a problem: if we try and compute

the Alexander polynomial, we immediately run into the problem that (1.12)

requires P1,q( �� ) = 0. The invariant thus appears to be zero for every link!

However, this does not mean that the Alexander polynomial is trivial. Remem-

ber that, since the skein relations are linear, we have the freedom to rescale

invariants by any multiplicative constant. We have simply made a choice that

corresponds, for the particular value a = 1, to multiplying everything by zero.

This motivates the introduction of another convention: the so-called normal-

ized HOMFLY-PT polynomial is defined by performing a rescaling such that

Pa,q( �� ) = 1. (1.14)

This choice is natural on topological grounds, since it associates 1 to the unknot

independent of how the additional input data, or “decoration,” is chosen. (By

contrast, the unnormalized HOMFLY-PT polynomial assigns the value 1 to

the empty knot diagram.) Taking a = 1 in the normalized HOMFLY-PT

polynomial returns a nontrivial invariant, the Alexander polynomial.

Exercise 1. Compute the normalized and unnormalized HOMFLY-PT poly-

nomials for the trefoil knot K = 31 (Fig. 1.2). Note that one of these will

actually turn out to be polynomial!

Having done this, specialize to the case a = q2 to obtain the normalized and

unnormalized Jones polynomials for the trefoil. Then specialize to the case

a = q. Something nice should occur! Identify what happens and explain why

this is the case.

Solution. Applying the skein relation for the HOMFLY-PT polynomial to one

crossing of the trefoil knot gives

aPa,q(31)− a−1Pa,q( �� ) = (q − q−1)Pa,q( oo// ).

Then, applying the relation again to the Hopf link (as in the above example)

gives

aPa,q( oo// )− a−1Pa,q( oo// ) = (q − q−1)Pa,q( �� ).

Therefore, for the unnormalized HOMFLY-PT polynomial,

P (31) = a−2P ( �� ) + a−2(q − q−1)
[
a−1P ( �� )2 + (q − q−1)P ( �� )

]
.
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Figure 1.3: The knots 51 and 10132. (Images from [177].)

which becomes

P (31) =
a− a−1

q − q−1

[
a−2q2 + a−2q−2 − a−4

]
.

The normalized HOMFLY-PT polynomial is simply the quantity in brackets.

Specializing to a = q2 gives the unnormalized Jones polynomial:

P2(31) =
q2 − q−2

q − q−1

[
q−2 + q−6 − q−8

]
. (1.15)

Again, the normalized Jones polynomial is the factor in square brackets. Fi-

nally, we specialize to a = q, obtaining P = 1 in both the normalized and

unnormalized cases! This is connected to the fact that a = q corresponds to

constructing the sl(1) invariant, which must be vacuous since the Lie algebra

is trivial.

Remark 1. The study of this subject is made more difficult by the prepon-

derance of various conventions in the literature. In particular, there is no

agreement at all about standard usage with regard to the variables for poly-

nomial invariants. Given ample forewarning, this should not cause too much

confusion, but the reader must always be aware of the problem. In particu-

lar, it is extremely common for papers to differ from our conventions by the

replacement

a 7→ a1/2, q 7→ q1/2, (1.16)

halving all powers that occur in knot polynomials. Some authors also make

the change

a 7→ a−1, q 7→ q−1, (1.17)

and some make both.
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We have by now seen a rich supply of knot polynomials, which can be straight-

forwardly computed by hand for simple enough diagrams, and are easy to write

down and compare. One might then ask about the value of attempting to cate-

gorify at all. Given such simple and powerful invariants, why would one bother

trying to replace them with much more complicated ones?

The simple answer is that the HOMFLY-PT polynomial and its relatives,

while powerful, are not fully adequate for the job of classifying all knots up

to ambient isotopy. Consider the two knot diagrams shown in Fig. 1.3, which

represent the knots 51 and 10132 in the Rolfsen classification. While the knots

are not equivalent, they have identical Alexander and Jones polynomials! In

fact, we have

Pa,q(51) = Pa,q(10132) . (1.18)

and, therefore, all specializations—including all sl(N) invariants—will be iden-

tical for these two knots. Thus, even the HOMFLY-PT polynomial is not a

perfect invariant and fails to distinguish between these two knots. This mo-

tivates us to search for a finer invariant. Categorification, as we shall see,

provides one. Specifically, even though the Jones, Alexander, and HOMFLY-

PT polynomials fail to distinguish the knots 51 and 10132 of our example, their

respective categorifications do (cf. Fig. 1.9).

Before we step into the categorification era, let us make one more desperate

attempt to gain power through polynomial knot invariants. To this end, let

us introduce not one, but a whole sequence of knot polynomials Jn(K; q) ∈
Z[q, q−1] called the colored Jones polynomials. For each non-negative integer

n, the n-colored Jones polynomial of a knot K is the quantum group invariant

associated to the decoration g = sl(2) with its n-dimensional representation Vn.

J2(K; q) is just the ordinary Jones polynomial. In Chern-Simons theory with

gauge group G = SU(2), we can think of Jn(K; q) as the expectation value

of a Wilson loop operator on K, colored by the n-dimensional representation

of SU(2) [212].

Moreover, the colored Jones polynomial obeys the following relations, known

as cabling formulas, which follow directly from the rules of Chern-Simons
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TQFT:

J⊕
iRi

(K; q) =
∑

i

JRi(K; q),

JR(Kn; q) = JR⊗n(K; q).

(1.19)

Here Kn is the n-cabling of the knot K, obtained by taking the path of K and

tracing it with a “cable” of n strands. These equations allow us to compute

the n-colored Jones polynomial, given a way to compute the ordinary Jones

polynomial and a little knowledge of representation theory. For instance, any

knot K has J1(K; q) = 1 and J2(K; q) = J(K; q), the ordinary Jones polyno-

mial. Furthermore,

2⊗ 2 = 1⊕ 3 =⇒ J3(K; q) = J(K2; q)− 1,

2⊗ 2⊗ 2 = 2⊕ 2⊕ 4 =⇒ J4(K; q) = J(K3; q)− 2J(K; q),
(1.20)

and so forth. We can switch to representations of lower dimension at the cost of

considering more complicated links; however, the computability of the ordinary

Jones polynomial means that this is still a good strategy for calculating colored

Jones polynomials.

Example 2. Using the above formulae, it is easy to find n-colored Jones

polynomial of the trefoil knot K = 31 for the first few values of n:

J1 = 1,

J2 = q + q3 − q4,

J3 = q2 + q5 − q7 + q8 − q9 − q10 + q11,

...

(1.21)

where, for balance (and to keep the reader alert), we used the conventions

which differ from (1.15) by the transformations (1.16) and (1.17).

Much like the ordinary Jones polynomial is a particular specialization (1.13) of

the HOMFLY-PT polynomial, its colored version Jn(K; q) can be obtained by

the same specialization from the so-called colored HOMFLY-PT polynomial

Pn(K; a, q),

Jn(K; q) = Pn(K; a = q2, q). (1.22)

labeled by an integer n. More generally, the colored HOMFLY-PT polynomials

P λ(K; a, q) are labeled by Young diagrams or 2d partitions λ. In these lectures,

we shall consider only Young diagrams that consist of a single row (or a single
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Figure 1.4: Mutant knots. (Images from [64].)

column) and by Schur-Weyl duality correspond to totally symmetric (resp.

totally anti-symmetric) representations. Thus, what we call Pn(K; a, q) is the

HOMFLY-PT polynomial of K colored by λ = Sn−1.

Even though Pn(K; a, q) provide us with an infinite sequence of two-variable

polynomial knot invariants, which can tell apart e.g. the two knots in (1.18),

they are still not powerful enough to distinguish simple pairs of knots and links

called mutants. The operation of mutation involves drawing a disc on a knot

diagram such that two incoming and two outgoing strands pass its boundary,

and then rotating the portion of the knot inside the disc by 180 degrees. The

Kinoshita-Terasaka and Conway knots shown in Fig. 1.4 are a famous pair

of knots that are mutants of one another, but are nonetheless distinct; they

can be distinguished by homological knot invariants, but not by any of the

polynomial invariants we have discussed so far!

Theorem 1. The colored Jones polynomial, the colored HOMFLY-PT poly-

nomial, and the Alexander polynomial cannot distinguish mutant knots [156],

while their respective categorifications can [106, 170, 207].

1.2 The classical A-polynomial

In this section, we take a step back from quantum group invariants to dis-

cuss another classical invariant of knots: the so-called A-polynomial. Our

introduction will be rather brief, intended to familiarize the reader with the

general idea behind this invariant and catalogue some of its properties, rather

than attempt a complete construction. For more information, we refer to the

pioneering paper of Cooper et. al. [54], in which the A-polynomial was first
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defined.

For a knot K, let N(K) ⊂ S3 be an open tubular neighborhood of K. Then

the knot complement is defined to be

M =̂ S3 \N(K). (1.23)

By construction, M is a 3-manifold with torus boundary, and our goal here

is to explain that to every such manifold one can associate a planar algebraic

curve

C = {(x, y) ∈ C2 : A(x, y) = 0}, (1.24)

defined as follows. The classical invariant of M is its fundamental group,

π1(M), which in the case of knot complements is called the knot group. It

contains a lot of useful information about M and can distinguish knots much

better than any of the polynomial invariants we saw in §1.1.

Example 3. Consider the trefoil knot K = 31. Its knot group is the simplest

example of a braid group:

π1(M) = 〈a, b : aba = bab〉. (1.25)

Although the knot group is a very good invariant, it is not easy to deal with

due to its non-abelian nature. To make life easier, while hopefully not giving

up too much power, one can imagine considering representations of the knot

group rather than the group itself. Thus, one can consider representations of

π1(M) into a simple non-abelian group, such as the group of 2 × 2 complex

matrices,

ρ : π1(M)→ SL(2,C). (1.26)

Associated to this construction is a polynomial invariant A(x, y), whose zero

locus (1.24) parameterizes in some sense the “space” of all such representations.

Indeed, as we noted earlier, M is a 3-manifold with torus boundary,

∂M = ∂N(K) =̃ T 2. (1.27)

Therefore, the fundamental group of ∂M is

π1(∂M) = π1(T 2) = Z× Z. (1.28)

The generators of π1(∂M) are the two basic cycles, which we will denote by m

and ` (standing for meridian and longitude, respectively—see Fig. 1.5). m
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m

`

Figure 1.5: The torus T 2 = ∂N(K) for K = unknot, with cycles m and `.

is the cycle that is contractible when considered as a loop in N(K), and `

is the non-contractible cycle that follows the knot in N(K). Of course, any

representation π1(M) → SL(2,C) restricts to a representation of π1(T 2 =

∂M); this gives a natural map of representations of π1(M) into the space of

representations of π1(∂M).

These cycles are represented in SL(2,C) by 2 × 2 complex matrices ρ(m)

and ρ(`) with determinant 1. Since the fundamental group of the torus is just

Z× Z, the matrices ρ(m) and ρ(`) commute, and can therefore be simultane-

ously brought to Jordan normal form by some change of basis, i.e., conjugacy

by an element of SL(2,C):

ρ(m) =

(
x ?

0 x−1

)
, ρ(`) =

(
y ?

0 y−1

)
. (1.29)

Therefore, we have a map that assigns two complex numbers to each repre-

sentation of the knot group:

Hom(π1(M), SL(2,C))/conj. → C? × C?,

ρ 7→ (x, y),
(1.30)

where x and y are the eigenvalues of ρ(m) and ρ(`), respectively. The image of

this map is the representation variety C ⊂ C?×C?, whose defining polynomial

is the A-polynomial of K. Note, this definition of the A-polynomial does not

fix the overall numerical coefficient, which is usually chosen in such a way

that A(x, y) has integer coefficients (we return to this property below). For

the same reason, the A-polynomial is only defined up to multiplication by

arbitrary powers of x and y. Let us illustrate the idea of this construction

with some specific examples.
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Example 4. Let K ⊂ S3 be the unknot. Then N(K) and M are both

homeomorphic to the solid torus S1 ×D2. Notice that m is contractible as a

loop in N(K) and ` is not, while the opposite is true in M : ` is contractible

and m is not. Since ` is contractible in M , ρ(`) must be the identity, and

therefore we have y = 1 for all (x, y) ∈ C . There is no restriction on x, so that

C ( �� ) = {(x, y) ∈ C? × C? : y = 1}; (1.31)

the A-polynomial of the unknot is therefore

A(x, y) = y − 1. (1.32)

Example 5. Let K ⊂ S3 be the trefoil knot 31. Then, as mentioned in (1.25),

the knot group is given by

π1(M) = 〈a, b : aba = bab〉, (1.33)

where the meridian and longitude cycles can be identified as follows:



m = a,

` = ba2ba−4.
(1.34)

Let us see what information we can get about the A-polynomial just by con-

sidering abelian representations of π1(M), i.e. representations such that ρ(a)

and ρ(b) commute. For such representations, the defining relations reduce to

a2b = ab2 and therefore imply a = b. (Here, in a slight abuse of notation, we

are simply writing a to refer to ρ(a) and so forth.) Eq. (1.34) then implies that

` = 1 and m = a, so that y = 1 and x is unrestricted exactly as in Example 4.

It follows that the A-polynomial contains (y − 1) as a factor.

This example illustrates a more general phenomenon. Whenever M is a knot

complement in S3, it is true that the abelianization

π1(M)ab = H1(M) =̃ Z. (1.35)

Therefore, the A-polynomial always contains y − 1 as a factor,

A(x, y) = (y − 1)(· · · ), (1.36)

where the first piece carries information about abelian representations, and

any additional factors that occur arise from the non-abelian representations.
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In the particular case K = 31, a similar analysis of non-abelian representations

of (1.25) into SL(2,C) yields

A(x, y) = (y − 1)(y + x6). (1.37)

To summarize, the algebraic curve C is (the closure of) the image of the rep-

resentation variety of M in the representation variety C?×C? of its boundary

torus ∂M . This image is always an affine algebraic variety of complex dimen-

sion 1, whose defining equation is precisely the A-polynomial [54].

This construction defines the A-polynomial as an invariant associated to any

knot. However, extension to links requires extra care, since in that case

∂N(L) 6=̃ T 2. Rather, the boundary of the link complement consists of several

components, each of which is separately homeomorphic to a torus. There-

fore, there will be more than two fundamental cycles to consider, and the

analogous construction will generally produce a higher-dimensional character

variety rather than a plane algebraic curve. One important consequence of

this is that the A-polynomial cannot be computed by any known set of skein

relations; as was made clear in Exercise 1, computations with skein relations

require one to consider general links rather than just knots.

To conclude this brief introduction to the A-polynomial, we will list without

proof several of its interesting properties:

• For any hyperbolic knot K,

AK(x, y) 6= y − 1. (1.38)

That is, the A-polynomial carries nontrivial information about non-abelian

representations of the knot group.

• Whenever K is a knot in a homology sphere, AK(x, y) contains only even

powers of the variable x. Since in these lectures we shall only consider examples

of this kind, we simplify expressions a bit by replacing x2 with x. For instance,

in these conventions the A-polynomial (1.37) of the trefoil knot looks like

A(x, y) = (y − 1)(y + x3). (1.39)

• The A-polynomial is reciprocal: that is,

A(x, y) ∼ A(x−1, y−1), (1.40)
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where the equivalence is up to multiplication by powers of x and y. Such

multiplications are irrelevant, because they don’t change the zero locus of the

A-polynomial in C? ×C?. This property can be also expressed by saying that

the curve C lies in (C? × C?)/Z2, where Z2 acts by (x, y) 7→ (x−1, y−1) and

can be interpreted as the Weyl group of SL(2,C).

• A(x, y) is invariant under orientation reversal of the knot, but not under re-

versal of orientation in the ambient space. Therefore, it can distinguish mirror

knots (knots related by the parity operation), such as the left- and right-handed

versions of the trefoil. To be precise, if K ′ is the mirror of K, then

AK(x, y) = 0 ⇐⇒ AK′(x
−1, y) = 0. (1.41)

• After multiplication by a constant, the A-polynomial can always be taken to

have integer coefficients. It is then natural to ask: are these integers counting

something, and if so, what? The integrality of the coefficients of A(x, y) is

a first hint of the deep connections with number theory. For instance, the

following two properties, based on the Newton polygon of A(x, y), illustrate

this connection further.

• The A-polynomial is tempered: that is, the faces of the Newton polygon of

A(x, y) define cyclotomic polynomials in one variable. Examine, for example,

the A-polynomial of the figure-8 knot:

A(x, y) = (y − 1)
(
y2 − (x−2 − x−1 − 2− x+ x2)y + y2

)
. (1.42)

• Furthermore, the slopes of the sides of the Newton polygon of A(x, y) are

boundary slopes of incompressible surfaces† in M .

While all of the above properties are interesting, and deserve to be explored

much more fully, our next goal is to review the connection to physics [107],

which explains known facts about the A-polynomial and leads to many new

ones:

†A proper embedding of a connected orientable surface F →M is called incompressible
if the induced map π1(F ) → π1(M) is injective. Its boundary slope is defined as follows.
An incompressible surface (F, ∂F ) gives rise to a collection of parallel simple closed loops
in ∂M . Choose one such loop and write its homology class as `pmq. Then, the boundary
slope of (F, ∂F ) is defined to be the rational number p/q.



25

• The A-polynomial curve (1.24), though constructed as an algebraic curve,

is most properly viewed as an object of symplectic geometry: specifically, a

holomorphic Lagrangian submanifold.

• Its quantization with the symplectic form

ω =
dy

y
∧ dx
x

(1.43)

leads to interesting wavefunctions.

• The curve C has all the necessary attributes to be an analogue of the Seiberg-

Witten curve for knots and 3-manifolds [67, 89].

As an appetizer and a simple example of what the physical interpretation of

the A-polynomial has to offer, here we describe a curious property of the A-

polynomial curve (1.24) that follows from this physical interpretation. For any

closed cycle in the algebraic curve C , the integral of the Liouville one-form

(see (1.49) below) associated to the symplectic form (1.43) should be quantized

[107]. Schematically,‡ ∮

Γ

log y
dx

x
∈ 2π2 ·Q. (1.44)

This condition has an elegant interpretation in terms of algebraic K-theory and

the Bloch group of Q̄. Moreover, it was conjectured in [114] that every curve

of the form (1.24) — not necessarily describing the moduli of flat connections

— is quantizable if and only if {x, y} ∈ K2(C(C )) is a torsion class. This

generalization will be useful to us later, when we consider a refinement of

the A-polynomial that has to do with categorification and homological knot

invariants.

To see how stringent the condition (1.44) is, let us compare, for instance, the

A-polynomial of the figure-eight knot (1.42):

A(x, y) = 1− (x−4 − x−2 − 2− x2 + x4)y + y2 (1.45)

‡To be more precise, all periods of the “real” and “imaginary” part of the Liouville
one-form θ must obey

∮

Γ

(
log |x|d(arg y)− log |y|d(arg x)

)
= 0 ,

1

4π2

∮

Γ

(
log |x|d log |y|+ (arg y)d(arg x)

)
∈ Q .
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and a similar polynomial

B(x, y) = 1− (x−6 − x−2 − 2− x2 + x6)y + y2 . (1.46)

(Here the irreducible factor (y − 1), corresponding to abelian representations,

has been suppressed in both cases.) The second polynomial has all of the re-

quired symmetries of the A-polynomial, and is obtained from the A-polynomial

of the figure-eight knot by a hardly noticeable modification. But B(x, y) can-

not occur as the A-polynomial of any knot since it violates the condition (1.44).

1.3 Quantization

Our next goal is to explain, following [107], how the physical interpretation

of the A-polynomial in Chern-Simons theory can be used to provide a bridge

between quantum group invariants of knots and algebraic curves that we dis-

cussed in §§1.1 and 1.2, respectively. In particular, we shall see how quantiza-

tion of Chern-Simons theory naturally leads to a quantization of the classical

curve (1.24),

A(x, y)  Â(x̂, ŷ; q) , (1.47)

i.e. a q-difference operator Â(x̂, ŷ; q) with many interesting properties. While

this will require a crash course on basic tools of Quantum Mechanics, the pay-

off will be enormous and will lead to many generalizations and ramifications of

the intriguing relations between quantum group invariants of knots, on the one

hand, and algebraic curves, on the other. Thus, one such generalization will

be the subject of §1.4, where we will discuss categorification and formulate a

similar bridge between algebraic curves and knot homologies, finally explain-

ing the title of these lecture notes.

We begin our discussion of the quantization problem with a lightning review of

some mathematical aspects of classical mechanics. Part of our exposition here

follows the earlier lecture notes [66] that we recommend as a complementary

introduction to the subject. When it comes to Chern-Simons theory, besides

the seminal paper [212], mathematically oriented readers may also want to

consult the excellent books [9, 135].

As we discussed briefly in the introduction, the description of a system in

classical mechanics is most naturally formulated in the language of symplectic

geometry. In the classical world, the state of a system at a particular instant
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in time is completely specified by giving 2N pieces of data: the values of the

coordinates xi and their conjugate momenta pi, where 1 ≤ i ≤ N . The 2N -

dimensional space parameterized by the xi and pi is the phase space M of

the system. (For many typical systems, the space of possible configurations

of the system is some manifold X, on which the xi are coordinates, and the

phase space is the cotangent bundle M = T ∗X.) Notice that, independent of

the number N of generalized coordinates needed to specify the configuration

of a system, the associated phase space is always of even dimension. In fact,

phase space is always naturally equipped with the structure of a symplectic

manifold, with a canonical symplectic form given by

ω = dp ∧ dx. (1.48)

(When the phase space is a cotangent bundle, (1.48) is just the canonical sym-

plectic structure on any cotangent bundle, expressed in coordinates.) Recall

that a symplectic form on a manifold is a closed, nondegenerate two-form, and

that nondegeneracy immediately implies that any symplectic manifold must

be of even dimension.

Since ω is closed, it locally admits a primitive form, the so-called Liouville

one-form

θ = p dx. (1.49)

It should be apparent that ω = dθ, so that θ is indeed a primitive.

Let us now explore these ideas more concretely in the context of a simple

example. As a model system, consider the one-dimensional simple harmonic

oscillator. The configuration space of this system is just R (with coordinate x),

and the Hamiltonian is given by

H =
1

2
p2 +

1

2
x2. (1.50)

Since dH/dt = 0, the energy is a conserved quantity, and since N = 1, this

one conserved quantity serves to completely specify the classical trajectories

of the system. They are curves in phase space of the form

C :
1

2
(x2 + p2)− E = 0, (1.51)

for E ∈ R+; these are concentric circles about the origin, with radius deter-

mined by the energy. Fig. 1.6 shows the potential of this system, together
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Figure 1.6: On the left, the potential and lowest-energy wavefunction for the
simple harmonic oscillator. On the right, the phase space of this system, with
a typical classical trajectory.

with a typical trajectory in the phase space. The dashed line represents the

lowest-energy wavefunction of the system, to which we will come in a moment.

Now, recall that a Lagrangian submanifold C ⊂ (M , ω) is a submanifold

such that ω|C = 0, having the maximal possible dimension, i.e., dim C =
1
2

dim M . (If C has dimension larger than half the dimension of M , the

symplectic form cannot be identically zero when restricted to C , since it is

nondegenerate on M .) It should be clear that, in the above example, the

classical trajectories (1.51) are Lagrangian submanifolds of the phase space.

Moreover, since in this example the degree of the symplectic form ω is equal

to the dimension of the phase space, ω is a volume form—in fact, the standard

volume form on R2. We can therefore compute the area encompassed by a

trajectory of energy E by integrating ω over the region x2 +p2 < 2E , obtaining

2πE =

∫

D

dp ∧ dx, (1.52)

where D is the disc enclosed by the trajectory C . Therefore, classically, the

energy of a trajectory is proportional to the area in phase space it encompasses.

How do these considerations relate to quantization of the system? It is well

known that the energy levels of the simple harmonic oscillator are given by

E =
1

2π

∫

D

dp ∧ dx = ~
(
n+

1

2

)
(1.53)

when the system is quantized. Thus, we expect that, in quantizing a system,

the number of quantum states contained in some region of phase space will

be directly proportional to its area. Moreover, we interpret ~, which has the

same units as area in phase space, as the amount of classical phase space per
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quantum state. Schematically,

# states ∼ area/~. (1.54)

This relation has a long history in quantum physics; it is none other than the

Bohr-Sommerfeld quantization condition.

Moreover, since ω admits a primitive, we can use the Stokes theorem to write

E =
1

2π

∫

D

ω =
1

2π

∮

C

θ, (1.55)

since C = ∂D and dθ = ω.

We have discussed counting quantum states; what about actually constructing

them? In quantum mechanics, we expect the state to be a vector in a Hilbert

space, which can be represented as a square-integrable wavefunction Z(x).

It turns out that, in the limit where ~ is small, the wavefunction can be

constructed to lowest order in a manner that bears a striking resemblance

to (1.55):

Z(x) −−→
~→0

exp

[
i

~

∫ x

0

θ + · · ·
]

= exp

[
i

~

∫ x

0

√
2E − x2 dx+ · · ·

] (1.56)

Evaluating the wavefunction in this manner for the lowest-energy state of our

system (E = ~/2) yields

Z(x) ≈ exp

[
− 1

2~
x2 + · · ·

]
. (1.57)

Indeed, exp(−x2/2~) is the exact expression for the n = 0 wavefunction.

We are slowly making progress towards understanding the quantization of our

model system. The next step is to understand the transition between the

classical and quantum notions of an observable. In the classical world, the

observables x and p are coordinates in phase space—in other words, functions

on the phase space:

x : M → R, (x, p) 7→ x, (1.58)

and so forth. General observables are functions of x and p, i.e., general ele-

ments of C∞(M ,R).

In the quantum world, as is well known, x and p should be replaced by oper-

ators x̂ and p̂, obeying the canonical commutation relation

[p̂, x̂] = −i~. (1.59)
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These operators now live in some noncommutative algebra, which is equipped

with an action on the Hilbert space of states. In the position representation,

for instance,

x̂f(x) = xf(x), p̂f(x) = −i~ d
dx
f(x), (1.60)

where f ∈ L2(R). The constraint equation (1.51) that defines a classical

trajectory is then replaced by the operator equation

[
1

2
(x̂2 + p̂2)− E

]
Z(x) = 0, (1.61)

which is just the familiar Schrödinger eigenvalue equation ĤZ = EZ. Now,

unlike in the classical case, the solutions of (1.61) in the position representation

will only be square-integrable (and therefore physically acceptable) for certain

values of E . These are precisely the familiar eigenvalues or allowed energy

levels

E = ~
(
n+

1

2

)
, (1.62)

where n = 0, 1, 2, . . . . Taking the lowest energy level (n = 0) as an example,

the exact solution is Z(x) = exp(−x2/2~), just as we claimed above. The

reader can easily verify this directly.

All of this discussion should be taken as illustrating our above claim that

quantum mechanics should properly be understood as a “modern symplectic

geometry,” in which classical constraints are promoted to operator relations.

We have constructed the following correspondence or dictionary between the

elements of the classical and quantum descriptions of a system:

Classical Quantum

state space symplectic manifold (M , ω) Hilbert space H

states Lagrangian submanifolds vectors (wave functions)

C ⊂M Z ∈H

observables algebra of functions algebra of operators

f ∈ C∞(M) f̂ , acting on H

constraints fi = 0 f̂iZ = 0

We now have a benchmark for what a successful quantization should accom-

plish: for a given classical system, it should construct the quantum counterpart

for each element in the classical description, as summarized above. Of course,
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we would also like the correspondence principle to hold: that is, the quantum

description should dovetail nicely with the classical one in some way when we

take ~→ 0.

The correspondence between the classical and quantum descriptions is not

quite as cut-and-dried as we have made it appear, and there are a few points

that deserve further mention. Firstly, it should be apparent from our discussion

of the harmonic oscillator that not every Lagrangian submanifold will have

a quantum state associated to it; in particular, only a particular subset of

these (obeying the Bohr-Sommerfeld quantization condition, or equivalently,

corresponding to eigenvalues of the operator Ĥ) will allow us to construct

a square-integrable wavefunction Z(x). There can be further constraints on

quantizable Lagrangian submanifolds [116].

Secondly, let us briefly clarify why quantum state vectors correspond to La-

grangian submanifolds of the classical phase space and not to classical 1-

dimensional trajectories, as one might naively think. (In our example of the

harmonic oscillator we have N = 1 and, as a result, both Lagrangian subman-

ifolds and classical trajectories are one-dimensional.) The basic reason why

Lagrangian submanifolds, rather than dimension-1 trajectories, are the correct

objects to consider in attempting a quantization is the following. In quantum

mechanics, we specify a state by giving the results of measurements of observ-

ables performed on that state. For this kind of information to be meaningful,

the state must be a simultaneous eigenstate of all observables whose values we

specify, which is only possible if all such observables mutually commute. As

such, to describe the state space in quantum mechanics, we choose a “com-

plete set of commuting observables” that gives a decomposition of H into

one-dimensional eigenspaces of these operators. For time-independent Hamil-

tonians, one of these operators will always be Ĥ.

However, at leading order in ~, the commutator of two quantum observables

must be proportional to the Poisson bracket of the corresponding classical

observables. Therefore, if Ĥ, f̂i form a complete set of commuting quantum-

mechanical observables, we must have

{H, fi}P.B. = 0, (1.63)

where {· , ·}P.B. is the Poisson bracket. But we know that the classical time-
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evolution of the quantity fi is determined by the equation

dfi
dt

+ {H, fi}P.B. = 0. (1.64)

As such, the quantum-mechanical observables used in specifying the state must

correspond to classically conserved quantities: constants of the motion. And

it is well-known that the maximal possible number of classically conserved

quantities is N = 1
2

dim M , corresponding to a completely integrable system;

this follows from the nondegeneracy of the symplectic form on the classical

phase space. ForN > 1, then, specifying all of the constants of the motion does

not completely pin down the classical trajectory; it specifies an N -dimensional

submanifold C ⊂M . However, it does give all the information it is possible

for one to have about the quantum state. This is why Lagrangian submanifolds

are the classical objects to which one attempts to associate quantum states.

We should also remark that it is still generically true that wavefunctions will

be given to lowest order by

Z(x) = exp

[
i

~

∫ x

x0

θ + · · ·
]
. (1.65)

This form fits all of the local requirements for Z(x), although it may or may

not produce a globally square-integrable wavefunction.

Finally, the quantum-mechanical algebra of operators is a non-commutative

deformation or q-deformation of the algebra of functions C∞(M ), where the

deformation is parameterized by

q =̂ e~. (1.66)

In the classical limit, q → 1.

How are these general ideas about quantization implemented in the context

of topological quantum field theories? To illustrate the connection, we will

consider a specific example of a TQFT: the Chern-Simons gauge theory.

As in any gauge theory, the starting point of this theory is the choice of a

gauge group G and the action functional, which in the present case is the

Chern-Simons functional:

1

~

∫

M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A). (1.67)
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ΣM

Figure 1.7: The setup for Chern-Simons theory: an oriented 3-manifold M
with boundary a 2-manifold Σ.

Here M is a 3-manifold, and the gauge field A is a connection on a principal

G-bundle E →M . The action functional (1.67) can be interpreted roughly as

a Morse function on the space of gauge fields. We search for critical points of

this functional by solving the equation of motion, which is the PDE

dA+ A ∧ A = 0. (1.68)

This equation says that A is a flat connection. How is this gauge theory

formulation related to the picture of a TQFT as a functor, in the axiomatic

language of Atiyah and Segal [9]?

The answer to this question is summarized in the below table, and illustrates

the way in which quantization plays a role. The action functional (1.67) defines

a classical gauge theory; the classical phase space of this theory is the moduli

space of flat connections M = Mflat(G,Σ), where Σ = ∂M .

Now, let Mflat(G,M) be the moduli space of flat connections on M . There is

a natural mapping

Mflat(G,M) ↪→Mflat(G,Σ) (1.69)

induced by restriction to Σ = ∂M . The image of this map is the subspace

of M consisting of flat connections on Σ that can be extended to M ; this is a

Lagrangian submanifold C ⊂M .

We are now equipped with precisely the classical data referred to in our ear-

lier discussion of the quantization problem. If we now quantize the classical

Chern-Simons theory, the classical phase space M and the Lagrangian sub-

manifold C ⊂ M will be respectively replaced with a Hilbert space and a



34

state vector in that Hilbert space. But these are precisely the objects that we

expect a TQFT functor to associate to Σ and M !

To sum up, our situation is as follows:

Geometry Classical CS Quantum CS

2-manifold symplectic manifold vector space

Σ M = Mflat(G,Σ) HΣ

3-manifold Lagrangian submanifold: vector

M (∂M = Σ) connections extendible to M Z(M) ∈HΣ

To move from the first column to the second, we define the classical Chern-

Simons theory. Moving from the second column to the third consists of a

quantization of this theory. The usual picture of a TQFT as a functor is the

composition of these two: it moves directly from the first to the third column,

ignoring the second.

Let us discuss the phase space of classical Chern-Simons theory a little further.

It is known that all flat connections on Riemann surfaces are described by their

holonomies; that is, the moduli space consists of maps

M = Hom(π1(Σ)→ G)/conjugation. (1.70)

As emphasized in the work of Atiyah and Bott [6], this space comes equipped

with a natural symplectic form,

ω =
1

4π2

∫

Σ

Tr δA ∧ δA, (1.71)

where δ denotes the exterior derivative on M , so that δA is a 1-form on Σ as

well as on M . The Lagrangian submanifold we are considering is then given

by

C = Hom(π1(M)→ G)/conjugation, (1.72)

and the inclusion map is induced by the natural map π1(Σ) → π1(M). This

Lagrangian submanifold can be defined by classical constraint equations of the

form

Ai = 0. (1.73)

Quantization will then replace these with quantum constraints; that is, oper-

ator relations

ÂiZ = 0, (1.74)
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just as the classical constraint (1.51) was replaced by the operator equation

(1.61) in our previous example.

Exercise 2. Verify that C is indeed Lagrangian with respect to the symplectic

form (1.71). That is, show that

ω|C⊂M = 0. (1.75)

Exercise 3. Let g be the genus of Σ. Show that, for g > 1,

dim M = (2g − 2) dimG. (1.76)

Solution. Consider the case where G is a simple group. The fundamental

group π1(Σ) is generated by 2g elements Ai and Bi, 1 ≤ i ≤ g, subject to the

one relation

A1B1A
−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g = 1. (1.77)

After applying an element of Hom(π1(Σ)→ G), the generators are mapped to

group-valued matrices, and so we need 2g·dimG parameters to specify them all

independently. However, there are constraints: the matrices must obey (1.77),

one matrix equation which eliminates dimG degrees of freedom. Taking the

quotient by conjugacy eliminates another dimG degrees of freedom, leaving

dim M = (2g − 2) dimG, (1.78)

as we expected.

Let us now specialize this general discussion and consider the theory with

gauge group G = SL(2,C) on a 3-manifold that is a knot complement, M =

S3 \ N(K). Then, of course, ∂M = Σ =̃ T 2. It follows immediately that

π1(Σ) = Z× Z, so that

M = Hom(Z× Z→ SL(2,C))/conjugacy

= (C? × C?)/Z2.
(1.79)

This is exactly the space we considered in §1.2 in our discussion of the A-

polynomial: it is the representation variety of the boundary torus of M ! More-

over, the Lagrangian submanifold is in this case given by

C = Hom(π1(M)→ SL(2,C))/conjugacy

= {(x, y) ∈ (C? × C?)/Z2 : A(x, y) = 0},
(1.80)
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where A(x, y) is a familiar polynomial in x and y, interpreted now as a classical

observable giving the classical constraint relation that defines the submanifold

C ⊂M .

The appearance of the A-polynomial in this context clarifies two mysterious

statements that were made in the previous section. Firstly, it makes apparent

in what sense the zero locus of the A-polynomial is a natural object in symplec-

tic geometry. Secondly, we can now make sense of the statement that one can

“quantize” the A-polynomial. Having interpreted it as a classical constraint

equation defining a Lagrangian submanifold of a classical phase space, it be-

comes obvious that quantization replaces the A-polynomial by an operator in

a quantum constraint equation of the form (1.74).

What happens when we try to quantize the A-polynomial? The natural sym-

plectic form (1.71) on the classical phase space takes the simple form [107]:

ω =
dy

y
∧ dx
x

= d ln y ∧ d lnx. (1.81)

The canonical commutation relation is therefore
[
l̂n y, l̂nx

]
= ~, (1.82)

which can be rewritten in the form

ŷx̂ = qx̂ŷ. (1.83)

with q = e~. Given this relation, what form do the operators x̂ and ŷ take in

the position representation? Of course, we must have x̂f(x) = xf(x). Then

the commutation relation becomes

qx̂(ŷf(x)) = ŷ(x̂f(x)), (1.84)

and implies that ŷ should act as a shift operator ŷf(x) = f(qx). The reason

for this name is the following. Notice, that the symplectic form (1.81) has

the canonical form in logarithms of x and y, rather than x and y themselves.

Therefore, it is natural to introduce the logarithmic variable n by the relation

x = qn. Then, in terms of n the action of the operators x̂ and ŷ looks like

x̂f(n) = qnf(n), ŷf(n) = f(n+ 1). (1.85)

The quantization of the polynomial A(x, y) =
∑

k ak(x)yk will then be an

operator of the form

Â(x̂, ŷ; q) =
∑

k

ak(x̂; q)ŷk. (1.86)
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In general, quantization is a rather delicate and mysterious procedure [220] (see

[116] for a recent discussion). However, for algebraic curves defined by classical

constraint equations of the form A(x, y) = 0, recent progress in mathematical

physics [3, 28, 61, 75, 152] has led to a systematic way of constructing the

coefficients ak(x̂; q) of the quantum operator (1.86) entirely from the data of

the classical A-polynomial [114] (see also [25]):

A(x, y)  Â(x̂, ŷ; q). (1.87)

In addition, in some cases the curve A(x, y) = 0 comes from extra data that

may be very helpful in constructing its quantum analog. For instance, the

construction [165] of the ordinary A-polynomial based on the triangulation

data of a 3-manifold M admits a beautiful non-commutative lift [62]. However,

since in what follows we need to apply the procedure (1.87) to arbitrary curves

for which the extra data is not always available, we shall mainly focus on the

so-called topological recursion approach that involves complex analysis and

noncommutative algebra on C .

In complex analysis, one of the basic ingredients associated to the curve C :

A(x, y) = 0 is the so-called Bergman kernel. It becomes the first brick in

the foundation of the construction (1.87) based on the topological recursion,

which after a few more systematic and completely rigorous steps builds the

q-difference operator as a power series in ~:

A(x, y)  Â(x̂, ŷ; q) = A(x̂, ŷ) + ~A1(x̂, ŷ) + · · · . (1.88)

Even though we omit the intermediate steps due to constraints of space, the

reader should simply be aware that a well-defined, systematic procedure ex-

ists. The existence and uniqueness of this procedure are well-motivated based

on physical considerations; in fact, these form one of the basic premises of

quantum mechanics.

By looking at (1.88) it would seem that we would therefore have to compute

terms to arbitrarily high order in this series to write down the operator Â.

However, in practice, this is not the case; we usually need to compute only one

or sometimes two terms in the series to know Â exactly! The trick is as follows:

if we know, a priori, that the operator we construct can be written as a rational

function of q = e~, then the higher order terms in the expansion in ~ must

resum nicely into an expression of this form. We also have information about
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the classical limit (q → 1) of this expression. Armed with this information,

it is usually pretty straightforward to construct the quantization of A(x, y) in

closed form.

For example, if we know both the classical term and the first quantum correc-

tion ~A1(x̂, ŷ) in the expansion (1.88), there is a good chance we can recon-

struct the quantum operator

Â(x̂, ŷ; q) =
∑

m,n

am,n q
cm,n x̂m ŷn (1.89)

simply from the data {am,n} of the original polynomial A(x, y) =
∑
am,nx

myn

and from the exponents {cm,n} determined by ~A1(x̂, ŷ). This trick becomes

especially useful for curves that come from knots and 3-manifolds. Indeed, in

such examples the leading quantum correction is determined by the “classical”

knot invariant ∆(q) called the twisted Alexander polynomial. Therefore, a

simple mnemonic rule to remember what goes into the construction of the

operator Â(x̂, ŷ; q) in such situations can be schematically expressed as [114]:

“ A(x, y) + ∆(q) ⇒ Â(x̂, ŷ; q) ” (1.90)

Concretely, the exponents cm,n in (1.89) can be determined by requiring that

the relation

2
∑

m,n

am,n cm,n x
myn =

∂A

∂ lnx

(
∂A

∂ ln y

)−1
∂2A

(∂ ln y)2
+ x

∂∆(x)

∂x

∂A

∂ ln y
(1.91)

holds for all values of x and y (along with A(x, y) = 0).

Example 6. Consider once more the trefoil knot K = 31, which has A-

polynomial A(x, y) = (y−1− 1)(y+ x3) and where, following our earlier agree-

ment, we replaced x2 by x to simplify the expressions, cf. (1.39). Notice, that

A(x, y) in this example is a degree-2 polynomial in y. Quantization (1.88) then

gives an operator which is also of degree 2 in ŷ

Â(x̂, ŷ; q) = αŷ−1 + β + γŷ, (1.92)

where 



α = x2(x−q)
x2−q ;

β = q
(

1 + x−1 − x+ q−x
x2−q − x−1

x2q−1

)
;

γ = q−x−1

1−qx2 .

(1.93)
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In the representation (1.85), our quantized constraint (1.74) then gives an

operator relation that takes the form of a recurrence in the variable n:

ÂZ = 0 =⇒ α(qn; q)Zn−1 + β(qn; q)Zn + γ(qn; q)Zn+1 = 0, (1.94)

where we recall that n was defined so that x = qn.

Exercise 4. Solve this recurrence with the initial conditions

Zn = 0 for n ≤ 0; Z1 = 1. (1.95)

That is, find the first few terms of the sequence Zn(q) for n = 2, 3, . . .

Solution. Straightforward computation gives

Z2(q) = −β(q; q)/γ(q; q)

= − 1− q3

q − q−1
· q
(

1 + q−1 − q − q − 1

q3 − 1

)

= −(1− q3)(1 + q − q2) + q(q − 1)

q − q−1

=
−1 + q3 + q4 − q5

q − q−1

= q + q3 − q4,

(1.96)

as well as
Z3(q) = −(α(q2; q) + β(q2; q)Z2(q))/γ(q2; q)

= q2 + q5 − q7 + q8 − q9 − q10 + q11,
(1.97)

after a little manipulation. Notice that the Zn all turn out to be polynomials!

Now, we come to one of the punch lines of these lectures. The reader who

has completed Exercise 1 and followed through the derivation of (1.21) may

have noticed a startling coincidence: Zn produced by our our recurrence re-

lation (1.94) is none other than the n-colored Jones polynomial; that is, the

quantum group invariant of the knot decorated with extra data consisting of

the Lie algebra g = sl(2) and its n-dimensional representation R = Vn.

This is no coincidence, of course. As we reviewed in §1.1, the n-colored Jones

polynomial is simply the partition function of Chern-Simons TQFT with gauge

group G = SU(2). On the other hand, in this section we explained that
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the classical A-polynomial and its quantum, non-commutative version have

a natural home in Chern-Simons TQFT with complex gauge group GC =

SL(2,C). In particular, we saw how the usual rules of quantum mechanics

replace the classical constraint (1.80) with an operator relation (1.74),

C : A(x, y) = 0  Â(x̂, ŷ; q)ZCS(M) = 0 , (1.98)

where ZCS(M) is the state vector associated by quantization to the Lagran-

gian submanifold C (or, equivalently, associated by the Chern-Simons TQFT

functor to the 3-manifold M). Since GC = SL(2,C) is a complexification of

G = SU(2), the partition functions in these two theories are closely related

[68, 217]. In particular, it was argued in [107] that both SU(2) and SL(2,C)

partition functions must satisfy the quantum constraint equation (1.98). In

the n-representation (1.85) it takes the form of a recurrence relation

A(x, y) =
∑

k

ak(x)yk  
∑

k

ak(q
n; q)Jn+k(K; q) = 0 , (1.99)

which is precisely our q-difference equation (1.94) in the above example, whereK

was taken to be the trefoil knot. More generally, the equation (1.99) is a q-

difference equation, describing the behavior with respect to n, or “color depen-

dence,” of the n-colored Jones polynomial that is computed by Wilson loop

operators in the SU(2) Chern-Simons theory.

The relation between the quantization of the A-polynomial and the quantum

group invariants (1.99) that follows from Chern-Simons theory is the state-

ment of the quantum volume conjecture [107] (see [66] for a review of earlier

developments that led to it). This conjecture was independently proposed in

[94] around the same time, and is also known as the AJ-conjecture. It pro-

vides a bridge between two seemingly distant areas of knot theory, the classical

A-polynomial and the study of quantum group invariants. Before the discov-

ery of this connection, the separate communities of knot theorists working on

these two different types of invariants had very little contact with one another.

Do two knots having the same A-polynomial always have all the same n-colored

Jones polynomials? Based on the above connection, we would expect an af-

firmative answer, given that the quantization procedure for the A-polynomial

is essentially unique. This has been checked for knots up to large number of

crossings, although there is as yet no formal proof. If it is true, then a single
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algebraic curve constructed without any reference to quantum groups encodes

all the information about the whole tower of n-colored Jones polynomials:

A(x, y)  Â(x̂, ŷ; q)  Jn(K; q) . (1.100)

Nonetheless, even if all the n-colored Jones polynomials together carry no

more information than the A-polynomial, their relation to quantum groups

still makes them interesting objects of study in their own right. (It is also

worth noting that the study of the colored Jones polynomial predates the

discovery of the A-polynomial.)

Once we explained how to go, via quantization, from the classical A-polynomial

to quantum group invariants (1.100) it is natural to ask whether there is a

simple way to go back. The generalized volume conjecture [107] proposes

an affirmative answer to this question and is also based on the fact that the

analytic continuation of SU(2) is SL(2,C). It states that, in the classical limit

q → 1 accompanied by the “large color” limit n → ∞, the n-colored Jones

polynomial, as a Wilson line in SU(2) Chern-Simons theory [212], exhibits the

exponential behavior

Jn(K; q = e~) ∼
n→∞
~→0

exp

(
1

~
S0(x) + · · ·

)
, (1.101)

where the limits are taken with qn = x held fixed. Here S0(x) is the classical

action of SL(2,C) Chern-Simons theory, which is

S0(x) =

∫
log y

dx

x
(1.102)

evaluated on a path within the curve C : A(x, y) = 0. Here, by an abuse

of notation, the variable x stands in for a point on the Riemann surface;

S0 is actually a function on C , and the integral in (1.102) is taken along a

path in C from some fixed base point to the point at which S0 is evaluated.

Moreover, (1.102) is only well defined if the integrality condition (1.44) holds!

The change ∆S0 that comes from composing the path used in our evaluation

with an arbitrary closed cycle must be valued in 2πZ, so that the quantity eiS0

is well-defined and independent of path; the integrality condition ensures that

this is so.

To summarize, the generalized volume conjecture gives us two important ways

of thinking about the A-polynomial: firstly, as a characteristic variety encoding
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information about SL(2,C) flat connections, and secondly, as a limit shape in

the limit of large color.

We have now begun to see how the seemingly disparate topics we have been

discussing are connected to one another. Roughly speaking, there are four

major themes in these lectures: quantum group invariants, the A-polynomial,

quantization, and categorification. We have now seen how quantization relates

the A-polynomial and quantum group invariants, providing a bridge between

seemingly unrelated knot polynomials. In what remains, we will return to ideas

of categorification, hoping to give at least a glimpse of how knot polynomials

arise from deeper and more powerful homological invariants.

1.4 Categorification

Categorification is a powerful and flexible idea; it can mean different things

in different contexts, and a given mathematical construction may admit more

than one categorification depending on how one chooses to look at its structure.

In the context of topological quantum field theories, however, categorification

is manifested in a very natural way. The categorification of a 3-dimensional

TQFT should be a 4-dimensional TQFT, from which the 3D theory is recov-

ered by dimensional reduction, see e.g. [56, 108]. That is,

3D TQFT
categorification

..
4D TQFT

dimensional reduction

nn

We can tabulate the information that each of these TQFTs should associate

to geometrical objects in the below table:

Geometry 3D TQFT 4D TQFT

3-manifold M , number Z(M), vector space HK

knot K ⊂M polynomial invariant P (K)

2-manifold Σ vector space HΣ category CatΣ

Thus, to a geometrical object of given dimension, a categorified TQFT asso-

ciates objects of one higher categorical level than its decategorified counterpart.

(The categorical level of the object associated by a TQFT to something in ge-

ometry corresponds to its codimension, so that a 4D TQFT assigns numerical

invariants to 4-manifolds. Famous examples of these are given by Donaldson

theory [211] and Seiberg-Witten theory [214].)
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i = 3 · · · · · · · · Z
2 · · · · Z · Z/2 · ·
1 · · · · · · · · ·
0 Z · Z · · · · · ·

1 2 3 4 5 6 7 8 9 = j

Figure 1.8: The Khovanov homology Hi,j(K = 31) of the trefoil knot.

In 2000, Mikhail Khovanov [128] succeeded in constructing a categorification

of the Jones polynomial. Like the Jones polynomial, it is associated to the

extra data g = sl(2) and its fundamental representation R = V2. To give the

barest outline, his construction associates a chain complex to a diagram of a

link K. The homology of this chain complex can be shown to be invariant un-

der the Reidemeister moves, and therefore to be an invariant of K. Khovanov

homology Hi,j(K) is doubly graded, and the Jones polynomial is its graded

Euler characteristic, cf. (1.1),

J(q) =
∑

i,j

(−1)iqj dimHi,j(K) . (1.103)

Sometimes it is convenient to encode information about the Khovanov homol-

ogy in its Poincaré polynomial:

Kh(q, t) = Psl(2),V2(q, t) =
∑

i,j

tiqj dimHi,j(K). (1.104)

The Jones polynomial is then recovered by making the evaluation at t = −1.

As an example, the Poincaré polynomial of the trefoil knot is

Kh(q, t;K = 31) = q + q3t2 + q4t3 . (1.105)

It is easy to see that the evaluation at t = −1 indeed returns the normalized

Jones polynomial of the trefoil knot (1.21) that we saw in §1.1. By definition,

this version of the homology is called reduced. Its close cousin, the unreduced

knot homology categorifies the unnormalized polynomial invariant. Thus, for

the unnormalized Jones polynomial (1.15) of K = 31 the corresponding cate-

gorification is given by the unreduced Khovanov homology shown in Fig. 1.8.

Much like the Khovanov homology of a knot is a categorification of its Jones

polynomial or quantum sl(2) invariant, there exist generalizations [53, 85,

205, 221, 224] of the Khovanov homology categorifying the n-colored Jones
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polynomials for all n:

Jn(K; q) = Pn(K; q, t)|t=−1 =
∑

i,j

qitj dimH
sl(2),Vn
i,j (K)

∣∣∣∣∣
t=−1

. (1.106)

The n-colored sl(2) knot homologies satisfy recursion relations, just like their

decategorified versions, and exhibit beautiful asymptotic behavior in the limit

of large n. Both of these behaviors are controlled by a refined algebraic curve,

which is an analogue of the A-polynomial [90]:

C ref : Aref(x, y; t) = 0 . (1.107)

This curve is a t-deformation of (the image of) the representation variety of a

knot complement M in the classical phase space of the Chern-Simons theory,

which is the moduli space Mflat(SL(2,C),Σ) of flat connections. Here Σ = ∂M .

Much like the representation variety (1.80) of M , its t-deformation (1.107) is

a holomorphic Lagrangian submanifold with respect to the symplectic form

(1.81).

Example 7. In §1.2 we derived the A-polynomial of the trefoil knot (1.39).

Then, in §1.3 we discussed its quantization, or non-commutative q-deformation.

In both cases, the result is a quadratic polynomial in y. Similarly, the com-

mutative t-deformation of the A-polynomial for the trefoil knot is a quadratic

polynomial in y,

Aref(x, y; t) = y2 − 1− xt2 + x3t5 + x4t6 + 2x2t2(t+ 1)

1 + xt3
y +

(x− 1)x3t4

1 + xt3
,

(1.108)

which reduces to the ordinary A-polynomial (1.39) in the limit t = −1.

As in §1.3, quantization of Mflat(SL(2,C),Σ) with its natural symplectic form

promotes x and y to operators obeying the commutation relation

ŷx̂ = qx̂ŷ (1.109)

and turns the planar algebraic curve (1.107) into a q-difference recursion rela-

tion, cf. (1.99),

ÂrefP?(K; q, t) ' 0 , (1.110)

where x̂Pn = qnPn and ŷPn = Pn+1. This recursion relation, called the ho-

mological volume conjecture in [90], provides a natural categorification of the
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generalized volume conjecture that was the subject of §1.3. Unlike the general-

ized volume conjecture, its homological version (1.110) is based on a much more

sophisticated physics that involves a physical interpretation of knot homologies

in terms of refined BPS invariants [108, 112] and dynamics of supersymmetric

gauge theories [64, 67, 89, 218]. The details of this physical framework go way

beyond the scope of these lectures and we simply refer the interested reader

to the original papers.

There also exists a homology theory categorifying the HOMFLY-PT polyno-

mial [131, 132]. As should be obvious, this theory must be triply graded; the

HOMFLY-PT polynomial is recovered by taking the graded Euler character-

istic, cf. (1.103),

Pa,q(K) =
∑

ijk

(−1)iqjak dim Hijk(K) . (1.111)

Just as we did for Khovanov homology , we can construct the Poincaré poly-

nomial associated to the HOMFLY homology , which will encode information

about the dimensions of its groups at each level:

P(a, q, t) =
∑

ijk

tiqjak dim Hijk(K) . (1.112)

Then decategorification corresponds once more to evaluation at the value t =

−1. It turns out that even the HOMFLY homology is not a complete invari-

ant of knots; nonetheless, these homological invariants are strictly finer and

stronger than their decategorified counterparts. For instance, HOMFLY ho-

mology can distinguish between the knots 51 and 10132, discussed earlier, that

have identical Jones, Alexander, and HOMFLY-PT polynomials (1.18).

We should remark also that n-colored generalizations of HOMFLY homology

can be constructed, and that the color dependence can be encoded in an alge-

braic curve, just as the zero locus of the A-polynomial encodes the information

about color dependence of the n-colored Jones polynomial. We will return to

this point and discuss the corresponding algebraic curve in much more detail

in the final section of these lectures. Meanwhile, in the rest of this section we

mostly focus on the ordinary, uncolored HOMFLY homology aiming to explain

its structure and how to compute it in practice.

As we shall see, the structure of the homological knot invariants turns out to

be so rich and so powerful that, once we learn enough about it, we will be able
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Figure 1.9: The HOMFLY homology for knots 51 and 10132. Each dot repre-
sents a generator, with its vertical and horizontal position indicating a- and
q-degree respectively. The labels represent t-degree. The diagram can be
thought of as similar to a Newton diagram for the Poincaré polynomial (1.112).
(Images from [72].)

HOMFLY homology

Hijk(K)

Euler char.

ww

HOMFLY polynomial

Pa,q(K)

a=q2

''

Khovanov homology

Hi,j(K)

Euler char.

ww

Jones polynomial

J(q)

Figure 1.10: A summary of relations between homological and polynomial
invariants.

to compute, say, the Khovanov homology and the HOMFLY homology of the

trefoil knot solely from the data of its Jones polynomial. In other words, in

a moment we will learn powerful techniques that will allow us to reproduce

(1.105) without even learning the definition of Khovanov homology. And,

much of this structure is present—in fact, in a richer form!—in the colored

HOMFLY homology as well [113].

Let us start by summarizing the familiar relations (1.13), (1.103), (1.111)

between homological and polynomial invariants diagramatically, as shown in

Fig. 1.10. We would like to be able to fill in the missing fourth arrow, i.e.,

to have a way of recovering Khovanov homology directly from the HOMFLY

homology. This, however, is rather delicate for a number of reasons. First,

the specialization a = q2 does not make sense in the context of the homology

theories. At best one could try to complete the diagram by working with the
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Poincaré polynomials associated to these theories:

P(a, q, t)
t=−1
uu

a=q2

))

P (a, q)
a=q2

))

Kh(q, t)
t=−1

uu

J(q)

(1.113)

As we explain shortly, even this is too naive due to a simple, yet conceptual

reason. Nevertheless, for a moment let us ignore this issue and proceed as if

(1.113) were actually correct.

Example 8. Let us see if we can use the information in (1.113) to recon-

struct P(a, q, t) for the trefoil knot. We know already that




P (a, q) = aq−1 + aq − a2,

Kh(q, t) = q + q3t2 + q4t3.
(1.114)

We can attempt to guess P(a, q, t) just by comparing terms; this gives

P(a, q, t) = aq−1 + aqt2 + a2t3. (1.115)

This naive guess turns out to be correct! Using only information from the

HOMFLY-PT polynomial and Khovanov homology (both of which are easily

computable), we have obtained information about the triply-graded HOMFLY

homology theory, which encodes information about the sl(N) homological in-

variants for all N .

In fact, one can even get to (1.115) without knowing the Khovanov homology!

Our task is to assign a t-degree to each term in the HOMFLY-PT polynomial.

We can do this using the following trick: From Exercise 1, the reader should

know that evaluating P (a, q) at a = q yields a monomial (exactly which mono-

mial depends on a simple knot invariant and a choice of normalization). This

turns out to be true for any knot: the HOMFLY-PT polynomial will always

become trivial, i.e., monomial, when evaluated at a = q. Therefore, to ensure

the needed cancellation when the specialization a = q is made, the normal-

ized HOMFLY-PT polynomial for any knot must have the following schematic

form:

Pa,q = 1 + (1− a−1q)Q(a, q), (1.116)
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where Q is some polynomial factor. The basic reason for this is that taking

a = q corresponds to asking about the sl(1) polynomial invariant, which must

always be trivial. A similar simplification happens in the case a = q−1.

What about the sl(1) homological invariant? Since P(a, q, t) has only positive

coefficients, P(q, q, t) can’t be trivial—it must reduce to a monomial only

because of cancellations that occur for t = −1. But we would not expect to be

able to construct any nontrivial invariants with sl(1), homological or otherwise.

This is a clue that something more sophisticated must be happening in the

way that one extracts Khovanov homology (generally, sl(N) homology) from

the HOMFLY homology.

The reason, to which we alluded earlier, is that when polynomial knot invari-

ants are categorified one correspondingly needs to upgrade the specialization

a = qN of §1.1 to the homological level. In other words, trying to use the spe-

cialization a = qN as we did in diagram (1.113) is too naive and the suitable

operation should also be from the world of homological algebra.

It turns out that the correct homological lift of the specialization a = qN

involves a conceptually new ingredient, which has no analog at the (decat-

egorified) polynomial level: a family of differentials {dN} on the HOMFLY

homology, indexed by N ∈ Z. These differentials endow HOMFLY homology

with a structure that is much richer than what can be seen at the polynomial

level and that is responsible for our claim that (1.115) can be derived even

without the knowledge of the Khovanov homology. By viewing the triply-

graded homology as a complex and taking its homology with respect to this

differential, one recovers the doubly-graded Khovanov homology. Specifically,

in the grading conventions of [113], the differentials have degree

dN>0 :(−1, N,−1),

dN≤0 :(−1, N,−3)
(1.117)

with respect to (a, q, t) grading. The homology of H?, viewed as a complex

with differential dN , returns the doubly-graded sl(|N |) homology theory [131]

or the knot Floer homology [169, 174] in the special case N = 0, see [72] for

details. In particular, its homology with respect to the differentials d1 and d−1

must be trivial.

For instance, in considering the reduction of HOMFLY homology to the sl(1)

homological invariant, almost all of the terms in the triply-graded HOMFLY
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homology will be killed by the differential d1, leaving behind a “trivial” one-

dimensional space,

dim (H?, d1) = 1 . (1.118)

Because the differential d1 has definite grading (1.117), the Poincaré polyno-

mial of HOMFLY homology therefore must be of the following general form

P(a, q, t) = 1 + (1 + a−1qt−1)Q+(a, q, t) , (1.119)

where the first term represents a contribution of the (trivial) sl(1) knot ho-

mology, and Q+(a, q, t) is some polynomial with positive coefficients. Note,

that the Poincaré polynomial (1.119) necessarily has all of its coefficients non-

negative. Similar structure follows from the existence of another canceling

differential d−1 that also kills all but one generators of the HOMFLY homol-

ogy. The physical interpretation of the differentials {dN} can be found in

[113].

Now, just from the little we learned about the differentials d1 and d−1, we

can reconstruct the HOMFLY homology of the trefoil knot. First, we can

get information about the a- and q-degrees of nontrivial HOMFLY homology

groups just from the HOMFLY-PT polynomial. For the trefoil knot, these are

depicted below:

−1 0 1

1

2

q

a

d−1 d1

It is clear that each of the differentials d±1 can only act nontrivially in one

place. From the condition that they give rise to trivial homology, each must

be surjective; this determines the relative t-degree of each group. Taking the

point with (a, q)-degree (1,−1) to have t = 0, it immediately follows that

the degrees of the other groups with respect to (a, q, t) degree are (2, 0, 3)

and (1, 1, 2). We have now managed to extract this information without even

computing Khovanov homology; the results of Exercise 1 and the above trick

are all we need.
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1.5 Epilogue: super-A-polynomial

In this section, we give a somewhat deeper discussion of the connection be-

tween physics, homological knot invariants, and the quantization of the A-

polynomial, constructing one final bridge between the ideas of quantization

and categorification. This final section of the lectures can be seen as an ad-

dendum; based on recent progress [2, 89, 91, 160] it summarizes material that

was covered in a talk given at the conference following the summer school, and

so is somewhat more technical.

In these lectures, we saw several deformations of the classical A-polynomial

A(x, y) introduced in §1.2. In §1.3 we saw how quantization of SL(2,C)

Chern-Simons theory leads to a non-commutative q-deformation (1.47). Then,

in §1.4, we saw how more sophisticated physics based on refined BPS invari-

ants leads to a categorification of the generalized volume conjecture and a

commutative t-deformation (1.107).

These turn out to be special cases of a more general three-parameter “super-

deformation” of the A-polynomial introduced in [91]. Two out of these three

deformations are commutative and will be parametrized by a and t, while the

third non-commutative deformation is produced essentially by the quantiza-

tion procedure (1.88) of §1.3:

Asuper(x, y; a, t)  Âsuper(x̂, ŷ; a, q, t) . (1.120)

What is the meaning of this super-A-polynomial?

The best way to answer this question is to consider an example. In fact, let

us repeat the analogs of Example 6 and Exercise 4:

Example 9. For our favorite example, the trefoil knot K = 31, we know from

our earlier discussion that the classical A-polynomial A(x, y) = (y−1)(y+x3)

is quadratic in y, and so are its t-deformation (1.108) and q-deformation (1.92).

The same is true of the super-A-polynomial of K = 31,

Asuper(x, y; a, t) = y2 − a (1− t2x+ 2t2(1 + at)x2 + at5x3 + a2t6x4)

1 + at3x
y

+
a2t4(x− 1)x3

1 + at3x
, (1.121)

which clearly reduces to (1.108) upon setting a = 1 and to the ordinary

A-polynomial (1.39) upon further specialization to t = −1. Moreover, the
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quantization procedure of §1.3 turns super-A-polynomial (9) into a q-difference

operator, which can be interpreted as a recurrence relation, similar to (1.94),

Âsuper(x̂, ŷ; a, q, t) = α + βŷ + γŷ2

=⇒ αPn + βPn+1 + γPn+2 = 0 . (1.122)

Here, the coefficients α, β, and γ are certain rational functions of the variables

a, q, x ≡ qn, and t, whose explicit form can be found in [91].

Exercise 5. As in Exercise 4, solve the recurrence (1.122) with the initial

conditions

Pn = 0 for n ≤ 0; P1 = 1. (1.123)

That is, find the first few terms of the sequence Pn(q) for n = 2, 3, . . .

Solution. Straightforward computation gives:

n Pn(a, q, t)

1 1

2 aq−1 + aqt2 + a2t3

3 a2q−2 + a2q(1 + q)t2 + a3(1 + q)t3 + a2q4t4 + a3q3(1 + q)t5 + a4q3t6

4 a3q−3 + a3q(1 + q + q2)t2 + a4(1 + q + q2)t3 + a3q5(1 + q + q2)t4 +

+ a4q4(1 + q)(1 + q + q2)t5 + a3q4(a2 + a2q + a2q2 + q5)t6 +

+ a4q8(1 + q + q2)t7 + a5q8(1 + q + q2)t8 + a6q9t9

How should we interpret these polynomial invariants? The answer can be

guessed from a couple of clues in the above table: firstly, all Pn(a, q, t) involve

only positive integer coefficients. Secondly, we have seen P2(a, q, t) before; it

is the Poincaré polynomial (1.115) of the triply-graded HOMFLY homology

of the trefoil knot!

These considerations lead one to guess, correctly, that Pn(a, q, t) is the Poincaré

polynomial of the n-colored generalization of the HOMFLY homology:

Pn(a, q, t) =
∑

ijk

tiqjak dim H (n)
ijk (K) . (1.124)

Naively, one might expect that making the specialization a = q2 in the po-

lynomial Pn(a, q, t) should return the Poincaré polynomial for the n-colored

sl(2) homology in (1.106), and so forth. However, in the homological world,
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this specialization is a little bit more subtle. It turns out that, just as we

saw earlier in §1.4, the colored homology H (n)
ijk (K) comes naturally equipped

with a family of differentials dN ; viewing H (n)
ijk (K) as a complex and taking its

homology with respect to the differential d2 allows one to pass directly from

the n-colored HOMFLY homology to the n-colored analog of the Khovanov

homology.

To summarize, the super-A-polynomial encodes the “color dependence” of the

colored HOMFLY homology , much like the ordinary A-polynomial and its t-

deformation do for the colored Jones polynomial (1.99) and the colored sl(2)

homology (1.110), respectively:

ÂsuperP?(a, q, t) ' 0. (1.125)

Moreover, setting q = 1 gives the classical super-A-polynomial with two com-

mutative parameters a and t. Its zero locus defines an algebraic curve

C super : Asuper(x, y; a, t) = 0, (1.126)

which in various limits reduces to the A-polynomial curve (1.24) and its “re-

fined” version (1.107). This curve plays the same role for colored HOMFLY

homology as the ordinary A-polynomial does for the colored Jones invariants.

Specifically, there is an obvious analog of the generalized volume conjecture

(1.101), which states that (1.126) is the limit shape for the Sn-colored HOM-

FLY homology in the large color limit n→∞ accompanied by q → 1 [91].

A simple way to remember different specializations of the two-parameter “super-

deformation” of the A-polynomial is via the following diagram:

Asuper(x, y; a, t)

a=1

ww

t=−1

((

Aref(x, y; t)
t=−1

''

AQ-def(x, y; a)

a=1

vv

A(x, y)

(1.127)

which should remind the reader of the diagram (1.113) expressing a simi-

lar relation between various polynomial and homological invariants discussed

here. Indeed, each of the invariants in (1.113) has a n-colored analog whose
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color dependence is controlled by the corresponding deformation of the A-

polynomial in (1.127). In this diagram, we included yet another deformation

of the A-polynomial, which can be obtained from the super-A-polynomial by

setting t = −1. This so-called Q-deformation of the A-polynomial was re-

cently studied in [2], where it was conjectured that AQ-def(x, y; a) agrees with

the augmentation polynomial of knot contact homology [74, 166, 167].

As a closing remark, we should mention that the colored homological invariants

have even more structure than we have so far discussed. One can also construct

a family of colored differentials, which act by removing boxes from Young

tableaux or reducing the dimension of the representation in the decoration of

a link diagram [113]. For example,

(H ��, dcolored) 'H �, (1.128)

where (H ��, dcolored) denotes the homology of the complex with respect to

the indicated differential. This can be expressed for the respective Poincaré

polynomials by a relation of the form (1.119):

P ��(a, q, t) = asP�(a, q2, t) + (1 + at)Q+(a, q, t), (1.129)

showing the color dependence of these invariants in the form that nicely inte-

grates with the recursion (1.125).

In general, there are many more colored differentials, which altogether form

a very rich and rigid structure [113]. To fully appreciate the beauty and

the power of this structure one needs to consider homologically thick knots.

Roughly speaking, these are the knots whose homological invariants contain

a lot more new information compared to their polynomial predecessors. The

knot 819—equivalently, the torus knot T (3,4)—is the first example of a homo-

logically thick knot. Other examples of homologically thick knots and links

include mutants.

In the case of n-colored HOMFLY homology that we discussed earlier, the

colored differentials include the differentials dN of §1.4 for special values of

N in the range −2n + 3, . . . , 1. Note, in the uncolored theory (n = 2) this

range contains only three differentials, d±1 and d0, which play a very special

role. Namely, the first two are canceling differentials, whereas d0 is the dif-

ferential that relates HOMFLY homology to knot Floer homology [72]. We

emphasize that the last relation really requires the knowledge of how d0 acts
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on HOMFLY homology, which is an extra data not contained in the Poincaré

polynomial P(a, q, t). Curiously, this extra data is automatically contained in

the colored version of the HOMFLY homology, so that knot Floer homology

can be recovered directly from Pn(a, q, t), even for homologically thick knots!

The reason for this is that all three special differentials d1, d−1, and d0, have

analogs in the n-colored theory. Moreover, they are part of the colored differ-

entials dN , with N = −2n + 3, . . . , 1. Specifically, in the n-colored HOMFLY

homology the differentials d1 and d1−n are canceling, whereas d2−n provides

the relation to knot Floer homology [106, 113]. And the virtue of the colored

theory is that the action of this latter differential can be deduced from the data

of Pn(a, q, t) alone. In other words, what in the uncolored theory appears as a

somewhat bizarre and irregular behavior at N = −1, 0,+1 becomes a natural

and simple structure in the colored theory.
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Chapter 2

SUPERSYMMETRIC QUANTUM MECHANICS:
ALGEBRAIC MODELS OF GEOMETRIC OBJECTS

1H. Kim and I. Saberi. “Real homotopy theory and supersymmetric quantum
mechanics.” (2015). arXiv:1511.00978 [hep-th].

Introduction

Supersymmetric quantum mechanics, which describes a supersymmetric par-

ticle moving on a compact Riemannian manifold, has been studied by many

authors (see, for example, [5, 209, 210]) and has deep connections to the ge-

ometry and topology of the target space M on which the particle moves. The

theory is a supersymmetric sigma model in 0+1 dimensions. Its Hilbert space

is the space of complex-valued differential forms on M , equipped with the inner

product that generalizes the L2 inner product from undergraduate quantum

mechanics:

(α, β) =

∫

M

?ᾱ ∧ β. (2.1)

The bar here denotes complex conjugation. The N = 1 supersymmetry alge-

bra in 0 + 1 dimensions [5] consists of the exterior derivative d and its adjoint

d† with respect to the inner product (2.1), as well as their anticommutator,

the Laplacian (which is the Hamiltonian operator of the theory, and commutes

with the supercharges). With respect to the grading, d carries degree one.

We will sometimes refer to this collection of operators as the de Rham algebra.

Representations of this algebra are of two types: there is the standard or “long”

representation, consisting of two generators of adjacent degree that are mapped

to one another by the supercharges, and there are “short” one-dimensional

representations that are annihilated by both d and d†. The “BPS bound” in

this theory is simply ∆ ≥ 0. It follows from the equation ∆ = {d, d†}, and it

is easily shown that a representation is short if and only if it has zero energy.

We draw a picture of the spectrum of the theory in Fig. 2.1.

The BPS states of the theory also admit a description as the cohomology of a

chosen supercharge. There is only one supercharge to choose, namely d; it is

http://arxiv.org/abs/1511.00978


56

∆
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d†

}
vacua





excited states

Figure 2.1: A schematic diagram of the de Rham complex of a compact mani-
fold, drawn to emphasize the connections with supersymmetry. The vertical
axis is the energy (eigenvalue of the Laplacian), and the horizontal axis is
the homological degree. The compactness assumption, which ensures that the
spectrum is discrete, is crucial and cannot be relaxed.

a scalar, since we are in 0 + 1 dimensions, and so we can think of passing to

its cohomology as a topological twist of the theory.

This story continues in many directions: for instance, one can imagine adding

a superpotential term to the action. The resulting physics has a beautiful

description in terms of the WKB approximation and the Morse complex of M .

However, we will not continue down this path, and refer the interested reader

to [210]. Instead, we wish to emphasize some points of differential topology

which are less well known to most physicists.

When one studies a space M using an algebraic invariant, it is natural to

ask how well that invariant distinguishes inequivalent spaces. Many differ-

ent manifolds share the same Euler characteristic, while the simplicial chain

complex of M has perfect information: from it we can reconstruct M up to

homeomorphism by gluing together a simplicial complex. Of course, there are

many different simplicial complexes corresponding to the same manifold; in

this sense, despite containing perfect information, a triangulation of M is not

an invariant at all.

The cohomology of M is an honest invariant, lying somewhere between these

two in strength: it determines the Euler characteristic and is determined by a

triangulation. But how close is it to a perfect invariant of M?

In physics, the simplicial chain complex of the target space M does not arise

naturally. However, the Hilbert space associated to M (i.e. its de Rham com-
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plex) plays a similar role. We are therefore led to ask: How much information

about a manifold can be recovered from its de Rham complex? And how much

information about the de Rham complex is contained in its cohomology—or, in

physical language, how much can we learn about a supersymmetric quantum

mechanics by studying its BPS spectrum?

To address these questions, we recall some structures and results of classical al-

gebraic topology. (For more background, see [26].) Cohomology is an invariant

of homotopy type: a space that is homotopy-equivalent to M will have identi-

cal cohomology. For example, all the spaces Rn for every n have the homotopy

type of a point. However, assuming that M is compact without boundary, one

can also deduce its dimension from its cohomology through Poincaré duality.

One therefore has a way of distinguishing between homotopy-equivalent spaces

such as M and M × R.

A homotopy equivalence between M and another space N induces a rela-

tionship (also called homotopy equivalence) between their respective de Rham

complexes, considered as commutative differential graded algebras. Homotopy-

equivalent CDGAs have identical cohomology, but the converse statement is

not true. To see why, we need to consider algebraic operations defined on

cohomology classes.

The de Rham complex is an algebra. Its multiplication is the wedge prod-

uct of differential forms. This product descends to cohomology classes, which

therefore form an algebra. It also (in more subtle fashion) induces additional

structures: the cohomology carries a set of higher operations known as Massey

products. These are partially defined functions and, where they are defined,

may or may not vanish. Roughly speaking, the Massey products record ambi-

guities about how products of certain harmonic forms become exact. Another

intuitive picture is that Massey products are like higher-order linking num-

bers: they detect or measure entangledness between sets of three or more

cycles which are pairwise unlinked, like the Borromean rings (Fig. 2.2). Here

we have been sloppy and identified cocycles with their Poincaré-dual homology

cycles.

In the simplest case, the Massey triple product is defined as follows. Let u,

v, and w be representatives of three nontrivial cohomology classes in H•(M),

of homogeneous degree, and let ū = (−)F+1u, where F denotes the degree

operator. (This convention helps keep track of signs.) Furthermore, suppose
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that the pairwise products [u][v] = [v][w] = 0; in other words, that ū ∧ v = ds

for some form s, and similarly v̄ ∧ w = dt.The Massey product of u, v, and w

is then given by the following expression:

m(u, v, w) = [s̄ ∧ w + ū ∧ t]. (2.2)

It is simple to check that the representative s̄ ∧ w + ū ∧ t is closed. For the

Massey product of cohomology classes to be well defined, one should check

that the choice of representatives u, v, and w does not affect the end result.

In fact, the end result is not exactly invariant, but it becomes well-defined as

an element of a particular quotient of the cohomology.

If one can make a consistent choice of representatives for cohomology classes

of M such that all higher Massey products simultaneously vanish, one says

that M is formal. More transparently, a space is formal if its de Rham complex

is homotopy-equivalent to its cohomology ring, viewed as a CDGA with zero

differential. Passing to cohomology thus loses information about the homotopy

type of a manifold exactly when that manifold fails to be formal. This is an

answer to our second question above.

As to the first question, the seminal work of Sullivan [190] and Barge [14]

shows that, up to “finite ambiguities,” the diffeomorphism type of a simply

connected smooth compact manifold is determined by the rational homotopy

type of its de Rham complex.∗ Moreover, given a choice of Riemannian metric

on the manifold, this homotopy type can be presented canonically by a finitely

generated “minimal model” CDGA over Q. We give a more detailed exposition

of Sullivan’s methods and results later in the paper. For now, the reader should

bear in mind that the de Rham complex is, in some appropriate sense, “almost”

a perfect algebraic model like a triangulation.

One goal of this paper is to understand how these results relate to physics. To

make contact with Sullivan’s work, we need a physical context in which the

algebraic structure of the de Rham complex, or at least of the cohomology,

arises. Supersymmetric quantum mechanics, by itself, does not provide such a

context: the wedge product differential forms is just a variant of multiplying

two wavefunctions together, which is not a priori meaningful in quantum me-

chanics. Algebraic structures do occur in physics, but they are more naturally

∗To be precise, we here mean the Q-polynomial variant of the de Rham complex, as
defined by Sullivan.
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Figure 2.2: The Borromean rings.

connected to operators. As such, one needs a physical setting in which there

is a state-operator correspondence.

Two-dimensional conformal field theory is the simplest such setting, and two-

dimensional superconformal sigma models are well studied. In order for a 2d

sigma model to admit a topological twist, it must have enhanced supersym-

metry; this occurs precisely when the target space is Kähler.

Kähler manifolds also play a special role in work of Sullivan and collaborators

on rational homotopy theory; the paper [58] proves that every compact Kähler

manifold is formal. Moreover, this fact follows from a simple identity relating

the differential operators ∂ and ∂̄ on the de Rham complex, called the ddc-

lemma. The same identity is responsible for supersymmetry enhancement in

Kähler sigma models; a version of the ddc-lemma can be proved for quantum

mechanical systems obtained from dimensional reduction from field theories

with enhanced supersymmetry. We will expand on this point later.

There are strong constraints on the topology of Kähler manifolds. Formality

is one of these, but much more can be said. To what extent enhanced su-

persymmetry imposes analogous constraints on two-dimensional N = (2, 2)

SCFTs has been studied by many authors, notably [79, 140]. A second aim

of this paper is to revisit and clarify the analogies between Kähler geometry

and N = (2, 2) SCFT. For us, the key ingredient is always supersymmetric

quantum mechanics: we study the 0 + 1-dimensional theories obtained by di-

mensional reduction from supersymmetric field theories in d ≥ 2. In theories
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that are sigma models, this supersymmetric quantum mechanics is precisely

the de Rham complex of the target space, or (as in the case of the B-twist of

the two-dimensional sigma model) some variant thereof. Furthermore, extra

structures arise when a d-dimensional theory arises as the dimensional reduc-

tion of a d′-dimensional theory, d′ > d; this was considered by [79]. For us,

d = 1, 2, 4, 6; as the dimension grows, the number of supercharges (and also

the number of bosonic symmetries) increases accordingly. A table outlining

these hierarchies can be found later in the paper (Fig. 2.7).

To reiterate: we review the well-known hierarchies of increasingly rich struc-

tures that appear in the following four contexts:

• target-space geometry that is generic, Kähler, and hyper-Kähler;†

• supersymmetric quantum mechanics, with one, two, and four super-

charges;

• two-dimensional superconformal field theories, with N = (1, 1), (2, 2),

and (4, 4);

• minimally supersymmetric field theories in dimensions two, four, and

six.

We explore similarities and differences between the structures that emerge in

each case. As the structure becomes richer, the differences between the various

categories become fewer and fewer.

We hope that this paper will also serve a pedagogical purpose, being of some

use to those who wish to learn the well-studied subjects we review. In studying

the literature on supersymmetric sigma models and Kähler geometry, certain

unifying themes became apparent to us, which we felt were not adequately

spelled out in existing references. We hope that at least some of this thematic

unity comes across in our treatment.

Throughout, we are motivated by the following series of increasingly specu-

lative ideas and questions: The de Rham complex is an algebraic model of a

space, which naturally arises in physics as the Hilbert space of supersymmetric

quantum mechanics. Physics also offers examples of other kinds of algebraic

†Here “Calabi-Yau” should appear strictly in between “Kähler” and “hyper-Kähler.”



61

models for spaces: whenever a sigma model (in any dimension and with any

amount of supersymmetry) can be defined on a target space M , its spaces

of states or operators constitute an algebraic model of M . This algebraic

model should always reduce to some variant of the de Rham complex upon

dimensional reduction.

In the case of the two-dimensional N = (2, 2) sigma models defined when M

is a Calabi-Yau threefold, this algebraic model does not retain perfect infor-

mation about M or even about its cohomology. However, this is far from a

failure of these ideas; the ambiguity in recovering M from this algebraic model

leads precisely to the phenomenon of mirror symmetry [186]!

Given an algebraic model of some kind, it is natural to ask for sufficient con-

ditions that ensure that it is the model of some space. One can get some feel

for this by enumerating all possible identifiable structures that are present on

algebraic models of honest spaces; these are then necessary conditions to be

the model of a space. In physics, one often speaks about this problem in the

language of “geometric” and “non-geometric” theories.

The Sullivan–Barge theorem says that, with appropriate conditions, the list

of conditions and structures that are necessary for a CDGA to algebraically

model an honest space are also sufficient. As such, a motivating problem

for the line of work we have pursued would be to understand the algebraic

structures corresponding to (some class of) physical quantum field theories, to

develop the homotopy theory of such structures,‡ and then formulate sufficient

conditions for such a theory to be describable as a sigma model. If one could

do this rigorously and give a statement, analogous to Sullivan–Barge, allowing

one to reconstruct the target space from its algebraic model, one would almost

surely have a clear understanding of the phenomenon of mirror symmetry.

While we are of course far from doing any of this in this modest paper (and

others [227] have previously and more expertly drawn connections between

mirror symmetry and rational homotopy theory), it is our hope that the ideas

we sketch here will prove useful for others to think about and eventually bear

fruit of this kind.

‡A “homotopy between two physical theories” should be understood as a one-parameter
family of theories interpolating between the two; that is to say, a path from one to the other
in the appropriate moduli space.
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2.1 Supersymmetry algebras and their representations in one space-

time dimension

The extended supersymmetry algebra in 0 + 1 dimensions [5] is as follows:

{Qi, Q
†
j} = 2δijH, {Qi, Qj} = 0. (2.3)

From these basic commutation relations, it follows that all supercharges com-

mute with H (the Hamiltonian of the theory). The indices range from 1 to N

for N -extended supersymmetry; although there is no restriction on N in

principle, in cases relevant to either physics or geometry, N is usually a small

power of two.

This algebra is usually supplanted with either an operator F , defining fermion

number or homological degree and taken to have integer eigenvalues, or (−)F ,

which defines fermion number modulo two. In either case the supercharges Qi

should carry one unit of fermion number. In the former case, a representation

of the algebra with N = 1 becomes a chain complex of Hilbert spaces; in

the latter, it is a Z/2Z-graded chain complex. The reader will no doubt have

noticed that the N = 1 algebra is just what we called the de Rham algebra

in the introduction.

We have already mentioned the familiar classification of irreducible represen-

tations of this algebra. To remind the reader, they can be labeled with a

single nonnegative number, the eigenvalue of H (as well as an integer labeling

the degree). When this number (the energy) is positive, the representation is

“long” and consists of two generators of adjacent degree, which are mapped

to one another by the supercharges; when it is zero, the representation is one-

dimensional (“short”). The key picture to keep in mind is Fig. 2.1. The reader

will have no trouble drawing the analogous picture of a Z/2Z-graded complex.

Thanks to formal Hodge theory, this classification persists for representations

of the extended supersymmetry algebra. The bosonic operators consist of H

together with whatever degree operators F1, . . . , FN are defined. If we insist

that the Fi commute, representations will be joint eigenspaces for all of these,

and can be labeled by their energy together with their multidegree. Short rep-

resentations will still be one-dimensional; long representations will now have

dimension 2N , and they will consist of generators at each corner of an N -

dimensional cube in the degree space. The cohomology with respect to any

supercharge Qi is the same; it counts the short representations, and cohomol-



63

ogy classes therefore carry a well-defined multidegree. A long representation

of N = 2 is shown in the (F1, F2)-plane below:

• •

• •

Q1

Q1

Q2 Q2
(2.4)

Let us focus on the case N = 2, which will be important in what follows. A

crucial observation is that any representation of this algebra actually admits

a CP1 family of different actions (if we relax some requirements about the

existence of degree operators). Define the parameterized supercharge

Qt = t1Q1 + t2Q2, (2.5)

where the parameter t ∈ CP1, and we have chosen a representative such that

|t1|2 + |t2|2 = 1. Then it is an easy calculation to show that

{Qt, Q
†
t} = 2

(
|t1|2 + |t2|2

)
H = 2H.

Further, let t̃ = [−t̄2 : t̄1]. Then Qt̃ is another supercharge, and

{Qt, Qt̃} = {Qt, Qt̃
†} = 0.

These two supercharges therefore define another N = 2 algebra. Further, they

each carry total fermion number F1 + F2 = 1. However, they are no longer

eigenstates of F1 − F2; conjugation with F1 − F2 acts on the CP1 parameter

space by the rule

[t1 : t2] 7→ [t1 : −t2],

and the two fixed points correspond to our two original supercharges. Qt co-

homology is the same for all values of t; since it describes the zero-energy

spectrum of the same Hamiltonian, there is no way it can change. (For physi-

cist readers, we are just describing the consequences of SU(2) R-symmetry.)

There are two variants of this algebra that emerge naturally in geometry and

physics, which we will now describe. These are in some sense intermediate

between N = 1 and N = 2 supersymmetry. The first is what we will call the

N = 12 algebra: it consists of two mutually commuting copies of the de Rham

algebra, and so is equivalent to an N = 2 algebra in which the condition that

the two supercharges square to the same Hamiltonian has been relaxed. In

equations,

{Qi, Q
†
j} = 2δijHi, {Qi, Qj} = 0. (2.6)
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Using the Jacobi identity, it is easy to prove that H1 and H2 must commute.

This algebra acts, for example, on the Ramond sector of any N = 2 super-

conformal field theory in two dimensions. The relevant closed subalgebra of

the Ramond algebra is:

(G±0 )2 = 0

(Ḡ±0 )2 = 0

{G±0 , Ḡ±0 } = 0

{G+
0 , G

−
0 } = L0 − c/24

{Ḡ+
0 , Ḡ

−
0 } = L̄0 − c/24.

(2.7)

Clearly, representations are now labeled by two energies, E1 and E2. The

irreducible representations are of four types, according to whether or not each

Ei is zero; their dimensions are four, two, two, and one.

The construction we gave above still goes through and produces a CP1 fam-

ily of N = 1 algebras with supercharges Qt. However, the CP1 family of

Hamiltonians is now nontrivial:

{Qt, Q
†
t} = 2Ht = 2

(
|t1|2H1 + |t2|2H2

)
. (2.8)

The zero-energy spectrum of Ht is the same for almost all t, consisting of

states for which E1 and E2 are both zero. (These are the genuinely short

one-dimensional representations.) However, there are two special points in the

CP1 moduli space that exhibit enhanced vacuum degeneracy: the points [0 : 1]

and [1 : 0], corresponding to our two original supercharges. The cohomology

of Qt thus jumps in total rank at these points.

One should note that these jumps do not occur unless there are states for

which one Laplacian is zero but the other is not. The condition that the

spaces of vacuum states for the two Laplacians agree is strictly weaker than

the condition that the two operators are identical. Nonetheless, by formal

Hodge theory, it is enough to ensure that Qt-cohomology is the same for all t,

and therefore that only square and singlet representations occur. As such, it

is sufficient to establish the ddc-lemma.

In quantum mechanics, one should expect enhanced degeneracy to be an avatar

of enhanced symmetry. The obvious question is: what symmetry is enhanced

at the points of our CP1 moduli space that exhibit extra BPS states?
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The answer is that precisely at these points N = 1 supersymmetry is enhanced

to N = 12. It is easy to check that, when we try to define a second supercharge

Qt̃ by our prescription above, something goes wrong: namely,

{Qt, Qt̃
†} = t1t2 (H2 −H1) 6= 0.

As such, when t is generic, no supercharges other than Qt and its adjoint can

be found that act in a compatible way.

This leads us to the second interesting variant, which we will refer to as

N = 1.5. The notation is meant to convey not only intermediacy between

N = 1 and N = 2, but also that something is “not whole”: the commuta-

tion relations in this case no longer define a closed algebra. In this case, the

following commutation relations are imposed:

{Qi, Q
†
i} = 2Hi, {Qi, Qj} = 0. (2.9)

However, we do not require that S = {Q1, Q
†
2} must vanish. It is simply a

new bosonic operator that can be defined, about which nothing can a priori

be said.

On a generic complex manifold, this is the algebra that holds between the

derivatives ∂ and ∂̄. Moreover, in a generic double complex, this is the algebra

satisfied by the two differentials. We will return to this point when reviewing

results from complex geometry in the next section.

New, exotic irreducible representations of this algebra are possible. In addition

to the standard long and short representations of N = 2 (“squares” and

“dots”), one can also have “staircases” of the sort depicted below:§

• •

• •

•

(2.10)

As in (2.4), the plane is the (F1, F2)-plane, and the arrows represent the action

of the supercharges. We will refer to the total dimension of such a represen-

tation as the “length” of the staircase, which is five for the staircase pictured

§We are grateful to David Speyer for helpful comments at http://mathoverflow.net/
questions/86947/ that pointed these facts out to us.

http://mathoverflow.net/questions/86947/
http://mathoverflow.net/questions/86947/
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above; any length can occur. The dashed line indicates the operator S defined

above, whose role is to go up and down stairs.

Staircases of odd length, like the one pictured in (2.10), contribute one gen-

erator to both Q1-cohomology and Q2-cohomology, as well as to the “total”

cohomology of the supercharge Q1 +Q2. However, as can easily be seen from

the picture, the generator is in a different (F1−F2)-degree. We can no longer

label cohomology classes with their “axial” quantum numbers.

Furthermore, staircases of even length (depending on their orientation) con-

tribute two generators to one of the Qi-cohomologies, but none to the other.

Drawing the appropriate picture will make this clear. These ideas should be

familiar to anyone who is familiar with the spectral sequences associated to a

double complex: they begin at Q1- or Q2-cohomology, converge to (Q1 +Q2)-

cohomology, and the differentials on the k-th page cancel pairs of generators

that lie at opposite ends of a staircase of length 2k.

As always, the two anticommuting supercharges allow one to define a CP1

family of de Rham algebras. However, unlike in the N = 12 case, the Hamil-

tonians corresponding to different points in this moduli space can never be

simultaneously diagonalized. The spectral sequence is a formal way of de-

scribing how different representations appear and disappear in the zero-energy

spectrum of this parameterized family of Hamiltonians. Further remarks on

the physics of spectral sequences and supersymmetric quantum mechanics will

appear in [109].

2.2 Review of Kähler, Calabi-Yau, and hyper-Kähler geometry

We now give a brief review of some classical facts about Kähler geometry, in

a way that is tailored to our purposes. For more details, the reader is referred

to the excellent exposition in [58], or to the book [121]. We will return to the

formality result of [58] when reviewing Sullivan’s theory of minimal models

in §2.3. Calabi-Yau and hyper-Kähler geometry provide levels of additional

structure; we address these in order of decreasing generality. Readers should

keep in mind that, in the context of two-dimensional superconformal sigma

models, Calabi-Yau structure is required to define an N = (2, 2) SCFT. A

hyper-Kähler target is necessary and sufficient for N = (4, 4) superconformal

symmetry.

Let M be a smooth manifold of real dimension 2n. An almost-complex struc-
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ture on M is a vector-bundle morphism J : TM → TM such that J2 = −1. On

the space of complex-valued differential forms, J will induce a decomposition

Ωn(M,C) =
⊕

p+q=n

Ωp,q(M), (2.11)

which comes from the decomposition of the complexified tangent bundle into

the ±i eigenspaces of J . This decomposition allows us to write the exterior

derivative operator d as a sum of terms of different degree:

d =
∑

r+s=1

dr,s. (2.12)

The almost-complex structure is said to be integrable when M is a complex

manifold: it admits an atlas of complex-valued coordinates with holomorphic

transition maps, such that multiplication by i agrees with the almost-complex

structure J . This occurs precisely when only terms of degree (1, 0) and (0, 1)

are present in the decomposition of d. (An equivalent condition is that d0,1

square to zero.) In this case, we use the symbols ∂ and ∂̄ for the operators

d1,0 and d0,1; it is easy to check that these operators separately square to zero

and anticommute with one another. A complex manifold is a space locally

modeled on Cn; one is able to define which functions are holomorphic.

The above shows immediately that the de Rham complex of a complex mani-

fold admits an action of N = 1.5 supersymmetry. The de Rham algebra (or

N = 1 supersymmetry algebra for quantum mechanics) acts in three mean-

ingfully different ways:¶ each of ∂, ∂̄, and d = ∂ + ∂̄ may be thought of as a

nilpotent supercharge.

However, on a garden-variety complex manifold, supersymmetry is not en-

hanced to N = 2. While ∂ anticommutes with ∂̄, it may not commute with

its adjoint: {∂, ∂̄†} 6= 0. When this is the case (as we discussed in a general

setting above) the respective Laplacians will not agree and will fail to com-

mute with one another. Precisely when the manifold is Kähler, its de Rham

complex provides an N = 2 supersymmetric quantum mechanics. We will

return to this point after giving the formal definition of Kähler structure.

Suppose that M is a complex manifold. A symplectic structure on M is

a choice of closed, non-degenerate two-form ω ∈ Ω2(M,R). One says that

¶As we emphasized in the previous section, a CP1 family of de Rham algebras can be
defined. The three actions we mention here are three representative points in this moduli
space.
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the symplectic structure ω is compatible with the complex structure if the

composite tensor

g(a, b) = ω(a, Jb) (2.13)

is a Riemannian metric on M . Symmetry of the metric tensor then implies

that the form ω has (p, q)-degree (1, 1). A complex manifold admitting such a

compatible triple of structures is called Kähler.

None of the conditions in the definition of a Kähler manifold can be relaxed;

counterexamples exist in all cases. For example, there are complex manifolds

that admit symplectic forms, but nonetheless are not Kähler (the compatibility

condition cannot be satisfied). Despite these rigid requirements, though, many

manifolds are naturally Kähler. All of the complex projective spaces CPn

are, when equipped with the Fubini–Study metric. Furthermore, a complex

submanifold of a Kähler manifold is again Kähler; as such, so are all smooth

projective algebraic varieties over C.

Just as the integrability condition on an almost-complex structure may be

phrased in terms of differential operators as the identity ∂̄2 = 0, so the condi-

tions for M to be Kähler can be expressed by a set of Kähler identities between

operators in its de Rham complex.

Define an operator Λ† by the relation

Λ† : α 7→ ω ∧ α,

where ω is the Kähler form, and let Λ = ?Λ†? be its adjoint. This pair

of operators are called Lefschetz operators; they have pure degree (1, 1) and

(−1,−1) respectively. Their commutator D = [Λ†,Λ] is a degree operator: it

acts diagonally according to the rule

D|Ωp,q = (p+ q − n).

To check that this is true, one can simply do a linear algebra calculation

corresponding to one of the fibers of the bundle. For a Hermitian vector space

that is one-dimensional over C, the result is easy to see; the exterior algebra

Λ∗V is concentrated in degrees 0, 1, and 2, so that [Λ†,Λ] must be zero in the

middle dimension. The general statement is then obtained by induction on

the complex dimension of V ; for details, the reader is referred to [121].
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It follows that these three operators together form a basis for the Lie algebra

SL(2,R): they satisfy the commutation relations

[D,Λ†] = 2Λ†, [D,Λ] = −2Λ, [Λ†,Λ] = D.

(Since the Kähler form is real, these operators actually act on the real coho-

mology and not merely on cohomology with complex coefficients; however, the

latter is the relevant case for quantum mechanics.) The Kähler identities imply

that Kähler manifolds admit a unique choice of Laplacian, that their de Rham

complexes are examples of N = 2 supersymmetric quantum mechanics, and

that the SL(2,R) action defined above commutes with the Laplacian and hence

descends to the cohomology. The essential identities, from which all others can

be derived, are

[Λ, ∂̄] = −i∂†, [Λ, ∂] = i∂̄†, (2.14)

[Λ, ∂†] = [Λ, ∂̄†] = 0.

To establish these, we refer to [58], who point out that Kähler metrics osculate

to second order to the flat metric on Cn. This implies that any identity which

is at most first-order in derivatives of the metric can be established by checking

it on Cn. The calculation in the case of (2.14) is simple.

Given these identities, it is straightforward to show that supersymmetry is

enhanced:

{∂, ∂̄†} = i{∂, [∂,Λ]}
= i (∂∂Λ− ∂Λ∂ + ∂Λ∂ − Λ∂∂)

= 0 (since ∂2 = 0). (2.15)

Therefore, two mutually commuting copies of the N = 1 algebra act. It

remains to show that their respective Laplacians agree. This is again a quick

calculation using (2.14), the Jacobi identity, and {∂, ∂̄} = 0:

{∂, ∂†} = i{∂, [Λ, ∂̄]}
= i
(
[Λ, {∂, ∂̄}] + {∂̄, [∂,Λ]}

)

= {∂̄, i[∂,Λ]}
= {∂̄, ∂̄†}. (2.16)

As a consequence of (2.16), there is a unique harmonic representative of each

cohomology class, with pure (p, q)-degree. Recall that the representations of
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1

h0,1 h1,0

h0,2 h1,1 h2,0

h0,3 h1,2 h2,1 h3,0

h1,3 h2,2 h3,1

h2,3 h3,2

1p+ q

p− q

Figure 2.3: The Hodge diamond for a generic connected Kähler threefold.
The raising and lowering operators, indicated by vertical arrows for p− q = 0,
are the Lefschetz operators. Many of the indicated Hodge numbers are not
independent, being related by discrete symmetries.

N = 2 supersymmetry are of two types: zero-energy, one-dimensional “short”

representations, and positive-energy, four-dimensional representations, which

form “squares” in degrees (p, q), (p + 1, q), (p, q + 1), and (p + 1, q + 1). The

Betti numbers of the manifold can therefore be refined into Hodge numbers,

bn =
∑

p+q=n

hp,q, (2.17)

which count the short multiplets. (We emphasize once again that this is not

true on a generic complex manifold! Eq. (2.17) is a consequence of the de-

generation of the Hodge-to-de-Rham spectral sequence, which is in turn a

consequence of the enhanced supersymmetry guaranteed by the Kähler iden-

tities.)

One usually arranges the Hodge numbers of M in a diamond, according to

their bidegrees, as shown in Fig. 2.3.

The Kähler identities (2.14) further imply that the Lefschetz operators com-

mute with the Laplacian; checking this is easy, and proceeds using the Jacobi

identity. The action of SL(2,R) they provide therefore maps harmonic forms

to harmonic forms, and so descends to the cohomology.
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As such, a nice way to think of the Hodge diamond of a Kähler manifold is as a

weight diagram for a representation of the rank-two Lie algebra SU(2)×U(1).

The algebra acts via the operators Λ†, Λ, D = P + Q − n, and P − Q. The

Hodge numbers are then arranged by their weights with respect to the Cartan

of this algebra. This picture will generalize nicely to the hyper-Kähler case.

The Lefschetz operators have extra consequences for the topology of M , in ad-

dition to those that follow from enhanced supersymmetry. Since they commute

with P−Q, it follows immediately that each vertical slice of the Hodge diamond

(when (p−q)-degree is displayed horizontally) is a weight diagram for SL(2,R).

As a consequence, the odd- and even-degree Betti numbers of a Kähler ma-

nifold are separately monotonically nondecreasing toward the middle degree.

This is the content of the hard Lefschetz theorem, which is straightforward to

understand from the standpoint of representation theory.

While N = (2, 2) superconformal symmetry in two dimensions is enough to

imply things like bigrading and Poincaré duality—we return to these points

later—it is not sufficient to establish properties like hard Lefschetz. Indeed,

N = (2, 2) theories may not even have operators with the appropriate quan-

tum numbers to correspond to a Kähler class—superconformal minimal models

are examples of this.

Since the volume form of a compact Kähler manifold has bidegree (n, n),

Poincaré duality defines a pairing between Hp,q and Hn−p,n−q, implying im-

mediately that the corresponding Hodge numbers are equal. Poincaré duality

acts on the Hodge diamond (Fig. 2.3) by reflection through the center point,

or equivalently by simultaneously flipping the sign of P −Q and D.

An additional symmetry of the Hodge diamond comes from considering the

action of complex conjugation on the de Rham complex. This takes forms

of degree (p, q) to forms of degree (q, p), while preserving total degree. It

therefore acts on the Hodge diamond by reflecting left and right, flipping the

sign of P −Q while fixing D.

From the representation-theory standpoint, we are considering unitary repre-

sentations of SU(2)× U(1). Every representation of SU(2) is symmetric with

respect to the Weyl group Z/2Z, which acts on the Hodge diamond by reflec-

tions about the horizontal axis. Furthermore, for unitary representations of

U(1), we also insist on charge-conjugation symmetry, which reflects the Hodge
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diamond about the vertical axis. We therefore recover the same (Z/2Z)2 sym-

metry that is generated by Poincaré duality and complex conjugation.

Lastly, the so-called Hodge-Riemann bilinear relation is a compatibility con-

dition between the Lefschetz action and these discrete symmetries: it states

that, for highest-weight states, the Poincaré dual of the complex conjugate is

the same (up to a complex scalar phase) as the state obtained by applying

the SU(2) raising operator multiple times. In pictures, the following should

commute up to a scalar:

•

•

•

•

Poincaré

conjugation

•

•

•

Λ†

Λ†

Λ†

The equation that expresses this is

? (Λ†)jψ =
(−1)k(k+1)/2j!

(n− k − j)! (Λ†)n−k−jψ̄, (2.18)

where ψ is a k-form such that Λψ = 0. See [121] for more details, as well as a

proof of the Kähler identities that starts from this formula.

A Kähler manifoldM is Calabi-Yau if it has a nowhere-vanishing holomorphic—

and therefore harmonic—(n, 0)-form. (An equivalent condition is that the

canonical bundle be trivial.) Therefore, a Calabi-Yau manifold will have

hn,0 = h0,n = 1.

There are strong constraints on the fundamental groups of Kähler and Calabi-

Yau manifolds as well. Just to substantiate this, we recall that any Calabi-

Yau M has a finite cover of the form T × N , where n is a simply connected

Calabi-Yau and T is a complex torus. This fact is called Bogomolov decom-

position [24]. In this paper, however, we will always restrict ourselves to the

simply connected case.

The next level of possible structure is provided by hyper-Kähler manifolds,

which are Riemannian manifolds equipped with three distinct complex struc-

tures. We will call these I, J , and K. They should satisfy the multiplica-

tion table of the quaternions: for instance, IJ = −JI = K. Further, when
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hp,q

hp+2,q

hp,q−2

hp,q+2

hp−2,q

hp+1,q+1

hp−1,q−1

hp+1,q−1hp−1,q+1

LI+iLJ

ΛI+iΛJΛI−iΛJ

LI−iLJ
LK

ΛK

Figure 2.4: The action of the B2 root system on the Hodge diamond of a
hyper-Kähler manifold.

equipped with any of these complex structures, the manifold should be Kähler.

The tangent spaces to a hyper-Kähler manifold are thus quaternionic vector

spaces; while this is necessary, it is not sufficient. (Again, it is possible for

compatibility conditions between the complex structures and the metric to

fail; so-called quaternionic Kähler manifolds are examples of this [57].)

Hyper-Kähler manifolds are highly structured, and few compact examples are

known: the hyper-Kähler structure imposes strong constraints on the topology.

We review some of these constraints briefly here.

The three Kähler classes corresponding to the three complex structures define

operators on the de Rham complex which close into the action of a Lie algebra,

analogous to the Lefschetz SL(2) action in the Kähler case. The algebra that

applies in this case is SO(5); it was first constructed by Verbitsky [197]. For the

reader’s convenience, we explain his construction here. We use the notation

LI = Λ†I : α 7→ ωI ∧ α

(and its analogues) for the Lefschetz-type operators. (One should be careful

here; ΛI is the adjoint of LI with respect to complex structure I. However, if

one works with respect to a fixed complex structure, not all pairs of Lefschetz

operators will be adjoints; this is why we prefer the notation L for raising

operators in the sequel.)
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Following Verbitsky, let’s define

MIJ = [LI ,ΛJ ],

where the indices range over pairs of complex structures. Clearly,

MII = MJJ = MKK = D.

Moreover, [LI , LJ ] = [ΛI ,ΛJ ] = 0 for any pair of indices I and J , since two-

forms commute. The M operators carry homological degree zero, and therefore

commute with D.

One identity requires a nontrivial argument: MIJ = −MJI . Just as in the

Kähler case, commutation relations like this one are really statements about

linear algebra, and can be proved by an explicit calculation in the case of a

one-dimensional quaternionic vector space.

Once this is established, the remaining commutation relations can be fixed by

some quick calculations with the Jacobi identity:

[MIJ ,ΛI ] = −2ΛJ , [MIJ , LJ ] = 2LI ;

[MIJ ,ΛK ] = [MIJ , LK = 0]; (2.19)

[MIJ ,MJK ] = 2MIK .

These operators therefore close into a ten-dimensional Lie algebra of rank two.

Let’s choose to fix the complex structure K on the manifold, and the corre-

sponding Cartan subalgebra spanned by D and −iMIJ . It is then straight-

forward to show that the weights of the adjoint representation form the root

system B2, corresponding to the algebra SO(5). Moreover, the bigrading de-

fined by weights for this choice of Cartan on the de Rham complex coincides

with the Hodge bigrading by homological degree and (P − Q), defined with

respect to complex structure K. That is,

−iMIJ = (P −Q).

(See Fig. 2.4.)

The picture of the Hodge diamond as a weight diagram for a Lie algebra

representation furnished by the cohomology therefore generalizes beautifully

to the hyper-Kähler case. The Lie algebra in question is now SO(5), rather

than SU(2) × U(1), and the restrictions imposed on the Hodge numbers by
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Figure 2.5: SO(5) irreps that can fit inside an 8-dimensional Hodge diamond.
The first three can also fit inside a 4-dimensional Hodge diamond. The 16
representation cannot occur for simply connected eight-manifolds.

representation theory are accordingly more severe. For example, only three

irreducible representations of SO(5) can fit inside the Hodge diamond of a

hyper-Kähler four-manifold, and only six inside that of an eight-manifold.

(See Fig. 2.5.) The restrictions coming from the SO(5) action are best thought

of as inequalities, rather than equalities, between Hodge numbers: they are

the analogue of the monotonicity properties guaranteed for Betti numbers of

Kähler manifolds by the hard Lefschetz theorem.

The discrete symmetries of the Hodge diamond are also enhanced in the hyper-

Kähler case. The Weyl group of B2 is (Z/2Z)3; since this group has order eight,

Hodge numbers are repeated up to eight times. The new identity is

hp,q = hp,2n−q (n = dimCM).

Moreover, the de Rham complex on a hyper-Kähler manifold has differential

operators generating an action of the N = 4 supersymmetry algebra. Recall

that, on a Kähler manifold, the real operators were the exterior derivative d

and its partner dc = −JdJ . On a hyper-Kähler manifold, we can write the

four operators

d1 = d, dI = −IdI, dJ = −JdJ, dK = −KdK.
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The commutation relations for these operators and their adjoints follow triv-

ially from those for d and dc, since for any pair of them one can be obtained

from the other by conjugating with a specific complex structure.

To emphasize the perspective we have tried to bring out in this review: the

requirements on the target space of supersymmetric sigma models, which are

usually understood in terms of special holonomy, can also fruitfully be thought

about in terms of dimensional reduction to supersymmetric quantum mechan-

ics. Since dimensional reduction preserves the number of real supercharges, a

minimally supersymmetric d-dimensional sigma model can be defined on a tar-

get manifold M if and only if the appropriate number of supercharges (2bd/2c)

act on the corresponding supersymmetric quantum mechanics (furnished by

the de Rham complex of M). Although this condition is obviously necessary,

it is perhaps surprising that it is sufficient. Furthermore, as was first pointed

out by [79], the perspective of dimensional reduction offers a natural explana-

tion of Lefschetz-type symmetry algebras, just as it does for R-symmetries in

general supersymmetric theories. In fact, one should think of Lefschetz sym-

metries in geometry and R-symmetries in supersymmetry as the same kind of

object. We return to this in §2.4.

2.3 Homotopy theory over a field and Sullivan minimal models

In this section, we introduce readers to some rudiments of rational homotopy

theory, as developed by Sullivan and collaborators, which formalizes the idea

of the de Rham complex as an algebraic model of a manifold. We closely

follow the exposition in [58]; other more exhaustive references are [103, 190].

We attempt to use quantum-mechanical language when possible, and offer

a reinterpretation of Sullivan’s minimal models in physical language, which

sheds intuitive light on the origin of Massey products.

The de Rham complex is a commutative differential graded algebra (briefly, a

CDGA). That is, it is a graded algebra Ω =
⊕

i≥0 Ωi over a ground field k of

characteristic zero, whose multiplication preserves the grading, equipped with

a differential of degree one that is a derivation for the product:

d(x · y) = dx · y + (−)|x|x · dy. (2.20)

Here x and y are assumed to have homogeneous degree, and |x| = deg x. The

product is further taken to be commutative in the graded sense familiar from
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supersymmetry:

x · y = (−)|x||y|y · x. (2.21)

In words, a CDGA is a chain complex equipped with a compatible notion of

multiplication.

The cohomology of a CDGA is defined as usual, and is a commutative graded

algebra. It is itself a CDGA, if we understand its differential to be the zero

map. We will say that Ω is connected if H0(Ω) = k, and simply connected if

it is connected and H1(Ω) = 0.

Homomorphisms of CDGAs are algebra homomorphisms that are also mor-

phisms of chain complexes. A CDGA homomorphism is a quasi-isomorphism

if the map it induces on cohomology is an isomorphism. We will consider two

CDGAs to be equivalent if there is a zigzag of quasi-isomorphisms going from

one to the other.

There is a collection of ideals Ij in Ω, defined by

Ij =
⊕

i≥j

Ωi ⊂ Ω. (2.22)

The ideal of decomposable elements is I1 · I1 ⊆ I2. It consists of elements of Ω

that can be written as products of elements of strictly lower degree.

Let M be a simply connected CDGA. We will say that M is minimal if (1) as

an algebra, it is the free (graded)-commutative algebra generated by a finite

number of elements of homogeneous degree; (2) the differential is decompos-

able, i.e.,

im d ⊆ I1 · I1.

From these conditions, it follows that M0 = k and M1 = 0. The notion of a

minimal CDGA can be generalized to the non-simply connected case, but for

simplicity we will always deal with simply connected spaces and CDGAs in

this paper.

Like any CDGA, a minimal CDGA M over C can be thought of as a super-

symmetric quantum mechanics. If we choose an inner product on M (or if one

occurs naturally), so that the adjoints of operators can be defined, there is an

obvious action of the relevant N = 1 supersymmetry algebra. The require-

ment that M be freely generated as a commutative algebra just says that it

is a Fock space: each state can be built up from the (unique) vacuum state
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in degree zero by the free action of a finite number of bosonic and fermionic

creation operators. This is what we would expect for the Hilbert space of a

free field theory, even in 0 + 1 dimensions. Moreover, once states are identified

with operators in this way, the algebra structure is just the obvious product

of operators. Structures analogous to this one can be seen (for instance) in

the description of the elliptic genus in two-dimensional N = (2, 2) theories in

terms of a plethystic exponent.

Lastly, the condition that the differential be decomposable simply insists that

we include no “irrelevant” creation operators that are Q-exact and so con-

tribute only to the excited spectrum of the theory.

A minimal CDGA is a minimal model of Ω if there is a quasi-isomorphism

f : M → Ω.

The utility of minimal models comes from a theorem of Sullivan, which shows

that every simply connected CDGA has a minimal model that is unique up

to isomorphism. Furthermore, two CDGAs are equivalent if and only if their

minimal models are isomorphic. As such, minimal models cure the “ambigu-

ity” of the de Rham complex, and furnish a true invariant of a space. It is

as though one had a way of choosing a unique triangulation (and therefore a

unique simplicial chain complex) representing each topological manifold.

A minimal model of a CDGA can be thought of as the unique “smallest” super-

symmetric quantum mechanics that (1) reproduces the correct BPS spectrum

and (2) has the Hilbert space of a free theory. One can construct a minimal

model degree by degree, adding generators only as necessary to generate or

kill new cohomology. We will give examples below.

Given a minimal model M , we can consider its spaces of indecomposable ele-

ments in each degree:

πi
.
= M i/(I1 · I1)i.

These vector spaces (more precisely, their duals) are the k-de Rham homotopy

groups of M . By another remarkable theorem, if M is the minimal model of

the de Rham complex of a space X (with coefficients in k), then the de Rham

homotopy groups of M are the homotopy groups of X, up to information

about torsion:

πi(M) ∼= πi(X)⊗ k. (2.23)
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In fact, the minimal model contains all of the information of the homotopy

type of X over the field k; if k = R, in the words of [58], M “is the real

homotopy type” of X. While it does not preserve the complete homotopy

type of X (since there is no information about torsion), it still provides a

powerful algebraic invariant.

Example 10. The cohomology of the sphere Sn is a simply connected CDGA

with zero differential and zero product, with generators in degrees 0 and n

only (n > 1). If n is odd, this CDGA is already minimal, and so is its own

minimal model.

If n is even, the minimal model M must have a free bosonic generator (call

it x) in degree n. The generator x must be closed in order to survive to

the cohomology. Therefore x2 is closed; however, since it does not survive

to cohomology, it must be exact. We are therefore forced to introduce a

generator y in degree 2n − 1, such that dy = x2. This kills all higher powers

of x (d(yxn) = xn+2), and therefore (since y is fermionic, so that y2 = 0) we

have constructed the minimal model.

It is a priori not obvious that these minimal models carry any information

about spheres as spaces; they are minimal models of the cohomology, rather

than of the de Rham complexes, of the spheres. However, it is possible to show

that spheres are formal spaces, in the sense discussed in the introduction. Re-

callthat a minimal CDGA M is formal if there is a CDGA quasi-isomorphism

f : M → H•(M).

The algebras we constructed for spheres are therefore formal by definition;

to show that spheres are formal spaces requires showing that their de Rham

complexes are equivalent to their cohomology.

Once this is done, however, the minimal models we constructed above are

the minimal models of the n-spheres, and their de Rham homotopy groups

are the homotopy groups of spheres, after tensoring with R. This shows that

all the higher homotopy of odd-dimensional spheres is torsion, whereas the

higher homotopy of even-dimensional spheres has rank one in degree 2n − 1

(corresponding for n = 2 to the Hopf fibration). Formality is thus a remarkably

powerful tool.
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Figure 2.6: A picture of the low-degree portion of our non-formal example of
a minimal CDGA. The differential is indicated by arrows, so that the long
and short representations are visible. We have been sloppy about including
coefficients; the indicated relationships are true up to overall scalars.

Example 11. We now discuss a minimal CDGA that fails to be formal. The

example is, once again, due to [58]. Let M be freely generated by x and y in

degree two and f and g in degree three. The differential will be defined by

dx = dy = 0 df = x2 dg = xy. (2.24)

This algebra cannot be formal, because it has a triple Massey product. The

product xxy is zero in cohomology for two reasons (because xx and xy are

both exact), and the Massey product measures the “difference” between the

two. It is defined by the element

m(x, x, y) = fy − gx,

which is closed but not exact in degree five. The Massey product is ambiguous

up to the ideal

x · H3(M) + y · H3(M),

but this vanishes since H3(M) = 0.

We draw a picture of this example in Fig. 2.6. To give an explanation which

may be more tangible to the reader than the formal definition, Massey products
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have to do with entanglement: in a minimal model of a CDGA, they are

supersymmetric vacuum states that are entangled between different oscillator

degrees of freedom.

To say this at more length, recall that entanglement is a property of a state in

a Hilbert space, when viewed with respect to a basis that exhibits that Hilbert

space as a tensor product of factors corresponding to subsystems.

In a minimal-model CDGA M , there are two natural choices of basis: one

is the tensor-product basis corresponding to the different oscillator degrees of

freedom that make up the system. With respect to this basis, M is freely

generated as a graded polynomial algebra. The other basis is the basis con-

sisting of energy eigenstates, which shows that M is a direct sum of irreducible

representations of supersymmetry.

One of these bases is natural from the standpoint of the action of the de Rham

algebra, and the other is natural from the standpoint of the multiplication.

These bases may not agree; if this happens, the result is that the product of

operators corresponding to zero-energy states may not be an energy eigenstate

at all, but rather may be a quantum superposition of zero-energy and positive-

energy states. For the same reason, a zero-energy state may not be a tensor

product state of different oscillators, but may only appear as an entangled

state. As always, studying the appropriate picture (Fig. 2.6) should make this

clear.

In a supersymmetric quantum mechanics whose Hilbert space is a Sullivan

minimal-model CDGA, the Hilbert space is that of a finite collection of bosonic

and fermionic harmonic-oscillator degrees of freedom. The cohomology classes

corresponding to Massey products, like the state gx − fy in our example,

are vacua of this system in which the oscillator subsystems exhibit nontrivial

entanglement with one another. As is clear from Fig. 2.6, no tensor product

state of the form

|f〉 ⊗ |· · · 〉

can be a vacuum state, since |f〉 is Q-exact. However, an entangled combina-

tion of states like this one is a new supersymmetric vacuum state.

Let us also say a few words about how one should think about the meaning

of homotopy equivalence from a physical perspective. Let f and g be two

homomorphisms between CDGAs A and B. The two are homotopic if there
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exists a map H : A→ B of degree −1, such that

f − g = dBh+ hdA.

Now, an example of a homotopy equivalence between CDGAs A and B is a

pair of projection and inclusion maps

A
p−→ B, B

i
↪−→ A,

such that ip is homotopic to 1A; in other words, ip − 1A (which is projection

onto the orthogonal complement of B ⊂ A) is Q-exact.

The reader may wonder why the inclusion of the cohomology into a CDGA as

the set of zero-energy states does not necessarily define a homotopy equivalence

between the two. The answer is that the maps i and p above are required to

be homomorphisms of algebras; therefore, one cannot simply project onto any

linear subspace. The kernel of p must be an ideal.

This requirement has a clear physical interpretation as well: it corresponds to

our normal ideas about integrating out degrees of freedom. If the map p sends

a state |ψ〉 to zero, indicating (for instance) that |ψ〉 has an energy which is

above a certain cutoff value, it should also send to zero states obtained by

adding additional particles to |ψ〉. In the context of CDGAs that are Fock

spaces (that is to say, Sullivan algebras that are not necessarily minimal),

one should only discard states corresponding to an entire harmonic-oscillator

degree of freedom, when they all have nonzero energy (so that that degree of

freedom is massive and can be integrated out).

It is therefore possible to think about (at least a subset of) homotopy equiva-

lences between CDGAs, at least heuristically, as renormalization group flows.

Since the RG scale is a continuous parameter of the physical theory, this is in

line with the intuitive idea that a homotopy between physical theories should

be a path in the moduli space.

Now let us review the main result of [58]:

Theorem 2. Compact Kähler manifolds are formal.

Proof. With the technology we have set up, the proof is almost trivial. The

de Rham complex of a Kähler manifold exhibits N = 2 supersymmetry, either

with respect to supercharges ∂ and ∂̄ or with respect to d and dc
.
= i
(
∂ − ∂̄

)
.
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The latter choice corresponds to t = [1 : 1] in our CP1 family. From the

standpoint of complex coefficients (and therefore physics) there is no difference;

however, [58] choose d and dc because they are real operators, and so act on

the real de Rham complex.

There is no difference between d-cohomology and dc-cohomology; both count

short representations of N = 2 supersymmetry. However, passing to dc-

cohomology furnishes an equivalence of CDGAs with respect to the differen-

tial d:

(Ω, d)← (ker dc, d)→ (Hdc , d). (2.25)

It should be clear that both arrows are quasi-isomorphisms, and that the

differential induced on dc-cohomology by d is identically zero. The result

follows immediately.

Formality thus follows simply whenever more than one supercharge can be

used to identify the zero-energy spectrum of the same Hamiltonian. This is

precisely the context of N ≥ 2 supersymmetry. However, the reader should

keep in mind that the absence of enhanced supersymmetry does not necessarily

imply a lack of formality.

One of the initial motivations that led to this study was as follows: Not every

compact manifold is formal. A large class of examples are nilmanifolds, which

are obtained as quotients of nilpotent simply connected Lie groups by dis-

crete co-compact subgroups. For instance, we can take the three-dimensional

Heisenberg group consisting of matrices

N =








1 x z

0 1 y

0 0 1


 : x, y, z ∈ R




, (2.26)

which is homeomorphic to R3, and the subgroup consisting of elements for

which x, y, z ∈ Z. The quotient is a compact three-manifold that is not formal.

One can construct simply connected manifolds with the same properties.

Since the “vanilla” flavor of supersymmetric quantum mechanics does not re-

quire any additional structure, Kähler or otherwise, we were led to ask: does

physics look different on a non-formal manifold? Do the Massey products,

interpreted as operations relating sets of vacuum states, have a physical sig-

nificance or meaning? In light of the discussion above, the reader should
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immediately see the proper response to this question. Massey products arise

because of entanglement between the basis of energy eigenstates (or super-

symmetry representations) and the basis that is most natural with respect to

the wedge product. However, as we remarked in the introduction, the wedge

product is not an obviously meaningful operation in supersymmetric quan-

tum mechanics, and so the question does not make sense without additional

structure.

It is then natural to look for other examples of physical systems for which

certain sets of operators admit a description in terms of the cohomology of

a supercharge, and therefore higher-order Massey products between (for in-

stance) Q-cohomology classes of local operators, or supersymmetric defects

with respect to the product defined by fusion [37], might occur. The results

of [58] translate directly to a particular class of physical examples: N = 2 su-

persymmetric sigma models in two dimensions, which require Kähler structure

on the target space as a necessary and sufficient condition for supersymmetry.

These sigma models admit two different well-known topological twists (the

A- and B-twists), after which the TQFT Hilbert spaces are identified with

the cohomology of a geometric CDGA associated to the target space. The

statement that this CDGA must necessarily be formal (for the B-model, this

generalization of [58] was proven by Zhou [227]) suggests that whatever phys-

ical phenomena higher cohomology operations may represent cannot occur

between local operators in a two-dimensional supersymmetric sigma model—

at least for the A-twist in the large volume limit where the product agrees

with the wedge product. The situation is more subtle for the A-model at

finite volume.

Understanding the correct notion of formality for quantum field theories is

more subtle than for CDGAs or 0 + 1-dimensional systems. The reason is

that, while spaces of BPS operators, states, or defects form algebras on very

general grounds [118, 140], and moreover their algebraic structure comes from

natural and meaningful physical operations (such as the structure of Fock

space in perturbative theories, the OPE, or defect fusion), these operations

are only guaranteed to be nonsingular for BPS objects, and are highly sin-

gular in general. Formality is not a property of the cohomology ring, but

rather a property of the differential algebra from which it is derived; as such,

understanding the physics (and the algebraic structure) of the non-BPS part
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of the theory is critical. Nonetheless, in quantum field theories that admit

topological twists, one can look at the portion of the supersymmetry algebra

that includes the scalar supercharge, and sometimes prove analogues of the ddc

lemma. This can be done whenever the N = 2 algebra of quantum mechanics

is a subalgebra of the higher-dimensional twisted supersymmetry algebra. We

will return to this question in §2.5.

It is also interesting to notice that the above discussion suggests a way to define

“homotopy groups” with complex coefficients, for N = 2 supersymmetric

quantum mechanics, or more generally for twists of theories for which a ddc-

lemma can be proven. These homotopy groups are really complex vector

spaces, just like the C-de Rham homotopy groups we discussed above. To

calculate them, one should take the graded algebra of Q-cohomology classes or

BPS states, view it as a CDGA with zero differential, and construct its minimal

model as was described above. The graded components of the minimal-model

CDGA are then the C-de Rham homotopy groups; when the theory one started

with is the N = 2 quantum mechanics of a particle on a Kähler manifold,

this procedure recovers the homotopy groups of the target space, tensored

with C. For more abstract examples of supersymmetric quantum mechanics,

the meaning of these new invariants is less clear.

2.4 Physical origins of Lefschetz operators

In this section, we review work of Figueroa-O’Farrill, Köhl, and Spence [79],

who showed (pursuing an idea due to Witten) that the action of Lefschetz

operators in the de Rham complex of Kähler and hyper-Kähler manifolds can

be understood in terms of dimensional reduction of the higher-dimensional su-

persymmetric sigma models that can be defined on these spaces. Our goal in

doing this is to emphasize the utility of studying these theories via dimensional

reduction to supersymmetric quantum mechanics, and also to point out that

their argument allows analogues of the Lefschetz action to be defined in the-

ories that are not necessarily sigma models. These Lefschetz-type symmetries

are precisely the R-symmetries of the dimensionally reduced theories. We de-

tail the consequences of these Lefschetz-type symmetries, comparing them with

the consequences of two-dimensional superconformal R-symmetries.‖ Further,

we comment on some intriguing and (we believe) unexplained numerical coin-

‖This is motivated by the fact that two-dimensional sigma models on Calabi-Yau and
hyper-Kähler manifolds are automatically superconformal.
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cidences.

The central idea is simple to state. Suppose that a d-dimensional, minimally

supersymmetric sigma model can be defined on a target manifold X. When

d = 4, it is necessary and sufficient for X to be Kähler; when d = 6, X must

be hyper-Kähler. Again, this can be seen just by counting the supercharges

that act in the de Rham complex.

Ignoring questions of signature, the Lorentz group of the theory will be SO(d).

In order to dimensionally reduce to a quantum mechanics problem, we must

fix a splitting of the worldsheet coordinates into one time and d − 1 spatial

directions. This breaks the Lorentz group to SO(d− 1), acting on the spatial

directions; this symmetry should survive as a flavor symmetry in the dimen-

sionally reduced theory.

For the four-dimensional sigma model, we therefore expect the symmetry al-

gebra so(3) ∼= su(2) to act; for the six-dimensional sigma model, the relevant

algebra will be so(5). The result of [79] is that, in the context of Kähler

and hyper-Kähler sigma models, these group actions agree precisely with the

Lefschetz actions we reviewed above.

However, when arguing that these symmetry algebras must act on quantum

mechanics after dimensional reduction, we did not actually use the fact that

the theories in question are sigma models. The argument is quite general, and

applies to the supersymmetric quantum mechanics obtained after dimensional

reduction of any theory. As such, if we are interested in seeing how close such

a supersymmetric quantum mechanics problem is to the algebraic model of an

honest space, we can use the existence of a Lefschetz action without making

any further assumptions.

To be concrete, consider the N = 1 supersymmetry algebra in four dimen-

sions:

{Qα, Q̄β̇} = 2iσµ
αβ̇
Pµ. (2.27)

Following [79, Table 1], make the following identification:

(∂, ∂̄†) 7→ (Q1, Q2) (∂†, ∂̄) 7→ (Q̄1̇, Q̄2̇).

Note that there is a CP1 family of choices to be made here. We are picking

a point out of the projectivization of the Weyl spinor space C2. This is the

same as picking a direction out of three-dimensional Euclidean space.
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Figure 2.7: The hierarchy of group actions that occur on twists of 2d sigma
models, on dimensional reductions of higher-dimensional field theories, and on
the cohomology of target spaces.

It is then simple to rewrite the algebra (2.27) as follows:

(∆∂,∆∂̄) = (2(P0 + P3), 2(P0 − P3)),

{∂, ∂̄} = {Q1, Q̄2̇} = P1 + iP2, (2.28)

{∂, ∂̄†} = {Q1, Q2} = 0.

Upon dimensional reduction to 0 + 1 dimensions, we set the momentum op-

erators Pi = 0. After doing so, this becomes the algebra of N = 2 quantum

mechanics, which we have written in the notation appropriate to Kähler ma-

nifolds.

If we do not dimensionally reduce to quantum mechanics, this algebra is not

an N = 2 algebra. However, using Lorentz invariance, we may without loss

of generality take the momentum to lie in the P3 direction. We then obtain

the N = 12 algebra, where the Laplacians are as in (2.4).

Recall from our discussion of the N = 12 algebra above that the representa-

tions that spoil the ddc-lemma are the two-dimensional representations that

are short with respect to one supercharge and long with respect to the other.

By inspection of (2.4), these are states for which P0 = ±P3: that is to say,

massless states in the four-dimensional theory.

Returning to quantum mechanics, the point is that we can naturally identify
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an action of su(2) ∼= so(3) that is compatible with the N = 2 supersymmetry

algebra we identified above. We define the analogues of the Lefschetz operators

as follows:

D = 2J3 (Λ†,Λ) = J± = J1 ± iJ2. (2.29)

These operators commute with the Hamiltonian P0 by the standard Poincaré

algebra:

[Mµν , Pρ] = i (ηµρPν − ηνρPµ) .

Again, although (2.29) agrees with the usual Lefschetz action in the context

of sigma models, nothing in this derivation relies on having a sigma-model

description of the field theory! The analogues of the crucial Kähler identi-

ties (2.14) follow from the fact that the supercharges transform as a spinor

under rotations.

Given the above, it should be clear that any supersymmetric quantum me-

chanics arising from dimensional reduction from a field theory in d dimensions

has a Lefschetz-type action of SO(d−1). In Fig. 2.7, we make a subgroup dia-

gram showing these actions together with those that follow from R-symmetry

in two-dimensional superconformal theories and those that follow from geo-

metric realization as a sigma model. Each subgroup corresponds to a specific

element on the partially ordered set of geometrical consequences.

This partially ordered set is not totally ordered. The consequences of N =

(2, 2) superconformal symmetry and realizability as a Kähler sigma model are

incomparable, for instance. Since SU(2) acts vertically on the Hodge diagram

for Kähler manifolds, but the SU(2) × SU(2) arising from N = (4, 4) R-

symmetry acts diagonally — one is not a subgroup of the other.

Furthermore, notice that the conjunction of these two requirements is strictly

weaker than the consequences of realizability as a hyper-Kähler sigma model.

For instance, Fig. 2.8b is consistent with N = (2, 2) superconformal sym-

metry and the Kähler SU(2) Lefschetz action, but is inconsistent with SO(5)

Lefschetz action (since the diagram has the wrong degeneracies in the interior

of the octagon).

There is one interesting thing to note. Verbitsky constructed the SO(4, 1)

action for hyper-Kähler manifolds by using the three Kähler classes as gener-

ators. Since these three classes are independent, b2 ≥ 3 for any hyper-Kähler
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(a) This pattern is consistent
with N = (4, 4) superconformal
algebra’s SU(2) × SU(2) action,
but is incompatible with 4d Lef-
schetz action.
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(b) This octagon is compatible
with N = 4 with 4d Lefschetz
action, but is incompatible with
6d Lefschetz action.

Figure 2.8: Illustration of the differences between requirements tabulated in
Fig. 2.7.

manifold. However, if b2 is large, there are many more “candidates” for defin-

ing Lefschetz operators, and one may wonder if a larger symmetry algebra can

be defined in this case.

In later work, Verbitsky [198, 199] showed that this is indeed the case. He

constructed an action of SO(4, b2 − 2) on the cohomology of a hyper-Kähler

manifold, and it is natural to wonder (indeed, the authors of [79] already do

so) whether this can be understood from a supersymmetric perspective as well.

The only compact hyper-Kähler four-manifold is the K3 surface. For hyper-

Kähler manifolds of (real) dimension eight, Guan [104] has shown that the

second Betti number must be one of the following:

b2 ∈ {3, 4, 5, 6, 7, 8, 23},

although examples are only explicitly known for b2 = 7, 23. We draw the

Hodge diamonds of these examples [181] in Fig. 2.9.

If one were to realize Verbitsky’s so(b2 + 2) actions for these target spaces

in terms of Lorentz symmetry, as has been done for the standard Lefschetz

actions, this would correspond to the following set of dimensions for the cor-

responding sigma models:

d ∈ {6, 7, 8, 9, 10, 11, 26}.
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Figure 2.9: The Hodge diamonds of known examples of compact hyper-Kähler
eight-manifolds with b2 > 3.

The largest three—10, 11, and 26—happen to equal the spacetime dimensions

of superstring theory, M-theory, and bosonic string theory. Moreover, the

examples that have been constructed correspond exactly to d = 10 and d = 26.

We emphasize, however, that these should be thought of as worldsheet (not

target-space) dimensions!

It is worth pointing out that compactification of superstring theory on a hyper-

Kähler eight-manifold leaves a two-dimensional effective theory in the target

space. In some sense, it is as if a rather bizarre duality exchanges the roles of

target space and worldsheet.

To the best of our knowledge, there is no straightforward explanation of these

facts, since there is no such thing as the supersymmetric sigma model in di-

mension d > 6. (This can be seen in many ways: from Berger’s classification

of exceptional holonomy, or by noting that the algebra of complex structures

required for N = 8 would have to be that of the octonions.) In such a large

spacetime dimension, the spinor representations in supersymmetry would be

far bigger than the number of differential operators present on differential

forms on a hyper-Kähler manifold.

These considerations suggest a scenario in which a d-dimensional theory, which

is not supersymmetric, somehow acquires supersymmetry upon dimensional

reduction to six (or fewer) dimensions. However, we lack any concrete proposal

or meaningful evidence for this speculative scenario.

2.5 Topological twists of quantum field theories

In this section, we take inspiration from the discussion of the ddc-lemma above

and look at topological twists of field theories in higher dimensions. For some
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twists, the supersymmetry algebra after twisting contains the algebra of N =

2 quantum mechanics as a subalgebra; for others, this is not true.

4d N = 2

The relevant part of the four-dimensional extended supersymmetry algebra is

{QA
α , Q̄β̇B} = 2σµ

αβ̇
Pµδ

A
B,

{QA
α , Q

B
β } = εαβε

ABZ,

The adjoint relationship is, once again, (QA
α )† = Q̄α̇A. We will only consider

the case without central charges, so that the scalar supercharges obtained after

twisting are honestly nilpotent. In the case when Z is nonzero, the scalar

supercharge will square to Z; topological twists can still be understood in this

setting, but we will not address this here. The reader is referred to [137].

The representations in which the supercharges sit are

QA
α : (2,1; 2) Q̄B

β̇
: (1,2; 2).

The first two numbers refer to the representation of the Lorentz group SO(4) ∼=
SU(2)left × SU(2)right, and the last number is a representation of SU(2) R-

symmetry. Up to equivalence, there is a unique way to construct a topological

twist of this algebra. One chooses the homomorphism

pr1 : SU(2)left × SU(2)right → SU(2)R,

and lets the Lorentz group act on R-symmetry indices via this identification

rather than trivially. The resulting representations are

(
Q1

1,
1√
2

(Q2
1 +Q1

2), Q2
2

)
: (3, 1)

q
.
=

1√
2

(Q2
1 −Q1

2) : (1, 1)

Q̄B
β̇

: (2,2).

The quantum numbers indicated are for the new Lorentz group SU(2)′left ×
SU(2)right. The scalar supercharge with respect to which we twist is q; in order

that q be nilpotent, we must set the central charge to zero. It is simple to
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check that the “Laplace operator” corresponding to this supercharge is

{q, q†} =
1

2
{Q2

1 −Q1
2, Q̄1̇2 − Q̄2̇1}

=
1

2

(
2Pµσ

µ

11̇
+ 2Pµσ

µ

22̇

)

= tr(Pµσ
µ
αβ)

= 2P0.

Therefore, the q-cohomology counts states on which the Hamiltonian acts by

zero. This is what we should expect if the result of twisting is to be a topo-

logical theory.

There is no other scalar supercharge in the theory, so adding any more super-

charges to our subalgebra will give a result that is not Lorentz invariant. Of

course, this is not a problem: one merely needs the existence of an N = 2 sub-

algebra to show that the ddc-lemma holds, whereas a single Lorentz-invariant

supercharge is enough to make the twist. It is instructive to consider the

commutation relations with the supercharge

q̃ =
1√
2

(
Q2

1 +Q1
2

)
.

The two supercharges commute with one another (even in the presence of

central charges):

{q, q̃} =
1

2
{Q2

1 −Q1
2, Q

2
1 +Q1

2}

=
1

2

(
ε12Z

21 − ε21Z
12
)

= 0.

We have therefore identified a N = 1.5 subalgebra. However, this fails to

close into an N = 12 algebra. It is easy to check that

{q, q̃†} = 2P3.

However, the Laplacian of q̃ nonetheless agrees with that of q:

{q̃, q̃†} = 2P0.

The reader may see a puzzle here—the Laplacians agree, so there is no way

for a representation to have both zero and nonzero energy. It should follow

that the one-dimensional representations are the only short representations.
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The resolution to this puzzle consists of remembering that (in Lorentzian sig-

nature) P0 ≥ |P3|. Therefore, if a state satisfies P0 = 0, the operator P3, which

is the staircase operator in this context, must act on it by zero as well. This

is sufficient to show that the only permissible staircases have length two, just

as is the case for the N = 12 algebra.

Indeed, the algebra we have written is equivalent to the N = 12 algebra after

a change of basis. Taking the supercharges to be

∂ = Q2
1, ∂̄ = −Q1

2,

∂† = Q̄1̇2, ∂̄† = −Q̄2̇1,

it follows immediately that

∆∂ = {∂, ∂†} = 2σµ11Pµ = P0 + P3

∆∂̄ = {∂̄, ∂̄†} = 2σµ
22̇
Pµ = P0 − P3

{∂, ∂̄} = {∂, ∂̄†} = 0.

This is therefore a typical N = 12 system. The new states that appear in ∂-

and ∂̄-cohomology, as compared to q = ∂ + ∂̄-cohomology, satisfy P3 = ±P0

respectively. Put differently, massless states cause the failure of the ddc-lemma.

In a topological twist of a massive four-dimensional N = 2 theory, we would

expect it to hold.

3d N = 4

Inspecting the quantum-mechanical subalgebra we were considering above, it

is easy to see that it becomes an N = 2 subalgebra upon setting P3 = 0,

i.e., after dimensional reduction to three dimensions. It makes sense that this

should generate a new scalar supercharge: after the twist, the Q̄B
β̇

are in a

vector representation of SO(4)′, which will become a vector and a scalar upon

dimensional reduction. The new scalar is precisely q†; therefore, we obtain

a complete Lorentz-invariant copy of the de Rham algebra, sitting inside a

non-Lorentz-invariant N = 2 algebra.

This shows that the ddc-lemma holds for one of the two possible twists of

three-dimensional N = 4 theories. While there are two twists that are in

general inequivalent [22], they are the same at the level of the supersymmetry

algebra. Only the decomposition of supermultiplets differs. As such, the

N = 2 subalgebra we identified above exists in both possible twists.
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4d N = 4

This is the dimensional reduction of minimal supersymmetry in ten dimen-

sions. The R-symmetry is Spin(6) ∼= SU(4). The representations of the super-

charges before twisting are

QA
α : (2,1; 4) Q̄B

β̇
: (1,2; 4̄). (2.30)

Donaldson–Witten twist This corresponds to choosing an N = 2 subal-

gebra and twisting as above. The twisting homomorphism embeds SU(2)left in

the obvious way as a block diagonal inside SU(4). This leaves an SU(2)×U(1)

subgroup of the R-symmetry unbroken. The R-symmetry representations of

the supercharges decompose as

(2,1; 4)→ (3,1; 1)1 ⊕ (1,1; 1)1 ⊕ (2, 1; 2)−1 (2.31)

(1,2; 4̄)→ (2,2; 1)−1 ⊕ (1,2; 2)1 (2.32)

The representations indicated at right are for SU(2)′left, SU(2)right, SU(2)R,

and U(1)R. Taking SU(2)′left to act on the first two R-symmetry indices, the

scalar supercharge is

q =
1√
2

(
Q2

1 −Q1
2

)
,

just as for the twist of the N = 2 theory. All the calculations from above

continue to be valid, so that the corresponding Laplacian is again proportional

to P0.

However, it is now easy to find another choice of supercharge that defines

an N = 2 subalgebra. For instance, one can take

q̃ =
1√
2

(
Q4

1 −Q3
2

)
.

It is simple to check the commutation relations between q, q̃, and their adjoints.

Once again, this subalgebra is not Lorentz-invariant, but this is not important

in the context of proving the ddc-lemma.

Vafa–Witten twist This corresponds to embedding SU(2)left diagonally in-

side the obvious SO(3) × SO(3) subgroup of SO(6) ∼= SU(4). The unbroken

R-symmetry is SU(2)R, rotating the two diagonal blocks into one another. (If

we write the SU(4) fundamental index as a pair of indices valued in {1, 2},
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SU(2)left acts on one of these indices and the unbroken SU(2)R on the other.)

The representations of the supercharges decompose as follows:

(2,1; 4)→ (3,1; 2)⊕ (1,1; 2), (2.33)

(1,2; 4̄)→ (2,2; 2). (2.34)

The representations indicated at right are for SU(2)′left × SU(2)right × SU(2)R.

The scalar supercharges can be written explicitly as

q↑ =
1√
2

(
Q2

1 −Q1
2

)
q↓ =

1√
2

(
Q4

1 −Q3
2

)
. (2.35)

(The subscripts refer to the representation of SU(2)R.)

These supercharges are the same as the q and q̃ identified above, and so satisfy

the same commutation relations, generating an N = 2 subalgebra.

Marcus–Kapustin–Witten twist This corresponds to the obvious block-

diagonal homomorphism

SU(2)left × SU(2)right → SU(4)R.

There is an unbroken U(1)R symmetry, commuting with this embedding, which

rotates the overall phases of the two blocks in opposite directions. Under this

embedding the 4 of the R-symmetry group transforms as (2, 1)1 ⊕ (1,2)−1

with respect to the twisted Lorentz group and the unbroken U(1)R. The

transformation of the 4̄ representation is the same, but with U(1) charges

reversed.

It follows that the supersymmetries transform after the twist as

(2,1; 4)→ (1,1)1 ⊕ (3,1)1 ⊕ (2,2)−1

(1,2; 4̄)→ (1,1)1 ⊕ (1,3)1 ⊕ (2,2)−1.
(2.36)

The representations indicated at right are for SU(2)′left × SU(2)′right × U(1)R.

(Our convention for the sign of the U(1)R-charge is the opposite of that of [124],

so that the scalar supercharges carry charge +1. This is in keeping with our use

of cohomological grading conventions, for which the differential has positive

degree, throughout the paper.)

Explicitly, the scalar supercharges can be written as

qleft =
1√
2

(
Q2

1 −Q1
2

)
, qright =

1√
2

(
Q̄1̇4 − Q̄2̇3

)
. (2.37)
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The subscripts indicate the chirality of the spinor supercharge from which the

scalar is derived. It is clear that these supercharges and their adjoints form the

same subalgebra as for the Vafa-Witten twist, since qleft = q↑ and qright = q†↓.

In fact, the VW and MKW twists are isomorphic for the sphere S3 Hilbert

space (equivalently, for local operators). These are just trφn in both cases,

where φ is the adjoint sgaugino. The two twists are, however, very different

for non-spheres, where the TQFT is not a subsector of the untwisted SQFT.

2d superconformal algebras

As we already mentioned above, the N = (2, 2) superconformal algebra has a

global subalgebra (for instance, in the Ramond sector) which is precisely equal

to two copies of the de Rham algebra, one in the left-moving and one in the

right-moving sector. As such, the algebra relevant to twists of these theories

is always the N = 12 algebra.

In this case, one can consider deformation problems of the sort we discussed

in general, where some mixture of these four supercharges defines a nilpotent

operator. This leads to the A- and B-twists, as well as to the elliptic genera

of N = (2, 2) theories at the special points where BPS degeneracies are en-

hanced. Further remarks on these ideas in the context of N = (2, 2) theories

will be made in [109].

All twists of N = (4, 4) theories come from N = (2, 2) subalgebras: there

is a CP1 family of twists [17], and this corresponds to choosing a U(1) inside

SU(2) R-symmetry, which amounts to choosing N = 2 subalgebra of N = 4.

2.6 Superconformal symmetry and reconstructing target spaces

In this section, we briefly note a couple of the results of Sullivan and others

that motivated us to begin reading about rational homotopy theory.

The theorems concern when an abstract rational homotopy type (presented,

for instance, by a minimal-model CDGA) is, in fact, the rational homotopy

type of an honest manifold. As such, one should think of them as stating

sufficient conditions for an abstract algebraic model to be “geometrical.” This

is very close to the question we raised in the introduction: given (for instance)

a two-dimensional N = (2, 2) superconformal theory, which one may think of

as a string theory background, what conditions are sufficient to ensure that it

can be described as the sigma model on some geometrical target space?
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In the context of Theorem 3, one enumerates a list of all structures that can

be defined on a CDGA originating from geometry, and carefully details the

properties that these structures have. This list of necessary conditions turns

out to also be sufficient.

Theorem 3 (Sullivan–Barge; see [190], as well as [77], Theorem 3.2). Let

M be a simply connected Sullivan minimal model over Q, whose cohomology

satisfies Poincaré duality with respect to a top form in dimension d. Choose

an element p ∈ ⊕iH4i(M), representing the total rational Pontryagin class.

If 4 - d, there is a compact simply connected manifold whose rational homotopy

type has M as its minimal model and p as its total Pontryagin class.

If d = 4k, the statement remains true if the manifold is permitted to have one

singular point. The singular point may be removed if, and only if:

• the intersection form is equivalent over Q to a quadratic form
∑±x2

i ;

and

• either the signature is zero, or a choice of fundamental class can be

made such that the Pontryagin numbers are integers satisfying certain

congruences.

Theorem 4 ([190], Theorem 12.5). The diffeomorphism type of a simply

connected Kähler manifold is determined by its integral cohomology ring and

total rational Pontryagin class, up to a finite list of possibilities.

One key feature in the above theorems is the choice of coefficients: integers

or rational numbers, rather than complex numbers, which are most natural

from the standpoint of physics. We were thus led to ask whether one could

recover a natural integer lattice in the physical Hilbert space of a sigma model,

corresponding to the image of the integral cohomology in cohomology with

complex coefficients. In fact, another motivation led us to think about this as

well. In considering the geometrical symmetries of the cohomology of a Kähler

manifold, the Hodge symmetry map is antilinear: it identifies Hp,q with H̄q,p.

So far we have only discussed this map at the level of Hodge numbers. We

asked whether any physical symmetry of the theory could recover this complex-

antilinear operation.
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In the context of physics, one has a meaningful inner product on the Hilbert

space, which defines the notion of a vector of length one. However, as is

familiar from undergraduate quantum mechanics, the phase of a normalized

state can still in general be arbitrary.

In a unitary two-dimensional conformal field theory with Hilbert space H,

consider a state |φ〉 with conformal weights (h, h̄). Identifying spacetime with

the complex plane, the local operator φ(z, z̄) corresponding to |φ〉 via the

operator-state correspondence can be Fourier-expanded as

φ(z, z̄) =
∑

n∈Z+η

∑

n̄∈Z+η̄

φ−h−n,−h̄−n̄z
nz̄n̄ (2.38)

where η, η̄ ∈ {0, 1/2} according to specified boundary conditions. The modes’

conformal weights take values in (Z+h+η,Z+ h̄+ η̄). The Hermitian adjoints

of these modes have conformal weights (Z− h− η,Z− h̄− η̄). These two sets

intersect (and coincide) precisely when h, h̄ ∈ 1
2
Z. In that case, the following

requirement may be nontrivially imposed:

φ†n,n̄ = φ−n,−n̄. (2.39)

The set of states with (half-) integer conformal weights that satisfy Eq. (2.39)

form a real (but not complex) linear subspace of the entire Hilbert space. Call

this subspace HR
0 . Then its complexification

HR
0 ⊗R C ≡ H0 ⊂ H

is the complex linear subspace of H consisting of all states with (half-) inte-

ger conformal weights. By virtue of having a preferred real subspace, H0 is

equipped with a canonical C-antilinear automorphism, which we denote∗∗

I : H0 → H0.

This map fixes the conformal weights, but otherwise all other charges are con-

jugated. In particular, for a theory with N = (2, 2) superconformal symmetry,

I flips the various U(1) charges:

I : (h, h̄, qleft, qright) 7→ (h, h̄,−qleft,−qright).

∗∗This construction is not at odds with the axiom of quantum mechanics that the (abso-
lute) phase of a state is unobservable. The choice of operator-state map gives us the vacuum
state (which maps to the identity operator), and phases of all states are measured relative
to it. The phase of the vacuum (as determined by the operator-state correspondence) is
arbitrary, as quantum mechanics requires.
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Now, consider the parity-reversal operator Ω, which acts on the worldsheet

coordinate z as

Ω: z 7→ z̄.

This is a unitary operator that exchanges left- and right-moving symmetries.

In particular,

Ω: (h, h̄, qleft, qright) 7→ (h̄, h, qright, qleft).

Composing the two, we obtain a C-antilinear map

I ◦ Ω: (h, h̄, qleft, qright) 7→ (h̄, h,−qright,−qleft).

It is easy to see that the above maps the (a,c)-ring to itself. In fact, in the

A-model on a Calabi-Yau manifold, it is easy to see that the above acts on

(p, q)-forms as

(p, q) 7→ (q, p),

since the degree p+q corresponds to the axial R-charge while p−q corresponds

to the vector R-charge.

Therefore, we have recovered the antilinear Hodge-symmetry map

Hp,q → H̄q,p.

2.7 Conclusion

We wish to call the attention of physicists to the fact that many methods

and results of rational homotopy theory are essentially quantum-mechanical

in nature, and can be translated into physical language. Rational homotopy

theory aims to study the geometry of manifolds as encoded in the de Rham

complex; as such, supersymmetric quantum mechanics as a probe of a space

is its basic ingredient, and many of the main concepts that arise (Massey

products, minimal models, and so on) are quite natural and pleasant to see

from the perspective of physics.

The techniques of rational homotopy theory allow one to extract the homotopy

groups of a space, modulo torsion, from its de Rham complex. We observed

that identical techniques can be used to assign “homotopy groups” over C to

topologically twisted quantum field theories. If the theory in question satisfies

an analogue of the ddc-lemma, one can compute its homotopy groups just from

the knowledge of the algebra of BPS states. In the simplest examples of topo-

logically twistable sigma models, one recovers the ranks of higher homotopy
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groups of the target; beyond this setting, the meaning of these new invariants

is unclear.

Arising out of this, one can use supersymmetric quantum mechanics as a tool

to understand how close generic classes of quantum field theories are to being

geometric—that is to say, describable as sigma models. There are certain

properties that immediately mark a theory as being of non-geometric origin.

For instance, the series of N = 2 superconformal minimal models are not

geometric: their central charges, which would play the role of the dimension of

the target space, are not integral. Similar integrality properties for R-charges

(which translate in sigma models to the homological gradings) also fail.

Work of Figueroa-O’Farrill, Köhl, and Spence [79] shows that these U(1)

charges sometimes fit into a larger nonabelian symmetry that acts on the

quantum mechanics. When this is the case, the required integrality properties

follow immediately from integrality properties of weights for representations

of semisimple symmetry algebras. In the context of sigma models, [79] proved

that these algebras (which are Lefschetz symmetries in that case) coincide

with the algebras one expects to see from dimensional reduction of higher-

dimensional sigma models; we pointed out that these symmetries arise in any

quantum mechanics that is the dimensional reduction of a field theory, and

compared them with the standard list of R-symmetries.

Regarding the integrality of the central charge, it is known that all repre-

sentations of the two-dimensional N = (4, 4) superconformal algebra have

integer central charge. Furthermore, precisely in this case, the two U(1)R

charges fit into larger semisimple R-symmetries, and so also have integrality

properties. This is at least circumstantial evidence that the rich structures

that arise for hyper-Kähler sigma models are equivalent to the rich structure

of N = (4, 4) SCFTs, and makes it tempting to wonder whether both are

equivalent to the property of coming from a six-dimensional theory. (This is

obvious for N = (4, 4) sigma models, which are the dimensional reductions of

the six-dimensional sigma models defined on the same target space.)

For eight-dimensional hyper-Kähler manifolds, we observed a strange phe-

nomenon: the Lefschetz symmetries that arise on their de Rham complexes

(which in other cases arise from dimensional reduction of sigma models) cor-

respond to the values 10 and 26 of the worldsheet dimension. The effective

target-space description of a string theory compactification on such manifolds



101

would be two-dimensional. We have no way of understanding these numbers

(and their occurrence may simply be a coincidence) but it would be interesting

to search for connections between this phenomenon and the strange properties

of supersymmetric quantum field theory in six dimensions. We defer this to

future work.

Lastly, with an eye towards the same questions about geometric and non-

geometric theories, we noted the physical relevance of results of Sullivan and

others, related to the problem of reconstructing a manifold (up to diffeomor-

phism) from its de Rham complex. In these results, it is important that one can

begin with the de Rham complex with rational or integer coefficients, rather

than real or complex. We suggested that it may be possible to recover this

data from N = (2, 2) superconformal theories, subject to certain assumptions.

Understanding the appropriate analogues of theorems like Sullivan–Barge in

the context of physics may lead to progress on questions such as mirror sym-

metry, which originate as certain ambiguities in the way that string theories

encode geometric properties of the target space.



102

Chapter 3

PERTURBING BPS STATES: SPECTRAL SEQUENCES

1S. Gukov, S. Nawata, I. Saberi, M. Stošić, and P. Su lkowski. “Sequencing
BPS spectra.” JHEP 03, 004. (2016). arXiv:1512.07883 [hep-th].

3.1 Spectral sequences in physics

The bulk of this paper deals with the structure of link homologies. As we

explain in great detail in the next section, link homologies are realized as

spaces of BPS states in several M-theory configurations, in which the geometry

of certain branes is prescribed by a choice of link L ⊂ S3 [59, 108, 112, 168,

218]. Schematically,

H (L) ∼= HBPS.

Studying descriptions of this space of BPS states from various viewpoints

and in various duality frames then leads to interesting predictions about the

structure of link homologies.

This interpretation has led to deep insights regarding the structure and behav-

ior of homological link invariants. In particular, the rich structural properties

of link homologies include differentials of various kinds relating different ho-

mology theories, which have been formulated in terms of spectral sequences

in mathematics [72, 98, 138, 173]. One of the main goals of this paper is

to obtain a physical understanding of the spectral sequences between various

link homologies. These spectral sequences imply relations between the BPS

spectra of different configurations of branes in M-theory, or more generally

between different physical theories. Our goal is to understand these relations.

While the notion of a spectral sequence may be unfamiliar or daunting to many

physicists, we hope to demonstrate that it can be understood in simple terms,

which are clearly connected to physical problems. While certain applications of

spectral sequences to physics have been made before (for example, see [18, 23,

30, 69, 219]), we feel that our general understanding of the context in which

a physicist should expect spectral sequences to arise is novel. Put simply,

spectral sequences describe how the cohomology of a supercharge Q changes

under deformations of continuous parameters. Generally, Q-cohomology does

http://dx.doi.org/10.1007/JHEP03(2016)004
http://arxiv.org/abs/1512.07883
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not remain invariant under deformations of the theory, even in contexts where

the deformation leaves the Witten index and other supersymmetric indices

invariant. For this reason, many of our considerations apply very generally

to supersymmetric theories, and should not be construed as limited to the

supersymmetric systems we use to describe links.

The first sections of this paper, therefore, discuss spectral sequences and de-

formation problems in supersymmetric theories in very general terms, and

give simple examples of how well-known results (ranging from twists of 2d

N = (2, 2) theories to specializations of 4d indices) fit into our framework.

They can be read independently of the rest of the paper. Once we have devel-

oped the necessary ideas, we review the physical approach to link homologies

in §3.2, and then apply them to understand the deformation spectral sequences

constructed in [98, 138]. The remainder of the paper (omitted from this thesis)

continues further with our study on “color” dependence of link homologies; for

that material, the reader is referred to [109].

Explanations of spectral sequences can be found in many places in the math-

ematics literature (for instance, see [26, 125]). However, we will offer a pedes-

trian exposition below, in language which is hopefully both familiar to physi-

cists and tailored to our purposes. In addition, we will present several examples

of spectral sequences in the BPS spectra of physical theories. One of these ex-

amples (in the context of Landau-Ginzburg models) will be the relevant case

in the context of link homology.

Generalities: deformations and spectral sequences

We are interested in the following very general question: Suppose we have a su-

persymmetric quantum field theory, in which a single nilpotent supercharge Q

has been chosen. The supercharge could be a scalar (as in a topological twist

of the theory), or more generally any element of the fermionic part of the su-

persymmetry algebra (for instance, in superconformal indices). We make no

assumptions about the action of the Lorentz group on this supercharge.

We would then like to know what happens to Q-cohomology as we continuously

vary some choice or parameter of the theory. The parameters which can be

varied are naturally of two types:

1. we could change our choice of Q, while keeping the theory the same [18,

23, 30, 69];
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2. we could vary some modulus of the theory, such as the superpotential or

other coupling constants [219].

While the two types of perturbation are distinct, they both allow us to pose

the same broad question: What happens to Q-cohomology as continuous pa-

rameters are adjusted?

In fact, the spectrum of BPS states (i.e., Q-cohomology) changes under the

deformation; this is part of the reason for introducing genuinely protected

quantities, such as the Witten index [208, 210], in the first place. The Witten

index counts the number of vacua in supersymmetric quantum mechanics, with

bosonic vacua contributing +1 and fermionic vacua −1:

Tr(−1)F e−βH = nB − nF .

It is well-known that the numbers nB and nF are not themselves invariant.

However, a long representation of supersymmetry that breaks apart into short

representations will always contribute equally to nB and nF , so that their

difference is honestly invariant under perturbations.

Moreover, while both nB and nF can jump, they do so in a particular fashion

that can be understood on general grounds. Since the numbers nB and nF

are degeneracies of a quantum system, one expects enhanced degeneracy to

correspond to enhanced symmetry. Moreover, the degeneracies should be en-

hanced only on a locus of positive codimension in the parameter space, where

the parameters are tuned so that symmetry-breaking effects are absent. One

can argue for the same conclusion abstractly by considering a one-parameter

family of differentials dt acting in a graded vector space, and noticing that

dt-cohomology jumps only at values of t for which certain linear subspaces

have non-generic intersection, i.e., when certain equations on the parameter

are satisfied. In some cases, we will be able to explicitly identify the symmetry

that is enhanced when Q-cohomology jumps in rank as an R-symmetry of the

theory.

Let us note that this jumping behavior we are considering is to be contrasted

with wall-crossing. Wall-crossing occurs at loci of real codimension one in the

moduli space, known as walls of marginal stability. On these walls, the one-

particle BPS spectrum is no longer separated from the multiparticle contin-

uum, so that BPS states can decay into BPS constituents. When this occurs,

even the index will jump.
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Q+Q+

Q−

Q−

QA

QA

QB

QB

Figure 3.1: The reduced moduli space of scalar supercharges in the 2d N =
(2, 2) supersymmetry algebra (a tetrahedron in RP3). The nilpotent locus
(four of the six one-simplices) is indicated with thick lines.

We have identified two types of possible deformations to study. Let us begin

with the first kind, namely, which particular supercharge is chosen. The odd

part of a supersymmetry algebra is usually a vector space over C. Since we

will be interested in Q-cohomology, scaling a supercharge by a constant does

not affect the result, so that the moduli space of possible choices for Q can be

thought of as CPN (N being the number of real supercharges of the theory).

Within this moduli space, nilpotent supercharges will lie on a certain locus,

which need not (in fact, will almost never) be the whole of CPN . Rather, it is

a certain subvariety, described by the equations resulting from the condition

that Q2 = 0. Moreover, the nilpotent locus will not parameterize interesting

choices uniquely. There are bosonic symmetries of the theory that act nontriv-

ially on CPN and on the nilpotent locus inside it. To parameterize the possible

choices of supercharge without redundancy, one must quotient by these sym-

metries as well. Let us see how this looks in some examples.

Example 1: We begin by considering the N = (2, 2) supersymmetry algebra

in 2d. That algebra has four supercharges, and is defined by the commutation

relations

{Q+, Q+} =
1

2
(H + P ) := HL , {Q−, Q−} =

1

2
(H − P ) := HR ,

with all other anticommutators equal to zero.
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The odd part of the superalgebra is isomorphic (as a vector space) to C4,

and so the moduli space of supercharges is CP3, corresponding to a general

supercharge

Q = a+Q+ + a−Q− + b+Q+ + b−Q−.

Using the supersymmetry algebra, we find that

Q2 = a+b+H+ + a−b−H−.

It follows that Q is nilpotent only when the equations a+b+ = a−b− = 0

are satisfied. The nilpotent locus therefore consists of four distinct complex

lines in CP3. Each CP1 intersects two of the others (but not the third) in a

point; one should think of two horizontal and two vertical lines in the plane,

intersecting to form a square. Concretely, the variety has four components:

a+ = a− = 0, b+ = b− = 0; a+ = b− = 0, b+ = a− = 0.

The four intersection points correspond to the four individual supercharges

Q± and Q±.

Now we can ask how the bosonic Lorentz and R-symmetries act on our picture.

In this case, the action is simple to describe: it can be used to set all of the

phases of the coefficients to zero. The supercharges are U(1) eigenstates for

all three symmetries—Lorentz, JL, and JR. The three symmetries can be

used to set the phases of a± and b± all equal; the remaining overall phase is

eliminated upon passing to projective space. As such, after taking the quotient

by these symmetries, the reduced moduli space can be identified with the set

of points in RP3 for which all coordinates are positive. Fig. 3.1 depicts a three-

dimensional polyhedral region; in fact, it is a tetrahedron, whose four vertices

are the four supercharges Q± and Q±. (Eight such tetrahedra would comprise

the whole of RP3.) The nilpotent locus lies along four lines which are edges of

the tetrahedron, and fit together in a square: each line intersects two of the

other three in a single point.

For our purposes, we will often find it more convenient to describe the unre-

duced nilpotent locus and remember its symmetries separately.

Example 2: As another example, let us think about the 4d N = 1 supersym-

metry algebra. Again, there are four real supercharges, denoted Qα and Qα̇ in
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usual 4d notations. The supersymmetry algebra is

{Qα, Qα̇} = 2Pαα̇ ,

with all other anticommutators zero. If we consider a generic fermionic charge,

Q = aαQα + bα̇Qα̇ ,

it is clear that the nilpotent locus is described by the four equations

aαbα̇ = 0 , α, α̇ = 1, 2 .

These equations require that either a = 0 or b = 0, resulting in two nonin-

tersecting complex lines in CP3. Moreover, the Lorentz group SU(2)× SU(2)

acts transitively on each line, so that there are only two points (corresponding

to a single supercharge of either chirality) in the reduced moduli space. Thus,

the BPS states that contribute to the N = 1 superconformal index [178] are

the only possible Q-cohomology in N = 1 theories. (For a related remark on

the 4d chiral ring, see §3.1.)

Now, any choice of Q from the nilpotent locus allows one to define the Q-

cohomology of the theory. But how does the resulting cohomology vary as Q

is chosen from different points along the locus? To answer this question, let

us first consider a CP1 family of nilpotent supercharges,

Qt = t1Q1 + t2Q2 ,

associated to two anticommuting nilpotent supercharges Q1 and Q2. (This is

in fact the situation that applies to each component of the nilpotent locus in

Example 1.) A graded Hilbert space equipped with two anticommuting differ-

entials Q1 and Q2 is called a bicomplex or double complex by mathematicians,

and the relationship between the cohomology of a single differential and the

cohomology of a linear combination of the two has been studied in great de-

tail. It is described by a spectral sequence, which provides the answer to our

familiar question: How does Qt-cohomology depend on t?

In order to give intuition about what the spectral sequence is, we will consider

this example in great detail. Qt-cohomology will indeed jump as Qt varies, and

there are essentially three different cases, depending on the anticommutation

relations between the supercharges and their adjoints. We treat these from
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the least to the most general. For more detail, the reader is referred to [133].

Enhanced supersymmetry: We can ask that the two supercharges, together

with their adjoints, close into the N = 2 algebra of supersymmetric quantum

mechanics:

{Qi, Q
†
j} = 2δijH, {Qi, Qj} = 0.

In this case, the kernel of the positive self-adjoint operator H can be canoni-

cally identified with Qi-cohomology for either supercharge, and therefore with

Qt-cohomology for all t ∈ CP1. There is no jumping behavior.

Simple (but nontrivial) jumping: To see jumping behavior, we can imag-

ine relaxing the condition that the two supercharges square to the same Hamil-

tonian, while preserving the requirement that {Q1, Q
†
2} = 0:

{Qi, Q
†
j} = 2δijHj, {Qi, Qj} = 0. (3.1)

It follows from these relations that [H1, H2] = 0. Note that this algebra is

precisely the 2d super-Poincaré algebra we studied above in Example 1. In

this case, the positive operator whose kernel corresponds to Qt-cohomology is

Ht = {Qt, Q
†
t} = 2

(
|t1|2H1 + |t22|H2

)
.

For generic t, only states with H1 = H2 = 0 appear in Qt-cohomology. How-

ever, there are two special points: the poles [0 : 1] and [1 : 0] of CP1. At such

points, a state needs to saturate only one of the two BPS bounds Hi ≥ 0 to

contribute to the cohomology.

Let us recall that points of enhanced degeneracy, where Qt-cohomology jumps,

would be characterized by enhanced symmetry. This is indeed the case here:

there is a U(1)R symmetry of the algebra (3.1) under which Qi has charge

(−1)i+1. This symmetry does not commute with the operator Ht defining the

BPS condition, unless t is at one of the poles.

For this argument to hold up, we must assume that we started with a bigraded

vector space, and that the Qi have bidegrees (1, 0) and (0, 1) respectively.

These gradings correspond to left- and right-moving R-charge in Example 1,

and it is usual to assume their existence in the mathematical definition of a

bicomplex as well.
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Q1

Q2

S

Figure 3.2: A “staircase” representation in a bicomplex

A generic bicomplex: This is the most complicated example, in which it

becomes apparent that the notion of a spectral sequence can be nontrivial.

We relax all conditions on the commutation relation {Qi, Q
†
j}; in particular,

the commutation relations no longer a priori define a closed algebra. A new

bosonic operator S = {Q1, Q
†
2} appears, and there is no way to understand

the action of S or express it in terms of other bosonic operators on general

grounds.

In addition to the standard long representations and “shortened” representa-

tions (in which certain supercharges act by zero), there are now representations

of arbitrary dimension that take the form of “staircases” in which S acts non-

trivially (Fig. 3.2): The action of S is indicated by the dashed line in the above

picture; Q1 is represented by the horizontal arrows, and Q2 by the vertical ar-

rows. It is easy to see that the representation drawn in the picture contributes

no generators to Q1-cohomology (or in fact to Qt-cohomology for t 6= [0 : 1]),

but two generators to Q2-cohomology. Moreover, the two generators are not

canceled by the differential induced by Q1 on Q2-cohomology, since they do

not have the appropriate bidegrees.

The spectral sequence deals with this issue. It consists of a book with in-

finitely many pages; each page is a bigraded complex equipped with a certain

differential, and the (k + 1)-st page is the cohomology of the k-th page with

respect to its differential. One often denotes the pages by (Ek, dk), where

Ek =
⊕

E
(p,q)
k .

The E0 page is the original bicomplex; for the spectral sequence we are con-

sidering, d0 is Q2, and d1 is the differential induced by Q1. The differential

dk has bidegree (1 − k, k); it cancels pairs of generators that lie at opposite

ends of a staircase of length 2k. The cohomology of a generic supercharge Qt
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(where t is away from either pole of CP1) is the “E∞ page;” in general, one

should be careful about what it means for the spectral sequence to converge,

if differentials can occur on infinitely many pages.

In physical language, the bidegree in the original complex corresponds to two

commuting U(1) symmetries of the system. Let us call their generators U

and V . The original Qi are the only choices of supercharge that have well-

defined quantum numbers with respect to both of these; a generic Qt has

U +V -degree +1, but breaks the U −V symmetry. This means that, upon de-

formation, states cancel in adjacent U +V -degree, but can differ by any value

of the U − V quantum number (corresponding to page number in the spectral

sequence). However, by studying the deformation in detail, physical under-

standing may allow us to gain information about which pages’ differentials

may be nontrivial.

To conclude our discussion of generalities, we should say a couple of words

about deformation problems of the other type. So far, we have concentrated

on examples on the possibility of deforming the choice of Q in a fixed theory.

We could also ask about deforming moduli of the theory: for instance, adding

terms to the superpotential in a 2d N = (2, 2) theory. This will also give

rise to a spectral sequence, describing the changing spectrum of BPS states;

indeed, it is this type of deformation that will give rise to Lee’s and Gornik’s

spectral sequences [98, 138] between link homologies, which we will explore in

§3.2.

From elliptic genus to (twisted) chiral ring

Let us see how the rather abstract considerations of the previous section play

out concretely in some simple and down-to-earth examples. We will begin by

considering a 2d theory of an N = (2, 2) chiral superfield Φ = φ+ θψ + θ2F .

The supersymmetry transformations of the chiral multiplet are as follows:

[Q±, φ] = ψ±, Q±, φ] = ψ±, [Q±, φ] = 0, [Q±, φ] = 0,

{Q±, ψ±} = ±∂W
∂φ

, {Q±, ψ±} = ±∂W
∂φ

, (3.2)

{Q±, ψ±} = −2i∂±φ, {Q±, ψ±} = 2i∂±φ.

In (3.1), we have included a nonzero superpotential W (Φ) for later conve-

nience; our first example, though, will be a free chiral, for which W = 0.
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HL JL K index

φ 0 0 1 x

∂+φ 0 0 −1 qx−1

ψ+
1
2
−1 1 −q 1

2y−1x

ψ+
1
2

1 −1 −q 1
2yx−1

∂+ 1 0 0 q

Figure 3.3: Single letters in a chiral multiplet annihilated by Q−.

It is well-known that the elliptic genus counts Q-cohomology in a 2d N =

(2, 2) theory with signs. More precisely, the elliptic genus in the RR sector

counts right-moving ground states:

I(x; q, y) = TrRR(−1)F qHLqHRyJLxK ,

where JL is the left-moving R-charge and K is the generator of a flavor sym-

metry. Writing the fermion number F = FL+FR, one can see that only states

for which HR = 0 can contribute to the elliptic genus, and therefore that I

is a holomorphic function of q. (The same argument does not apply to the

left-moving quantum numbers because of the presence of the fugacity yJL .)

These states can be identified with either Q−-cohomology or Q−-cohomology.

We will choose to consider the cohomology of Q− in what follows.

To see spectral sequence explicitly (and for calculational convenience), we shall

calculate the elliptic genus in the NS-NS sector instead:

I(x; q, y) = TrNS-NS(−1)F qHLyJLxK .

In superconformal theories, the two indices contain identical information, thanks

to the spectral flow. However, in the NS-NS sector, the vacuum state is unique,

so that one can straightforwardly count operators without worrying about sub-

tleties due to fermion zero modes. The Ramond-sector calculation is given,

for example, in [16, 215].

From the transformations (3.1), one can read off the letters annihilated by

Q− that contribute to the elliptic genus [92]. In Table 3.3, we list them with

their charges under all relevant symmetries. Each such operator contributes

together with all of its left-moving derivatives (which are certain conformal

descendants). As a result, all modes (derivatives) from each letter contribute

a factor

(f ; q)∞ =
∏

k≥0

(1− fqk)
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to the elliptic genus, where f is the product of all fugacities for the field.

This factor appears in the numerator for fermions, and in the denominator for

bosons.

It is thus easy to see that the elliptic genus of a free chiral is given by

Iχ(q, y;x) =
(q1/2y−1x; q)∞(q1/2yx−1; q)∞

(x; q)∞(qx−1; q)∞
.

After a shift of y → q1/2y (which accounts, up to an overall normalization

factor, for spectral flow), we could also write it in the form

Iχ(q, y;x) = y−1/2 θ1(q, yx−1)

θ1(q, x−1)
. (3.3)

The Jacobi theta function which appears here is defined in terms of the vari-

ables q = e2πiτ and y = e2πiz as

θ1(q, y) := −iq1/8y1/2

∞∏

k=1

(1− qk)(1− yqk)(1− y−1qk−1) .

Now, let us now consider deforming the supercharge away from Q−, either in

the direction of QA = Q+ + Q− or in the direction of QB = Q+ + Q− (see

Fig. 3.1). Either of these deformations gives rise to a spectral sequence from

the elliptic genus to the A- or B-type chiral ring, which moreover collapses at

the E2 page. Thus, we can think of it as simply the differential induced by

Q+ or Q+ on the Q−-cohomology.

By the 2d N = (2, 2) supersymmetry algebra relations and the Jacobi identity,

one can easily see that all derivative operators are Q-exact with respect to

either QA or QB. Therefore only the “single letters” can contribute to the

chiral rings. More explicitly, for the twisted chiral ring (QA-cohomology) of a

free chiral, one can read off from (3.1) that the supercharge (differential) Q+

acts on the Q−-cohomology as

Q+ : ∂k+φ→ ∂k+ψ+ , Q+ : ∂k+ψ̄+ → ∂k+1
+ φ̄ , for k ∈ Z≥0 .

Therefore, the twisted chiral ring is trivial, consisting only of the identity oper-

ator. On the other hand, for the chiral ring (QB-cohomology), the supercharge

Q+ acts on the Q−-cohomology as

Q+ : ∂k+ψ+ → ∂k+1
+ φ, Q+ : ∂k+1

+ φ→ ∂k+1
+ ψ+ , for k ∈ Z≥0.
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It follows that the chiral ring is generated by the bosonic operator φ and the

fermionic operator ξ = ψ+ − ψ−. It is isomorphic to the graded polynomial

ring C[φ] ⊗ Λ∗[ξ] (see Fig. 3.4), and also to the unknot HOMFLY homology,

as we will see in §3.2. All in all, non-trivial jumps of Q-cohomology can be

seen as we move away from the vertices in Fig. 3.1 in either direction along

the nilpotent locus.

It follows from this that the index (3.3) can be written in the form

Iχ(x, y; q) =
1− y−1x

1− x + q(1− qy)B(x, y, q) , (3.4)

where the first term corresponds to the states contributing to the chiral ring

and the second term contains the contributions of operators paired by Q+.

Note that the charges of Q+ are HL = 1
2

and JL = 1, so that the action of Q+

corresponds to the factor (1 − qy). By an identical argument, we could also

write

Iχ(x; y, q) = 1 + (1− qy−1)A(x, y, q) , (3.5)

using the spectral sequence from the elliptic genus to the (trivial) twisted chiral

ring, which just consists of the differential induced from Q+.

It is worth remarking that the fugacity parameter y in the elliptic genus records

the charges of states under JL. When we consider the spectral sequence from

the elliptic genus to the chiral ring, the interpretation of y changes slightly.

States in the A- or B-type chiral rings are graded by only one surviving U(1)

R-symmetry: either axial or vector. The remainder is lost to the A- or B-type

topological twist. Powers of y in (3.4) and (3.5) above record the appropri-

ate remaining R-symmetry properties; however, the identification of y with a

vector or axial R-symmetry may require a charge conjugation, y ↔ y−1.

Deformation by superpotential

One of the attractive features of the elliptic genus is that it is invariant along

renormalization group flow trajectories, and therefore independent of the su-

perpotential W of a Landau-Ginzburg model, with one minor exception: W

determines the allowable R-charges of the fields in the superconformal IR the-

ory, and therefore prescribes the graded structure of the index. With this

subtlety in mind, the computation for a theory with a Landau-Ginzburg de-

scription is identical to that for a free theory.
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The reader may be tempted to conclude that no interesting spectral sequence

can therefore appear, relating elliptic genera as the superpotential is deformed.

But this is not true! While the elliptic genus is always described by the same

rational function, it depends on the R-charge assignment as well as on the

fugacities, and cancellations occur (or fail to occur) between the numerator

and denominator, depending on the precise values of the R-charges. These

cancellations reflect the disappearance of states from the Q−-cohomology.

To convince oneself, one can simply recall that the elliptic genus in the Ramond

sector contains the graded dimension of the chiral ring: the latter corresponds,

by spectral flow, to the set of Ramond vacua, which are counted by the elliptic

genus after setting q = 0. However, the chiral ring depends strongly on W ,

and spectral sequences of type 2 are therefore easy to see. The calculation

is easy to do directly in a theory with one chiral superfield. If one turns

on the superpotential W = φN+1, corresponding to a renormalization group

flow from a free theory in the UV to the AN superconformal minimal model

in the IR, the supersymmetry transformations are perturbed. In particular,

the fermionic operator ξ = ψ+ + ψ− that contributes to the elliptic genus

transforms according to the rule

{QB, ψ+ + ψ−} = 2
∂W

∂φ
= 2φN . (3.6)

The new differential induced on QB-cohomology is completely characterized

by (3.6). Therefore, in the presence of the superpotential W = φN+1, the

chiral ring of the theory is isomorphic to C[φ]/(φN). In the context of link

homology, turning on such a superpotential perturbs the spectrum of BPS

states, as described by the dN differential.

We can again write the elliptic genus in a form corresponding to (3.4), as the

graded dimension of the chiral ring plus an additional term corresponding to

operators that pair up after turning on the superpotential W = φN+1:

1− y−1x

1− x
W=φN+1

−−−−−→ (1 + x+ · · ·+ xN−1) +
xN − y−1x

1− x . (3.7)

The different fermionic numerator in (3.7)—as contrasted with (3.4)—corresponds

to the different degree assignments for the new differential. A helpful picture

of the spectral sequence from the unperturbed to the perturbed chiral ring is

shown in Fig. 3.4. This is exactly the dN differential [72, 173] on the HOMFLY
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homology of the unknot where the perturbed chiral ring is isomorphic to the

sl(N) homology of the unknot.

1 φ φ2 · · · φN φN−1 · · ·
· · ·

ξ φξ φ2ξ · · · φNξ φNξ · · ·

Figure 3.4: The action of the differential induced by turning on the superpo-
tential W = φN+1 on the B-type chiral ring of a single free chiral superfield.

It is interesting to notice that, after the superpotential interactions have been

turned on, only bosonic states remain in the BPS spectrum (or B-model chiral

ring). This leads to an important difference between perturbations correspond-

ing to the dN differentials and perturbations W = φN+1 → φN+1 + φM+1 that

carry the sl(N) theory to the sl(M) theory for M < N . The spectral sequences

induced by the latter deformations can only be trivial, since any differential

must cancel bosonic and fermionic states in pairs. This means that, under this

perturbation, we obtain an AM -type Landau-Ginzburg theory together with

some isolated massive vacua, which decouple in the IR limit (see Fig. 3.15).

As we will see in §3.2, these factors appear in deformation spectral sequences,

such as Gornik’s, as trivial sl(1) factors. For this reason, Gornik’s spectral

sequence never has any interesting differentials at all in the unknot homology.

For an example of a different type, let us look at one more interesting BPS

spectral sequence, related to the 2d N = (2, 2) superconformal gauged lin-

ear sigma model [213]. (We include this example, as well as the discussion

in §3.1, mostly to convince the reader that our discussion here is not limited

to the world of knots.) To that end, we write the on-shell supersymmetric

transformation of a vector multiplet

V = θ−θ̄−v− + θ+θ̄+v+ − θ−θ̄+σ − θ+θ̄−σ̄ + iθ2θ̄λ̄+ iθ̄2θλ+ θ2θ̄2D

as

[Q∓, v±] = ±iλ±, [Q∓, v±] = ±iλ±,
[Q−, σ] = −iλ−, [Q+, σ] = iλ+, [Q−, σ] = −iλ−, [Q+, σ] = iλ+,

[Q+, σ] = 0, [Q−, σ] = 0, [Q+, σ] = 0, [Q−, σ] = 0,
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HL JL index

∂+σ
1
2

1 q3/2y

σ 1
2
−1 q1/2y−1

λ+ 1 0 −q
λ+ 1 0 −q
∂+ 1 0 q

Figure 3.5: Single letters in a vector multiplet annihilated by Q−.

{Q+, λ+} = −2∂+σ, {Q−, λ−} = 2∂−σ, {Q±, λ±} = ∂σW̃ ,

{Q+, λ+} = −2∂+σ, {Q−, λ−} = 2∂−σ, {Q±, λ±} = ∂σ̄W̃ . (3.8)

The single letters that contribute to the elliptic genus are summarized in Table

3.5. Up to a shift of y, the elliptic genus of a vector multiplet can be written

as

IV (q, y) =
(q; q)∞(q; q)∞

(y−1; q)∞(qy; q)∞
=

iη(q)3

θ1(q, y)
,

where we use the Dedekind eta function

η(τ) = q1/24

∞∏

k=1

(1− qk) .

Now, let us study the simplest example of a superconformal gauged linear

sigma model: the T ∗CP1 model, which is a U(1) gauge theory with three

chirals Φ1,Φ2,Φ3, with gauge charges (1, 1−2) respectively. The Higgs branch

of the theory is the total space of the O(−2) line bundle (i.e. cotangent bundle)

over CP1. Introducing a flavor fugacity ai for each chiral, the elliptic genus of

the theory [16, 92] is

IT ∗CP1(q, y; ai) =
iη(q)3

θ1(q, y)

∫
dz

2πiz

θ1(q, z−1a1y)

θ1(q, z−1a1)

θ1(q, z−1a2y)

θ1(q, z−1a2)

θ1(q, z2a3y)

θ1(q, z2a3)

=
1

2

1∑

k,`=0

y−`
θ1(q, e2πi(k+`τ)/2a1a

1/2
3 y)

θ1(q, e2πi(k+`τ)/2a1a
1/2
3 )

θ1(q, e2πi(k+`τ)/2a2a
1/2
3 y)

θ1(q, e2πi(k+`τ)/2a2a
1/2
3 )

.

After integrating out the gauge fugacity z, the elliptic genus counts all gauge-

invariant operators comprised of letters from the three chirals and the U(1)

vector multiplet.

Next, we deform the supercharge Q− to either QA or QB. It is clear from (3.1)

and (3.8) that there is no non-trivial QB-cohomology in the vector multiplet,
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and the QB-cohomology consists of the gauge invariant operators that can be

written in terms of the following letters:

φ1 , φ2 , φ3 , ψ1+ − ψ1− , ψ2+ − ψ2− , ψ3+ − ψ3−.

Although it is tedious, one can convince oneself that the other Q−-cohomology

states are paired by Q+. As we have seen above, the generating function of the

chiral ring can be obtained by taking the q = 0 limit in the part of the elliptic

genus that the chiral multiplets contribute. More explicitly, we can write the

generating function as

IT ∗CP1χ ring = y−1 +
1

2

∑

i=0,1

(1 + (−1)ia1a
1/2
3 y)(1 + (−1)ia2a

1/2
3 y)(1− y)

y3(1 + (−1)ia1a
1/2
3 )(1 + (−1)ia2a

1/2
3 )

.

Similarly, the supercharge Q+ pairs all the Q−-cohomology states except the

twisted chiral operator σ̄. Because of the commutation relation {Q+, λ̄+} =

∂σ̄W̃ , the twisted chiral ring depends on the twisted superpotential W̃ , which

is known to receive quantum corrections. Actually, a one-loop computation

yields the effective twisted superpotential of this model [213]:

W̃eff(σ̄) = −tσ̄ −
∑

i

qi(σ̄ − ai)(log(qi(σ̄ − a1))− 1),

where t is the complexified FI parameter and qi are gauge charges. By solving

the vacuum equation

exp

(
∂W̃eff(σ̄)

∂σ̄

)
= 1,

we obtain the twisted chiral ring of the T ∗CP1 model

(σ̄ − a1)(σ̄ − a2)

4(σ̄ − a3)2
= e−t .

Since the effective twisted superpotential of a gauged linear sigma model is

dynamically generated, one can consider that the QA-cohomology can be ob-

tained from the Q−-cohomology via a dynamical BPS spectral sequence.

Remark on 4d chiral ring

We would like to briefly take note of an important, but subtle, distinction

between various constructions used in building invariants (Q-cohomology or

chiral rings) of quantum field theories. Specifically, every construction we

have mentioned so far—the (twisted) chiral rings in 2d and, BPS states that
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contribute to the elliptic genus [16, 92, 215] and 4d N = 1 index [178]—takes

the form of a Q-cohomology.

A 4d analogue of the chiral ring has also been considered in the literature (see

e.g. [38] and references therein). It is defined as the collection of operators

annihilated by all supercharges of one chirality, modulo any operator that is

exact with respect to any such supercharge. That is,

χ = (∩αKer Qα) / (⊕αIm Qα) .

However, the 4d chiral ring cannot be thought of as the Q-cohomology of any

supercharge, be it any of the Qα’s or any combination.

This is easy to see in an example. Consider a chain complex with three gen-

erators, one bosonic in degree zero and two fermionic in degree one. Let the

action of two supercharges be defined by

Q1φ = ψ1 , Q2φ = ψ2 , Qiψj = 0 .

Then bothQi-cohomologies, as well as (Q1+Q2)-cohomology, are one-dimensional,

with support in degree one. Moreover, the Euler characteristic of any possible

Q-cohomology must equal that of the complex itself, which is −1.

However, the chiral ring is empty, and has Euler characteristic zero! This

means that (despite its superficially similar construction) the chiral ring is not

any kind of Q-cohomology, and its behavior cannot be expected to follow the

same pattern.

Note that upon dimensional reduction to 2d, the 4d N = 1 algebra becomes

the N = (2, 2) algebra, and the two supercharges Qα of the same chirality

descend to the two supercharges that constitute QB in the reduced theory. So

it is tempting to suspect that the cohomology of
∑

αQα would give the 4d

chiral ring. But we have seen in two ways that this cannot be the case: by a

direct argument in the preceding paragraph, and in §3.1 by arguing that any

two linear combinations of the Qα are related by a Lorentz transformation in

4d, and so do not give different choices of Q in the reduced nilpotent moduli

space. When we dimensionally reduce to 2d, we break the Lorentz symmetry

from SO(4) = SU(2) × SU(2) to SO(2) × SO(2), and the quotient by this

smaller symmetry no longer identifies all choices of supercharge. This is why

it is possible to describe the chiral ring by a Q-cohomology in the dimensionally

reduced theory.
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BPS spectral sequences in 4d N = 2 SCFTs

In this subsection, we give an example of how the generalities we have been dis-

cussing apply in a setting that is quite far removed from the world of Landau-

Ginzburg models and link homologies, and therefore from the mainstream of

this paper. We do so both because we find the example interesting in its own

right, and in order to highlight (and convince the reader of) the breadth and

generality of the framework we have been discussing. We will explain how

various limits of the 4d N = 2 superconformal index [93] can be understood

as arising from BPS spectral sequences. To be self-contained, we will briefly

review the analysis in [93]; for more details, we refer the reader to the original

paper. The indices and relationships between them that we discuss here are

not novel; rather, the novelty consists in our interpretation of these results, and

the way in which many facts can be organized—and easily and systematically

understood—in our picture.

The fermionic part of the 4d N = 2 superconformal algebra SU(2, 2|2) can be

expressed as

{Qi
α, Qjα̇} = 2δijPαα̇, {Qi

α, Q
j
β} = {Qiα̇, Qjβ̇} = 0, (3.9)

{Siα̇, Sαj } = 2δijK
α̇α , {Sαi , Sβj } = {Siα̇, Sjβ̇} = 0 , (3.10)

{Qi
α, S

jα̇} = {Sαi , Qjα̇} = 0, (3.11)

as well as

{Qi
α, S

β
j } = 4(δij(M

β
α − i

2
δ βα D)− δ βα Ri

j) ,

{Siα̇, Qjβ̇} = 4(δij(M
α̇

β̇ + i
2
δα̇
β̇
D)− δα̇

β̇
Ri

j) . (3.12)

The 4d N = 2 superconformal index counts the 1/8-BPS states annihilated

by one supercharge and its superconformal partner (adjoint), say Q1−̇ and

S
1−̇

. In other words, it counts Q1−̇-cohomology, and these states saturate the

bound

δ̄1−̇ := {S1−̇
, Q1−̇} = E − 2j2 − 2R + r = 0 .

Recalling that R-symmetry indices are raised and lowered with the antisym-

metric invariant tensor εij, it is easy to see from (3.9) that the three super-

charges

Q1− , Q1+ , Q2+̇ ,

commute with Q1−̇ and S
1−̇

, so that the N = 2 superconformal index can

be defined by introducing fugacities ρ, σ, and τ for the corresponding bosonic
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generators of the commutant subalgebra SU(1, 1|2):

I(ρ, σ, τ) = Tr(−1)F ρ
1
2
δ1− σ

1
2
δ1+ τ

1
2
δ̃2+̇ e−β δ̃1−̇ . (3.13)

Here the δ’s can be read off from (3.12):

δ1− := {Q1−, S
1−} = E − 2j1 − 2R− r ,

δ1+ := {Q1+, S
1+} = E + 2j1 − 2R− r ,

δ2+̇ := {S2+̇
, Q2+̇} = E + 2j2 + 2R + r .

The usual parametrization in terms of fugacities (p, q, t) is related to (3.13)

via the change of variables

p = τσ , q = τρ , t = τ 2 . (3.14)

These parameters gives the (p, q) labels of the elliptic Gamma function as well

as the (q, t) variables for Macdonald indices. In terms of these fugacities, the

index can be expressed as

I(p, q, t) = Tr(−1)F p
1
2
δ1+ q

1
2
δ1− tR+r e−β δ̃1−̇ . (3.15)

As we did for the elliptic genus in §3.1 and §3.1, one can list single letters for

the N = 2 vector multiplet and half-hypermultiplet that contribute to the

index:

Letters E j1 j2 R r I(σ, ρ, τ) I(p, q, t)

φ 1 0 0 0 −1 σρ pq/t
λ1±

3
2
±1

2
0 1

2
−1

2
−στ, −ρτ −p, −q

λ̄1+̇
3
2

0 1
2

1
2

1
2

−τ 2 −t
F̄+̇+̇ 2 0 1 0 0 σρτ 2 pq

∂−+̇λ1+ + ∂++̇λ1− = 0 5
2

0 1
2

1
2
−1

2
σρτ 2 pq

q 1 0 0 1
2

0 τ
√
t

ψ̄+̇
3
2

0 1
2

0 −1
2

−σρτ −pq/
√
t

∂±+̇ 1 ±1
2

1
2

0 0 στ, ρτ p, q

Figure 3.6: Contributions to the index from “single letters,” with the equation
of motion ∂−+̇λ1+ + ∂++̇λ1− = 0. We denote the components of the adjoint
N = 2 vector multiplet by (φ, φ̄, λI,α, λ̄I α̇, Fαβ, F̄α̇β̇) and the components of the

half-hypermultiplet by (q, q̄, ψα, ψ̄α̇). The letters ∂αα̇ represent the spacetime
derivatives.

The authors of [93] have considered four limits of the index shown in Table 3.7.

These limits count states subject to enhanced BPS shortening conditions; after
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taking them, the index becomes simpler and can often be expressed in terms

of certain special functions.

Fugacities states annihilated by

Macdonald index σ → 0 Q1+, Q1−̇
Hall-Littlewood index σ → 0, ρ→ 0 Q1±, Q1−̇

Schur index ρ = τ Q1+, Q1−̇
Coulomb-branch index τ → 0 Q2+̇, Q1−̇

Figure 3.7: Various limits of the N = 2 index. The middle column lists the
specializations of fugacities. The right column indicates the supercharges that
annihilate states contributing to the corresponding index.

In fact, several (but not all) of these limits are related by BPS spectral se-

quences to the original index. To begin, there is a BPS spectral sequence from

Q1−̇-cohomology to the states annihilated by Q1+ and Q1−̇ (that contribute to

the Macdonald index). We can identify these states with the cohomology of

the perturbed supercharge Q1+ +Q1−̇.

To see this spectral sequence explicitly, note that the supersymmetry trans-

formations of the N = 2 vector multiplet can be written as follows:

δεAµ = iεiσµλ
i − iλiσµεi ,

δελi = Fµνσ
µνεi +

√
2iDµφσ

µεi +Dεi ,

δεφ =
√

2εiλ
i .

We also recall the transformations of the half-hypermultiplet, which are

δεqi = −
√

2εiψ +
√

2εiψ ,

δεψ = −
√

2iDµqiσ
µε̄i − 2F iεi .

From these supersymmetry transformations, one can see that the supercharge

Q1+ acts on the Q1−̇-cohomology by

Q1+ : ∂k±+̇φ→ ∂k±+̇λ1+ , Q1+ : ∂k±+̇F +̇+̇ → ∂k±+̇∂++̇λ1+̇ ,

Q1+ : ∂k±+̇ψ+̇ → ∂k±+̇∂++̇q ,

for k ∈ Zk≥0. Thus, the single letters that contribute to the Macdonald index

consist of λ−, λ+̇, q and ∂−+̇ which satisfy δ1+ = 0. At the level of the N = 2

index, one can write

Ifull(ρ, σ, τ) = IMac(ρ, τ) + σ(1− ρ−1τ)A(ρ, σ, τ) .
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Since the supercharge Q1+ has δ1− = −2 and δ2+̇ = 2, the spectral sequence

due to Q1+ corresponds to the factor (1− ρ−1τ). This is why the Schur limit

ρ = τ also leads to the same 1/4-BPS condition as the Macdonald limit σ → 0

does.

There is also a BPS spectral sequence from Q1−̇-cohomology to the states

annihilated by Q2+̇ and Q1−̇ (that contribute to the Coulomb-branch index).

For the two kinds of multiplet we are considering, the action of Q2+̇ on Q1−̇-

cohomology is

Q2+̇ : ∂k±+̇λ1± → ∂k+1
±+̇

φ , Q2+̇ : ∂k±+̇λ1+̇ → ∂k±+̇F +̇+̇ ,

Q2+̇ : ∂k±+̇q → ∂k±+̇ψ+̇ ,

for k ∈ Zk≥0. Thus, φ is the only single letter that contributes to the Coulomb-

branch index. At the level of the index, the relation between the full N = 2

index and the Coulomb-branch index can be written as

Ifull(ρ, σ, τ) = ICoulomb(σ, ρ) + τ(1− σρ)B(ρ, σ, τ) ,

where the action of Q2+̇ amounts to the factor (1−σρ), since the supercharge

Q2+̇ has δ1− = 2 and δ2+̇ = 2. This implies that the Coulomb-branch index

can be also obtained by taking the specialization σ = ρ−1 in the full N = 2

index.

Moreover, by checking the commutation relations (3.9) and (3.12) above, the

reader may check using the general methodology we outlined in §3.1 that both

of these spectral sequences must collapse at the E2 page; that is, there are no

interesting higher differentials.

In contrast with this, the states satisfying the 3/8-BPS condition and con-

tributing to the Hall-Littlewood index cannot be thought of as theQ-cohomology

of any choice of supercharge. Analogous to what we have seen for the 4d chi-

ral ring in §3.1, the action of the Lorentz group relates the supercharges Q1±,

so that the cohomology of Q1+ +Q1− +Q1−̇ must be identical to that of just

Q1++Q1−̇. Thus, the Hall-Littlewood index is not the graded dimension of any

Q-cohomology, and one cannot see a spectral sequence from Q1−̇-cohomology

(or from the Macdonald index) to the 3/8-BPS states. Indeed, it is easy to

see that the supercharge Q1− must act trivially on states contributing to the

Macdonald index in another way: it carries charge δ1+ = −2 for the fugac-

ity σ—but this has already been set to zero.
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D1 D2W (x)

Figure 3.8: A Landau-Ginzburg model on a strip

LG models on a strip

Let us now consider yet another example of jumping behavior of BPS spectra

under deformations of a theory, which will bring us back towards our goal of

understanding spectral sequences between knot homologies. In contrast with

those in §3.1, this example is a spectral sequence of the second type (i.e. as-

sociated to moduli of the theory, rather than to a choice of supercharge). Its

novelty consists in two features: (1) we are considering an RG flow trajectory

between two interacting theories, and (2) we include certain boundary condi-

tions or defects. The context will still be that of Landau-Ginzburg theories,

but we will consider open-string rather than closed-string BPS states.

Let us consider the three-parameter family of Landau-Ginzburg superpoten-

tials

W (x) = (x− u1)(x− u2)(x− u3) , (3.16)

corresponding to the relevant perturbation of the A2 minimal model W = x3.

We are interested in the spectrum of open-string states when the LG model

described by W (x) is placed on a strip (Fig. 3.8). Each side has a boundary

condition, which may be chosen independently. Possible choices of boundary

condition that preserve B-type supersymmetry in Landau-Ginzburg theories

are described by matrix factorizations of the superpotential.

A matrix factorization D is a Z2-graded free module over a polynomial ring R,

equipped with an odd endomorphism Qbd that squares to a polynomial poten-

tial W ∈ R:

Qbd : D → D, Q2
bd = W · idD .

The variables of R correspond to the chiral superfields of the model, and Qbd

specifies the action of the unbroken supercharge QB on the boundary degrees
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of freedom. If the matrix factorization has rank one, so that D = R0⊕R1, we

can write Qbd in components as

Qbd =

(
0 f

g 0

)
.

One could also write the matrix factorization as

R0
f−→ R1

g−→ R0 .

Every choice of superpotential admits a trivial rank-one matrix factorization,

for which the boundary supercharge is simply

R0
1−→ R1

W−−→ R0 .

We will often regard two matrix factorizations as equivalent if one can be

obtained from the other by taking the direct sum with some number of trivial

matrix factorizations.

We will denote the space of maps from D1 to D2 (considered as graded R-

modules) by Mat(D1,D2) ∼= D1 ⊗ D2; it can be thought of as a space of

matrices. Furthermore, the boundary supercharge Qbd for the tensor product

D1 ⊗ D2 makes Mat(D1,D2) into a Z/2Z-graded complex. The cohomology

H∗(D1,D2) of this complex is the space of open-string BPS states between

these two boundary conditions. As we will see in §3.2, the generators in

H∗(D1,D2) are also called defect-changing operators.

Let us see how the spectrum of open-string BPS states jumps in the parameter

space of the potential (3.16). We explicitly specify the two boundary conditions

for the potential (3.16) as

D1 : R0
x−u1−−−−→ R1

(x−u2)(x−u3)−−−−−−−−−→ R0

D2 : R0
x−u2−−−−→ R1

(x−u1)(x−u3)−−−−−−−−−→ R0 ,

where R = C[x]. Note that these boundary conditions are unobstructed: they

make sense over the whole parameter space of the superpotential.

We then calculate their tensor product

D1 ⊗D2 :



R⊕

R




0

d0−→



R⊕

R




1

d1−→



R⊕

R




0

,
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where the maps are defined

d0 =

[
x− u1 u2 − x

−(x− u1)(x− u3) (x− u2)(x− u3)

]
, d1 =

[
x− u2 x− u2

x− u1 x− u1

]
.

The cohomology of this system is

H0(D1,D2) = Ker d0/Im d1 ∼=
{

C[x]/(x− u) for u1 = u2 = u

1 for u1 6= u2

,

H1(D1,D2) = Ker d1/Im d0 ∼=
{

C[x]/(x− u) for u1 = u2 = u

1 for u1 6= u2

.

Therefore, at the locus u1 = u2 (of complex codimension one) in the parameter

space (u1, u2, u3), we can see a jump of the BPS spectrum. Away from the

locus, the BPS states disappear in pairs, one bosonic and one fermionic, just

as we expected would happen.

It is straightforward to generalize this result to the perturbation of AN minimal

models. Suppose that the potential is

W (x) =
∏

ui∈S

(x− ui) for |S| = N,

and we have the two boundary conditions

Q
(1)
bd =

[
0

∏
ui∈U2

(x− ui)∏
ui∈U1

(x− ui) 0

]

Q
(2)
bd =

[
0

∏
ui∈V2(x− ui)∏

ui∈V1(x− ui) 0

]
,

where U1 ∪U2 = V1 ∪V2 = S. (These unions are not necessarily disjoint, since

roots will occur in the set S with some multiplicity.) The BPS spectrum turns

out to be

H0(D1,D2) ∼= H1(D1,D2) ∼= C[x]∏
U1∩U2∩V1∩V2(x− ui)

. (3.17)

It is thus easy to see that the jumping phenomena of this type are ubiqui-

tous in LG model on a strip when one varies parameters of the potential,

corresponding to relevant deformations of AN -series minimal models.

There is one other important point to note. We stated that the spaceH(D1,D2)

of open-string BPS states should be taken as the space of morphisms in the cat-

egory of B-type boundary conditions. However, our calculation (3.17) shows
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that this space can in fact empty, even when D1 and D2 are the same defect!

For instance, consider the following boundary condition:

D : R0
(x−u)p+1

−−−−−−→ R1
(x−v)q+1

−−−−−−→ R0 . (3.18)

The relevant superpotential is clearly W = (x−u)p+1(x− v)q+1. When u = v,

D is a nontrivial rank-one boundary condition in the Ap+q+1 minimal model,

and

dimH0(D,D) = min(p+ 1, q + 1) > 0 .

In fact, we would expect that it must be, since any category must admit at

least the identity morphism from an object to itself. Notice, however, that

if either boundary condition were the trivial matrix factorization (p = −1),

the space of morphisms would be zero-dimensional. This is in keeping with

our claim above that the trivial defect “decouples” from the actual category

of boundary conditions: it has zero morphisms with any object, even itself.

Now let us consider deforming u and v away from one another. Our calcula-

tion (3.17) shows that as soon as this is done, dimH0(D,D) = 0! Not even

an identity morphism is present. Nevertheless, this is not a problem, and in

fact should have been expected. The theory described by the perturbed su-

perpotential no longer has a unique vacuum state. Rather, it has two vacua;

one corresponding to an Ap conformal theory and the other to an Aq confor-

mal theory. The theory splits into two superselection sectors, which do not

interact. Therefore, one ought to think of the boundary condition (3.18) as

representing a kind of composite of the trivial defect in the Ap theory and

the trivial defect in the Aq theory. The idea that boundary conditions form

a category applies to the collection of boundary conditions in a fixed theory;

the idea breaks down in the presence of superselection sectors.

Moreover, models of this type actually include LG models on a cylinder, with

any number of defects extended in the time direction! This will be exactly the

setup that we find in the context of knot homology. For example, consider a

LG model with two defects on a cylinder. If the two domains separated by

the defects have different potentials in the same variable (chiral field) x, i.e.

W1(x) and W2(x), this is equivalent to LG model on a strip with the potential

W1(x) −W2(x) by using the folding trick as in Fig. 3.9b. Thus, interesting

spectral sequences occur in this model under deformation of the potentials, in

contrast to the unknot case where the two domains have the same potential of
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different variables, W (x) and W (y), as in Fig. 3.12. Even with more than two

defects (as in Fig. 3.11), the LG model on a cylinder undergoes the spectral

sequence under the deformations of superpotentials if all the potentials are of

the same variable x. As we will explain later, one can fuse the defects together

one by one, until only two remain.

3.2 Fivebranes and links

In this section, we study homological invariants of knots and links using the

bird’s-eye view of fivebrane systems [59, 108, 112, 168, 218]. The physical

realizations of link homologies predict their rich structural properties, which

are accomplished by action of differentials and algebras [72, 99, 100, 113, 173].

In particular, we build a new vantage point in terms of Landau-Ginzburg

model in the fivebrane systems for link homologies §3.2. In this viewpoint,

the considerations in §3.1 will give a physical understanding of Lee-Gornik

spectral sequences [98, 138] of sl(N) link homology in §3.2. Since our focus

will change and in fact grow much more specific in what follows, the reader

can think of this section as an introduction to the second part of the paper,

which will investigate the color-dependence of link homology.

There are several good reasons why the focus of knot theory in the twenty-

first century has shifted from polynomial invariants to their categorified (i.e.

homological) versions [56]. By definition, a categorification of a (Laurent) po-

lynomial with r variables is a (r + 1)-graded homology theory whose graded

Euler characteristic is the polynomial in question. As such, it is usually a

stronger invariant of knots and links, since some information is lost in passing

to the Euler characteristic. More importantly, there are many operations one

can do with vector spaces that are simply impossible at the polynomial level

(maps, for instance), which opens a door into the beautiful world of homolog-

ical algebra.

The quantum group invariants PG
λ1,...,λn

(L; q) computed by Chern-Simons TQFT

[176, 212] provide an infinite set of polynomial link invariants that depend on

the choice of gauge group G, representations λi of G (one for each link compo-

nent), a variable q (related to the coupling constant of Chern-Simons theory),

and, of course, the link L itself. All these polynomial invariants have a re-

markable property: they are (Laurent) polynomials in variable q with integer

coefficients. Therefore, they should be categorified by doubly graded homology



128

theories. Luckily, by now these homology theories have been constructed [53,

85, 131, 205, 221, 224] for any choice of G and ~λ = (λ1, . . . , λn), of which the

most familiar example is probably Khovanov homology [128] corresponding to

G = SU(2) and λi = �. However, how exactly do these invariants depend on

the “representation theory data” G and ~λ = (λ1, . . . , λn)?

The dependence of PG
~λ

(L; q) on the group G turns out to be very simple for

classical groups of Cartan type A, B, C, or D. For each of these root systems,

the dependence on the rank is beautifully packaged by a 2-variable polynomial

invariant: the colored HOMFLY polynomial P~λ(L; a, q) for Cartan type A and

the so-called colored Kauffman polynomial F~λ(L; a, q) for groups of type B,

C, or D. Thus, for G = SU(N) one has

P
SU(N)
λ1,...,λn

(L; q) = Pλ1,...,λn(L; a = qN , q) . (3.19)

This means that quantum group invariants for different groups are not that

different after all; there is a lot of regularity captured by the extra variable a.

Since for each choice of λi the colored HOMFLY polynomial Pλ1,...,λn(L; a, q)

depends on two variables, a and q, its categorification must be a triply-graded

homology theory. The existence [112] and properties [72] of this homology

theory came from physics as a surprise, contrary to the expectations in math

literature; see e.g. [129]. In the “uncolored” case, i.e. when all λi = �, the

triply-graded HOMFLY homology has been given a rigorous mathematical def-

inition [132, 206]. Moreover, the Poincaré polynomial of the colored HOMFLY

homology (often called colored superpolynomial)

P~λ(L; a, q, t) :=
∑

i,j,k

aiqjtkdim H~λ(L)i,j,k (3.20)

is, roughly speaking, an intermediate object: much like colored HOMFLY

polynomial, it is still a polynomial (with positive integer coefficients), but it

captures more information and provides a window into a homological world.

However, the construction of triply-graded homology to general groups with

arbitrary “color” label ~λ = (λ1, . . . , λn) as well as the computations of their

Poincaré polynomials (even for simple knots) remain a major challenge. This

makes any predictions especially valuable. In fact, using the perspective of

fivebrane systems, many predictions and conjectures on structure of colored

knot homologies have been made [72, 99, 113, 115, 161], which enables us

to determine colored superpolynomials of many knots [89–91, 160, 161]. The
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structure of knot homology appears as a large set of differentials, called dN and

colored differentials, which should be formulated in terms of spectral sequences

[173]. As such, we first provide a physical meaning of spectral sequences in

link homology based on the understanding in §3.1.

From the next section, we will study the structure of link homology as well

as the “color”-dependence ~λ = (λ1, . . . , λn). Actually, there is an important

difference between HOMFLY invariants of knots and links. Unlike the re-

duced colored HOMFLY polynomial for a knot which is a genuine Laurent

polynomial, in the case of links it has a nontrivial denominator. Since the

corresponding homology theory that categorifies it is consequently infinite-

dimensional, colored HOMFLY homology of links loses some of properties for

that of knots, which makes the analysis more difficult. However, the link ho-

mology turns out to enjoy surprising regularities in its dependence on color
~λ = (λ1, . . . , λn), that can be described in terms of sliding properties, homo-

logical blocks, and associated varieties. The reader is referred to the published

version [109] for more on these results.

Link homology as Q-cohomology

In every extant physical approach to homological link invariants, they are

realized as spaces of BPS states annihilated by a supercharge Q (modulo Q-

exact states), which are also known as BPS states [67, 108, 112, 218] (see also

[1] for torus knots):

H~λ(L) ∼= {Q-cohomology} ≡ HBPS . (3.21)

Moreover, in every physical realization of link homologies all spatial dimen-

sions are effectively compact, so that the system reduces to supersymmetric

quantum mechanics in one non-compact “time” direction Rt.

All physical approaches to link homologies are essentially different ways to

look at the same physical system, which has two phases—“deformed conifold”

and “resolved conifold”—related by the geometric transition [97]. The former

describes doubly-graded sl(N) link homologies for fixed N , whereas the latter

reproduces triply-graded HOMFLY homologies:

deformed conifold ⇔ doubly-graded sl(N) homology

resolved conifold ⇔ triply-graded HOMFLY homology
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On the “deformed conifold” side the physical setup is:

space-time: Rt× TN4 × T ∗S3

N M5-branes: Rt× D × S3

M5′-branes: Rt× D × ML

(def-M5)

where TN4
∼= R4

ε1,ε2
is the Taub-NUT 4-manifold, D ∼= R2

ε1
is the two-

dimensional “cigar” (holomorphic Lagrangian submanifold) in the Taub-NUT

space, and the Lagrangian 3-manifold ML ⊂ T ∗S3 is the conormal bundle to

the link L ⊂ S3, such that

L = S3 ∩ML .

After the geometric transition (i.e. on the “resolved conifold” side) the corre-

sponding system is

space-time: Rt × TN4 × X

M5′-branes: Rt × D × ML

(res-M5)

The effective 3d N = 2 theory on Rt ×D is what is often called T [ML]; it is

a 3d N = 2 theory labeled by a 3-manifold ML, or equivalently by the link L

[49, 55, 63–65, 67, 89–91, 139, 194, 222].

To be more precise, the BPS states in question are the so-called open BPS

states H (L) ∼= H open
BPS , meaning that they are represented by bordered Rie-

mann surfaces in X with boundary on ML. In contrast, the closed BPS states

are represented by membranes supported on closed holomorphic curves in X,

with no boundary. In other words, the space of open BPS states is determined

by the pair (X,ML), whereas the space of closed BPS states depends only on

X. It has been conjectured [117] that closed BPS states form an algebra A.

Similarly, in [113] it was argued that open BPS states furnish a module M for

this algebra:

(refined) open BPS states : M := H open
BPS

	

(refined) closed BPS states : A := H closed
BPS

(3.22)

In fact, this relation between closed and open BPS states is supposed to hold

in general, regardless of the specific nature of the Calabi-Yau 3-fold X and the

Lagrangian subvariety ML. (In this general context, the notion of refined BPS

states exists only for rigid X.) However, in application to knots, the action

of A on triply-graded homology (3.21) is especially useful and accounts for
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certain differentials that act on colored HOMFLY homology [113]. Although

at present one can only identify certain elements of A but not the entire

algebra, it is expected to be related to the double affine Hecke algebra [46]

and the rational Cherednik algebra [100] for torus knots. (See also [159] for a

review.)

Both systems (def-M5) and (res-M5) enjoy a U(1)P × U(1)F symmetry that

acts on TN4 and gives rise to two gradings (= conserved charges), q-grading

and t-grading∗:

TN4
∼= R4

ε1,ε2
, D ∼= R2

ε1
, q = eε1 , t = −e−(ε1+ε2) . (3.23)

In addition, the system (res-M5) has U(1)a gauge symmetry in five dimensions

Rt × TN4 that gives rise to the a-grading of HOMFLY homology. Indeed,

compactification of eleven-dimensional M-theory on the resolved conifold X is

a simple example of geometric engineering of SUSY gauge theories [126], that

in the present case engineers a super-Maxwell theory on Rt× TN4 with gauge

group U(1)a.

The Omega-background [162] associated with the isometry U(1)P × U(1)F

implements equivariant localization to the fixed point, the origin {0} ∈ TN4.

As a result, the effective theory on the branes in (def-M5) and (res-M5) is

(0 + 1)-dimensional quantum mechanics with only one supercharge Q and its

hermitian conjugate Q†:

{Q,Q†} = 2H.

There are two standard ways to describe knots and links in this setup: either

via Wilson / ’t Hooft line operators (that are naturally labeled by representa-

tions of G = SU(N)) or via monodromy defects (that are labeled by G-valued

holonomies). The system (def-M5), where knots and links are introduced via

M5′-branes supported on Rt×D×ML, provides a realization of the monodromy

defects.

In order to obtain a realization based on Wilson and ’t Hooft operators one

needs to replace the set of M5′-branes in (def-M5) by M2′-branes (a.k.a. mem-

∗Up to exchange of ε1 and ε2, this identification and its relation with the refinement of
topological string [122], the Nekrasov-Shatashvili limit [163], etc. is explained in [90, §4].
Note that the unrefined limit corresponds to ε1 = −ε2, i.e. t = −1.
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branes):

space-time: Rt× TN4 × T ∗S3

N M5-branes: Rt× D × S3

M2′-branes: Rt× {0} × ΣL

(def-M2)

where ΣL is the total space of T ∗L ⊂ T ∗S3 that meets the zero section,

S3, along the link L. Interestingly, these two systems are connected by the

Hannay-Witten effect [59, 84]; when we push the M5′-branes to the cotangent

fiber of T ∗S3, the M2′-branes are dynamically generated.

Now, if we perform the geometric transition starting with the system (def-M2),

then on the “resolved conifold” side we get

space-time: Rt × TN4 × X

M2′-branes: Rt × {0} × ΣL

(res-M2)

which seems to be a new duality frame, little studied in the literature.†

Our goal is to use the physical systems (def-M5) and (def-M2) (resp. (res-M5)

and (res-M2)) to explain the structural properties and, ideally, compute the

doubly-graded sl(N) homologies (resp. the triply-graded HOMFLY homolo-

gies) denoted by H sl(N)
~λ

(L) (resp. H~λ(L)) in (3.21).

Effective quantum mechanics

In all of the four duality frames, equivariant localization (i.e. the Omega-

background in the directions of TN4) effectively reduces the theory to a quan-

tum mechanics with “time” direction Rt and two real supercharges, Q and

Q†. The space of supersymmetric states in this effective quantum mechanics

is the desired space H (L), which is invariant under isotopies of L ⊂ S3 due

to the topological twist along the S3 directions. Because of this, in (def-M5)

and (def-M2) we could, in fact, replace S3 by any 3-manifold M3 without

breaking any of the symmetries or supersymmetries. In particular, one could

still associate a Hilbert space H (M3, L) of supersymmetric states to a link

L ⊂ M3 defined as Q-cohomology, which should be an exciting direction for

future research. In this paper, we focus on the simplest case M3 = S3 merely

†Part of the reason this system is more subtle than its counterpart (res-M5) involving
M5-branes is that it is more difficult to “lift” M2-branes off the M5-branes in (def-M2).
The resulting surface ΣL in (res-M2) has asymptotic boundary ∂ΣL = L ⊂ S3 ⊂ ∂X and
presumably can be constructed along the lines of [193].
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for simplicity and in order to keep contact with current mathematical devel-

opments, which at this stage are limited to colored link homologies in S3.

As explained e.g. in [108], closing up the time direction Rt into a circle corre-

sponds to “decategorification.” In other words, replacing Rt by S1 in (def-M5),

(res-M5), (def-M2), and (res-M2) gives physical systems effectively compact

in all directions. Therefore, instead of producing the Hilbert space H (L) as

in 0 + 1 dimensional quantum mechanics, this 0-dimensional system computes

the partition function, which is the graded Poincaré polynomial of H (L). In

duality frames (res-M5) and (res-M2) it yields the colored superpolynomial

(3.20), whereas in duality frames (def-M5) and (def-M2) it gives the Poincaré

polynomial of the doubly-graded sl(N) link homology,

P̄sl(N)
~λ

(L; q, t) :=
∑

i,j

qitjdim H̄ sl(N)
~λ

(L)i,j .

The richness of physics does not stop with the four duality frames (def-M5),

(res-M5), (def-M2), and (res-M2). In each of the duality frames, one can look

at the Q-cohomology (3.21) in a number of different ways. (See [113, 159]

for overviews of different vantage points.) For example, looking at it from

the vantage point of the Calabi-Yau 3-fold gives a description of H (L) in

terms of enumerative invariants. A look from the vantage point of Rt × TN4

gives a description of the space H (L) in terms of gauge theory with a surface

operator. Focusing on the physics of the surface operator leads to yet another

equivalent description of the same system (and hence the space H (L)) as the

space of BPS states in the 3d N = 2 theory T [ML] on Rt ×D. In particular,

this provides an identification of the effective quantum mechanics in question

with a 3d-5d coupled system in the Omega-background. Schematically,

Quantum mechanics ∼= 3d N = 2 theory T [ML]

on Rt on Rt × R2
ε1

where we used the identification (3.23).

Link homology and fusion of defect lines in LG models

Note that in (def-M5), (res-M5), and (def-M2) the most “interesting” part of

the setup (where the physical degrees of freedom that contribute to H (L)

“live”) is actually the four-dimensional factor

Rt × R2
ε1
× L ,
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where we used (3.23) to emphasize that D ∼= R2
ε1

is effectively compact due

to Omega-background. (For instance, the equivariant volume Vol(D) = 1
ε1

is

finite for finite values of ε1.) In the setup (res-M2) the physical degrees of

freedom that contribute to H (L) live on Rt × L (so that D does not even

appear as part of their support). In either of these cases, what is the effective

theory on Rt × L ∼= Rt × S1?

In the deformed conifold side with either the probe M5′-branes (def-M5) or

the probe M2′-branes (def-M2), it was argued [113, 115] that the answer to

this question involves Landau-Ginzburg (LG) models that appear [130–132]

in Khovanov-Rozansky formulation of link homologies. Indeed, in order to

understand the effective theory on Rt×L away from crossings, one can choose

L to be a piece of strand or an unknot that runs, say, along the great circle

(the “equator”)

S1
σ ⊂ S3 , (3.24)

parametrized by a (periodic) coordinate σ (Fig. 3.13). Then, the effective

theory on Rt×L describes a surface operator coupled to a 4d topological field

theory on Rt × S3 [48]. And, if L covers S1
σ k times, the physics on Rt × S1

σ

away from crossings can be described by a LG model with the superpotential

W = Wλ1 + . . .+Wλk ,

where λi’s are representations (“colors”) carried by the strands, cf. Fig. 3.13.

For instance, when λ = � is the fundamental representation one recovers the

potential

W = xN+1 (3.25)

used by Khovanov-Rozansky in construction of sl(N) link homology [131]. We

will use the physical realization of Khovanov-Rozansky homology [131, 132]

to understand the physical origin/meaning of the differentials and spectral

sequences connecting different link homology to one another.

In the construction of link homology given by Khovanov-Rozansky, a cone of

two matrix factorizations is assigned to each crossing of a knot, as we shall

review in greater detail in what follows. Recall from §3.1 that matrix factor-

izations represent B-type boundary conditions in Landau-Ginzburg models.

Moreover, defects (interfaces) can also be represented by matrix factorizations

[36], via the folding trick (Fig. 3.9b). A B-type defect D joints together a LG

theory with chiral superfields xi and a superpotential W1(xi), and a different
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D

W2(y)W1(x)

yx

(a) A defect between two
LG models

D

=

D

W2(y)W1(x)

−W2(y)

W1(x)

(b) The folding trick

Figure 3.9: Topological defects in two-dimensional theories.

LG theory with superfields yi and a superpotential W2(yi) (Fig. 3.9a). The

B-type defect is described in the language of a matrix factorization with the

potential W (xi, yi) = W1(xi)−W2(yi):

R0
d+−−→ R1

d−−−→ R0 , d+ ◦ d− = d− ◦ d+ = W1(xi)−W2(yi) ,

where R0 and R1 are the polynomial ring C[xi, yi].

D

→ ←

D̃ D ∗ D̃

W3(z)W2(y)W1(x) W3(z)W1(x)

Figure 3.10: Fusion of topological defects, which is described by a tensor
product of the corresponding matrix factorizations.

Since these defects are topological, one can move and distort them in general.

In particular, two defects D and D̃ can be put on top of each other, creating

a new defect D ∗ D̃, which is usually called a fusion of the defects (Fig. 3.10).

The fusion amounts to taking the tensor product of the matrix factorizations

D and D̃ defined by

D ⊗ D̃ :



R0 ⊗ R̃0⊕

R1 ⊗ R̃1




0

d0−−−−→



R1 ⊗ R̃0⊕

R0 ⊗ R̃1




1

d1−−−−→



R0 ⊗ R̃0⊕

R1 ⊗ R̃1




0

,

(3.26)
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D3D2D1
Dn

W1 W2 W3 · · ·

W1 W2

W3 D3

D2

D1Dn

···•
O

defect changing operator

conf. map

Figure 3.11: Landau-Ginzburg theory with defects on a cylinder. Via the state-
operator correspondence, the BPS states of the LG model can be identified
with the defect-changing operators.

where the differentials are defined by

d0 =

[
d+ ⊗ id id⊗ d̃+

−id⊗ d̃− d− ⊗ id

]
, d1 =

[
d− ⊗ id −id⊗ d̃+

id⊗ d̃− d+ ⊗ id

]
,

which satisfies d0 ◦ d1 = d1 ◦ d0 = W1(x)−W3(z). In fact, the resulting matrix

factorization is generally of infinite rank. Physically speaking, the chiral fields

y squeezed in between the two defects are promoted to new degrees of freedom

on the new defects when the two defects coincide. However, if both D and

D̃ are of finite rank, the matrix factorization (D ⊗ D̃)C[x,z] can be reduced to

finite rank by throwing away an infinite number of trivial matrix factorizations.

After this reduction, we denote the resulting matrix factorization by

D ∗ D̃ := (D ⊗ D̃)red
C[x,z] .

If there are n defects with the superpotentials W1, . . . ,Wn and Wn+1 = W1,

one can think that the LG model with the defects is placed on a cylinder. The

tensor product C = ⊗iDi is a tensor product of the matrix factorizations Di
of the potentials Wi −Wi+1; since d2 =

∑n
i=1Wi −Wi+1 = 0, it is a complex.

The homology H∗(D1,D2, · · · ,Dn) of this complex is the BPS spectrum of

the theory. By the state-operator correspondence, the BPS spectrum can be

identified with the spectrum of operators at the junctions of the defects [36]

(Fig. 3.11).

The LG model with defects on a cylinder is very akin to the Khovanov-

Rozansky construction. For example, the unknot can be represented as a clo-
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sure of braid on one strand, i.e. as two semi-circles glued together (Fig. 3.12.a).

The first semi-circle is represented by a matrix factorizationD1 of W (x)−W (y)

R0
x−y−−−→ R1

p−−−−→ R0 , (3.27)

and the second semi-circle corresponds to a matrix factorization D2 of W (y)−
W (x)

R0
y−x−−−→ R1

p−−−−→ R0 , (3.28)

where R = C[x, y] and

p = p(x, y) =
W (x)−W (y)

x− y .

The homology of the unknot is given as the homology of the tensor product

(3.26) of the matrix factorizations (3.27) and (3.28):



R⊕

R




0

d0−→



R⊕

R




1

d1−→



R⊕

R




0

, d0 =

[
x− y y − x
−p p

]
, d1 =

[
p x− y
p x− y

]
.

It is easy to see that d0 ◦d1 = d1 ◦d0 = 0. Consequently, a simple computation

yields

H0 = Ker d0/Im d1 ∼= C[x]/W ′(x) , H1 = Ker d1/Im d0 ∼=
{

0 for p 6= 0

C[x] for p = 0
.

With the potential W (x) = xN+1 as in (3.25), we obtain the sl(N) knot

homology of the unknot

H
sl(N)

( �� ) ∼= C[x]/(xN). (3.29)

The q-grading of the chiral field x is two, so that the Poincaré polynomial is

P
sl(N)

( �� ) = 1 + q2 + · · ·+ q2N−2 .

When W = 0, we have the HOMFLY homology of the unknot. In this case,

both H0 and H1 are nontrivial and isomorphic to C[x], so the homology is

supported in two different homological degrees. In particular, the Poincaré

polynomial is

P ( �� ) =
1

1− q2
+

a2t

1− q2
,
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1
D D

2

t

S
3

y

x

W(y) W(x) W(y)

σ

W(x)

a) b)

σ

Figure 3.12: The Landau-Ginzburg model for the unknot. Since D2 is the
inverse of D1, they can annihilate each other leaving the Landau-Ginzburg
model without any defect lines.

where the first term corresponds to homological degree zero whereas the second

term corresponds to homological degree one as well as the a-grading is shifted

by two. On the resolved side (res-M5), the free N = 2 chiral superfield x

comes from M2-branes ending on M5-branes.

In fact, in the above discussion D2 = D̄1 is the inverse of the defect D1, so

that D1 and D2 can annihilate each other leaving behind a LG theory with

superpotential W on a cylinder without any defect lines. (Fig. 3.12) Hence,

we have H(D1,D2) ∼= Jac(W ), the Jacobi ring of W (or space of closed-string

BPS states). The effective theory on the most “interesting” part of the unknot

theory (which is the product Rt × S1
σ of the time and the equator (3.24)) in

the deformed conifold side, (def-M5) or (def-M2), is described by a LG model.

Having identified B-type defects between LG models as matrix factorizations,

one can make use of the defects for physical realization of the Khovanov-

Rozansky construction of link homology on Rt × S1
σ.

Recall, that in the Khovanov-Rozansky formulation [131, 132, 173] one first

constructs a cube of resolutions by replacing each crossing either with

or with . Each resulting resolution is a planar Murakami-Ohtsuki-Yamada
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graph [158]. Then, one associates a matrix factorization to each resolved

crossing, together with a map from one D to the other D at a positive

crossing , corresponding to an edge of the cube. The part of the complex

associated to one such crossing is called a mapping cone:

R0 R1 R0

R̃0 R̃1 R̃0

d0
v d1

v d0
v

d+ d−

d̃+ d̃−

: Cone(dv : D → D ) :
x1 x2

x3 x4

(3.30)

where all rings are isomorphic to R = C[x1, x2, x3, x4]/(x3 + x4− x1− x2) and

the maps are defined by

d+ = (x3 − x1)(x2 − x3) , d− =
W (x3) +W (x4)−W (x1)−W (x2)

(x3 − x1)(x2 − x3)
,

d̃+ = (x3 − x1) , d̃− =
W (x3) +W (x4)−W (x1)−W (x2)

x3 − x1

,

d0
v = x2 − x3 , d1

v = 1 . (3.31)

Note that the map dv is induced in such a way that the diagram commutes.

At a negative crossing , we associate the inverse of (3.30). (See [131, 132,

173] for more detail.) One then takes the tensor product of all these complexes

to produce the total complex

d+
-

�
d−

Cj,i
d+
-

�
d−

Cj,i+1

d+
-

�
d−

Cj,i+2

d+
-

�
d−

d+
-

�
d−

Cj+1,i

d+
-

�
d−

Cj+1,i+1

d+
-

�
d−

Cj+1,i+2

d+
-

�
d−

dv dv dv

dv dv dv

dv dv dv
. (3.32)

The homology of this complex turns out to be a knot invariant. When W = 0,

it is easy to see from (3.31) that d− is the zero map. Thus, the complex for

HOMFLY homology has Z × Z × Z-gradings corresponding to the (q, t, a)-

grading where the q-grading is the internal grading (q(xi) = 2) and (t, a)-

grading is inherited from the bi-grading (j, i) of (3.32). Note that dv is of

degree (0, 1, 0) and d+ is of degree (2, 0, 2). When W 6= 0, the complex is
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Figure 3.13: LG model with defects on Rt × S1
σ in the fivebrane system.

well-defined only after collapsing the Z-grading to Z2-grading because of the

presence of d−. Therefore, the complex for sl(N) homology loses the a-grading

so that it is Z × Z × Z2-graded where the Z2-grading comes from a matrix

factorization. It is worth mentioning that this link homology is supported in a

range of t-degrees that is at most the crossing number plus one, because a map

:
dv−→ , which increases t-degree by one, is assigned at each crossing.

To provide a physical realization of this formulation, using topological invari-

ance along S3 we represent a link L as a thin braid of k strands that runs

along the equator S1
σ ⊂ S3:

k-tuple cover : L→ S1
σ,

as shown in Fig. 3.13. In Fig. 3.13, “◦” stands for any of the basic crossings

and . Since we associate matrix factorizations (3.30) at each crossing, this

means that the corresponding defect is placed at the position of the crossing

in LG model on Rt × S1
σ.

More precisely, a mapping cone (3.30) of two matrix factorizations admits a

physical interpretation as a bound state of the two defectsD andD , formed

due to a fermionic defect-changing operator dv ∈ H1(D ,D ) [37, 204]. We
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assign the bound state of the two defects at each defect line in Fig. 3.13. In

fact, the bound state formation can be understood as a perturbation of the

supercharge: since the mapping cone (3.30) can be expressed as

D = Cone(dv : D → D ) : R1 ⊕ R̃0

c1
-�

c0

R0 ⊕ R̃1

with

c1 =

(
d− 0

dv d̃+

)
, c0 =

(
d+ 0

dv d̃−

)
,

we see that the two non-interacting (direct sum) defectsD andD are bound

together by perturbing the boundary supercharge with the defect-changing

operator dv

Qbd =

(
d∓ 0

0 d̃±

)
−→ Qbd + δQbd =

(
d∓ 0

dv d̃±

)
. (3.33)

In summary, in LG theory with the potential W on Rt × S1
σ, a bound state,

either D or D , is assigned at each crossing (Fig. 3.13). Each strand carries

a N = 2 chiral superfield xi on a strip between the defect lines. As a result,

the tensor product D1 ∗ · · · ∗ Dn of the defects provides the complex (3.32),

and therefore the BPS spectrum in this setup can be identified with the link

homology

H(D1, · · · ,Dn) = H (L) .

The topological invariance of link homology tells us the fusion structure of the

defects. The invariance under Reidemeister move II implies that the product

of an over and under-crossing is the identity

= −→ D ∗ D = Id = D ∗ D .

In addition, the Reidemeister move III means it obeys the braid group relation

= −→ D(i) ∗ D(i+1) ∗ D(i) = D(i+1) ∗ D(i) ∗ D(i+1),

(3.34)
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with the obvious relation D(i) ∗ D(j) = D(j) ∗ D(i) for |i − j| > 1, where we

denote the defect corresponding to a braid of i and (i+ 1)-strands by D(i). In

other words, (D, ∗) is an object of a braided monoidal category.

The structure of defects is similar to that of B-branes considered in Seidel-

Thomas [185]. Therefore, the construction above strongly suggests that it

should satisfy a spherical condition

Hi(D,D) =

{
C , i = 0, n

0 , otherwise
(3.35)

for some n. In addition, the defects should form a sequence of spherical matrix

factorizations

dim H(D(i),D(j)) =

{
1 , |i− j| = 1

0 |i− j| > 1
. (3.36)

These conditions indeed give rise to the braid group relation (3.34) [37]. See

also [108, §2.2].

Gornik’s spectral sequence

Having realized the Khovanov-Rozansky formulation of link homology in the

fivebrane systems, let us now investigate sl(N) homology of the trefoil knot 31.

It is known for two-bridge knots with a small number of crossings [141] that

the homology H∗(Cj,i, d±) with respect to d± in (3.32) at each j is isomorphic

to a direct sum of several copies of C[x]/(W ′), and the induced differential

dv on H∗(Cj,i, d±) is multiplication by W ′′. In particular, in the case of the

trefoil, at deg t = j = 0, 2, 3, the homology H∗(Cj,i, d±) with respect to d±

in (3.32) is isomorphic to C[x]/(W ′), and the induced differential dv is non-

trivial between t-degrees 2 and 3. For instance, let’s consider sl(2) homology,

for which W = x3. Then, the complex can be expressed as follows:

t-degree 0 1 2 3

complex

generators

C[x]/(x2) 0 C[x]/(x2) C[x]/(x2)

∈ ∈ ∈

x x x

1 1 1
dv = x

dv dv dv

(3.37)

This complex is essentially the same as the complex [31] coming from the cube

of resolutions in [15, Fig. 3]. Here, the induced differential dv is a multiplication
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Figure 3.14: Unreduced sl(2) homology of the trefoil

by W ′′ = 2x, and its non-trivial action is depicted by the red arrow above.

Thus, the unreduced sl(2) homology H
sl(2)

(31) ∼= H∗(H∗(Cj,i, d±), dv) is four-

dimensional (the red circles above), and with appropriate shifts of q-degrees,

its Poincaré polynomial can be written as

P
sl(2)

(31) = 1 + q2 + q4t2 + q8t3 .

The induced differential dv can be understood in the following way. It was

proposed in [72] that the HOMFLY homology is endowed with a set of differ-

entials {dN}N∈Z where the homology with respect to dN is isomorphic to the

sl(|N |) homology. To obtain the unreduced sl(2) homology H
sl(N)

(K) from

the reduced HOMFLY homology H (K), first one takes the tensor product

H (K) ⊗ C[x]/(xN) with the sl(N) unknot homology, and then computes

the homology with respect to dN whose (a, q, t)-degree is (−2, 2N,−1). For

instance, the reduced HOMFLY homology of the trefoil is three-dimensional

and its Poincaré polynomial (up to factor a2q−2) is

P (31) = 1 + q4t2 + a2q2t3 .

To get the unreduced sl(2) homology, one takes the d2 differential after multi-

plying the sl(2) unknot factor (1+q2) as illustrated in Fig. 3.14. In this exam-

ple, it is easy to see that H (31)⊗C[x]/(x2) is isomorphic to H∗(Cj,i(31), d±),

and the action of d2 amounts to that of the induced differential dv while the

direction of the arrow is opposite. We thus see that, in this simple example,

the induced differential dv for sl(N) homology is essentially equivalent to the

dN differential.

In fact, the spectral sequences corresponding to differentials dN>0 have been

constructed explicitly [173]. In physics, one should think of these spectral

sequences as triggered by the deformation of the boundary supercharge (3.33).
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Let us note that since the superpotential is homogeneous, the LG model has

U(1)V ≡ U(1)P vector R-symmetry and the U(1)V R-charge is intrinsically the

q-degree. Indeed, one can see from Fig. 3.14 that the differential dv preserves

the q-degree.

Deformation spectral sequences in knot homology have been investigated by

Lee [138] for sl(2) and by Gornik [98] for sl(N) homology. There, changing

the superpotential W = xN+1 to W = xN+1 + (N + 1)βNx leads to the defor-

mation of the boundary supercharge d± in (3.31). Furthermore, because the

potential is no longer homogeneous, the U(1)V R-symmetry is broken, so that

the deformed complex Cdef(L) is filtered instead of bi-graded. Then, one can

summarize the results of [98] as follows (see §3.1 for notations.):

• the E1 page of the spectral sequence associated to Cdef(L) is isomorphic

to the undeformed sl(N) homology H (L).

• the homology of Cdef(L) in the E∞ page is isomorphic to the tensor

product [H
sl(N)

( �� )]⊗n of n-copies of the sl(N) homology of the unknot

where n is the number of the component of L.

Actually, the Chinese remainder theorem tells us that the Jacobi ring of the

deformed potential is isomorphic to

C[x]/(xN − βN) ∼=
N−1⊕

i=0

C[x]/(x− βωi) ,

where ω is an N -th root of unity. Its physical interpretation is as follows.

When the superpotential is perturbed by the relevant operator xN+1 → xN+1+

(N + 1)βx, the Landau-Ginzburg model LG[sl(N)] undergoes RG flow and

decomposes into N decoupled theories LG[sl(1)] ⊕ · · · ⊕ LG[sl(1)], each with

the superpotential x− βωi (i = 0, . . . , N − 1).

However, in the LG model LG[sl(1)], there is only the trivial defect (matrix

factorization)! It is therefore immediate that the defects in the unperturbed

theory (which encode the choice of link L) become trivial, i.e. invisible, from

the standpoint of the sl(1) theories which remain after the perturbation. The

homology of LG[sl(1)] is therefore just the Jacobi ring C[x]/(x− βωi), which

is one-dimensional. In sum, the spectrum of BPS states in the IR is Nn-

dimensional for an n-component link L, just as Gornik proved.
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Figure 3.15: Deformation of the potential x5 → x5 + x breaks a degenerate
vacuum into massive vacua.

Let us now see examples. In the case of the unknot, there is no non-trivial

spectral sequence, i.e. the E1 page is the same as the E∞ page. Under

the deformation of the superpotentials xN+1 → xN+1 + x, the dimension of

the Jacobi ring is invariant while critical points of the potential become non-

degenerate (Fig. 3.15).

To see the non-trivial spectral sequence, we again look at the example of the

sl(2) homology of the trefoil. When we perturb the potential

W = x3 −→ W = x3 − 3x , (3.38)

the complex (3.37) is deformed as shown in the following table.

t-degree 0 1 2 3

complex

generators

C[x]/(x2 − 1) 0 C[x]/(x2 − 1) C[x]/(x2 − 1)

∈ ∈ ∈

x x x

1 1 1

dv dv dv

Since the induced differential dv = x is a multiplication by x, the generator

x at t = 2 is mapped to the generator x2 ∼ 1 at t = 3 in the deformed

ring C[x]/(x2 − 1) (the red dotted arrow). This is exactly the Gornik’s spec-

tral sequence, and the homology is isomorphic to the sl(2) unknot homology.

Translating this into physics language, the perturbation (3.38) of the potential

triggers RG flow from LG[sl(2)] to LG[sl(1)]⊕LG[sl(1)]. In the infrared limit,

the complex can be expressed as follows. In the ring C[x]/(x±1), there is only

one generator 1 and the induced differential is a multiplication by 1. Therefore,
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the homology of the complex is localized at t = 0 and it is two-dimensional.

t-degree 0 1 2 3

complex

generators

C[x]/(x+ 1) C[x]/(x+ 1) C[x]/(x+ 1)

⊕ ⊕ ⊕

C[x]/(x− 1)
0

C[x]/(x− 1) C[x]/(x− 1)

∈ ∈ ∈

1 1 1
1 1 1

dv dv dv

It is easy to generalize Gornik’s spectral sequence. One can perturb the po-

tential W = xN+1 in such a way that the deformed potential W def has the

form

∂xW
def =

k∏

i=1

(x− ui)ni , with N =
k∑

i=1

ni .

Then, the same argument tells us that LG[sl(N)] flows to LG[sl(n1)] ⊕ · · · ⊕
LG[sl(nk)] under this relevant perturbation. Thus, there exists the spectral

sequence associated to the deformed complex where the complex in the E2

page is isomorphic to the sl(N) homology, and the homology of the deformed

complex in the E∞ page is isomorphic to H
sl(n1)

(L) ⊕ · · · ⊕H
sl(nk)

(L). For

instance, one can schematically express this spectral sequence in the trefoil

homology when one perturb the potential x6 → x6 − 12x5/5 + 3x4/2 so that

∂xW
def = x3(x− 1)2:

t-degree 0 1 2 3

UV: LG[sl(5)]

IR:

····· ····· ·····
LG[sl(3)]
LG[sl(2)]

····· ····· ·····
RG
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Chapter 4

DISCRETIZED HOLOGRAPHY: p-ADIC LOCAL FIELDS

1M. Heydeman, M. Marcolli, I. Saberi, and B. Stoica. “Tensor networks,
p-adic fields, and algebraic curves: arithmetic and the AdS3/CFT2 corre-
spondence.” (2016). arXiv:1605.07639 [hep-th].

4.1 Introduction

Much attention has been paid of late to ideas that allow certain features of

conformal field theory, such as long-range correlations, to be reproduced in

lattice systems or other finitary models. As an example, the multiscale en-

tanglement renormalization ansatz (or MERA), formulated by Vidal in [201],

provides an algorithm to compute many-qubit quantum states whose entangle-

ment properties are similar to those of the CFT vacuum. In Vidal’s method,

the states of progressively more distant qubits are entangled using successive

layers of a self-similar network of finite tensors.

This tensor network can be thought of as a particular quantum circuit; other

new connections between quantum information theory and holography were

made in [4], which pointed out that bulk reconstruction and bulk locality

in the AdS/CFT correspondence bear strong similarities to the properties of

quantum error-correcting codes. This intuition was used in [172] to construct

a family of “holographic” quantum codes, associated with hyperbolic tilings.

In these codes, bulk qubits are thought of as the logical inputs, the boundary

qubits at the periphery of the tiling constitute the encoded state, and the

error-correcting properties of the code mimic features of holography such as

the Ryu-Takayanagi formula [180].

Given the similarity of these networks (in which the number of tensors scales

exponentially with the number of layers) to the geometry of hyperbolic space,

it was natural to search for a connection with holography. In [191], Swingle

proposed that MERA might be a natural discretization of AdS/CFT, in which

the holographic direction (or renormalization scale) corresponds to the succes-

sive layers of the tensor network, and individual tensors are associated with

“primitive cells” of the bulk geometry. However, successive work [13] identi-

http://arxiv.org/abs/1605.07639
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fied constraints that prevent an AdS/MERA correspondence of this kind from

fully reproducing all features of the bulk physics.

In this paper, we propose that discrete holographic models should be un-

derstood as approximating bulk geometry in a fundamentally different way.

We are guided by considering a new and orthogonal direction in which the

AdS3/CFT2 correspondence can be generalized. In these models, based on

the p-adic numbers, discrete bulk geometry appears naturally. Despite this,

essential and basic features of AdS/CFT, such as bulk isometries and bound-

ary conformal symmetry (which are destroyed by a naive discretization), have

analogues and can be fully understood in the discrete setting.

The bulk geometries relevant to the AdS3/CFT2 correspondence are well un-

derstood. The most well-known black hole solution is that of Bañados, Teitel-

boim, and Zanelli [11]; this solution was generalized to a family of higher-genus

Euclidean black holes by Krasnov [136]. These solutions can be understood

in general using the technique of Schottky uniformization, which presents a

higher-genus black hole as the quotient of empty AdS3 by a particular discrete

subgroup of its isometries.

In [150], a holographic correspondence was established for these three-dimensional

geometries. This correspondence expresses the conformal two point correla-

tion function on the conformal boundary at infinity (a Riemann surface XΓ of

genus g) in terms of geodesic lengths in the bulk space (a hyperbolic handle-

body HΓ of genus g). The formula relating the boundary theory to gravity in

the bulk is based on Manin’s result [148] on the Arakelov Green’s function.

However, we consider AdS3/CFT2 not merely because it is a simple setting

for holography. For us, the crucial property of conformal field theory in two

dimensions is its strong ties to algebraic geometry. These occur because every

compact Riemann surface is a projective algebraic curve, so that many of the

analytic concepts that arise in physics can (in two-dimensional contexts) be

reformulated in purely algebraic terms. Once a concept can be formulated

algebraically, it has many natural generalizations, obtained by changing the

field of numbers one is considering. For instance, given a Riemann surface as

the zero locus of a polynomial equation with rational coefficients, one can ask

for the set of solutions over C, over R, over more exotic fields like the p-adics,

or even over the integers.
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The aforementioned holographic formula—and the the whole geometric set-

ting of the correspondence, consisting of the Euclidean hyperbolic space AdS3,

its conformal boundary P1(C), and quotients by actions of Schottky groups

Γ ⊂ PSL(2,C)—has a natural analogue in which the field is the p-adic num-

bers Qp. The bulk space becomes the Bruhat–Tits tree of Qp, which is a

manifestly discrete infinite graph of uniform valence. Its conformal boundary

at infinity is P1(Qp), which can be thought of as the spacetime for an un-

usual class of CFTs. Black hole solutions are understood to be quotients of

this geometry by p-adic Schottky groups Γ ⊂ PGL(2,Qp); these are known as

Mumford curves in the mathematics literature. The results of Drinfeld and

Manin [149] on periods of p-adic Schottky groups provide the corresponding

holographic formula in this non-archimedean setting. We will give what we

hope are intuitive introductions to these possibly unfamiliar concepts in the

bulk of the paper.

Conformal field theory on p-adic spacetime has previously been developed, for

the most part, in the context of the p-adic string theory (see, for instance, [33]

and references therein), but has also been considered abstractly [153]. How-

ever, our perspective on the subject will be somewhat different: rather than

using the p-adics as a worldsheet to construct real-space string amplitudes, our

goal in this paper is to further develop the original holographic correspondence

of [150] for the higher-genus black holes, informed by recent developments in

the understanding of the AdS/CFT correspondence. We will emphasize the

large extent to which algebraic structure allows familiar ideas, concepts, and

arguments from ordinary AdS3/CFT2 can be carried over—in many cases line

by line—to the p-adic setting. In addition to the holographic formulas of

Manin and Marcolli, the standard semiclassical holographic analysis of scalar

fields propagating without backreaction in anti-de Sitter space applies almost

without alteration to the Bruhat–Tits tree. We discuss this in detail in §4.4.

In some cases, intuitions about how holography works in the archimedean case

are supported even more sharply over the p-adics. For example, one normally

thinks of the holographic direction as corresponding to a renormalization-group

scale. Over the p-adics, as shown in §4.4, boundary modes contribute to

the reconstruction of bulk functions only up to a height determined by their

wavelength, and reconstruct precisely to zero above this height in the tree.

One of the most important new ideas in the AdS/CFT correspondence is the
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study of entanglement entropy in boundary states and its connection (via the

Ryu-Takayanagi formula) to the geometry of the bulk. We argue that, at least

for the p-adic free boson CFT, an analogue of the familiar logarithmic scaling

of the ground-state entanglement entropy should hold. Given such a formula,

the Ryu-Takayanagi formula follows immediately from simple considerations

of the geometry of the tree.

Tensor network models are often of interest because they reproduce our ex-

pectations about ground-state entanglement entropy, and in some cases (like

the holographic quantum code of Pastawski et al. [172]) also satisfy formulas

similar to Ryu-Takayanagi that relate the entanglement entropy to the size of

paths or surfaces in the interior of the network. Given that our models exhibit

a discrete bulk spacetime, a Ryu-Takayanagi formula, and a meaningful (and

unbroken) group of bulk isometries/boundary conformal mappings, we suggest

that the p-adic geometry is the natural one to consider in attempting to link

tensor network models to spacetimes. We offer some ideas in this direction

in §4.3.

Finally, on an even more speculative note, it is natural to wonder if the study

of p-adic models of holography can be used to learn about the real case. So-

called “adelic formulas” relate quantities defined over the various places (finite

and infinite) of Q; it was suggested in [146] that fundamental physics should

be adelic in nature, with product formulae that relate the archimedean side

of physics to a product of the contributions of all the p-adic counterparts. We

briefly speculate about adelic formulas for the entanglement entropy in §4.5;

one might hope that such formulas could be used to prove inequalities for

entanglement entropy like those considered in [12], using ultrametric properties

of the p-adics. We hope to further develop the adelic perspective, and return

to these questions, in future work.

4.2 Review of necessary ideas

Basics of p-adic numbers

We begin with a lightning review of elementary properties of the p-adic fields.

Our treatment here is far from complete; for a more comprehensive exposition,

the reader is referred to [134], or to another of the many books that treat p-adic

techniques.

When one constructs the continuum of the real numbers from the rationals, one
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completes with respect to a metric: the distance between two points x, y ∈ Q
is

d(x, y) = |x− y|∞, (4.1)

where |·|∞ is the usual absolute value. There are Cauchy sequences of ratio-

nal numbers for which successive terms become arbitrarily close together, but

the sequence does not approach any limiting rational number. The real num-

bers “fill in the gaps,” such that every Cauchy sequence of rational numbers

converges to a real limit by construction. That property is known as metric

completeness.

The p-adic fields Qp are completions of Q with respect to its other norms;

these are defined by

ordp(x) = n when x = pn(a/b) with a, b ⊥ p; (4.2)

|x|p = p− ordp(x). (4.3)

By a theorem of Ostrowski, every norm on Q is equivalent to one of the p-adic

norms or the usual (∞-adic) norm. It is common to refer to the different

possible completions as the different “places” of Q.

A number is p-adically small when it is divisible by a large power of p; one can

think of the elements of Qp as consisting of decimal numbers written in base p,

which can extend infinitely far left (just as real numbers can be thought of

as ordinary decimals extending infinitely far right). Qp is uncountable and

locally compact with respect to the topology defined by its metric; as usual, a

basis for this topology is the set of open balls,

Bε(x) = {y ∈ Qp : |x− y|p < ε}. (4.4)

The ring of integers Zp of Qp is also the unit ball about the origin:

Zp = {x ∈ Qp : |x|p ≤ 1}. (4.5)

It can be described as the inverse limit of the system of base-p decimals with

no fractional part and finite (but increasingly many) digits:

Zp = lim←−
(
· · · → Z/pn+1Z→ Z/pnZ→ Z/pn−1Z→ · · ·

)
. (4.6)

Zp is a discrete valuation ring; its unique maximal ideal is m = pZp, and the

quotient of Zp by m is the finite field Fp. In general, for any finite extension

of Qp, the quotient of its ring of integers by its maximal ideal is a finite field Fpn ;

we give more detail about this case in §4.6.
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The Bruhat–Tits tree and its symmetries

In this section, we will describe the Bruhat–Tits Tree Tp and its symmetries.

It should be thought of as a hyperbolic (though discrete) bulk space with con-

formal boundary P1(Qp). Since these trees are a crucial part of the paper and

may be unfamiliar to the reader, our treatment is informal, and aims to build

intuition. Out of necessity, our discussion is also brief; for a more complete

treatment, the reader may consult notes by Casselman [44] for constructions

and properties related to the tree, or [225] for analysis on the tree and con-

nections to the p-adic string.

We begin with a description of the boundary and its symmetries, which are

completely analogous to the global conformal transformations of P1(C). We

then turn our attention to the bulk space Tp, focusing on its construction as a

coset space and the action of PGL(2,Qp) on the vertices. Despite the fractal

topology of the p-adic numbers, we will find (perhaps surprisingly) that many

formulas from the real or complex cases are related to their p-adic counterparts

by the rule |·|∞ → |·|p.

Conformal group of P1(Qp)

The global conformal group on the boundary is SL(2,Qp), which consists of

matrices of the form

A =

(
a b

c d

)
, with a, b, c, d ∈ Qp, ad− bc = 1. (4.7)

This acts on points x ∈ P1(Qp) by fractional linear transformations,

x→ ax+ b

cx+ d
. (4.8)

It can be checked that matrix multiplication corresponds to composition of

such maps, so that the group action is well-defined. This is analogous to the

SL(2,C) action on the Riemann sphere P1(C). (We will sometimes also refer

to PGL(2,Qp); the two differ only in minor details.)

The existence of a local conformal algebra for Qp, in analogy with the Virasoro

symmetry in two-dimensional conformal field theory or general holomorphic

mappings of P1(C), is a subtle question. It is difficult to find definitions of

a p-adic derivative or an infinitesimal transformation that are satisfactory for

this purpose. In particular, since the “well-behaved” complex-valued functions
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Figure 4.1: The standard representation of the Bruhat–Tits tree. The point
at infinity and the center are arbitrary as the tree is homogeneous. Geodesics
such as the highlighted one are infinite paths through the tree from ∞ to
the boundary which uniquely specify elements of Qp. This path as a series
specifies the digits of the decimal expansion of x ∈ Q2 in this example. At
the nth vertex, we choose either 0 or 1 corresponding to the value of xn in the
pnth term of x. Negative powers of p correspond to larger p-adic norms as we
move towards the point ∞.

on Qp are in some sense locally constant, there are no interesting derivations

that act on the space of fields [153]. In this paper, we will concern ourselves

only with global symmetries, which can still be used to constrain the proper-

ties of p-adic conformal field theories. We speculate about the possibility of

enhanced conformal symmetry in §4.6.

The determinant condition implies that there are three free p-adic numbers

which specify an element of SL(2,Qp). A convenient way to decompose a
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general SL(2,Qp) transformation is to view it as the product of a special

conformal transformation, a rotation, a dilatation, and a translation:

(
1 0

cp−ma−1 1

)(
a 0

0 a−1

)(
pm 0

0 p−m

)(
1 bp−ma−1

0 1

)

=

(
pma b

c p−ma−1(1 + bc)

)
, (4.9)

where a, b, c ∈ Qp and |a|p = 1. One can verify that the product is an arbitrary

element of SL(2,Qp), where the determinant condition has been used to elim-

inate the d parameter. This represents a translation by bp−ma−1, a dilatation

by p2m, a rotation by a2, and a special conformal translation by cp−ma−1. We

have separated the diagonal subgroup into multiplication by elements of the

unit circle, a ∈ Up ⊂ Zp, which do not change the p-adic norm (and thus are

“rotations” in a p-adic sense), and multiplication by powers of p which scale

the p-adic norm (and so correspond to dilatations). Representations of the

multiplicative group of unit p-adics provide an analogue of the spin quantum

number; we discuss this further in §4.4. It is worth stressing that these trans-

formations are finite, and so we are characterizing the symmetry group rather

than the algebra.

As is often the case in real conformal field theories, we can focus on the dilation

subgroup. A diagonal matrix in SL(2,Qp) and its action on the coordinate is

(
α 0

0 α−1

)
, x→ x′ = α2x. (4.10)

This has the effect of changing the p-adic norm by

|x′|p = |α|2p|x|p. (4.11)

So if |α|p 6= 1, this will scale the size of coordinate. This parallels the complex

case in which a dilatation changes the complex norm by |z′| = |α|2|z|. It will

turn out to be the case that 2-point functions of spinless operators in p-adic

conformal field theory will depend only on the p-adic norm of their separation.

Schematically,

〈φ(x)φ(y)〉 ≈ 1

|x− y|2∆
p

. (4.12)

Dilations will thus affect correlation functions of the p-adic conformal field

theory exactly as in the complex case.
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PGL(2,Qp) action on the tree Tp

We have seen that fractional linear transformations of the boundary coordinate

work as in the real case. The action of the symmetry on the bulk space Tp is

slightly more complicated to describe. Were we working in the archimedean

theory, we would identify PSL(2,R) as the isometry group of the hyperbolic

upper half space H = SL(2,R)/ SO(2). Here SO(2) is a maximal compact

subgroup. Similarly, in the context of AdS2+1/CFT2, we can think of the

hyperbolic upper-half 3-space as a quotient space of the isometry group by its

maximal compact subgroup: H3 = SL(2,C)/ SU(2).

Following this intuition, we define the Bruhat–Tits tree to be the quotient of

the p-adic conformal group by its maximal compact subgroup:

Tp = PGL(2,Qp)/PGL(2,Zp). (4.13)

In contrast with the archimedean examples, Tp is a discrete space: it is a

homogeneous infinite tree, with vertices of valence p+1, whose boundary can be

identified with the p-adic projective line. We expect isometries to correspond

to rigid transformations of the vertices. Formally, the tree represents the

incidence relations of equivalence classes of lattices in Qp × Qp. As outlined

in the appendix of [33], the group PGL(2,Qp) acts by matrix multiplication

on the lattice basis vectors and takes one between equivalence classes. These

transformations are translations and rotations of the points in the tree; they

preserve distances, which are measured in the tree by just counting the number

of edges along a given path. Since any two vertices in a connected tree are

joined by exactly one path, this is well-defined; all paths are geodesics.

A standard way of representing Tp is depicted in Fig. 4.1 for the case p = 2.

This is a regular tree with p+ 1 legs at each vertex; the exponential growth in

the number of vertices with distance from a base point reflects the “hyperbolic”

nature of distance in the the tree. Since paths are unique, there is a one-to-one

correspondence between infinite paths in the tree starting at ∞ and elements

of Qp. (This can be viewed like a p-adic version of stereographic projection.)

The choice of the apparent center and geodesic corresponding to infinity are

arbitrary. Just as in the archimedean case, we must fix three boundary points

to identify a p-adic coordinate on the projective line, corresponding to 0, 1,

and ∞. Once these arbitrary choices are made, the geodesics joining them

form a Y in the bulk, whose center is taken to be the centerpoint of the tree.
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We can then understand the geodesic connecting∞ to x as labeling the unique

p-adic decimal expansion for x = pγ(x0 + x1p+ x2p
2 + . . . ), where each of the

xn take values in 0, 1, . . . p− 1 corresponding to the p possible choices to make

at each vertex. Each vertex of the tree is naturally marked with a copy of the

finite field Fp, identified with one “digit” of a p-adic number.

Viewing the tree as the space of p-adic decimal expansions may in some ways be

more useful than the definition in terms of equivalence classes of lattices. Ge-

ometrically moving closer or further from the boundary corresponds to higher

or lower precision of p-adic decimal expansions. Even with no reference to

quantum mechanics or gravity, we see some hint of holography and renormal-

ization in the tree- a spatial direction in the bulk parameterizes a scale or

precision of boundary quantities. This is explored more fully in §4.4.

We now illustrate some examples of PGL(2,Qp) transformations on the tree.

First note that the choice of the center node is arbitrary. We can take this

point to be the equivalence class of unit lattices modulo scalar multiplication.

One can show that this equivalence class (or the node it corresponds to) is

invariant under the PGL(2,Zp) subgroup, so these transformations leave the

center fixed and rotate the branches of the tree about this point.

More interesting is a generator such as

g =

(
p 0

0 1

)
∈ PGL(2,Qp). (4.14)

This transformation (and others in PGL(2,Qp)) act by translating the entire

tree along a given geodesic (one can see this either from the lattice incidence

relations, or from translating or shifting the p-adic decimal series expansion).

This is illustrated in Fig. 4.2. We can think of these transformations as the

lattice analogs of translations and dilatations of the real hyperbolic plane.

Integration measures on p-adic spaces

Just as is the case for C, there are two natural measures on Qp (or more

properly, on the projective line over Qp); they can be understood intuitively

by thinking of Qp as the boundary of Tp. The first is the Haar measure dµ,

which exists for all locally compact topological groups. With respect to either

measure, the size of the set of p-adic integers is taken to be 1:

µ(Zp) = 1. (4.15)
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Figure 4.2: An alternative representation of the Bruhat–Tits Tree (for p = 3)
in which we have unfolded the tree along the 0 geodesic. The action of ele-
ments of PGL(2,Qp) acts by translating the entire tree along different possible
geodesics. In this example we translate along the 0 geodesic, which can be
thought of as multiplication of each term in a p-adic decimal expansion by
p. This map has two fixed points at 0 and ∞. In this “unfolded” form, a
point in P1(Qp) is specified by a geodesic that runs from ∞ and follows the
0 geodesic until some level in the tree where it leaves the 0 geodesic towards
the boundary. The p-adic norm is simply p to the inverse power of the point
where it leaves the 0 geodesic (so that leaving “sooner” leads to a larger norm,
and later to a smaller norm).

The Haar measure is then fixed by multiplicativity and translation invariance;

any open ball has measure equal to the p-adic norm of its radius. It is helpful

to think of Qp as being “flat” when considered with this measure.

The other measure, the Patterson-Sullivan measure, is the p-adic analogue of

the Fubini-Study metric on P1(C). It is most easily defined with reference to

the tree, in which we fix a basepoint C (to be thought of as the unique meeting

point of the geodesics joining 0, 1, and ∞ when a coordinate is chosen on the

boundary). Recall that the open balls in Qp correspond to the endpoints of

branches of the tree below a vertex v. In the Patterson-Sullivan measure,

dµ0(Bv) = p−d(C,v). (4.16)

The two measures are related by

dµ0(x) = dµ(x), |x|p ≤ 1;

dµ0(x) =
dµ(x)

|x|2p
, |x|p > 1. (4.17)

(Later on, we will at times use the familiar notation dx to refer to the Haar

measure.) The most intuitive way to picture the Patterson-Sullivan measure

is to imagine the tree pointing “radially outward” from its centerpoint. It is
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then easy to understand the transformation rule (4.17); it says that when all

geodesics point downward from infinity and the boundary is “flat” at the lower

end of the picture, points far from zero (outside Zp) can only be reached by

geodesics that travel upward from C before turning back down towards the

boundary.

Schottky uniformization of Riemann surfaces

In this section, we review Schottky uniformization, which allows one to think

of a higher-genus Riemann surface as a quotient of the projective line by a

particular discrete subgroup of its Möbius transformations.

A Schottky group of rank g ≥ 1 is a discrete subgroup of PSL(2,C) which is

purely loxodromic and isomorphic to a free group on g generators. The group

PSL(2,C) acts on P1(C) by fractional linear transformations,

γ =

(
a b

c d

)
: z 7→ az + b

cz + d
.

The loxodromic condition means that each nontrivial element γ ∈ Γ \ {1}
has two distinct fixed points z±γ (one attractive and one repelling) in P1(C).

The closure in P1(C) of the set of all fixed points of elements in Γ is the

limit set ΛΓ of Γ, the set of all limit points of the action of Γ on P1(C). In

the case g = 1 the limit set consists of two points, which we can choose to

identify with {0,∞}, while for g > 1 the set ΛΓ is a Cantor set of Hausdorff

dimension 0 ≤ dimH(ΛΓ) < 2. The Hausdorff dimension is also the exponent of

convergence of the Poincaré series of the Schottky group:
∑

γ∈Γ |γ′|s converges

for s > dimH(ΛΓ) [31].

It is well known that any compact smooth Riemann surface X admits a Schot-

tky uniformization, namely X = ΩΓ/Γ, where Γ ⊂ PSL(2,C) is a Schottky

group of rank equal to the genus g = g(X) of the Riemann surface, and

ΩΓ = P1(C) \ ΛΓ is the domain of discontinuity of the action of Γ on P1(C).

There is a well known relation between Schottky and Fuchsian uniformizations

of compact Riemann surfaces of genus g ≥ 2; see [192].

A marking of a rank g Schottky group Γ ⊂ PSL(2,C) is a choice of a set

of generators {γ1, . . . , γg} of Γ and a set of 2g open connected regions Di in

P1(C), with Ci = ∂Di the boundary Jordan curves homemorphic to S1, with

the following properties:
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1. the closures of the Di are pairwise disjoint

2. γi(Ci) ⊂ Cg+i

3. γi(Di) ⊂ P1(C) \Dg+i.

The marking is classical if all the Ci are circles. (All Schottky groups admit a

marking, but not all admit a classical marking.) A fundamental domain FΓ for

the action of the Schottky group Γ on the domain of discontinuity ΩΓ ⊂ P1(C)

can be constructed by taking

FΓ = P1(C) \ ∪gi=1(Di ∪ D̄g+i).

This satisfies ∪γ∈Γγ(FΓ) = ΩΓ. In the case of genus g = 1, with Γ = qZ,

for some q ∈ C with |q| > 1, the region FΓ constructed in this way is an

annulus Aq, with D1 the unit disk in C and D2 the disk around ∞ given

by complement in P1(C) of the disk centered at zero of radius |q|, so that

qZAq = C∗ = P1(C) \ {0,∞} = ΩqZ . The resulting quotient Eq = C∗/qZ is the

Tate uniformization of elliptic curves.

Hyperbolic handlebodies and higher-genus black holes

The action of PSL(2,C) by fractional linear transformations on P1(C) extends

to an action by isometries on the real 3-dimensional hyperbolic space H3, with

P1(C) its conformal boundary at infinity. In coordinates (z, y) ∈ C × R∗+ in

H3, the action of PSL(2,C) by isometries of the hyperbolic metric is given by

γ =

(
a b

c d

)
: (z, y) 7→

(
(az + b)(cz + d) + ac̄y2

|cz + d|2 + |c|2y2
,

y

|cz + d|2 + |c|2y2

)
.

Given a rank g Schottky group Γ ⊂ PSL(2,C), we can consider its action

on the conformally compactified hyperbolic 3-space H3 = H3 ∪ P1(C). The

only limit points of the action are on the limit set ΛΓ that is contained in

the conformal boundary P1(C), and hence a domain of discontinuity for this

action is given by

H3 ∪ ΩΓ ⊂ H3 = H3 ∪ P1(C).

The quotient of H3 by this action is a 3-dimensional hyperbolic handlebody

of genus g

HΓ = H3/Γ,
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with conformal boundary at infinity given by the Riemann surface XΓ = ΩΓ/Γ,

HΓ = HΓ ∪XΓ = (H3 ∪ ΩΓ)/Γ.

Given a marking of a rank g Schottky group Γ (for simplicity we will assume

the marking is classical), let Di be the discs in P1(C) of the marking, and let

Di denote the geodesic domes in H3 with boundary Ci = ∂Di, namely the Di
are the open regions of H3 with boundary Si ∪ Di, where the Si are totally

geodesic surfaces in H3 with boundary Ci that project to Di on the conformal

boundary. Then a fundamental domain for the action of Γ on H3∪ΩΓ is given

by

FΓ = FΓ ∪ (H3 \ ∪gi=1(Di ∪ D̄g+i).
The boundary curves Ci for i = 1, . . . , g provide a collections of A-cycles, that

give half of the generators of the homology of the Riemann surface XΓ: the

generators that become trivial in the homology of the handlebody H̄Γ. The

union of fundamental domains γ(FΓ) for γ ∈ Γ can be visualized as in Fig. 4.4.

In the case of genus g = 1 with Γ = qZ, acting on H3 by
(
q1/2 0

0 q−1/2

)
(z, y) = (qz, |q|y),

with limit set {0,∞} the fundamental domain FΓ consists of the space in the

upper half space H3 contained in between the two spherical domes of radius 1

and |q| > 1. The generator q of the group acts on the geodesic with endpoints

0 and ∞ as a translation by log |q|. The quotient H3/qZ is a hyperbolic solid

torus, with the Tate uniformized elliptic curve Eq = C∗/qZ as its conformal

boundary at infinity, and with a unique closed geodesic of length log q. It is

well known (see [21], [143] and §2.3 of [150]) that the genus one handlebodies

HqZ are the Euclidean BTZ black holes [11], where the cases with q ∈ C \ R
correspond to spinning black holes. The geodesic length log |q| is the area of

the event horizon, and hence is proportional to the black hole entropy.

The higher-genus hyperbolic handlebodies correspond to generalizations of the

BTZ black hole to the higher-genus asymptotically AdS3 black holes considered

in [136] and [150].

In these more general higher-genus black hole, because of the very different

nature of the limit set (a fractal Cantor set instead of two points) the struc-

ture of the black hole event horizon is significantly more complicated. In the
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Figure 4.3: Fundamental domain and quotient for the Euclidean BTZ black
hole. Compare with the p-adic BTZ geometry, shown in Fig. 4.10.

Euclidean BTZ black hole, the only infinite geodesic that remains confined

into a compact region inside the hyperbolic solid torus HqZ for both t→ ±∞
is the unique closed geodesic (the image in the quotient of the geodesic in H3

given by the vertical line with endpoints 0 and ∞. On the other hand, in the

higher-genus cases, the geodesics in the hyperbolic handlebody HΓ = H3/Γ

can be classified as:

1. Closed geodesics: these are the images in the quotient HΓ of geodesics

in H3 with endpoints {z+
γ , z

−
γ }, the attractive and repelling fixed points

of some element γ ∈ Γ.

2. Bounded geodesics: these images in the quotient HΓ of geodesics in H3

with endpoints on ΛΓ. If the endpoints are not a pair of fixed points of

the same element of Γ the geodesic in the quotient is not closed, but it

remains forever confined within a compact region inside HΓ, the convex

core CΓ.

3. Unbounded geodesics: these are images in the quotient HΓ of geodesics

in H3 with at least one of the two endpoints in ΩΓ. These are geodesics

in HΓ that wander off (in at least one time direction t→∞ or t→ −∞)

towards the conformal boundaryXΓ at infinity and eventually leave every

compact region in HΓ.

The convex core CΓ ⊂ HΓ is the quotient by Γ of the geodesic hull in H3 of

the limit set ΛΓ. It is a compact region of finite hyperbolic volume in HΓ, and

it is a deformation retract of HΓ. A natural replacement for the event horizon

of the BTZ black hole in these higher-genus cases can be identified in terms
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Figure 4.4: Fundamental domains for the action of Γ on H3.

of the convex core CΓ, where we think of CΓ as the region from which geodesic

trajectories cannot escape and must remain forever confined. The complement

HΓ \ CΓ is homeomorphic to ∂CΓ × R+ (see [41] for a more general treatment

of convex cores of Kleinian groups and ends of hyperbolic 3-manifolds). The

boundary ∂CΓ is the event horizon of the higher-genus black hole, with the

black hole entropy proportional to the area of ∂CΓ.

In [147] and [148], Manin proposed to interpret the tangle of bounded geodesics

inside the hyperbolic handlebody HΓ as a model for the missing “closed fiber

at infinity” in Arakelov geometry. This interpretation was based on the calcu-

lation of the Arakelov Green function [148], and the analogy with the theory

of Mumford curves [157] and the computations of [149] for p-adic Schottky

groups. The results of [148] and their holographic interpretation in [150], as

well as the parallel theory of Mumford curves and periods of p-adic Schottky

groups, will form the basis for our development of a p-adic and adelic form of

the AdS+1/CFT correspondence. The interpretation of the tangle of bounded
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geodesics in HΓ as “closed fiber at infinity” of Arakelov geometry was further

enriched with a cohomological interpretation in [52] (see also [50], [51] for the

p-adic counterpart).

Bruhat–Tits trees, p-adic Schottky groups, and Mumford curves

The theory of Schottky uniformization of Riemann surfaces as conformal bound-

aries of hyperbolic handlebodies has a non-archimedean parallel in the theory

of Mumford curves, uniformized by p-adic Schottky groups, seen as the bound-

ary at infinity of a quotient of a Bruhat–Tits tree.

Some basic facts regarding the geometry of the Bruhat–Tits tree Tp of Qp have

been recalled in §4.2. More generally, the geometry we consider here applies to

any finite extension k of the p-adic field Qp. By identifying (OQp/m
r)⊗Ok =

Ok/m
rek , where ek is the ramification index of k over Qp, we see that the

Bruhat–Tits tree Tk for a finite extension k of Qp is obtained from the Bruhat–

Tits tree of Qp by adding ek−1 new vertices in each edge of TQp and increasing

the valence of all vertices to pf + 1, where f = [k : Qp]/ek, the degree of the

extension normalized by the ramification index.

Let Ok denote the ring of integers of k and m ⊂ Ok the maximal ideal,

so that the residue field Ok/m = Fq is a finite field with q = pr for some

r ∈ N. The set of vertices V (Tk) of the Bruhat–Tits tree Tk of k is the

set of equivalence classes of free rank two Ok-modules, under the equivalence

M1 ∼ M2 if M1 = λM2, for some λ ∈ k∗. For a pair of such modules with

M2 ⊂ M1, one can define a distance function d(M1,M2) = |l − k|, where

M1/M2 = Ok/m
l ⊕Ok/m

k. This distance is independent of representatives in

the equivalence relation. There is an edge in E(Tk) connecting two vertices in

V (Tk) whenever the corresponding classes of modules have distance one. The

resulting tree Tk is an infinite homogeneous tree with vertices of valence q+ 1,

where q = #Ok/m is the cardinality of the residue field. The boundary at

infinity of the Bruhat–Tits tree is identified with P1(k). One can think of the

Bruhat–Tits tree as a network, with a copy of the finite field Fq (or better of

the projective line P1(Fq)) associated to each vertex: this will be the guiding

viewpoint in our approach to non-archimedean tensor networks.

The reader should beware that there is an unavoidable clash of notation: q

is the standard notation for the modular parameter of an elliptic curve, but

is also used to denote a prime power q = pr in the context of finite fields
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or extensions of the p-adics. While both uses will be made in this paper,

particularly in this section and in §4.6, we prefer not to deviate from standard

usage; it should be apparent from context which is intended, and hopefully no

confusion should arise.

There is an action of PGL(2,k) on the set of vertices V (Tk) that preserves the

distance, hence it acts as isometries of the tree Tk. A p-adic Schottky group

is a purely loxodromic finitely generated torsion free subgroup of PGL(2,k).

The Schottky group Γ is isomorphic to a free group on g-generators, with g

the rank of Γ.

In this p-adic setting the loxodromic condition means that every nontrivial

element γ in Γ has two fixed points z±γ on the boundary P1(k). Equivalently, an

element γ is loxodromic if the two eigenvalues have different p-adic valuation.

The closure of the set of fixed points z±γ , or equivalently the set of accumulation

points of the action of Γ on Tk∪P1(k) is the limit set ΛΓ of the Schottky group

Γ. The complement P1(k) \ ΛΓ = ΩΓ(k) is the domain of discontinuity of the

action of Γ on the boundary.

There is a unique geodesic `γ in Tk with endpoints {z−γ , z+
γ }, the axis of a

loxodromic element γ. The subgroup γZ acts on Tk by translations along `γ.

There is a smallest subtree TΓ ⊂ Tk that contains all the axes `γ of all the

nontrivial elements γ ∈ Γ. The boundary at infinity of the subtree TΓ is the

limit set ΛΓ. TΓ is the non-archimedean analog of the geodesic hull of the limit

set of a Schottky group in H3.

The quotient XΓ(k) = ΩΓ(k)/Γ is a Mumford curve with its p-adic Schottky

uniformization, [157]. The quotient Tk/Γ consists of a finite graph TΓ/Γ with

infinite trees appended at the vertices of TΓ/Γ, so that the boundary at infinity

of the graph Tk/Γ is the Mumford curve XΓ(k). The finite graph Gk = TΓ/Γ

is the dual graph of the special fiber Xq (a curve over Fq which consists of a

collection of P1(Fq) at each vertex of Gk, connected along the edges). A family

of finite graphs Gk,n, for n ∈ N, is obtained by considering neighborhoods TΓ,n

of TΓ inside Tk consisting of TΓ together with all vertices in Tk that are at a

distance at most n from some vertex in TΓ and the edges between them (these

trees are preserved by the action of Γ), and taking the quotients Gk,n = TΓ,n/Γ.

The endpoints (valence one vertices) in Gk,n correspond to the Fqn points in the

special fiber, Xq(Fqn), see [147]. One sees in this way, geometrically, how the

k-points in the Mumford curve XΓ(k) are obtained as limits, going along the
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infinite ends of the graph Tk/Γ, which correspond to successively considering

points of Xq over field extensions Fqn . Conversely, one can view the process

of going into the tree from its boundary XΓ(k) towards the graph Gk in the

middle of Tk/Γ as applying reductions to Fqn . We will see later in the paper

how this process should be thought of physically as a form of renormalization.

The finite graph Gk = TΓ/Γ is the non-archimedean analog of the convex core

CΓ of the hyperbolic handlebody HΓ, while the infinite graph Tk/Γ is the non-

archimedean analog of HΓ itself, with the Mumford curve XΓ(k) replacing the

Riemann surface XΓ = XΓ(C) as the conformal boundary at infinity of Tk/Γ.

Geodesics in the bulk space Tk/Γ correspond to images in the quotient of

infinite paths without backtracking in the tree Tk, with endpoints at infinity

on P1(k). Again, one can subdivide these in several cases. When the endpoints

are the attractive and repelling fixed points z±γ of some element γ ∈ Γ, the

path in Tk/Γ is a closed loop in the finite graph Gk. If the endpoints are both

in ΛΓ but not the fixed points of the same group element, then the geodesic is

an finite path in Gk that is not a closed loop (but which winds around several

closed loops in Gk without a fixed periodicity). If at least one of the endpoints

is in ΩΓ(k) then the path in Tk/Γ eventually (for either t→ +∞ or t→ −∞)

leaves the finite graph Gk and wonders off along one of the attached infinite

trees towards the boundary XΓ(k) at infinity. We still refer to these cases as

closed, bounded, and unbounded geodesics, as in the archimedean case. We

refer the reader to [95], [145], [157], [196] for a more detailed account of the

geometry of Mumford curves.

4.3 Tensor networks

Motivated by the idea that the Bruhat–Tits tree Tp is a discrete (while still

geometric) analogue of anti-de Sitter space, we will use this section to con-

sider some relations between tensor networks that have been considered in the

literature and the tree. One might imagine that many such relations can be

drawn, and we have made no effort to be exhaustive; indeed, a primary aim

in writing this paper is to bring the p-adic geometry to the attention of re-

searchers working on tensor-network approaches to holography, who (we hope)

will find it both interesting and useful.

Throughout this section the basic Hilbert spaces in the bulk and the boundary

will be those of finite dimensional qudits and the primary object of study will
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be the entanglement structure. In §4.4, the finite dimensional Hilbert spaces

are replaced with those of a field theory valued in R or C. We will find many

aspects of holography hold in this field theoretic model and provide evidence

for an exact correspondence. This connection puts the tensor network models

of holography on a more equal footing with dynamical models, since both are

defined from the same discrete spacetime.

We will focus our attention on the networks used by Pastawski, Yoshida, Har-

low, and Preskill [172], (or “HaPPY”), in their construction of holographic

quantum error-correcting codes. Such codes are easy to describe and admit

many variations; in the simplest case, they are associated to a regular hyper-

bolic tiling of the plane. We will refer to such tilings by their Schläfli symbol;

the notation {s, n} refers to a tiling in which n regular polygons, each with

s sides, meet at every vertex. A simple calculation shows that the tiling is

hyperbolic whenever

n >
2s

s− 2
. (4.18)

For instance, if pentagons are used, n = 4 is the smallest possible choice (n = 3

would give the dodecahedron). If the tiles are heptagons or larger, any n ≥ 3

gives a hyperbolic tiling.

Due to constraints of space, we will not fully review the HaPPY construction

here; for details, the reader is referred to the original paper. The key point is

that each tile carries a perfect tensor, which has an even number of indices,

each of which refers to a qudit Hilbert space of fixed size. Such tensors are

characterized by the property that any partition of the indices into two equal

sets yields a maximally entangled state; we review perfect tensors in more

detail, and construct a family of them associated to finite fields, in §4.3. Due

to the appearance of finite fields in the construction of the tree, we feel this is

the most natural family of tensors to consider.

The gist of our argument is that the natural “geometric” setting of a HaPPY

tensor network (for certain uniform tilings) is the Bruhat–Tits tree correspond-

ing to a prime p. We are motivated in this argument not only by the algebraic

similarity between the constructions of Tp and AdS3, but also by the fact that

field-theoretic models of holography can be defined on the tree which exhibit

it as the natural discrete setting for the AdS/CFT correspondence. In par-

ticular, the Bruhat–Tits tree with all edges of equal length can be thought of

as a discrete analog of (empty) Euclidean AdS3, and we conjecture that it is
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dual to the vacuum of the CFT living on Qp. It is therefore logical to guess

that HaPPY tensor networks naturally encode information about the entan-

glement structure of the conformal field theories living at the finite places, and

not about the CFT living at the Archimedean place.

The precise connection we identify is that, at least for certain choices, the

tiling used in HaPPY’s code (when thought of as a graph) has a spanning tree

that is a Bruhat–Tits tree. In some sense, therefore, the tree represents the

union of as many geodesics as can be marked on the tiling without creating

closed paths in the bulk.

In HaPPY’s original paper, a “greedy algorithm” (related to reconstruction of

the quantum state input at the bulk or “logical” qubits of the code) is used to

define a region of the bulk, the perimeter of which is then called a “geodesic.”

We will show in §4.3 that tree geodesics can be understood to correspond to

these “greedy” geodesics for the {5, p+ 2} tilings.

An analogue of the Ryu-Takayanagi formula holds for these codes, essentially

because the length of the geodesic counts the number of bonds (contracted ten-

sor indices) that cut across it, and—due to the properties of perfect tensors—

each contributes a constant amount (the logarithm of the qudit dimension) to

the entanglement entropy. For us, it will be crucial to note that the length

of a (unique boundary anchored) tree geodesic is related to the p-adic size of

the boundary region it defines. We will elaborate on this in §4.5; for now, we

will simply remark on a few features of the formula that we will need in this

section.

At the Archimedean place, entanglement entropy measures the entanglement

between the degrees of freedom living on a spatial domain A of a QFT and

those living on the complement Ac. In AdS3, the domain A is usually taken

to be an interval, or a collection of intervals. The finite place analogue of an

interval is just an open ball (as defined in §4.2); the notion of “codimension” is

counterintuitive in the p-adic setting! One can see that there is no topological

difference between (for instance) an open subset of the unit circle, which would

be an interval in the normal case, and a generic open subset.

If the Ryu-Takayanagi formula holds, the entanglement entropy between A and

Ac is given by the length of the unique geodesic γ (xA, yA) in the Bruhat–Tits
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tree connecting boundary points xA and yA,

SEE(A) = # · length (γ (xA, yA)) . (4.19)

Just as in the case of AdS3, entanglement entropy is a logarithmically divergent

quantity. The divergence arises because if xA and yA are on the boundary, the

number of legs on the geodesic is infinite. To regularize this divergence, we

introduce a cutoff εp such that the length of the geodesic is

length (γ (xA, yA)) = 2 logp

∣∣∣∣
xA − yA

εp

∣∣∣∣
p

, (4.20)

with | · |p the p-adic norm. (For details about this, see §4.5.) This gives the

entanglement entropy between A and its complement in Qp as∗

SEE(A) = # logp

∣∣∣∣
xA − yA

εp

∣∣∣∣
p

. (4.21)

The proportionality constant will be left undetermined for now.

Perfect tensors and quantum error-correcting codes from finite fields

Our goal in this subsection is to recall some features of quantum error-correcting

codes associated to 2n-index perfect tensors, as used by Pastawski, Yoshida,

Harlow, and Preskill [172]. We will review the three-qutrit code and associ-

ated four-index perfect tensor that they construct, and then show how this

is the case q = 3 of a family of perfect tensors associated to powers q = pm

of odd primes. While the corresponding quantum error-correcting codes are

not new [102], our goal is to highlight the properties of these particular codes

that make them relevant to p-adic holography. In particular, as we recalled

in §4.2, each vertex of the Bruhat–Tits tree for a degree-n unramified exten-

sion k of Qp is marked with a copy of the residue field Fpn . As such, finite

fields appear as important ingredients both in the construction of holographic

tensor networks and in the algebraic setting of the Bruhat–Tits tree. We feel

that the codes discussed here are natural candidates to consider in connecting

p-adic geometry to tensor network models, although of course this choice is

not inevitable and any code with the right properties will define a holographic

code.

∗For the length of the geodesic between xA and yA to warrant the interpretation of
entanglement entropy, it must be the case that the tensor network bonds cutting across it,
when extended all the way to the boundary, connect between A and Ac. This can be done
and is explained in §4.3.
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The three-qutrit code

In their paper, Pastawski et al consider the following quantum error-correcting

code, which encodes a one-qutrit logical Hilbert space in a three-qutrit physical

Hilbert space:

|0〉 7→ |000〉+ |111〉+ |222〉
|1〉 7→ |012〉+ |120〉+ |201〉
|2〉 7→ |021〉+ |102〉+ |210〉 .

The encoded data is protected against erasure of any single qutrit. If we

represent the state by a tensor,

|a〉 7→ Tabcd |bcd〉 ,

then Tabcd is perfect in the sense of Pastawski et al, and defines a perfect state:

|ψ〉 = Tabcd |abcd〉 .

(Throughout, we use Einstein’s summation convention.) To recall, a tensor

with 2n indices, each representing a qudit Hilbert space of any chosen fixed

size, is perfect when it satisfies any of the following equivalent conditions:

• Given any partition of the indices into two disjoint collections A t B,

where |A| ≤ |B|, the tensor defines an injection of Hilbert spaces HA ↪→
HB: a linear map that is a unitary isomorphism of its domain with its

image (carrying the subspace norm).

• The corresponding perfect state is maximally entangled between any

tensor factors HA,B of equal size (each consisting of n qudits). That

is, after tracing out n of the 2n qudits, the remaining n-qudit density

matrix is proportional to the identity operator.

It is straightforward to check that the above tensor Tabcd is an n = 2 perfect

tensor on qutrits. To rephrase the way it is constructed so as to make its

generalization to larger codes more apparent, we notice that the particular

states that appear in the encoding of a basis state |a〉 are lines of slope a

in F2
3: if the three qudits are labeled by an element x of F3, then the states

are of the form ⊗x |f(x)〉, where f(x) = ax + b, and we sum over the three
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possible choices of b ∈ F3. The result is a perfect tensor because a line is

determined either by two of its points, or by one point and knowledge of the

slope; conversely, given any two points, or any one point and one slope, exactly

one corresponding line exists.

Perfect polynomial codes

We would like to generalize this to a family of perfect tensors in which the

qudit Hilbert spaces are of size q = pm, so that a basis can be labelled by

the elements of Fq. An obvious guess is to associate a function or collection of

functions fa : Fq → Fq to each logical basis state |a〉, generalizing the collection

of lines fa(x) = ax + b that were used when q = 3. These functions should

have the property that knowledge of some number of evaluations of fa will

uniquely specify a, whereas knowing any smaller number of evaluations will

give no information about a whatsoever. The encoded states will then take

the form
∑

b (⊗x |fa(x)〉), for some collection of x’s in Fq. Here b stands for a

collection of numbers parameterizing the set of functions fa.

The simplest choice of such a class of functions are polynomials of fixed degree

d:

fa(x) = axd + bd−1x
d−1 + · · ·+ b1x+ b0.

Over the real numbers, d+ 1 points determine such a polynomial. Over finite

fields, one must be a little careful—by Fermat’s little theorem,

xq − x = 0 ∀x ∈ Fq.

As such, if d ≥ q, we can’t determine a polynomial uniquely by its evaluations—

after all, there are at most q possible evaluations over a finite field! However,

polynomials of degree d < q can be recovered uniquely; in fact, every function

from Fq to Fq is a polynomial function, uniquely represented by a polynomial

of degree d < q (there are exactly q2 elements of each collection).

However, if we choose d too large, the resulting code will not have error-

correcting properties: we will need almost all of the physical qudits to recover

the logical one. We know that for codes obtained from 2n-index perfect tensors,

one logical qudit is encoded in 2n − 1 physical qudits, and is recoverable

from any n of them. This is sometimes called a [[2n − 1, 1, n]]q code. For

polynomial codes, we must have 2n− 1 ≤ q (since there are at most q possible

evaluations of the code function), and furthermore n = d+1. Thus, the largest
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possible perfect tensor we can obtain from this class of codes has p+1 indices,

corresponding to the [[q, 1, (q + 1)/2]]q code; the polynomials used in making

this code are of degree d = (q − 1)/2. Recall that we are assuming p 6= 2

everywhere; q = 3 recovers the linear qutrit code that we discussed above.

To be concrete, when q = 5, the code takes the following form:

|a〉 7→
∑

b0,b1∈F5

|b0, b0 + b1 + a, b0 + 2b1 + 4a, b0 + 3b1 + 4a, b0 + 4b1 + a〉 .

The numbers that appear are just x as the coefficient of b0 and x2 as the

coefficient of a. This encoded state already contains 25 basis states, and the

perfect state |ψ5〉 constructed from this tensor is a combination of 53 = 125

basis states.

These p + 1-index perfect tensors seem like logical candidates to use in con-

structing a family of quantum codes associated to Bruhat–Tits trees. In par-

ticular, they are naturally associated to the data of a finite field Fq, which

appears at each vertex of the tree; moreover, they have q + 1 qudit indices,

which agrees with the valence of the tree.

However, the exact way to combine these ingredients remains a little unclear.

In particular, since paths in the tree correspond to geodesics in the p-adic

hyperbolic space, it seems more natural to think of the legs of the tree as

cutting across contractions of tensor indices, rather than representing them.

We expand on this idea in the section that follows.

Bruhat–Tits trees and tensor networks

We now investigate the connection between Bruhat–Tits trees and tensor net-

works. The gist of this section is that, while the tree corresponds to “geome-

try,” the tree alone cannot define a tensor-network topology in the most naive

way (tensors at vertices with indices contracted along edges). This is because,

in typical tensor-network models of holography, the Ryu-Takayanagi formula

holds because each unit distance along a geodesic corresponds to a bond (i.e.,

contracted tensor index) which is “cut” by the path and contributes a fixed

amount (the logarithm of the dimension of the qudit Hilbert space) to the

entanglement entropy. Since the paths in the tree correspond to geodesics in

the bulk, one cannot hope to connect the tree to HaPPY’s holographic code

without adding tensors in such a way that their indices are contracted across

the edges of the tree.
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The extra structure we need to account for the network can be as simple as

grouping the vertices of the tree in some fashion, associating bulk indices to

the groups, and demanding perfect tensor structure, as we now explain.

A basic set of rules for constructing entanglement: Group

the vertices in the tree in some way; to each grouping we associate

one or more bulk vertices. If two groupings share two tree vertices,

then there is a tensor network bond connecting the bulk vertices of

the groupings. The resulting tensor network should be composed of

perfect tensors. This constructs a tensor network mapping between

the boundary and the bulk.

It is not clear what the most general rules for associating the tensor vertices to

the tree vertices should be. In particular, we are not demanding planarity (the

Bruhat–Tits tree has no intrinsic planar structure), so the resulting network

could be quite complicated, or even pathological. In order for the nice proper-

ties of a bulk-boundary tensor network to hold additional criteria should likely

be imposed. We leave the general form of these criteria for future work; in the

following, we focus on one specific set of rules that works.

Bruhat–Tits spanning trees of regular HaPPY tilings

Although the most general set of rules for assigning tensors is unclear, HaPPY

tensor networks of uniform tiling can easily be constructed from the minimal

proposal above with the addition of a few simple rules. These extra rules intro-

duce planarity, so that the Bruhat–Tits tree becomes the spanning tree of the

graph consisting of the edges of the HaPPY tensor network tiles. For q > 3, we

can construct a HaPPY tensor network associated to a [[q, 1, (q+ 1)/2]]q code

by grouping the vertices of the tree into sets of q, corresponding to tessellation

tiles, and adding one bulk vertex to each tile. These tiles are organized into

“alleyways;” each tile consists of vertices connected by a geodesic for tiles that

are the starting points of alleyways, or of vertices living on two geodesics for

tiles along the alleyway (see Fig. 4.5). The edges of each tile consist of either

q − 1 or q − 2 segments coming from the geodesics, and one or two fictitious

segments (the dotted lines in Fig. 4.5) respectively, that we draw only to keep

track of which tree vertices have been grouped. Furthermore, each vertex con-

nects to exactly one dashed edge. Since the tree has valence q+1, the HaPPY

tensor network tiling has q + 2 tiles meeting at each vertex.
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The description above works for q > 3. The case q = 2 is special and can

be obtained from the [[5, 1, 3]]2 code; this is the case depicted in Fig. 4.5. In

fact, any size polygon could be used; the only real constraint is that the tiling

be hyperbolic of the form {n, q + 2}, with q a prime power. The pathologies

of low primes come from the difficulty in demanding the tiling be hyperbolic

and requiring perfect tensors; for instance, the p = 2 case would require a 3

index perfect tensor, but all perfect tensors have an even number of indices by

construction.

In this picture of tiles, the tensor network bonds can be thought of as cutting

across the edges of the tiles. Indeed, because of planarity, each edge can be

associated with the tensor network bond of its vertices, precisely reproducing

the HaPPY construction for uniform tilings of the hyperbolic plane.†

An interesting feature of our construction is that it introduces a peculiar notion

of distance on the boundary, in that points x, y,∈ Qp that are that are far apart

(in terms of the norm |x− y|p) can belong to the same tile, or to neighboring

tiles, so they can be “close in entanglement”; this is a concrete manifestation

of the dissociation between entanglement and geometry inherently present in

our model.

Explicit tree-to-tessellation mapping

We now explicitly construct an identification between Bruhat–Tits trees and

a HaPPY tensor network of uniform tiling. The end goal is to show that a

planar graph of uniform vertex degree v admits a spanning tree of uniform

vertex degree v − 1. Although both the degree of the tree and the size of

the tile are constrained by the quantum error correcting code, for the sake

of generality we will work with n-gonal tiles, n ≥ 5, and trees of valence k,

k ≥ 3. The algorithm constructing the mapping proceeds by starting with one

n-gonal tile, then builds regions of tiles moving radially outward. Each region

is built counterclockwise.‡

The purpose of this algorithm is to build a graph of dashed and solid edges such

†We should always remember, however, that in our construction, unlike in [172], bulk in-
dices and tensor network connections are fundamentally associated to groups of tree vertices,
and not to the geometric elements of a tile.

‡There are, of course, many variations of this algorithm that work; here we only exhibit
one of them. For the purposes of constructing the mapping, it does not matter which
variation we use.
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Figure 4.5: Mapping between a p = 2 Bruhat–Tits tree and the regular hy-
perbolic tiling {5, 4}. The first three regions constructed by the algorithm are
shown. The red geodesic separates the causal wedge for the boundary region
on which the geodesic ends from its complement in the tree. Since this is
p = 2, the number of edges in a tile is different than our standard choice in
the arbitrary q case.

that every vertex has degree k+1 and exactly one dashed edge connecting to it.

The HaPPY tensor network tiling is given by the solid and dashed edges, and

the tree is given by the solid edges, as in Fig. 4.5. The steps of the algorithm

are as follows (see also Fig. 4.6 for a pictorial representation):

1. Start with an n-gonal tile with one edge dashed and n − 1 solid edges.

This is region r = 1. The left vertex of the dashed line is the current

vertex.

2. To construct region r+1, for the current vertex, add an edge ef extending

outward, then go counterclockwise around the tile being created, break-

ing off the edges shared with region r as soon as a vertex with degree

less than k + 1 is encountered. Call the first new edge after breaking off

en. If either ef or en are constrained (by the condition that in the graph
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we want to obtain each vertex has degree k+ 1 and precisely one dashed

edge connecting to it) to be dashed, make them dashed, otherwise they

are solid. If neither ef nor en are dashed, make the “farthest” edge (call

it el) dashed; otherwise, leave it as a solid edge. el is chosen so that its

distance to the existing graph is as large as possible, and so equal on

both sides if possible; if the number of new edges is even, so that this

prescription is ambiguous, the choice closer to ef is taken.

3. Move counterclockwise to the next vertex on the boundary of the current

region, skipping any vertices of degree k + 1. This new vertex becomes

the current vertex.

4. Repeat the step above until we have built an edge ef on all vertices of

region r that have degree less than k + 1. This completes region r + 1.

5. To start on the next region, set the current vertex to be the left vertex

of the dashed line on the first r + 1 tile that we built, then go to step 2

above.

We now show why the algorithm works:

• By induction, there can be no neighboring vertices of degree greater

than two on the boundary at any step, except when building a tile on

the next-to-last edge of a tile from the previous region, in which case a

vertex of degree 3 neighbors a vertex of some degree. This is because if

the boundary has no neighboring vertices of degree k+1, any tile we add

shares with the boundary of the previously constructed tiles at most two

edges, so (since n ≥ 5) it will have at least three free edges, adding at

least two vertices of degree 2 between the vertices to which it connects.

• From the previous point, when constructing any tile, the vertices to

which ef and en connect cannot both have degree k before adding ef

and en, so either ef or en can be made solid.

• If ef and en are not dashed, then el only connects to two solid edges, so

it can be made dashed.

• By the above, each new tile we add introduces exactly one dashed edge,

so the graph of solid edges remains a tree at all steps.
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en

el ef

Figure 4.6: Mapping between a p = 2 Bruhat–Tits tree and a pentagonal
HaPPY tiling, after the third tile of the second region has been built. Edge en
is constrained to be dashed, so edges ef and el are solid. The arrows represent
the direction in which the algorithm constructs regions and tiles.

This completes the proof.

Bulk wedge reconstruction

In this subsection we discuss how bulk reconstruction, in the sense of [172],

functions for our proposal. Although the construction in §4.3 replicates the

tensor network tiling of [172], there are some differences of interpretation.

The algorithm outlined in Pastawski et al.’s paper prescribes that, starting

with a given boundary region, one should add tiles one by one if the bulk

qubits they carry can be reconstructed from the known data; i.e., if one knows

(or can reconstruct) a majority of the edge qubits on the tile. When no

further tiles can be added in this manner, the reconstruction is complete, and

the boundary of the region is the “greedy geodesic.”

In our case, for a given drawing of the tree, the first step to reconstructing a

boundary open set |xA − yA|p is to identify a geodesic G that separates the

causal wedge for the boundary region on which G ends from its complement

in the tree. This is nontrivial, because due to the non-planarity of the tree,

paths that end on the ball corresponding to the endpoints of the geodesic can

be drawn outside the wedge. A G with the desired property is a geodesic
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from which only one path leaves into the complement of the wedge; such

an example is drawn in Fig. 4.5 in red. Given a choice of planar structure,

there is a unique “outermost” separating geodesic associated to each open

set. Once a separating geodesic has been identified, we can assign xA and yA

to its endpoints, the inside of the ball to the tree inside the wedge, and the

complement of the ball to the complement of the wedge in the tree.

For the tilings {5, n}, it is straightforward to see that the greedy geodesic

for a boundary open ball coincides with the tree geodesic G that forms the

“boundary” of that open ball in the chosen planar structure. The alleyways in

the diagram are sequences of tiles joined along dashed lines, such that fewer

than half of the edges on each tile are exposed to either side; therefore, each

alleyway forms a “firebreak,” which the greedy algorithm cannot jump across.

If none of the dashed edges are known, none of the tiles in the alleyway can

be reconstructed. Therefore, starting at a boundary open set, the greedy

algorithm propagates up the alleyways whose ends lie inside the region, and

fills out the region marked off by the tree geodesic. It cannot stop before the

region is filled, since by construction each tile neighbors at least three tiles

that are further away from the center than the tile itself is.

When the tiles are larger than pentagons, a difficulty arises when one is build-

ing tiles for which two edges touch the previous part of the picture: one may

be forced (by valence requirements) to build a dashed edge at en or ef , while

another dashed edge exists in the previously built part, a distance of only one

away. An instance where this occurs (although, of course, it causes no prob-

lems for pentagonal tiles) can be seen at the bottom right corner of Fig. 4.5.

This constructs an alley that could be jumped by the greedy algorithm.

A simple fix for this problem would be to simply use a pentagon whenever

this situation arises, resulting in a nonuniform tiling where the alleyways still

function as firebreaks. While this will produce a valid holographic code, it is

not immediate that the tiling is even regular in this case.

Another option is, if we are willing, to alter the tiling near a specifically cho-

sen geodesic, so that the problem does not arise for that particular wedge.

We explain an algorithm to construct the tiling in this case. The idea is to

construct two alleyways, with the sides with one edge per tile pointing towards

the wedge. This separates the plane into two regions, which for the purposes

of tile building don’t talk to each other. Since the rules for building a tile
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from §4.3 are (almost) local, they have no information the global structure of

the row being built. It is thus possible to use them to cover the two regions,

moving “left” and “right” to create rows, and “up” and “down” to stack the

rows. We give the explicit steps of the algorithm (see Fig. 4.7):

1. Build an alley of k-gons, by starting with a k-gon with one dashed edge

(call this the root tile) and building the successive gons always on the

dashed edges. For each k-gon except for the starting one, the number of

solid edges on the two sides of the dashed edges should be 1 and k − 3

respectively, with all 1’s occurring on one side, and all (k − 3)’s on the

other.

2. Build a second alley of k-gons, starting on the solid edge of the root tile

that neighbors the root’s dashed edge on the side of 1’s. For each k-gon

except the starting one, the number of solid edges on the two sides of

the dashed edges should be 1 and k − 3 respectively, with all 1’s facing

the 1’s of the first alley. The plane has now been split into two regions:

wedge and complement.

3. To construct the tiling inside the wedge, start on some edge of the two

central alleyways, and construct a tile using the rules from point 2 in

the algorithm in §4.3. Then move to the right, and construct new tiles

rotating clockwise in the construction of each tile. To do the other side,

start from the initial tile and move left, constructing tiles using the rules

from point 2 in the algorithm while rotating counterclockwise. This fills

a “row”.

4. Once the “row” is complete, move to the row “above” it and repeat.

5. To construct the tiling of the complement of the wedge, run the two bullet

points above, but having the clockwise and counter-clockwise rotations

swapped, and moving “below” instead of “above”.

This algorithm works because locally the construction is the same as the one in

the algorithm of §4.3. The individual tile building procedure does not depend

on whether it is going around a finite region (as in §4.3), or along an infinite

“row”. And since inside the wedge more than half of each tile’s neighbors are

further away from the center than the tile is, the reconstruction covers the

entire wedge.
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Figure 4.7: Mapping between the tree and tiling for reconstructing a chosen
causal wedge. The two central alleys partition the plane into two regions:
the causal wedge of the red geodesic and its complement. Tilings can be
constructed to either side of the shown alley by building tiles via step 2 of the
algorithm of §4.3.

While in the original HaPPY construction [172] one tensor network suffices

to reconstruct the causal wedge associated to any boundary interval, in our

case the tree identifies a certain collection of open sets on the boundary when

pentagonal tiles are used (and, in one possible generalization to larger tiles,

may even treat one boundary region as special). Even for pentagons, there

may be many ways to draw the spanning tree on the same tiling. Moreover,

the boundary tiles are not treated on an equal footing: they form the ends of

shorter and longer alleyways. The longer the alleyway in which a boundary

tile appears, the larger the first open set that includes it. One can think of

these extra choices as follows: If one were to draw all possible greedy geodesics

on the tiling, all edges would be marked, and there would be no information.

Marking the geodesics with a subgraph is only useful when there is a unique

path between pairs of boundary points, so that one knows “which way” to

turn in order to recover the geodesic. This means that the marked subgraph

should have no closed loops: that is, it should be a tree, and the spanning tree

is (by definition) a largest possible subtree.

Entanglement bridges

By choosing a planar assignment of tensors, we have found the Bruhat-Tits

tree as the spanning tree of this tiling. Although this choice was convenient, it
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may be somewhat arbitrary. One might ask for more exotic non-planar way of

connecting the tree with tensors. Such a non-planar structure might obscure

the geometric interpretation, but it is expected that quantum gravity contains

non-geometric states, so there is a sense in which at least small deviations

from planarity should be physically acceptable. One simple example might

be to connect two distant parts of the tree together through a non-planar

tensor. If this can be done in a consistent way, one might interpret this non-

planar defect a bridge of entanglement between two points of the tree. It

would be interesting to investigate whether a configuration with defects or

more complicated non-planar structures can be understood in terms of the

ER = EPR proposal [144].

Furthermore, the rules we have identified here still generically break symme-

tries of the tree, since a PGL(2,Qp) transformation need not preserve the

grouping of vertices or the planar structure. One might hope to construct a

tensor network associated to the tree with more minimal auxiliary structure,

so that the full symmetry group of the p-adic bulk spacetime is manifest for

the network as well; however, for the reasons outlined above, it is difficult to

understand how to do this while making contact with tensor network proposals

existing in the current literature.

4.4 p-adic conformal field theories and holography for scalar fields

In this section, we turn from tensor networks to genuine field theories defined

on p-adic spacetimes: either in the bulk of the tree Tp (or possibly a quotient

by a Schottky group) or on a p-adic algebraic curve at the boundary. We will

find evidence for a rich holographic structure strongly reminiscent of ordinary

AdS/CFT. The conformal theory on the fractal p-adic boundary is analogous

to 1+1 dimensional field theory with a p-adic global conformal group; our prin-

ciple example is the p-adic free boson which permits a Lagrangian description.

In the bulk, semi-classical massive scalar fields defined on the lattice model

naturally couple to operators on the conformal boundary in a way that al-

lows for precise holographic reconstruction. One can also interpret the radial

direction in the tree as a renormalization scale. These observations unite dis-

crete analogs of AdS geometry, conformal symmetry, and renormalization in a

holographic way.
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Generalities of p-adic CFT, free bosons, and mode expansions

While non-archimedean conformal field theory has been considered in the lit-

erature from several different perspectives [33, 45, 153], it remains much less

well-studied than ordinary two-dimensional CFT. Melzer [153] defines these

theories in general by the existence of an operator product algebra, where all

operators in the theory are primaries with the familiar transformation law un-

der the global conformal group SL(2,Qp). Descendants are absent in Melzer’s

formulation because there is no analogue of the derivative operators ∂ and ∂̄

acting on complex-valued functions over Qp [153], and (correspondingly) no

local conformal algebra.

In this formulation, the correlation function between two primary fields φm(x)

and φn(y) inserted at points x and y and having scaling dimensions ∆n is given

(after normalization) by

〈φm(x)φn(y)〉 =
δm,n

|x− y|2∆n
p

. (4.22)

(We will understand this formula holographically in what follows.) As in the

archimedean case, as we take the points x and y to be close together (p-

adically), we wish to expand the product as a sum of local field insertions: the

operator product expansion. For two such primaries φm(x) and φn(y), there

exists an ε > 0 such that for |x − y|p < ε, the correlation function (perhaps

with other primaries φni(xi) inserted) is given by the expansion:

〈φm(x)φn(y)φn1(x1) . . . φni(xi)〉 =
∑

r

C̃r
mn(x, y)〈φr(y)φn1(x1) . . . φni(xi)〉,

(4.23)

where the sum runs over all primaries in the theory, and C̃r
mn(x, y) are real

valued. This relation should hold whenever |x−y|p is smaller than the distances

to the xi’s. Invariance under SL(2,Qp) implies

C̃r
mn(x, y) = Cr

mn|x− y|∆r−∆m−∆m
p (4.24)

with constant OPE coefficients Cr
mn.

Theories defined in this way enjoy a number of special properties not true of

their archimedean counterparts. They are automatically unitary since they

possess no descendant fields. Additionally, because Qp is an ultrametric field,

all triangles are isosceles: for x, y, z ∈ Qp, from the p-adic norm we have
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If |x− y|p 6= |y − z|p , then |x− z|p = max {|x− y|p, |y − z|p} . (4.25)

This fundamental property of the p-adic numbers implies that the three- and

four-point functions are exactly determined by the conformal weights and

OPE coefficients. In the case of the four-point function, after an SL(2,Qp)

transformation which maps three points to 0, 1, and∞, the only free parameter

(the cross ratio of the original points) must be contained in a ball in the

neighborhood of one of the other points. Since the OPE is exact in each

neighborhood, one can compute the three possible cases and determine the

full four-point function.

In fact, all higher-point functions are constrained by global conformal symme-

try alone; by contrast, the spectrum of OPE coefficients is less constrained than

in familiar CFTs. A consistent model can be constructed using the structure

constants of any unital commutative algebra, subject to one simple condition.

These features may be of interest in the study of conformal field theory and

conformal blocks, but we do not pursue that direction here; the interested

reader is referred to [153].

Let us now step back and consider the p-adic theory from the perspective of

quantizing a classical field theory described by a Lagrangian. Many familiar

objects from the study of quantum fields over normal (archimedean) spacetime

have direct analogues in the p-adic setting. For example, one frequently makes

use of the idea of a mode expansion of a field on flat spacetime in terms of a

special class of basis functions, the plane waves:

φ(x) =

∫

R
dx eikxφ̃(k). (4.26)

The functions eikx are eigenfunctions of momentum, or equivalently of transla-

tions. Mathematically, we can think of these as additive characters of R: they

are group homomorphisms χ : R→ C, such that χ(x+ y) = χ(x)χ(y).

The additive characters of the fields Qp are also known: they take the form

[202]

χk(x) = e2πi{kx}. (4.27)

Here k, x ∈ Qp, and the normalization factor 2π is included for convenience

(in keeping with the typical math conventions for Fourier transforms). The
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symbol {·} : Qp → Q denotes the fractional part of the p-adic number.§ It is

defined by truncating the decimal expansion to negative powers of the prime:

{
∞∑

k=m

akp
k

}
=
−1∑

k=m

akp
k, (4.28)

where the right-hand side is interpreted as an ordinary rational number, under-

stood to be zero when the range of the sum is empty (m is non-negative). Since

a p-adic number and its fractional part differ (at least in a formal sense) by

an integer, it makes sense that the complex exponential (4.27) should depend

only on the fractional part of kx. (However, care should be taken: in general,

it is not true for rational x that e2πix = e2πi{x}p ! For instance, 0.1 = 1/10 is a

3-adic integer.)

A wide class of scalar fields on Qp can be expanded in a basis of the additive

characters, just like a mode expansion in the archimedean setting:

φ(x) =

∫
dµ(k) e2πi{kx} φ̃(k). (4.29)

Here dµ(k) is the Haar measure on Qp. The theory of the p-adic Fourier

transform is developed in more detail in Appendix A.1.

Our principal example (and also by far the most well-studied instance) of a

p-adic conformal field theory is the free boson: a single (real or complex) scalar

field on P1(Qp) or another p-adic Riemann surface, with a massless quadratic

action. This theory was of interest in the context of p-adic string theory,

in which the worldsheet is a p-adic space, but the target space (and hence

all physically observable quantities) are ordinary. Many results were derived

in that literature, including the well-known Freund–Olson–Witten tachyon

scattering amplitudes [34, 86, 87].

Our interpretation of the system in question will be somewhat different, as

we will emphasize the holographic nature of the interplay between field theory

defined on a Riemann surface (algebraic curve) and the study of its hyperbolic

filling, a quotient of the Bruhat–Tits tree. (In the p-adic string literature,

it was common to view the tree as playing the role of the “interior” of the

worldsheet.) Many of our results will parallel aspects of the p-adic string, but

§As with other notations referring to the p-adics, we will sometimes use the subscript
{·}p when it is necessary for emphasis or to make reference to a specific choice of prime.
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we will view this theory as a CFT on P1(Qp) without any reference to a target

space.

The p-adic free boson is considered here because it permits a Lagrangian de-

scription in terms of the nonlocal Vladimirov derivative, ∂(p), which acts on

complex- or real-valued fields of a p-adic coordinate. This derivative is defined

by

∂n(p)f(x) =

∫

Qp

f(x′)− f(x)

|x′ − x|n+1
p

dx′. (4.30)

In the p-adic string literature, ∂(p) is also known as a normal derivative, for

reasons that will become clear in the following sections. Intuitively, the formula

is similar to Cauchy’s representation of the n-th derivative of a function by

a contour integral. A more detailed explanation of its properties is given in

Appendix A.2. While the parameter n is often taken to be an integer, it may

in principle assume any real value.

One can arrive at the following action either by “integrating out” the interior

of the string worldsheet Tp as done in [225], or by hypothesis as the minimal

“quadratic” action of a scalar over a p-adic coordinate [71]. The action for a

single scalar is (setting the overall coupling to 1) [101, 188, 226]:

Sp[φ] = −
∫

Qp
φ(x)∂(p)φ(x) dx, (4.31)

where ∂(p)φ(x) is the first Vladimirov derivative of the field φ. We take φ(x)

to be a scalar representation of the conformal group; see [182] for a discussion

of representations of SL(2,Qp) in general. Under an element

g =

(
a b

c d

)

of the conformal group, where a, b, c, d ∈ Qp and ad− bc = 1, quantities in the

above expression transform as

x→ ax+ b

cx+ d
, x′ → ax′ + b

cx′ + d
,

dx→ dx

|cx+ d|2p
, dx′ → dx′

|cx′ + d|2p
,

|x′ − x|−2
p → |(cx′ + d)(cx+ d)|2p|x′ − x|−2

p .

As in [153], a field φn(x) having conformal dimension ∆n transforms as

φn(x)→ φ′n

(
ax+ b

cx+ d

)
= |cx+ d|−2∆n

p φn(x) (4.32)
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under the p-adic conformal group. For the free boson φ(x), we claim ∆ = 0.

With this one can see the derivative ∂(p)φ(x) carries a weight |cx + d|−2
p and

thus is a field of dimension 1. It should now be clear that the action Sp[φ] is

invariant under the global conformal group.

Given the action Sp[φ], we can define the partition function in the usual way by

integrating over configurations with measure Dφ. As in the case of the p-adic

string, because φ is a complex (and not p-adic) valued field, this integration

measure is exactly the one that appears in ordinary field theory:

Zp =

∫
Dφ e−Sp[φ]. (4.33)

As many authors have noted [171, 188, 226], this action and the partition

function actually describe a free theory. This means the saddle point approxi-

mation to the partition function is exact, and it can be computed by Gaussian

integration exactly as in the case of a real free field. Of more interest in the

present discussion is the two point function. To do this we introduce sources

J(x) to define the generating function:

Zp[J ] =

∫
Dφ exp

(
−Sp[φ] +

∫

Qp
J(x′)φ(x′)dx′

)
. (4.34)

The sources for the 2-point function or propagator take the form of p-adic

delta functions at the insertion points x, y are J(x) = δ(x′ − x) + δ(x′ − y).

Just as in the real case, we vary with respect to φ(x) and find the classical

solution which extremizes the above action. This is the Green’s function for

the Vladimirov derivative G(x− y), satisfying

∂(p)G(x− y) = −δ(x− y). (4.35)

To solve forG(x−y) = 〈0|φ(x)φ(y)|0〉, we apply the p-adic Fourier transform to

both sides using techniques from Appendix A.1. In Fourier space the derivative

brings down one power of the momentum and the delta function becomes an

additive character:

G̃(k) = −χ(ky)

|k|p
. (4.36)
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The 2-point function in position space can be obtained by inverse Fourier

transform (with u = x− y):

G(x− y) = −
∫

Qp

χ(k(y − x))

|k|p
dk (4.37)

= −
∫

Qp

χ(ku)

|k|p
dk. (4.38)

This integral is divergent as k → 0. We compute two similar integrals in

Appendix A.2, where the apparent divergence is canceled by the numerator.

Unlike in those examples, this integral really does diverge logarithmically, just

as the two-point function of a dimension 0 operator in two-dimensional con-

formal field theory has a logarithmic divergence. Proceeding as in that case,

we introduce a regulator to extract the finite part by computing

lim
α→0

∫

Qp
χ(ku)|k|α−1

p dk. (4.39)

This appears in the second integral computed in the appendix; in terms of the

p-adic gamma function Γp(x), it is

lim
α→0

∫

Qp
χ(ku)|k|α−1

p dk = lim
α→0

Γp(α)|u|−αp . (4.40)

As α→ 0 the gamma function has a simple pole and the norm has a log piece:

lim
α→0

Γp(α) ≈ p− 1

p ln p

1

α
(4.41)

lim
α→0
|u|−αp ≈ 1− α ln |u|p. (4.42)

Finally, we restore u = x − y and find that the 2-point function is given (up

to normalization) by

〈0|φ(x)φ(y)|0〉 ∼ ln

∣∣∣∣
x− y
a

∣∣∣∣
p

, a→ 0. (4.43)

This is exactly analogous to the correlator for the ordinary free boson in two

dimensions.

The Laplacian and harmonic functions on Tp

In addition to boundary scalar fields, we will be interested in scalar fields in

the “bulk,” i.e., defined on the Bruhat–Tits tree. Such a field is a real- or

complex-valued function on the set of vertices. We will also consider fields
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that are functions on the set of edges; as we will discuss later, such functions

will be analogous to higher-form fields or metric degrees of freedom in the bulk.

For now we mention them for completeness and to fix some standard notation.

For more information about fields in the tree, the reader can consult [225] and

references given therein.

We think of the tree as the 1-skeleton of a simplicial complex, and make use of

standard notations and ideas from algebraic topology. The two types of fields

mentioned above are just 0- and 1-cochains; we will refer to the space of such

objects as C∗(Tp), where ∗ = 0 or 1.

If an orientation is chosen on the edges of the tree, the boundary operator acts

on its edges by ∂e = te − se, where s and t are the source and target maps.

The corresponding coboundary operator acts on fields according to the rule

d : C0(Tp)→ C1(Tp), (dφ)(e) = φ(te)− φ(se). (4.44)

The formal adjoint of this operator is

d† : C1(Tp)→ C0(Tp), (d†ψ)(v) =
∑

e

±ψ(e), (4.45)

where the sum is over the p+ 1 edges adjacent to vertex v, with positive sign

when v is the source and negative sign when it is the target of e. Whether or not

d† is actually an adjoint to d depends on the class of functions being considered;

the L2 inner product must be well-defined, and boundary conditions at infinity

must be chosen to avoid the appearance of a boundary term.

Upon taking the anticommutator {d, d†}, we obtain an operator of degree

zero, which is the proper analogue of the Laplacian. We will most often use

its action on the 0-cochains, which can be represented by the formula

4 φ(v) =
∑

d(v,v′)=1

φ(v′)− (p+ 1)φ(v). (4.46)

This is sometimes written using the notation 4p = tp − (p + 1), where tp is

the Hecke operator on the tree. The analogous formula for 1-cochains is

4 ψ(e) =
∑

e′

±ψ(e′)− 2ψ(e), (4.47)

where the sum goes over the 2p edges adjacent to e at either side. Unlike for

the vertices, there is a dependence on the choice of orientation here: an edge in
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the sum (4.47) enters with positive sign when it points in the “same direction”

as e, i.e., points out from te or into se. Edges enter with negative sign when the

opposite is true. In the standard picture of the tree with ∞ at the top and all

finite points of Qp at the bottom, oriented vertically, we therefore have exactly

one negative term in (4.47), corresponding to the unique edge above e. Notice

that, for general p, the Laplacian acting on edges (unlike on vertices) will not

have a zero mode; this makes sense, since the tree is a contractible space. The

exception is p = 2, for which the standard choice of vertical orientations defines

a Laplacian which annihilates constant functions of the edges. (Of course, the

p = 2 tree is still contractible.)

We should remark on one important point: the entire analysis of this paper

treats the case where the edges of the tree have uniform lengths, and argues

that this is analogous to a maximally symmetric vacuum solution in ordinary

gravity. It is natural to wonder what the correct analogues of the metric de-

grees of freedom actually are. One might speculate that allowing the edge

lengths to be dynamical (breaking the PGL(2,Qp) symmetry) should corre-

spond to allowing the metric to vary; after all, this would vary the lengths of

paths in the tree, which are the only data that seem logically connected to the

metric. By analogy with the Archimedean case, it would then make sense to

assume that the edge Laplacian (4.47) will play a role in the linearized bulk

equations of motion for edge lengths around a background solution. However,

we will relegate further investigation of this idea to future work.

Action functional and equation of motion for scalar fields

Equipped with these ingredients, it is now straightforward to write down ac-

tion functionals and equations of motion for free scalar fields. The massless

quadratic action is

S[φ] =
∑

e

|dφ(e)|2 . (4.48)

In what follows, we will study properties of solutions to the “wave equation”

4φ = 0, and its massive generalization (4 − m2)φ = 0, on the tree. These

have been considered in [225].

There is a family of basic solutions to the Laplace equation, labeled by a

choice of a boundary point x and an arbitrary complex number κ. The idea

is as follows: Given an arbitrary vertex v in the bulk of the tree, a unique
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geodesic (indeed, a unique path) connects it to x. As such, exactly one of its

p+1 neighbors will be closer (by one step) to x, and the other p will be farther

by one step. Therefore, the function

εκ,x(v) = p−κ d(x,v) (4.49)

will be an eigenfunction of the Hecke operator, with eigenvalue (pκ + p1−κ).

The catch in this is that the distance d(x, v) is infinite everywhere in the bulk.

We need to regularize it by choosing a centerpoint C in the tree, and declar-

ing that d(x,C) = 0. (This just scales the eigenfunction (4.49) by an infinite

constant factor). Then d(x, v) → −∞ as v → x, but we have a well-defined

solution to the Laplace equation everywhere in the tree. These solutions are

analogous to plane waves; the solution varies as the exponent of the (regular-

ized) distance to a boundary point, which in the normal archimedean case is

just the quantity k · r.

The corresponding eigenvalue of the Laplacian is

4 εκ,x = m2
κεκ,x =

[
(pκ + p1−κ)− (p+ 1)

]
εκ,x. (4.50)

It is therefore immediate that the harmonic functions on the tree (solutions to

the massless wave equation) are those with κ = 0 or 1; κ = 0 is the zero mode

consisting of constant functions, whereas κ = 1 is the nontrivial zero mode.

The eigenvalues (4.50) are invariant under the replacement κ→ 1− κ, due to

the inversion symmetry of the boundary theory.

If we are considering a real scalar field, we must be able to write a basis of real

solutions. Of course, when κ is real, we will always be able to do this. More

generally, if κ = κ0 + iγ, our solutions look like

ε ∼ p−κ0 de−iγ ln(p) d, p(1−κ0)deiγ ln(p) d. (4.51)

Thus, to construct a basis of real solutions, the following possibilities can

occur:

• κ = 1/2. In this case, there is no restriction on γ, and the solutions look

like cosines and sines of γ ln(p) d(x, v), modulated by pd(x,v)/2.

• κ > 1/2.¶ In this case, the amplitude parts of the two solutions are

linearly independent, and so exp(iγ ln(p) d) must be real. Since d is an

integer, the choices are γ ln(p) = 0 or π (mod 2π).
¶Due to the κ 7→ 1− κ symmetry, such a choice is always possible.
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While it would be interesting to consider solutions with nonzero γ, we will

consider only the one-parameter family of solutions with real κ in the sequel.

The parameter m2
κ then attains its minimum value for κ = 1/2. Considering

only solutions of this plane-wave form, we therefore have a bound

m2
κ ≥ −(

√
p− 1)2. (4.52)

Note that we could also rewrite (4.50) in the form

m2
κ = −(p+ 1) + 2

√
p cosh

[(
κ− 1

2

)
ln p

]
. (4.53)

Bulk reconstruction and holography

It is clear from the definition that, when the real part of κ is positive, the

plane wave solution (4.49) tends to zero everywhere on the boundary, except

at the point x (where it tends to infinity). So we can think of it as representing

the solution to the Laplace equation (taking κ = 1) in the bulk, with specified

Dirichlet-type boundary conditions that look like a delta function centered

at x. By linearity, we can therefore reconstruct the solution to more general

Dirichlet problems by superposition: if the boundary value is to be a certain

function φ0(x) on ∂Tp = P1(Qp), then the required bulk harmonic function is

φ(v) =
p

p+ 1

∫
dµ0(x)φ0(x) ε1,x(v). (4.54)

Here dµ0(x) is the Patterson-Sullivan measure on P1(Qp). The normalization

factor can be fixed by taking the boundary value to be the characteristic

function of any p-adic open ball in the boundary.

We can perform the analogous calculation for massive fields as well, but the

sense in which φ(v) will approach φ0(x) as x→ v will be more subtle (since the

equation of motion will have no constant mode). Using notation from [225],

let δ(a → b, c → d) be the overlap (with sign) of the two indicated oriented

paths in the tree, and let

〈v, x〉 = δ(C → v, C → x) + δ(v → x,C → v). (4.55)

This expression makes sense for any bulk vertex v; x may be either a boundary

or a bulk point. Note that 〈z, x〉 is just the negative of the “regularized

distance” occurring in our previous discussion.

We would like to compute the bulk solution to the massive equation of mo-

tion obtained by integrating our primitive solution (4.49) over its boundary



191

argument, weighted by a boundary function. As a simple choice of bound-

ary function, pick the characteristic function of the p-adic open ball below a

vertex w in the tree:

φw(v) =

∫

∂Bw

dµ0(x) pκ〈v,x〉. (4.56)

The integral is straightforward to calculate. There are two cases:

v 6∈ Bw Here, the integrand is constant, and is just equal to pκ〈v,w〉. The

measure of the set over which the integral is performed is µ0(∂Bw) =

p−d(C,w), so that the final result is

φw(v) = pκ〈v,w〉−d(C,w). (4.57)

Note that, if v moves towards the boundary along a branch of the

tree, 〈v, w〉 differs from −d(C, v) by a constant, so that the solution

scales as p−κ d(C,z).

v ∈ Bw There are now two cases to consider: x ∈ Bv or x 6∈ Bv. In the first

scenario, the integrand is again constant; its value is pκ d(C,v), and

the measure is µ0(Bv) = p−d(C,v).

In the second scenario, the geodesic x → C will meet the geodesic

v → C at a distance h above v; by assumption, 1 ≤ h ≤ d(v, w). For

each value of h, the integrand takes the constant value pκ(d(C,v)−2h),

and the measure of the corresponding set is

µ(h) =
p− 1

p
p−d(C,v)+h. (4.58)

The factor (p− 1)/p enters because p− 1 of the p vertices one step

below the meeting vertex correspond to meeting height h (one of

them is closer to v). Putting the pieces together, the result is

φw(v) = p(κ−1)d(C,v)


1 +

p− 1

p

d(w,v)∑

h=1

(
p1−2κ

)h



=

(
p−2κ − 1

p1−2κ − 1

)
p(κ−1)d(C,v) +

p− 1

p

(
p(2κ−1)d(C,w)

p2κ−1 − 1

)
p−κ d(C,v).

(4.59)

The reader can check that we recover the correct answer in the massless case,

κ→ 1. Furthermore, our result is a superposition of the asymptotic behavior
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of the two eigenfunctions corresponding to the mass determined by our original

choice of κ. To resolve the ambiguity, we will choose κ > 1/2.

At this point, we have accumulated enough understanding of scalar fields on

the tree to point out how the simplest version of holography will work: namely,

classical scalar fields in a non-dynamical AdS background, neglecting backre-

action and metric degrees of freedom. In the archimedean case, this version of

holography was neatly formulated by Witten [216] in terms of a few simple key

facts. Firstly, the coupling between bulk scalar fields and boundary operators

must relate the asymptotics (and hence the mass) of the bulk fields to the

conformal dimension of the corresponding boundary operators; massless bulk

scalars should couple to marginal operators in the boundary CFT. Secondly,

the crucial fact that allows the correspondence to work is the existence of a

unique solution to the generalized Dirichlet problem for the bulk equations of

motion with specified boundary conditions.

Luckily, as we have now shown, all of the important features of the problem

persist in the p-adic setting, and Witten’s analysis can be carried over kit and

caboodle to the tree. In particular, we make his holographic ansatz:
〈

exp

∫

P1(Qp)

dµ0 φ0O

〉

CFT

= e−Ibulk[φ], (4.60)

where the bulk field φ is the unique classical solution extending the boundary

condition φ0, and O is a boundary operator to which the bulk field couples. In

the massless case, where one literally has φ0(x) = limv→x φ(z), O is an exactly

marginal operator in the CFT.

Given our result (4.59), it is simple to write down the correctly normalized

bulk-reconstruction formula for massive fields:

φ(v) =
p1−2κ − 1

p−2κ − 1

∫
dµ0(x)φ0(x)pκ〈v,x〉, (4.61)

φ(v) ∼ p(κ−1)d(C,v)φ0(x) as v → x.

When the point v approaches the boundary, the exponent in the kernel be-

comes

〈v, x〉 = −d(C, v) + 2 ordp(x− y), (4.62)

where y is any boundary point below v. (4.61) then becomes

φ(v) =

(
p1−2κ − 1

p−2κ − 1

)
p−κ d(C,v)

∫
dµ(x)

φ0(x)

|x− y|2κp
. (4.63)
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We can now understand why the Vladimirov derivative is a “normal” derivative

on the boundary; it measures the rate of change in the holographic direction

of the reconstructed bulk function. In particular, we have that

lim
v→y

(φ(v)− φ(y))pκd(C,v) =

(
p1−2κ − 1

p−2κ − 1

)∫
dµ(x)

φ0(x)− φ0(y)

|x− y|2κp
=

(
p1−2κ − 1

p−2κ − 1

)
∂2κ−1

(p) φ(y). (4.64)

An argument precisely akin to Zabrodin’s demonstration [225] that the bulk

action may be written (upon integrating out the interior) as a boundary in-

tegral of the nonlocal Vladimirov action shows that we can write Ibulk[φ] in

exactly this form. This demonstrates, exactly as in Witten’s archimedean

analysis, that a massive field φ corresponds to a boundary operator of confor-

mal dimension κ, where κ > 1/2 is the larger of the two values that correspond

to the correct bulk mass. Moreover, the boundary two-point function is pro-

portional to |x− y|−2κ
p , as expected.

Scale dependence in bulk reconstruction of boundary modes

Let us consider how the mode expansion of a boundary scalar field interacts

with the reconstruction of the corresponding bulk harmonic function. We will

be interested in developing the interpretation of the extra, holographic direc-

tion as a renormalization scale in our p-adic context. The idea that moving

upward in the tree corresponds to destroying information or coarse-graining is

already suggested by the identification of the cone above Zp (or more generally

any branch of the tree) with the inverse limit

Zp = lim←−Z/pnZ, (4.65)

where the set of vertices at depth n corresponds to the elements of Z/pnZ, and

the maps of the inverse system are the obvious quotient maps corresponding

to the unique way to move upwards in the tree. A nice intuitive picture to

keep in mind is that p-adic integers can be thought of as represented on an

odometer with infinitely many Fp-valued digits extending to the left. Z/pnZ is

then the quotient ring obtained by forgetting all but n digits, so that there is

integer overflow; the maps of the inverse system just forget successively more

odometer rings. Since digits farther left are smaller in the p-adic sense, we can

think of this as doing arithmetic with finite (but increasing) precision. The
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parallel to the operation of coarse-graining is apparent; however, we will be

able to make it more precise in what follows.

Let’s consider a boundary field that is just given by an additive character

(plane wave), φ0(x) ∼ exp(2πi{kx}p). Just as in the complex case, a plane

wave in a given coordinate system won’t define a solution of fixed wavelength

everywhere on P1(C); the coordinate transformation (stereographic projection)

will mean that the wavelength tends to zero as one moves away from the origin,

and the function will become singular at infinity. Therefore, we should instead

consider a boundary function of wavepacket type, that looks like a plane wave,

but supported only in a neighborhood of the origin.

A nice choice to make in the p-adic setting is to take the boundary function

to be

φ0(x) = e2πi{kx} ·Θ(x,Zp), (4.66)

where Θ(x, S) is the characteristic function of the set S ⊂ Qp. The transfor-

mation (4.17) is actually trivial inside Zp, so no distortion of the wavepacket

occurs at all (unlike for a similar setup in C). Of course, we ought to take

|k|p > 1, so that {kx} is not constant over the whole of Zp.

Given this choice of boundary function, the corresponding solution to the bulk

equations of motion can be reconstructed using the integral kernel (4.54):

φ(v) =
p

p+ 1

∫

Zp
dµ(x) e2πi{kx}p−dC(x,v). (4.67)

Recall that dC(x, v) is the distance from v to x, regularized to be zero at the

centerpoint v = C of the tree. We will calculate this integral when v is inside

the branch of the tree above Zp.

Proposition 1. Let v be a vertex in the branch above Zp, at a depth ` (i.e.,

since v ∈ Zp, distance from the centerpoint) such that 0 ≤ ` < − ordp(k)− 2.

Then the reconstructed bulk function φ(v) is zero.

Proof. The claim relies on the simple fact that the sum of all p-th roots of

unity is zero. Since v is above the red line in Fig. (4.8) (at depth equal to

− ordp(k) − 1), both terms in the integrand are locally constant below the

line, and the integral may be evaluated as a sum along the vertices at the

height of the red line. Furthermore, the factor p−dC(v,x) is constant for each

of the p vertices on the line that descend from the same ancestor. Since the
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Figure 4.8: A drawing of Zp (p = 2 for simplicity). Here k = p−4. The marked
fractions at vertices indicate contributions to {kx}, which are summed along
the geodesic ending at x.

measure of each branch is equal, the integral is proportional to the sum of all

p-th roots of unity, and hence to zero. Notice that this also demonstrates that

the reconstructed bulk function is zero everywhere outside Zp: it is zero at

the central vertex, and zero on the boundary of the open ball complementary

to Zp.

Even without calculating the explicit form of the bulk function for vertices

below the screening height, this simple argument already allows us to make

our physical point: in p-adic holography, the qualitative features of ordinary

AdS/CFT persist in a setting where the bulk geometry is discrete, and in some

cases are even sharpened. For instance, we have shown explicitly that modes

for which |k|p is large (i.e. the short-wavelength behavior of the boundary

conditions) must drop out of the reconstructed bulk field, making exactly zero

contribution to it above a height in the tree precisely determined by |k|p.
The usual intuition that moving into the bulk along the holographic direction

corresponds to integrating out UV modes is thus neatly confirmed.

The explicit form of the reconstructed bulk function at vertices below the

screening height is easy to calculate, but less central to our discussion; we
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leave the computation as an exercise for the reader.

The possibility of higher-spin fields

We now wish to propose an analogue of higher-spin fields that could be defined

in the p-adic case. While we will motivate our proposal here, we do not

investigate any properties of p-adic CFT with fields other than scalars. We

will return to this question in future work.

We proceed by analogy with two-dimensional CFT, in which the conformal

dimension and spin together describe a character of the multiplicative group

C×:

φ(reiθ · z) = r∆eisθφ(z). (4.68)

The group C× ' R×>0 × U(1); the conformal dimension determines a charac-

ter of the first factor, and the spin a character of the second, which can be

thought of as scale transformations and rotations of the coordinate respec-

tively. The existence of the logarithm function means that we can think of the

multiplicative group R+ as isomorphic to the additive group R.

The structure of the group of units of any local field is understood (see [164]

for details). In particular, for the field Qp, the result is that

Q×p ' pZ × F×p × U (1), (4.69)

where U (1) is the group of “principal units” of the form 1 + p · a, with a ∈ Zp.
This decomposition just reflects the structure of the p-adic decimal expansion:

since the p-adic norm is multiplicative, any number x 6= 0 can be written in

the form

x = pordp(x) (x0 + x1p+ · · · ) , (4.70)

where x0 6= 0 (so that x ∈ F×p ' Cp−1) and the other xi may be any digits

chosen from Fp. Dividing through by x0, one gets

x = pordp(x) · x0

(
1 +

∑

i≥1

x̃ip
i

)
, (4.71)

where x̃i = xi/x0, and the factor in parentheses is a principal unit. A character

of Q×p is therefore a triple of characters, one for each factor in (4.69). The first

factor, as in the normal case, corresponds to the scaling dimension of the field;

the last two factors are therefore analogous to the spin. Obviously, the second
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factor corresponds to a Z/(p− 1)Z phase. It is also known [164] that the set

of characters of U (1) is countable and discrete.

In fact, we can naively understand a broader class of the characters of Z×p =

F×p ×U (1). Recall the description of Zp as the inverse limit of its finite trunca-

tions:

Zp = lim←−Z/pnZ. (4.72)

Since this is an inverse limit of rings, there are therefore projection maps

between the respective multiplicative groups:

Z×p → (Z/pnZ)× ' Cpn−1(p−1). (4.73)

Therefore, any multiplicative character of a cyclic group Cpn−1(p−1) (i.e., any

finite root of unity of order pn−1(p− 1), for arbitrary n) will give a character

of (Z/pnZ)×, which will in turn pull back to define a multiplicative character

of the spin part of Q×p . Spin in the p-adic case is therefore both similar to and

interestingly different from ordinary two-dimensional CFT.

4.5 Entanglement entropy

The entanglement entropy in quantum field theories is a notoriously difficult

and subtle quantity to compute, and much effort has been expended in de-

veloping a toolbox of techniques that provide exact results. One of the first

systems in which the computation became tractable was two-dimensional con-

formal field theory, and in particular the theory of free bosons. Since we are

primarily considering the free boson in our discussion, one might hope that

the same techniques can be applied in the p-adic case. While we believe that

this is the case, and plan to give a full calculation of the entanglement entropy

in future work, there are subtleties that arise in each technique and prevent

it from being used naively. We will demonstrate these techniques, illustrate

the subtle issues that arise, and justify our conjecture for the entanglement

entropy in what follows.

As in the real case, we expect the entanglement entropy to have UV diver-

gences. These are normally thought of as localized to the “boundary” of the

region under consideration. Care must be used in defining what we mean

by interval and boundary; the p-adic numbers have no ordering, and every

element of an open set is equally (or equally not) a boundary element.
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Whenever possible, we must think in terms of open sets. Over the reals,

the open sets are intervals with measure or length given by the norm of the

separation distance of the endpoints; as the reader will recall, p-adic open sets

are perhaps best visualized using the Bruhat–Tits tree. Once a center C of the

tree is picked, we can pick any other vertex v and consider the cone of points

below v extending out towards the boundary, which is an open neighborhood

in P1(Qp). A perhaps surprising fact which follows from the definition of the

p-adic norm |x − y|p (x, y ∈ P1(Qp)) is that it is related to the height of the

cone required to connect x to y (see Fig. 4.9).

Following standard arguments, say of [43, 189], we can pick the boundary cone

below the point v to be called the region V . The total Hilbert space on Qp

splits into Hilbert spaces on V and its complement, H = HV ⊗ H−V . The

entanglement entropy defined by S(V ) = −Tr(ρV log ρV ) and by construction

satisfies S(V ) = S(−V ). As there are an infinite number of points xi ∈ V ∈
P11

(Qp), there is an unbounded number of local degrees of freedom φ(xi) as is

typical of quantum field theory. In the continuum case this implies logarithmic

divergences from modes in V entangled with those in −V , and we expect the

same to be true in the p-adic case.

In the works of Cardy and Calabrese [39, 40], the entanglement entropy for

intervals in 1+1-dimensional conformal field theories are explicitly calculated.

The p-adic field theories considered here are exactly analogous to the two-

dimensional free boson; in both, the scalar φ(x) has conformal dimension zero

and (as we have shown above) a logarithmically divergent propagator. We

wish to understand how much of their calculation can be duplicated in the

p-adic case. These authors generally follow a series of steps beginning with

the replica trick, which is the observation that n powers of the reduced density

matrix ρV can be computed by evaluating the partition function on a Riemann

surface obtained by gluing n copies of the theory together along the interval V .

The entanglement entropy follows from analytic continuation of these results

in n, followed by the limit n→ 1, according to the formula

Tr(ρnV ) =
Zn(V )

Zn
1

, SV = − lim
n→1

∂

∂n

Zn(V )

Zn
1

, (4.74)

where Zn(V ) is the n-sheeted partition function and Z1 is the partition function

of 1 sheet with no gluing, which is required for normalization.
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In 1 + 1 dimensions, the n-sheeted partition function can be viewed as a Rie-

mann surface, and the holomorphic properties of this surface make the calcu-

lation tractable. In particular, if the interval has the boundary points x and

y, the complicated world sheet topology can be mapped to the target space by

defining multi-valued twist fields Φn(x),Φn(y) on the plane whose boundary

conditions implement the n sheeted surface. One can find that Tr(ρnV ) behaves

exactly like the nth power of a two point function of the twist fields, once their

conformal dimension has been determined using Ward identities:

Tr(ρnV ) ∼ 〈0|Φn(x)Φn(y)|0〉n ∼
(
x− y
ε

)− c
6

(n− 1
n

)

, (4.75)

where c is the central charge and ε is a normalization constant from Z1. When

n = 1 exactly, the twist fields have scaling dimension 0 and the above correlator

no longer makes sense. Instead, taking the limit as n → 1, the linear term

is −n c
3

ln
(
x−y
ε

)
. Taking the derivative gives the famous universal formula for

the entanglement entropy [120].

The difficulty in performing the same calculation over the p-adics consists

in fixing the dimensions of the twist operators. These operators can be de-

fined just as in the normal case; after all, all that they do is implement certain

boundary conditions at branch points on the fields in a theory of n free bosons.

However, the usual arguments that fix their dimension rely on the existence

of a uniformizing transformation z 7→ zn that describes the relevant n-sheeted

branched cover of P1 by P1; the Schwarzian of this holomorphic (but not

Möbius) transformation then appears as the conformal dimension. The ar-

gument using the OPE with the stress tensor is identical in content. Both

cases rely on the existence of holomorphic (but not fractional-linear) trans-

formations, and a measure—the Schwarzian or conformal anomaly—of their

“failure” to be Möbius.

In the p-adic case, this is related to the question of local conformal transfor-

mations; it has been suggested [153] that no such symmetries exist. Moreover,

since Qp is not algebraically closed, a transformation like z 7→ zn need not even

be onto. Nevertheless, we can still define the twist operators, and we suppose

that they transform as primaries with some conformal dimensions ∆n. Their

two-point function then gives the density matrix. This function is

〈0|Φ(p)
n (x)Φ(p)

n (y)|0〉n ∼
∣∣∣∣
x− y
ε

∣∣∣∣
−2n∆n

p

, (4.76)
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where ∆n are the model-dependent (and unknown) conformal dimensions. In-

serting this ansatz into− limn→1
∂
∂n

Tr(ρnV ) and taking the limit n→ 1, ∆n → 0

gives: (
2n
∂∆n

∂n

∣∣
n=0

)
ln

∣∣∣∣
x− y
ε

∣∣∣∣
p

. (4.77)

While this is not a proof, it provides some evidence for the expected logarithmic

scaling of the entropy. We expect that the dimensions ∆n → 0 as n→ 1, since

of course the twist operator on one sheet is just the identity. If we could fix

the conformal dimension without using the conformal anomaly, this calculation

would fix not only the logarithmic form of the answer, but also the coefficient

that plays the role of the central charge. It may be possible to do this by

examining the path integral with twist-operator insertions directly.

A possible way around this difficulty might be to consider a harder problem

first: to think about two intervals rather than one. The genus of the Riemann

surface that appears in the replica trick is g = (n − 1)(N − 1); thus, for

one interval, we are considering a branched cover of P1 over itself, and the

conformal anomaly is a necessary ingredient. However, one might hope that

for two intervals, we can simply compute the partition function on a series of

higher-genus Riemann surfaces (which is understood in the p-adic case), and

take the limit as the genus approaches zero. Discussions of the entanglement

entropy in terms of Schottky uniformization—which therefore appear tailored

to our needs—have appeared in the literature [76].

Two difficulties appear in this case: the first is matching the moduli of the

Riemann surface in question to the lengths of the intervals; the second is more

subtle, and reflects the fact that, over the p-adics, not every branched cover

of the p-adic projective line is a Mumford curve [32]. We believe that one of

the strategies outlined here will succeed in producing a rigorous computation

of the entanglement entropy, but we must relegate that computation to future

work.

Ryu-Takayanagi formula

Let us take as given the conjecture from the previous section that the entan-

glement entropy of a region in the boundary CFT should be computed as the

logarithm of its p-adic size. We take our interval to be the smallest p-adic

open ball which contains points x and y. This interval has size |x − y|p. To

understand the Ryu-Takayanagi formula, it remains to compute the length of
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Figure 4.9: Boundary-anchored geodesics in Tp have a natural interpretation
in terms of the p-adic norm. Once the arbitrary position of the center C is
fixed, the norm of open sets in Qp is given by p−d, where d is the integer
number of steps from C required before the path to the endpoints splits. In
this example, |x − y|p is described by the red geodesic and the value is p−2.
The set corresponding to the green geodesic has a smaller norm by a factor
of p because the vertex is 1 step further down the tree. As in the case of
real AdS, the length of the geodesic is formally infinite because an infinite
number of steps is required to reach the boundary. One may introduce a
cutoff corresponding to truncation of the tree at a fixed distance, then take
the limit as this cutoff goes to zero. It should be apparent that the (formally
infinite) red geodesic is longer than the green one by two steps. Up to constant
factors, the length of any boundary-anchored geodesic is an infinite term minus
d. This explains the logarithmically divergent scaling of geodesic length with
p-adic norm.

the unique geodesic connecting x to y. The tree geometry for this setup is

depicted in Fig. 4.9. Since there are an infinite number of steps required to

reach the boundary, the geodesic length is formally infinite, just as in the real

case. We regulate this by cutting off the tree at some finite tree distance a

from the center C, which can be thought of as ordp(ε) for some small p-adic

number ε. We will then take this minimum number ε → 0 (p-adically). This

limit will push the cutoff in the tree to infinite distance from C.

An SL(2,Qp) transformation can always be used to move the points x and y
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to the Zp part of the tree first to simplify the argument. Then introducing the

distance cutoff a effectively truncates the decimal expansions of x and y to the

first a decimal places. In the case where |x− y|p = 1, the geodesic connecting

the two points passes through C and has length 2a. If |x−y|p < 1, the geodesic

is shorter by a factor of 2d, where |x−y|p = p−d. Roughly speaking, as can be

seen in Fig. 4.9, smaller boundary regions are subtended by shorter geodesics

in the tree.

We see that the cutoff-dependent distance is

d(x, y)a = 2a+
2

ln p
ln |x− y|p. (4.78)

We would like to take a → ∞. Up to the factor of ln p, we can define a to

be the logarithm of a p-adic cutoff ε such that a → ∞ as ε → 0. Using this

definition, we find the length of a boundary-anchored geodesic to be

d(x, y) = lim
ε→0

2

ln p
ln

∣∣∣∣
x− y
ε

∣∣∣∣
p

. (4.79)

Up to the overall factor in front (which presumably depended on our choice of

the length of each leg of the tree), we see the geodesic length is logarithmically

divergent in interval size.

An adelic formula for entanglement?

We have argued that the general form of entanglement entropy scaling for the

boundary theory is dual to a geodesic length in the bulk. At the present time

we lack a p-adic notion of central charge c or theory dependent quantity which

counts boundary degrees of freedom. Nevertheless, we claim the general form

is

Sp(x− y) = cp ln

∣∣∣∣
x− y
εp

∣∣∣∣
p

. (4.80)

We now wish to speculate about the possibility of an adelic formula for the

entanglement entropies.

In the study of p-adic numbers, there exists a surprising formula which relates

the various p-adic valuations of a rational number to its real norm. This is

a different form of the fundamental theorem of arithmetic, and is sometimes

known as an adelic formula:
∞∏

p

|x|p = 1. (4.81)
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Here x ∈ Q and the product is taken over all primes. The “prime at ∞”

corresponds to the usual archimedean norm |x|∞ = |x|. This equality follows

by considering the unique prime factorization of x into a product of prime

powers. When x contains a factor pn, then |x|p = p−n. This means the infinite

product over primes is well defined because only finitely many terms are not

equal to 1. In fact, the product over the finite primes gives exactly the inverse

of the real norm |x|. Therefore the product over all finite places and the infinite

place is unity.

We now wish to again recall the familiar formula for the universal entanglement

entropy of an interval in a 1+1 dimensional conformal field theory; written

suggestively in the “prime at infinity” notation:

S∞(x− y) =
c

3
ln

∣∣∣∣
x− y
ε∞

∣∣∣∣
∞
. (4.82)

One might hope through a better understanding of p-adic conformal field the-

ory or the holographic dual, the value of the proportionality constant or the

p-adic central charge might be determined. In the (perhaps unlikely) event

that the central charges of the p-adic theory agree with the real case, then

using the adelic formula for the interval, we propose:

If cp = c/3 for all p and x− y ∈ Q, then

∞∑

p

Sp(x− y) ∝ ln

(
∞∏

p

∣∣∣∣
x− y
εp

∣∣∣∣
p

)
= 0. (4.83)

One might be suspicious about this formula; each of the entropies Sp are

formally divergent. Additionally, since these quantities are entropies they are

expected to be positive. Therefore care must be taken in interpreting the

above.

One possible resolution is the erroneous application of the adelic formula to the

cutoffs εp. In computing Sp holographically, we assumed |ε|p → 0. However,

if |εp|p → 0 in one norm, it is not generally true that |εp|p′ → 0 for another

choice p′. Therefore, we require a numerically different cutoff parameter εp for

each system over p. As all these parameters are taken to 0 in their respective

norms, the corresponding entanglement entropies diverge.

Understanding that the cut offs εp do not cancel on the left or right hand sides,

we are left with the divergent pieces of the entropy being equal on both sides.
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However, if we vary the length of |x− y|∞ in the real physical system, we see

that the entropy difference associated with this interval is distributed across

the Sp’s such that the sum is zero. Put another way, varying the real interval

length will cause some values of |x− y|p for different p to increase and others

to decrease. This causes some Sp to increase and others to decrease such that

the total change of entropy over all finite and infinite places is 0.

We will leave it to future work to try to derive or understand this relation

further.

4.6 p-adic bulk geometry: Schottky uniformization and non-archi-

medean black holes

Holography for Euclidean higher-genus black holes

The first explicit form of AdS/CFT correspondence for the asymptotically

AdS3 higher-genus black holes, in the Euclidean signature, was obtained in

[150], where the computation of the Arakelov Green function of [148] is shown

to be a form of the holographic correspondence for these black holes, where the

two-point correlation function for a field theory on the conformal boundary

XΓ is written in terms of gravity in the bulk HΓ, as a combination of lengths

of geodesics.

At the heart of Manin’s holographic formula lies a simple identity relating

conformal geometry on P1(C) and hyperbolic geometry on H3, namely the fact

that the cross ratio of four points on the boundary P1(C) can be written as the

length of an arc of geodesic in the bulk H3. More precisely, consider the two

point correlation function g(A,B) on P1(C). This is defined by considering,

for a divisor A =
∑

xmx x, the Green function of the Laplacian

∂∂̄gA = πi(deg(A)dµ− δA),

with δA the delta current associated to the divisor, δA(ϕ) =
∑

xmxϕ(x), and

dµ a positive real-analytic 2-form. The Green function gA has the property that

gA−mx log |z| is real analytic for z a local coordinate near x, and is normalized

by
∫
gAdµ = 0. For two divisors A,B, with A as above and B =

∑
y ny y the

two point function is given by g(A,B) =
∑

y nygA(y). For degree zero divisors

it is independent of the form dµ and is a conformal invariant. If wA is a

meromorphic function on P1(C) with Div(wA) = A, and CB is a 1-chain with
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boundary B, the two point function satisfies

g(A,B) = Re

∫

CB

dwA
wA

.

For (a, b, c, d) a quadruple of points in P1(C), the cross ratio 〈a, b, c, d〉 satisfies

〈a, b, c, d〉 =
w(a)−(b)(c)

w(a)−(b)(d)
,

where (a) − (b) is the degree zero divisor on P1(C) determined by the points

a, b, and the two point function is

g((a)− (b), (c)− (d)) = log
|w(a)−(b)(c)|
|w(a)−(b)(d)| .

Given two points a, b in P1(C), let `{a,b} denote the unique geodesics in H3

with endpoints a and b. Also given a geodesic ` in H3 and a point c ∈ P1(C)

we write c ∗ ` for the point of intersection between ` and the unique geodesic

with an endpoint at c and intersecting ` orthogonally. We also write λ(x, y)

for the oriented distance of the geodesic arc in H3 connecting two given points

x, y on an oriented geodesic. Then the basic holographic formula identifies the

two point function with the geodesic length

g((a)− (b), (c)− (d)) = −λ(a ∗ `{c,d}, b ∗ `{c,d}).

One can also express the argument of the cross ratio in terms of angles between

bulk geodesics (see [148], [150]). This basic formula relating the two point

correlation function on the boundary to the geodesic lengths in the bulk is

adapted to the higher-genus cases by a suitable procedure of averaging over

the action of the group that provides an explicit construction of a basis of

meromorphic differentials on the Riemann surface XΓ in terms of cross ratios

on P1(C). A basis of holomorphic differentials on XΓ, with
∫

Ak

ωγj = 2πiδjk,

∫

Bk

ωγj = τjk

the period matrix, is given by

ωγi =
∑

h∈S(γi)

dz log〈z+
h , z

−
h , z, z0〉,

for z, z0 ∈ ΩΓ, with S(γ) the conjugacy class of γ in Γ. The series converges

absolutely when dimH(ΛΓ) < 1. Meromorphic differentials associated to a

divisor A = (a)− (b) are similarly obtained as averages over the group action

ν(a)−(b) =
∑

γ∈Γ

dz log〈a, b, γz, γz0〉
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and the Green function is computed as a combination ν(a)−(b)−
∑

j Xj(a, b)ωγj
with the coefficients Xj(a, b) so that the Bk-periods vanish. Since in the re-

sulting formula each crossed ratio term is expressible in terms of the length

of an arc of geodesic in the bulk, the entire Green function is expressible in

terms of gravity in the bulk space. We refer the reader to §§2.3, 2.4, and 2.5

of [150] and to [151] for a more detailed discussion and the resulting explicit

formula of the holographic correspondence for arbitrary genus.

Holography on p-adic higher-genus black holes

In the special case of a genus-one curve, the relevant Schottky group is iso-

morphic to qZ, for some q ∈ k∗, and the limit set consists of two points, which

we can identify with 0 and ∞ in P1(k). The generator of the group acts on

the geodesic in Tk with endpoints 0 and ∞ as a translation by some length

n = log |q| = vm(q), the valuation. The finite graph Gk is then a polygon

with n edges, and the graph Tk/Γ consists of this polygon with infinite trees

attached to the vertices. The boundary at infinity of Tk/Γ is a Mumford curve

XΓ(k) of genus one with its p-adic Tate uniformization. The graph Tk/Γ is

the p-adic BTZ black hole, with the central polygon Gk as the event horizon.

The area of the black hole and its entropy are computed by the length of the

polygon (see Fig. 4.10).

The higher-genus cases are p-adic versions of the higher-genus black holes

discussed above, with the finite graph Gk as event horizon, and its geodesic

length proportional to the black hole entropy.

Given a set of generators {γ1, . . . , γg} of a p-adic Schottky group, let nγi be

the translation lengths that describe the action of each generator γi on its axis

`γi . More precisely, if an element γ is conjugate in PGL(2,k) to an element of

the form (
q 0

0 1

)
,

then the translation length is nγ = vm(q) = ordk(q), the order (valuation)

of q. The translation lengths {nγi} are the Schottky invariants of the p-adic

Schottky group Γ. It is shown in [42] that the Schottky invariants can be

computed as a spectral flow.

The Drinfeld–Manin holographic formula of [149] for p-adic black holes of ar-

bitrary genus is completely analogous to its archimedean counterpart of [148].
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Figure 4.10: The p-adic BTZ black hole. (As pictured, p = 3).

There is a good notion of k-divisor on P1(k), as a function P1(k̄) → Z, with

z 7→ mz, with the properties that mz1 = mz2 if z1 and z2 are conjugate over

k; that all points z with mz 6= 0 lie in the set of points of P1 over a finite

extension of k; and that the set of points with mz 6= 0 has no accumulation

point. As before we write such a divisor as A =
∑

zmz z. Given a Γ-invariant

divisor A of degree zero, there exists a meromorphic function on ΩΓ(k) with

divisor A. It is given by a Weierstrass product

WA,z0 =
∏

γ∈Γ

wA(γz)

wA(γz0)
,

where wA(z) is a k-rational function on P1(k) with divisor A. The convergence

of this product is discussed in Proposition 1 of [149]: the non-archimedean

nature of the field k implies that the product converges for all z ∈ ΩΓ \
∪γγ(supp(A)). The function WA,z0 is a p-adic automorphic function (see [145])

with WA,z0(γz) = µA(γ)WA,z0(z), with µA(γ) ∈ k∗, multiplicative in A and γ.

One obtains a basis of Γ-invariant holomorphic differentials on XΓ(k) by taking

ωγi = d logW(γi−1)z0,z1 ,
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where

W(γ−1)z0,z1(z) =
∏

h∈C(γ)

whz+γ −hz−γ (z)

whz+γ −hz−γ (z0)
,

for C(g) a set of representatives of Γ/γZ.

It is shown in [149] that the order of the cross ratio on P1(k) is given by

ordk
wA(z1)

wA(z2)
= #{`z1,z2 , `a1,a2},

for A = a1 − a2 and `x,y the geodesic in the Bruhat–Tits tree with endpoints

x, y ∈ P1(k), with #{`z1,z2 , `a1,a2} the number of edges in common to the two

geodesics in Tk. This is the basic p-adic holographic formula relating boundary

two point function to gravity in the bulk.

A difference with respect to the Archimedean case is that, over C, both the

absolute value and the argument of the cross ratio have an interpretation

in terms of geodesics, with the absolute value expressed in terms of lengths

of geodesic arcs and the argument in terms of angles between geodesics, as

recalled above. In the p-adic case, however, it is only the valuation of the

two point correlation function that has an interpretation in terms of geodesic

lengths in the Bruhat–Tits tree. The reason behind this discrepancy between

the archimedean and non-archimedean cases lies in the fact that the Bruhat–

Tits tree Tk is the correct analog of the hyperbolic handlebody H3 only for

what concerns the part of the holographic correspondence that involves the

absolute value (respectively, the p-adic valuation) of the boundary two point

function. There is a more refined p-adic space, which maps surjectively to

the Bruhat–Tits tree, which captures the complete structure of the p-adic

automorphic forms for the action of a p-adic Schottky group Γ: Drinfeld’s

p-adic upper half plane, see Chapter I of [29]. Given k as above, let Cp denote

the completion of the algebraic closure of k. Drinfeld’s p-adic upper half plane

is defined as Hk = P1(Cp)\P1(k). One can view this as an analog of the upper

and lower half planes in the complex case, with H+ ∪H− = P1(C) \ P1(R).

There is a surjection λ : Hk → Tk, defined in terms of the valuation, from

Drinfeld’s p-adic upper half plane Hk to the Bruhat–Tits tree Tk. For vertices

v, w ∈ V (Tk) connected by an edge e ∈ E(Tk), the preimages λ−1(v) and

λ−1(w) are open subsets of λ−1(e), as illustrated in Fig. 4.11. The map λ :

Hk → Tk is equivariant with respect to the natural actions of PGL(2,k) on Hk

and on Tk. In particular, given a p-adic Schottky group Γ ⊂ PGL(2,k), we can
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Figure 4.11: Drinfeld’s p-adic upper half plane and the Bruhat–Tits tree.

consider the quotients H̃Γ = Hk/Γ and HΓ = Tk/Γ and the induced projection

λ : H̃Γ → HΓ. Both quotients have conformal boundary at infinity given by

the Mumford curve XΓ = ΩΓ(k)/Γ, with ΩΓ(k) = P1(k) r ΛΓ, the domain of

discontinuity of the action of Γ on P1(k) = ∂Hk = ∂Tk. One can view the

relation between Hk and Tk illustrated in Fig. 4.11, and the corresponding

relation between H̃Γ and HΓ, by thinking of H̃Γ as a “thickening” of the graph

HΓ, just as in the Euclidean case one can view the union of the fundamental

domains of the action of Γ on H3, as illustrated in Fig. 4.4, as a thickening of

the Cayley graph (tree) of the Schottky group Γ, embedded in H3.

Thus, when considering the non-archimedean holographic correspondence and

p-adic black holes of arbitrary genus, one can choose to work with either HΓ
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Figure 4.12: The action of a rank-one Schottky group (translation by ` along
a fixed geodesic) on the Bruhat–Tits tree. As pictured, n = h = 2.

or with H̃Γ as the bulk space, the first based on Bruhat–Tits trees and the

second (more refined) based on Drinfeld’s p-adic upper half spaces. In this

paper we will be focusing on those aspects of the non-archimedean AdS/CFT

correspondence that are captured by the Bruhat–Tits tree, while we will con-

sider a more refined form of non-archimedean holography, based on Drinfeld’s

p-adic upper half planes, in forthcoming work.

Scalars on higher-genus backgrounds: sample calculation

In light of this discussion of higher-genus holography in the p-adic case, it

is easy to understand how to generalize the arguments and calculations we

discussed for scalar fields in §4.4 to the BTZ black hole, or to higher-genus

hyperbolic handlebodies, the p-adic analogues of Krasnov’s Euclidean black

holes. One can simply think of the higher-genus geometry as arising from the

quotient of the tree Tp (and its boundary P1(Qp)) by the action of a rank-g

Schottky group. Any quantity that can then be made equivariant under the

action of the Schottky group will then descend naturally to the higher-genus

setting.

As a simple example, it is easy to construct the genus-1 analogue of our basic

Green’s function (4.49), using the method of images. We perform this cal-

culation in the following paragraphs. The result makes it easy to perform

the reconstruction of bulk solutions to the equations of motion in a BTZ

background, with specified boundary conditions at infinity along the genus-1

conformal boundary.

Without loss of generality, we can label the distance along the geodesic which is

translated by the chosen Schottky generator by integers, and imagine that the

source is attached at a boundary point x connected to the vertex 0. The bulk

vertex v at which we want to evaluate the Green’s function will be attached
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to vertex n (0 ≤ n < `), at a depth h from the central geodesic. The quantity

to be calculated is simply

ε(g=1)
κ,x (v) =

∑

g∈Z

pκ〈v,gx〉, (4.84)

where the sum ranges over the images of x under the Schottky group. We take

the integrand to be normalized to 1 at the vertex where the branch containing x

meets the central geodesic. The cases n = 0 and n 6= 0 are different, and we

will treat them separately.

n = 0: In this case, the sum becomes

εκ,x(v) = pκ〈v,x〉 + 2
∑

m>0

(
p−κ`

)m

= pκ〈v,x〉 +
2p−κh

pκ` − 1
. (4.85)

n 6= 0: In this case, the sum becomes

εκ,x(v) =
∑

m≤0

pκ(−n−h−|m|`) +
∑

m>0

pκ(n−h−m`)

= p−κh
(
pκ(`−n) + pκn

pκ` − 1

)
. (4.86)

In both cases, the result has the expected boundary behavior: it falls off

asymptotically as p−κh when v approaches any boundary point other than x

itself.

4.7 Conclusion

In this work we have proposed an algebraically motivated way to discretize

the AdS/CFT correspondence. The procedure of replacing real or complex

spacetimes by Qp introduces a nontrivial discrete bulk and boundary struc-

ture while still preserving many desirable features of the correspondence. The

boundary conformal field theory lives on an algebraic curve in both the or-

dinary and non-archimedean examples; the P1(Qp) theory naturally enjoys

the p-adic analogue of the familiar global conformal symmetry, PGL(2,Qp).

This same group comprises the isometries of the lattice bulk spacetime Tp =

PGL(2,Qp)/PGL(2,Zp), a maximally symmetric coset space analogous to Eu-

clidean AdS.
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In analogy with the BTZ black hole and higher-genus examples in AdS3,

higher-genus bulk spaces in the p-adic case are obtained by Schottky uni-

formization. One takes quotients of the geometry by p-adic Schottky groups

Γ ⊂ PGL(2,Qp), producing Mumford curves at the boundary. These curves

holographically correspond to bulk geometries consisting of discrete black

holes, which appear automatically and do not need to be put in by hand.

Having found a discretization which does not break any symmetries of the

problem, we then proposed one way of obtaining a holographic tensor network

from a Bruhat–Tits tree. We roughly identify the tree as a space of dis-

crete geodesics in the network. Following Pastawski et al.’s holographic error-

correcting code, the entanglement entropy of a deleted region is reproduced

by counting geodesic lengths in the bulk. This perspective puts a stronger

notion of bulk geometry into tensor networks, and suggests that the p-adic

systems considered here may be closer to tensor network models than their

archimedean counterparts. This construction might have further applications

in entangled bulk states, nongeometric bulk states, and other more exotic fea-

tures of quantum gravity not present in many existing tensor network models.

After discrete bulk Hilbert spaces in tensor networks, we then turned our

attention to continuous Hilbert spaces of scalar fields in the tree. In the semi-

classical analysis, massless and massive scalar solutions to the lattice model

couple naturally to CFT operators at the boundary, just as in the archimedean

case. We identified boundary/bulk propagators in the discrete analog of empty

AdS, as well as in the p-adic BTZ black hole; the method of images can be

used to generalize these results to arbitrary higher-genus bulk backgrounds.

We are led to believe that the semiclassical physics of the bulk “gravity” theory

is dual to an exotic conformal field theory living on the fractal p-adic bound-

ary. At the present time, little is known about these p-adic conformal field

theories outside of p-adic string theory; we hope the connection to holography

may draw attention to this area. Viewed as a renormalization scale, we have

shown that moving up the tree corresponds to exact course graining of bound-

ary mode expansions. The intimate relation between conformal symmetry,

AdS geometry, and renormalization still holds in this entirely discrete setting.

Motivated by the tensor network models, we suggest that the entanglement

entropy of regions of the field theory is computed by the unique geodesic

lengths in the bulk space. While as of yet we have no formal proof in the free-
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boson field theory, a number of arguments have been presented which support

this conjecture. Under very specific circumstances, it might even be possible

to learn certain properties of the archimedean entanglement entropies from

their corresponding p-adic counterparts with the help of adelic formulas.

While we have established some essential features of p-adic holography, ranging

from algebraic curves to tensor networks and from bulk/boundary propagators

and renormalization scales to entanglement, much about these exotic systems

remains to be understood. We propose a number of ideas to be explored in

future work.

One major ingredient missing from our story is a proper description of (and

quantization of) the gravitational degrees of freedom. The bulk geometries

(with or without black holes in the interior) can loosely be described as p-adic

discretizations of asymptotically AdS spacetimes. One way to add dynamical

metric degrees of freedom without spoiling the asymptotic behavior might

be to make the edge lengths of the Bruhat–Tits tree dynamical. The p-adic

version of empty AdS might correspond to a solution with uniform edge lengths

like the system considered here; thermal or black hole states seem to require

topology change in the interior.

If we believe that the full quantum gravity Hilbert space of the interior in-

volves fluctuating edge lengths and graph topology, one might ask if tensor

network models could be adapted to this picture. More complicated tensor

networks might be used to study objects such as black holes, EPR pairs, and

nongeometric states. The role of planarity of the tensor network may play an

important role in this story.

From the point of view of the p-adic conformal field theory, one might ask for

more interesting examples than the free boson. We have already offered some

speculations about higher spin fields based on representation theory of the p-

adic conformal group; it would be nice to formulate these models explicitly and

search for interesting gravity duals. Additionally, the models we have studied

so far do not appear to have extended conformal symmetry or a central charge.

These important ingredients of 1+1 dimensional CFT’s might appear with the

more careful inclusion of finite extensions of Qp. These finite extensions might

also be linked to the passage to Lorentzian signature.

We finally address future work for the entanglement entropy in a p-adic holo-
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graphic theory. As already mentioned, the single and multiple interval en-

tanglement entropies will likely require a detailed replica computation. This

may be possible through a more detailed study of branched covers of the p-

adic plane as Mumford curves. With entanglement entropies in hand, one

might ask for new and old proofs of entropy inequalities; these are expected to

be simplified by the ultrametric nature of the p-adics. Finally, it remains to

be seen how much can be learned about real AdS/CFT from studying these

systems adelically over every prime.

Note added

As this work was being completed, we became aware of [105], which treats

similar ideas from a somewhat different viewpoint, and in which some of our

results in §4.4 were independently obtained.
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Chapter 5

A-POLYNOMIALS OVER FINITE FIELDS

1S. Gukov and I. Saberi. “Motivic quantum field theory and the number
theory of A-polynomial curves.” To appear.

Introduction: quantization and the path integral

The entire existing formulation of quantum field theory can be based on the

idea of the path integral. Since the pioneering work of Feynman [78], the

most fruitful heuristic for understanding quantization has been to imagine an

integral over all possible histories of a physical system, weighted by probability

amplitudes exp(iS), where S is the classical action of a history. Thus, one is

naturally lead to consider integrals of the type
∫

Dφ f(φ), (5.1)

where φ here stands for a choice of values for all physical degrees of freedom

throughout the spacetime. f is a functional of the fields, and usually in-

cludes the phase weighting exp(iS) together with possible insertions of other

observables of interest. Unfortunately, in generic quantum field theories of

physical interest, the spaces of field configurations over spacetime are infinite-

dimensional, and no way to define the measure Dφ or make rigorous sense of

integrals of this kind is known. Lacking a way around this roadblock, (5.1)

remains a heuristic rather than an algorithm for dealing with the problem of

quantization.

Several examples of quantum field theories for which we are able to rigorously

evaluate integrals of the form (5.1) are provided by topological field theories,

or TQFTs. Here, the space of field configurations over which we must integrate

is a priori infinite-dimensional, but the path integral localizes to some finite-

dimensional space X, which is often the moduli space of solutions to some

set of PDEs. X may be, for instance, a finite-dimensional algebraic variety.

For instance, in Witten’s approach to Donaldson theory, the path integral

for a topological field theory obtained from a twist of N = 2 super Yang-

Mills theory in four dimensions is interpreted in terms of the moduli space of

anti-self-dual instantons [211].
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Topological field theories compute topological invariants of spacetimes and

structures within spacetime. For instance, as first shown in [212], Chern-

Simons theory computes invariants of three-manifolds, and of knots and links

in three-manifolds when Wilson line observables supported along those knots

are inserted into (5.1). In order to compute these invariants directly by evalu-

ating the path integral, a measure must be chosen. It is natural to ask: what

possible choices of measure could be made? Do different choices lead to dif-

ferent invariants, and is there a single universal or best-possible measure such

that all other integrals arise from it as specializations?

If the space X is algebraic, a measure of this kind has in fact been constructed

by mathematicians: the motivic integration measure dµ [127, 142, 154, 200].

Therefore, our goal in this note is to develop TQFT where the path integral is

performed with the motivic measure. As one might expect, the use of this finer

measure leads to theories that compute finer topological invariants. For exam-

ple, in some examples of TQFTs of cohomological type, the ordinary choice

of integration measure is simply the Euler density, so that the correspond-

ing integral computes the Euler characteristic of X [155]. Using the motivic

measure computes a finer invariant, akin to the Poincaré polynomial of the

homology of X. The Euler characteristic can of course be recovered from this

as a specialization.

The study of moduli spaces has shed new light on topological field theories

from other angles as well. Recall that, in the axiomatic approach typically used

by mathematicians that was first formulated by Atiyah [8], a d-dimensional

TQFT is a tensor functor from the (d− 1, d)-dimensional cobordism category

to the category of complex vector spaces. Less concisely, a TQFT assigns a

(finite-dimensional) Hilbert space of states to any (d−1)-manifold Y , which one

can think of as a spacelike slice or codimension-one boundary of a spacetime

on which boundary conditions are to be specified. It should assign to the

disjoint union of two such manifolds the tensor product of their respective

Hilbert spaces. Given a d-manifold M with boundary ∂M = Y0 t Y ∨1 , which

is a morphism from Y0 to Y1 in the cobordism category, the TQFT should

associate to it a linear map between the Hilbert spaces H 0 and H 1. Here Y ∨

denotes Y with opposite orientation. For further details, the reader should

consult the literature, e.g. [8, 20, 83] and references therein.

This is all very well, but where does one obtain an interesting example of such
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Geometric
object

Physical data Classical theory Quantum theory

Y (a space) Space of possi-
ble states

Phase space: the
symplectic space
X of classical so-
lutions

Hilbert space H
of quantum states

X (a spacetime)
∂X = Y

Choice of a
particular
state

a Lagrangian sub-
manifold L ⊂ X

a ray in H

Figure 5.1: A schematic illustration of the way physical theories associate data
to spacetimes and their boundaries.

a functor to study? In physics, a field theory (topological or not) is usually

defined by writing down the collection of fields or degrees of freedom in the

theory, together with the action functional. This data defines the theory, either

as a classical variational problem—one asks that the action be extremized,

from which condition one obtains the equations of motion or PDEs that the

fields must satisfy—or as a quantum theory, in which we must either make

sense of the path integral or quantize the theory by other means. As such,

examples of TQFTs in physics may come with an associated classical theory,

from which they are reconstructed by quantization. One can say that the

functor “factors” through a classical field theory, as illustrated in Fig. 5.1.

The arrow that goes from moduli spaces (i.e., classical theories) to TQFTs is

provided by quantization. Study of the quantization of classical phase spaces

has been fruitful for the study of quantum invariants, leading for instance to

the AJ-conjecture [107] (see also [111] for a recent review). This line of work

suggests from a slightly different angle that moduli spaces hold the key to

deeper understanding of TQFTs.

The motivic integration measure mentioned above can also be related to the

study of the algebraic spaces X that arise as moduli spaces in TQFT over

different fields, such as finite number fields or p-adic numbers. In fact, the

motivic measure is intimately related to the p-adic integration measure, which

can be defined by counting points on X over the rings Z/pkZ. Motivated

by this reasoning, we also report on some experimental investigation into the

number-theoretic properties of various spaces X occurring in topological field

theories. Specifically, we consider A-polynomial curves, which are invariants

of knots that arise from classical SL(2,C) Chern-Simons theory [54, 107]. To
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a given knot, this theory associates a planar algebraic curve that is the zero

locus of a polynomial with integer coefficients. This curve is the moduli space

of vacua, or the classical phase space, in the SL(2,C) theory mentioned above.

We review the construction in §5.2. Since its coefficients are integers, the

A-polynomial can be studied over finite fields, using techniques of arithmetic

geometry.

By doing this, we immediately obtain infinitely many new positive-integer-

valued knot invariants, indexed by prime powers, that are defined simply as

the number of points on the A-polynomial curve over the field Fpk . Of course,

these do not carry independent information, since the whole ensemble of them

is computable from the A-polynomial itself. However, in light of the above,

invariants of this sort may be worthy of study. One might ask, in particular,

whether any of these invariants coincide with more conventional integer-valued

topological invariants of knots (Seifert genus, for example). In all cases that

we checked, the answer is no.

Moreover, the independent data of this collection of one integer for each prime

power can be conveniently repackaged into a finite collection of only 2g − 1

integers at each prime, which are the coefficients appearing in the numera-

tor of the local zeta function that encodes the point-counting data for X in

characteristic p. Here g is the genus of the planar curve X. We identify this

zeta function for the example of the figure-eight knot. In this instance, X is

elliptic; by the celebrated modularity theorem [35], the global zeta function

(product of all local factors) is therefore a modular form.

A somewhat more sophisticated question is whether the point-counting num-

bers defined above, or some relatives of theirs, are invariants of finite type.

Unfortunately, this question is more subtle than it might appear (and not im-

mediately amenable to experimental tests) since it requires definition of these

invariants for links of more than one component. The A-polynomial is only

a reasonably tractable planar curve for knots; for more general links, the di-

mension of the moduli space is larger. As such, we leave the resolution of

this question to future work. The outcome of our experimental investigation

consists in the identification of new regularities common to all A-polynomial

curves, which occur in particular in the structure of their singularities. We

offer some speculations as to the physical interpretation of these regularities.
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5.1 The motivic measure

We recall the notion of a measure, as customarily defined in the theory of

Lebesgue integration. A measure space is a triple (X,F , µ), where X is a

fixed set, F is a σ-algebra of subsets of X, and µ is a measure function on F .

µ is required to have certain properties, important among which is additivity:

for any countable collection {Ei} of sets in F that are pairwise disjoint from

one another,

µ

(⋃

i

Ei

)
=
∑

i

µ(Ei). (5.2)

Here, the measure is usually required to take values in the positive real num-

bers. For the time being, we remain agnostic about the target space of µ,

which may be any abelian group.∗

We note that, if X is a topological space, there is a natural choice of σ-algebra

over X: the Borel algebra generated by the closed subsets of X. Our first

approximation to motivic measure can be thought of as a measure on the

algebra generated by the Zariski-closed sets, where X is a variety.† That is:

motivic measure should assign, to each object in the category Var of varieties

over a field k, a “number” of some general sort (element of an abelian group),

in a way that is additive: we should have

µ(X) = µ(Y ) + µ(X \ Y ), (5.3)

whenever Y is a Zariski-closed subset of X.

Now, there is a universal choice of the abelian group in which such a measure

can be valued—that is, every other measure will factor through this “most

general” possible measure. Let the Grothendieck ring of the category Var be

the free abelian group on the isomorphism classes of objects in Var, subject

to all relations of the form

[X] = [Y ] + [X \ Y ], (5.4)

∗In fact, we only need the set of values for our measure to admit a commutative addition
operation with a unit element. Thus, we can in fact take the target space of µ to be a
commutative monoid. This distinction is unimportant in practice, though, since any such
monoid obeying the cancellation property a + b = a + c =⇒ b = c can be embedded as a
subset of an abelian group (the map from the monoid to its Grothendieck group is injective).
It amounts to thinking of an ordinary measure as valued in the commutative monoid R≥0,
as opposed to the abelian group R.

†A σ-algebra should be closed under countable set operations; we consider the weaker
notion of algebra of sets, where only closure under finite unions and intersections is required.
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for X, Y ∈ Ob(Var) such that Y is Zariski-closed in X. The Grothendieck

group of a category C is denoted K0(C ). K0(Var) is a ring because Var is a

tensor category; the product is defined by

[X] · [X ′] =̂ [X ×X ′]. (5.5)

Now, the map

Ob(Var)→ K0(Var), X 7→ [X] (5.6)

satisfies our additivity requirement for measures (and is universal for this re-

quirement) by construction. Note that the class of a variety in K0(Var) carries

strictly less information than its isomorphism class: for every locally trivial

fibration E � B with typical fiber F , we have [E] = [B] · [F ].

Thus, mapping a variety to its equivalence class in the Grothendieck ring

K0(Var) behaves like a measure. Indeed, this “measure” is defined for con-

structible subsets of varieties, i.e., finite disjoint unions of locally closed sub-

varieties; we simply map tiYi to
∑

i[Yi]. Thus it makes sense on the whole

algebra of sets generated by the Zariski-closed subsets of a variety. However,

we need to be able to measure a wider class of sets before we can define a

satisfactory motivic integral.

Let X ∈ Ob(Var) be a variety over some fixed ground field (say C). We can

imagine for simplicity that X is the zero locus of a collection of polynomial

equations:

X : fi(x1, . . . , xN) = 0, 1 ≤ i ≤ codimX.

The space of n-jets on X is the space of solutions to the same polynomial

equations, where the variables xj take values in C[t]/(tn+1) rather than in C.

We can think of the formal nilpotent variable t as representing an infinitesimal;

then the n-jets on X are deformations of solutions of the defining equations

for X in this infinitesimal parameter that solve the equations to nth order,

or parameterized curves that remain on X to nth order in the parameter. In

particular, the space of 1-jets on X is just the tangent bundle TX.

We denote the space of n-jets on X by Jn(X); it is an algebraic variety.

Expanding the equations in powers of t (modulo tn+1) gives a collection of

n codimX equations for nN variables in C. Thus, if d = dimX, the space

Jn(X) is generically nd-dimensional.

It is obvious that any n-jet on X is also an m-jet on X in a natural way for

any m ≤ n; thinking of points on Jn(X) as points on X with coordinates
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in C[t]/(tn+1), we can just reduce modulo tm+1 to get a point on X with

coordinates in the ring C[t]/(tm+1), i.e., an element of Jm(X). This defines a

natural family of projection maps

pnm : Jn(X)→Jm(X) (5.7)

for all m ≤ n. (pnn is the identity.)

We can now define the space of arcs on X to be the inverse limit

J (X) = lim←−Jn(X). (5.8)

The points of J (X) are in bijection with points on X whose coordinates are

formal power series in C[[t]]. Thinking of n-jets as parameterized paths remain-

ing in X to nth order in the parameter, we should think of arcs as representing

some kind of formal parameterized trajectories in X, which are suitably ana-

lytic (representible by power series). J (X) is an infinite dimensional space,

defined by the vanishing of countably many polynomial equations, each of

which contains only a finite subset of the countably many C-valued variables.

There are natural maps πn : J (X) → Jn(X) for all n. In general, these

maps are not surjective; the space im πn consists of those n-jets that may be

lifted to arcs on X.

We say that a subset S of J (X) is constructible if there exists some m such

that Sm =̂ πm(S) is a constructible subset of Jm(X), and S = π−1
m (Sm). The

constructible subsets form an algebra of sets on J (X). We further say that

a constructible set S is stable if the projections πn+1
n are all locally trivial

fibrations. When X is nonsingular, every constructible subset is stable.

For a stable subset S, we know that

[πn(S)] = [A1](n−m)d · [πm(S)] ∈ K0(Var), ∀n ≥ m. (5.9)

Here [A1] just denotes the class of the affine line in the Grothendieck ring;

henceforth, we represent this element simply by L. Thus, if we allow ourselves

to invert the element L ∈ K0(Var), we can extend our definition of motivic

measure to all stable subsets of J (X) as follows: Let M =̂ K0(Var)L be

the ring obtained from the Grothendieck ring by inverting the class of the

affine line. (M depends implicitly on a choice of ground field, as does the

category Var; throughout, we choose not to indicate this dependence, and
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work over C.) Then, for stable S, we define

µ(S) =̂ lim
n→∞

[πn(S)] · L−nd. (5.10)

The limit is well-defined because the sequence stabilizes for n ≥ m. This

measure generalizes the operation of mapping a variety to its class in the

Grothendieck ring; if X is a nonsingular variety, then µ(J (X)) = [X].

(We have abused notation slightly, writing [X] for its image in the localized

ring M .)

We would now like to extend µ to an additive measure on the whole algebra of

constructible subsets of arc space. However, we cannot do this naively, since

the limit in (5.10) may not be sensible if the sequence fails to stabilize. This

will happen when the variety X has some singularities.

Example 12. Let X be the variety {xy = 0} ⊂ C2. Then

X = A1 ∪ (A1 \ {0}).

We recall that [Ak] = Lk, so that A0 = 1. Therefore,

[X] = 2L− 1.

The space J1(X) consists of the algebraic set

(x0, x1, y0, y1) ∈ C4 : (x0 + x1t)(y0 + y1t) = 0 (mod t2),

i.e., the zero locus of the two equations

x0y0 = 0, x0y1 + x1y0 = 0.

If x0 is nonzero, the equations imply that y0 = y1 = 0 and x1 is unconstrained.

Thus this part of the variety looks like the locally trivial fibration (A1 \{0})×
A1. An identical argument applies if y0 = 0. However, if x0 = y0 = 0, both

x1 and y1 are unconstrained, and this part of the variety is a copy of A2.

Therefore,

[J1(X)] = 2(L− 1)L+ L2 = 3L2 − 2L.

On the other hand, the set π1J (X) consists of those 1-jets that may be lifted

to arcs on X. Thus, there is an additional equation that comes from order t2:

x0y0 = 0, x0y1 + x1y0 = 0, x2y0 + x1y1 + x0y2 = 0, . . .
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If x0 is nonzero, the equations reduce to yi = 0 for all i, with xi unconstrained.

If x0 = y0 = 0, however, we additionally have the equation x1y1 = 0; thus,

this part of the variety is equivalent to X rather than to A2! Thus, π2J (X)

is not all of J2(X), and in fact

[π2J (X)] = 2(L− 1)L+ (2L− 1) = 2L2 − 1.

Continuing the calculations in this manner leads us to the general results

[Jn(X)] = (n+ 2)Ln+1 − (n+ 1)Ln, [πnJ (X)] = 2Ln+1 − 1. (5.11)

These results illustrate why the projection of the arc space, rather than the

full jet space, is used in our limiting procedure: there is no way to make sense

of the limit of [Jn(X)]/Ln as n → ∞ in our example. Furthermore, they

illustrate that singular points on X prevent the sequence from stabilizing: we

have
[πnJ (X)]

Ln
= 2L− 1

Ln
,

which should clearly be interpreted as tending to the value 2L. For this to

work, we must pass to an appropriate completion M̂ of M , so that these limits

are well defined. Note that the value 2L is the same as for the disjoint union

of two affine lines; thus, the motivic measure can be thought of as naturally

accomplishing some kind of resolution of singularities.

Relation to point-counting over Z/pnZ
The motivic measure we have outlined above relies on looking at the limiting

behavior of the images of successive jet spaces πnJ (X) ⊆ Jn(X) in the

Grothendieck ring of varieties. A similar approach is used in the theory of p-

adic integration, which in fact was the original motivation for motivic integrals.

We briefly outline the analogy here. Let us take for simplicity a curve defined

by the vanishing of a single polynomial with integral coefficients:

X : f = 0.

It makes sense to count the number of solutions of the congruence f ≡ 0

(mod n), for any natural number n, which can be thought of as the number

of points on the variety X over the ring Z/nZ. If n = pk+1 is a prime power,

then this is the same as asking for solutions to f = 0 with coefficients in the

ring

Z/pk+1Z =̃ Fp[t]/(tk+1),
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where Fp is the finite field Z/pZ, and the formal variable t we introduced in

the above equation just plays the role of the prime p. Put another way, every

element α ∈ Z/pk+1Z has a unique expansion

α = α0 + α1p+ · · ·+ αkp
k, αi ∈ Fp, (5.12)

which gives the isomorphism above. But this shows that the points on X

over Z/pk+1Z are exactly the points on Jk(X) over Fp!

The proper analogue of the arc space of X, in this case, is just isomorphic to

the set of points of X over the ring

Fp[[t]] =̃ lim←−Z/pk+1Z = Zp,

the ring of p-adic integers. Just as t may be thought of as an infinitesimal quan-

tity in the context of jet spaces, so each successive term in the expansion (5.12)

is “one order smaller;” recall that, in the p-adic valuation, a number is small

when it is divisible by a large power of p.

In the motivic case, we found that the measure of a variety could always be

expressed in terms of powers of the symbol L, the class of the affine line. The

same is true in the case of jet spaces of varieties over Fp: here, the “measure” is

just the naive count of the number of solutions, which can always be expressed

as a function of the prime p. And p is just the number of points on the affine

line over Fp! Thus, we can determine the motivic measure of a variety in many

cases by solving equations over Fp, and then simply replacing p in our answer

by the symbol L.

The analogue of the Grothendieck ring of varieties, in which the point-counting

measure takes values, is simply Z. Localization of the Grothendieck ring at L,

in this case, corresponds to inverting the element p ∈ Z, and the subsequent

completion returns R as the final value ring for p-adic integration. We mention

that a theorem of Weil relates p-adic integration on varieties to counting points

on those varieties over finite fields.

5.2 Reduction of A-polynomial curves modulo p: singularities and

common points

We briefly recall the definition of the A-polynomial. Let K ⊂ S3 be a

knot. Cutting out a tubular neighborhood N(K) of the knot produces a

three-manifold M called the knot complement, with boundary homeomorphic
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to T 2. We then consider representations of the fundamental group π1(T 2)

into SL(2,C). Since the two generators of π1(T 2) commute, their representa-

tion matrices can be simultaneously diagonalized, and any such representation

is characterized up to conjugacy by a choice of one eigenvalue for each gener-

ator:

Hom(π1(T 2), SL(2,C))/conj. =̃ (C? × C?)/Z2,

where Z2 acts by replacing each eigenvalue by its inverse and can be thought

of as the Weyl group of SL(2,C). This isomorphism is not quite canonical;

it depends on a choice of basis for the homology group H1(T 2) = π1(T 2)ab.

We can take these to be a meridian cycle—the unique generator of π1(N(K))

whose representative lying in ∂N(K) has linking number +1 with K—and a

longitude cycle, obtained by pushing the knot laterally away from itself to the

boundary of N(K). The longitude is not unique, but is fixed by a choice of

framing of K. We will denote the eigenvalues of the longitude and meridian

cycles respectively by ` and m. Note furthermore that the group SL(2,Z)

naturally acts on the set of all choices of basis; if we take
(
γ`

γm

)
7→
(
a b

c d

)(
γ`

γm

)
,

the A-polynomial transforms covariantly according to the rule [107]

A(`,m) 7→ A(`dm−b, `−cma).

Now, the obvious map π1(T 2)→ π1(M) gives rise to a map of the correspond-

ing representation spaces

Hom(π1(M), SL(2,C))→ Hom(π1(T 2), SL(2,C)),

which descends to the quotient by conjugacy, and whose image after the quo-

tient turns out to be an algebraic set in C?×C?. One of the components of this

algebraic set is a planar algebraic curve. We can choose a defining polynomial

A(m, l) ∈ Z[m, l] for this curve, which is called the A-polynomial of K.

In all of our experiments with the A-polynomial, we choose to work with

the natural variables m and l that are eigenvalues of our chosen meridian

and longitude cycles on the boundary torus of the knot. Occasionally, we

make use of the variables (x, y) = (m2, l), and we will abuse notation and use

A(m, l) and A(x, y) to denote the A-polynomial before and after this change
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of variables respectively. We should also remark that all A-polynomials are

divisible by a factor (`−1), which arises from the abelian representations. We

follow the conventions of [54], using the table of A-polynomial invariants for

simple knots given in that paper and discarding this trivial component of the

curve in most of our considerations.

One obvious experiment to perform is simply to plot the reduction modulo p

for various A-polynomials and various values of p. The zero locus of A(m, l) is

a subset of A2(Fp) = (Z/pZ)2, which consists of p2 points that can be drawn

as a square region of a lattice. (The projective completion P2(Fp) consists of

p2 + p + 1 points, and the curve may have points at infinity as well as points

at finite distance.) One can look for two kinds of regularities in this data:

regularities as p varies over primes for a fixed knot, and regularities that occur

in the A-polynomial curves of all knots at some given p.

The results of these observations led to noticeable patterns only of the second

kind:

Observation 5. The A-polynomial curve of any knot always has the following

“universal” Fp-rational points:

• (m, l) = (±1,−1) ∈ A(Fp) for every p;

• (m, l) = (±k, 1) ∈ A(Fp) whenever k2 = −1 in Fp. By the quadratic

reciprocity theorem, such a k exists (−1 is a quadratic residue) precisely

when p ≡ 1 (mod 4).

Recalling that the A-polynomial for a knot in S3 contains only even powers

of the variable m, we can summarize this result in a more compact form by

saying that the points (m2, l) = (1,−1) and (−1, 1) are universal points that

occur on all A-polynomial curves.

A few remarks are in order. First of all, as the observant reader will no doubt

have noticed, these points do not depend on the value of p for which we look at

the curve; indeed, the characterization of these points in the above paragraph

makes sense over any field, since 1 and −1 are always defined. Therefore, we

can simply observe that the universal points are present on any such curve

over any field (finite or not). In particular, these points can be seen over C.
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Secondly, the first pair of universal points are fixed points of the Z2 action that

takes (m, l) 7→ (1/m, 1/l). However, not all fixed points of the Weyl group

action on C? × C? are universal points; for instance, (m, l) = (1, 1) is not

universal (and does not occur, for instance, on the A-polynomial for the figure

eight knot). Of the four fixed points, exactly two are universal. Moreover,

the other pair of universal points are mapped into one another by the Weyl

group action (in particular, neither is a fixed point). This is as we would

expect: since the A-polynomial naturally lives in the quotient by the Weyl

group, the points in a Weyl orbit of a universal point should be universal as

well. However, we do remark that the second pair of universal points is special

in the following sense: A-polynomial curves of knots in S3 admit a second

Z2 action, mapping (m, l) 7→ (−m, l). (This can be thought of as analogous

to a deck transformation: since A(m, l) contains only even powers of m, the

change of variables x = m2 gives a mapping from the A-polynomial curve to

a “reduced” A-polynomial curve that is two-to-one. The bad point m = 0 is

excluded from consideration, since our variables are valued in C?.) A generic

point therefore has a symmetry orbit of size four. The first pair of universal

points are an orbit of size two, where the first Z2 (Weyl group) acts trivially,

but the second exchanges the two points. The second pair of universal points

are also an orbit of size two; the Weyl group and the deck transformation act

identically and swap the two points, and the product of the two symmetries

acts trivially. Therefore, if we make the change of variables (x, y) = (m2, l)

which corresponds to passing to the “reduced” curve that is a quotient by the

second Z2, both pairs of universal points project down to single points that

are then fixed by the Weyl-group action on the reduced curve.

Lastly, the presence of these two points is apparent in the case of (2, p) torus

knots, where the A-polynomial takes the simple form A(m, l) = 1 + lm2p.

Here p is an odd prime.

We further observe the following:

Observation 6. The A-polynomial curves of all hyperbolic knots are singular.

In particular, the universal points identified above are always singular points

over C.

There are easy counterexamples to this observation when the knot in question

is not hyperbolic. For instance, we can simply look at the A-polynomial for
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the simplest torus knot, the trefoil:

A(m, l) = l +m6.

It is trivial to check that both pairs of universal points are present on this

curve, but that the curve is nonsingular everywhere in C? × C?.

Our discussion here should be put into context with the related discussion

of singularities of A-polynomial curves in [89], §6.1. That paper uses the

variables (x, y) = (m2, l), so that our (unreduced) A-polynomial curves are

double covers of their (reduced) curves.

As the reader can verify by direct calculation (or by looking ahead to §5.3

where we perform the calculation in detail) the reduced A-polynomial curve

for the figure eight knot has exactly two singularities at finite distance, which

lie at the universal points (x, y) = (−1, 1) and (1,−1). The discriminant of

this polynomial with respect to the variable y is

∆(x) = (1− x2)2(1 + x+ x2)(1− 3x+ x2), (5.13)

which divides the discriminant given in [89, Eq. (6.6)]. As noted there, the

last of the factors in the discriminant is just the Alexander polynomial of the

figure-eight knot. However, we should point out a limitation of the ability

of ∆(x) to identify singularities of A(x, y). A polynomial in one variable p(y)

has zero discriminant if and only if it is singular, i.e., there exist solutions

y = y? to the equations p(y) = p′(y) = 0. Taking the discriminant of A(x, y)

with respect to y therefore identifies all values x? of x for which a slice at

fixed x is singular: that is, the equations

A(x, y) = 0, ∂yA(x, y) = 0 (5.14)

admit simultaneous solutions y = y?. This is a necessary, but not sufficient,

condition for the point (x?, y?) to be a singular point of the curve A(x, y) = 0!

We must still check whether the equation

∂xA(x, y) = 0

is satisfied at each candidate point. If it is not, there is no singularity. A

good example to keep in mind is the simple nonsingular curve c(x, y) = y2−x.

Taking the discriminant with respect to y gives simply ∆(x) = −4x, suggesting
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that there may be a singular point with x = 0. However, the candidate point

(x, y) = (0, 0) is in fact nonsingular, since ∂xc(0, 0) 6= 0.

As such, not every factor of ∆(x) in (5.13) gives a true singularity of the

reduced A-polynomial curve. Indeed, only the first factor, corresponding to

the values x = ±1, comes from singularities. The zeroes of the other factors

of ∆(x) identify special points on A(x, y) = 0 that are still nonsingular. As

the reader can verify directly, the conditions (5.14) for the figure-eight knot

imply that y = ±1 for the candidate points. A quick check then reveals that

the “candidate singularities” are

(x, y) =





(
−1±i

√
3

2
,−1

)
, for factor 1 + x+ x2,

(
3±
√

5
2
,+1

)
, for factor 1− 3x+ x2.

(5.15)

None of these are singular on the curve we are considering. However, notice

that the second set of candidate points, which come from zeroes of the Alexan-

der polynomial factor of the discriminant, also lie on the zero set of (y − 1),

the factor corresponding to abelian representations that we excluded from

our analysis of the A-polynomial. Had we included this factor (as [89] does),

these points would indeed be singular, as they would lie on the intersection

of two irreducible components of the curve. Since the factorization of the

A-polynomial into abelian and nonabelian components does not generalize to

the super-A-polynomial at other values of the deformation parameters, these

should perhaps be regarded as true singular points. On the other hand, there

seems to be no clear sense in which the first set of candidate points can be

related to genuine singularities.

A schematic illustration of the situation is shown in Fig. 5.2, at left. The

intersection of the reduced A-polynomial curve E with the plane where x, y ∈
R is shown. We also include the abelian factor y = 1 in a contrasting color.

As the reader can see, the universal singular point (x, y) = (−1, 1) is evident,

and looks like a nodal self-intersection of the nonabelian curve (through which

the abelian component also passes). The two other intersection points of

the components are the “candidate singularities” that come from zeros of the

Alexander polynomial. They are singular when both components are included,

but are regular points of the nonabelian component considered alone. The

other universal point at (1,−1) is not visible, because the intersection of our

curve with the chosen real slice there consists of a single point.
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Figure 5.2: At left, a real section of the reduced A-polynomial curve for the
figure eight knot. At right, the same plot for the trefoil knot.

At right, the same plot is shown for the trefoil knot. Since this is a torus knot,

the universal points are not singular. However, both can be seen in the figure.

Let us say a few words about how this story generalizes to the super-A-

polynomial. As is noted in [89], the super-A-polynomial for the figure-eight

knot (and indeed all such polynomials that are explicitly known) possess uni-

versal singularities that live at

1 + at3x2 = 0. (5.16)

The claim in [89] is merely that, for each choice of parameters a and t, and

for each root of (5.16), there exist values for the y-coordinate that make the

resulting points. We have checked this explicitly in the case of the figure-eight

knot, and furthermore we find that the corresponding value of y is just y = 1

for all values of the parameters. Thus, these “universal singularities”‡ can be

more completely described, at least in the case of the figure-eight, by

1 + at3x2 = 0, y − 1 = 0. (5.17)

Thus, this family generalizes our second pair of universal points, (x, y) =

(−1, 1). The astute reader will notice that taking a = 1 and t = −1 in (5.17)

indicates the presence of additional singular points at (x, y) = (1, 1), which

we have not mentioned. This has a simple explanation: the specialization of

parameters does not precisely recover just one irreducible component of the

ordinary A-polynomial. Rather, the exact relation is

Asuper(x, y; a = 1, t = −1) = (x− 1)2(y − 1)A(x, y), (5.18)
‡This is the terminology used in [89].
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where A(x, y) is what we have termed the reduced A-polynomial. The reader

can clearly see that all components of the ordinary A-polynomial occur as

factors in (5.18), together with extra irreducible factors. Indeed, the presence

of the factor (x−1)2 means that any point with x = 1 is singular—in particular,

(x, y) = (1, 1) is, although it does not even occur as a zero of A(x, y). This

accounts for the extra singularities detected by (5.17).

We should also remark that a slight difference occurs in the universal sin-

gularities for the trefoil knot (which is not hyperbolic). Examination of the

super-A-polynomial for the trefoil shows that the universal singularities live

along the locus

1 + at3x2 = 0, ty + 1 = 0. (5.19)

The universal singularities thus have a simple (but different) description in

each case. Moreover, they agree with one another when t = −1, i.e., when

the homological deformation is made trivial. It would be interesting to check

the location of universal singularities of the super-A-polynomial in more ex-

amples (in particular, for additional hyperbolic knots) to check whether the

form (5.17) is always valid. It is also worth remarking that the super-A-

polynomial for the unknot does not possess these universal singularities.

There is no clear way in which this universal family of singularities of the super-

A-polynomial, or any of the other singularities identified in [89], is related to

our first pair of universal points, (x, y) = (1,−1). Moreover, the interpretation

of these universal points is still unclear. However, our analysis allows us to

conjecture as to the origin of the second set of universal points:

Conjecture 7. The second pair of universal points, (m2, l) = (−1,+1), and

therefore the “universal singularities” of the super-A-polynomial, are related

to quantizability of the A-polynomial curve.

As motivation for this conjecture, consider the following example curve that

was first considered in [107]:

B(m, l) = 1− (m−6 −m−2 − 2−m2 +m6)l + l2. (5.20)

This polynomial is a slight modification of the A-polynomial for the figure-

eight knot, which can be written

A(m, l) = 1− (m−4 −m−2 − 2−m2 +m4)l + l2.
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(Recall that we are free to multiply by powers of m and l.) Both of these curves

are reciprocal, and have all the required symmetries. However, B(m, l) is not

quantizable, and hence does not occur as the A-polynomial of any knot. We

notice that the first pair of universal points are present on B(m, l) = 0. Indeed,

they are even singular points, just as they are for A(m, l) = 0. However, the

second pair of universal points are not zeroes of B(m, l), as the reader can

easily check. Since the only property of the A-polynomial that B(m, l) does

not satisfy is the quantizability condition, it is tempting to conclude that the

presence of the second pair of universal points is a signal of quantizability.

The first pair of universal points, as we mentioned above, have no clear in-

terpretation as yet. However, they do occur on the “fake” example (5.20)

considered above. It is therefore tempting to conclude that these points are

not related to quantizability, but to some other, less subtle symmetry or prop-

erty of the A-polynomial which (5.20) does indeed possess.

5.3 Zeta functions and modular forms

One of the most interesting and puzzling properties of the A-polynomial is

that its coefficients are integral. This property allows us to view the curve

A(m, l) = 0 as a variety over the finite field Fp = Z/pZ for any prime number p,

and count points on this curve, which are just solutions to the congruence

A(x, y) ≡ 0 (mod p).

To any variety X over Fp, we can associate a local zeta function Zp(t). This

zeta function is a generating function that encodes the numbers of points on

the variety over all finite fields of characteristic p. It is defined as follows:

logZp(t) =
∑

k

Npk
tk

k
, ⇐⇒ Zp(t) = exp

(∑

k

Npk
tk

k

)
. (5.21)

Here Npk =̂ #X(Fpk), the number of points on the variety X over the finite

field with pk elements. Recall that

Fpk =̂ Fp[s]/(f), (5.22)

where s is a formal variable, f ∈ Fp[s] is an irreducible polynomial of degree k,

and Fp is just Z/pZ. The number of points on the variety, which for us is the

algebraic curve A(m, l) = 0 or one of its close relatives, is simply the number

of solutions to the defining equation in the projective space P2(Fpk).
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A well-known theorem of Weil states that the generating function (5.21) can

always be resummed into a simple rational form. In particular, when the

variety X is a nonsingular planar algebraic curve, the local zeta function can

be written as

Zp(t) =
np(t)

(1− t)(1− pt) , (5.23)

where np(t) = (1 − α1t)(1 − α2t) · · · (1 − α2gt) is a polynomial of degree 2g

(g being the genus of the curve), and the αi are algebraic integers with var-

ious properties. This form essentially follows from the existence of a Weil

cohomology theory with various good properties, including a Lefschetz trace

formula. The form of the argument is as follows: Fix an algebraic closure F̄p
of Fp. The Frobenius endomorphism Fr : x 7→ xp is a morphism of fields in

characteristic p, and we can identify

Fpk =̃ Fix(Frk) ⊂ F̄p, X(Fpk) = Fix
(
Frk : X(F̄p)→ X(F̄p)

)
. (5.24)

Letting X̄ denote X(F̄p), the Lefschetz fixed point formula then schematically

reads

#X(Fpk) = # Fix(Frk : X̄ → X̄) =
∑

i

(−1)i tr Frk |H i(X̄). (5.25)

We can then use this in the definition of the zeta function to see that

Zp(X, t) =
2 dimX∏

i=0

det
(
1− tFr |H i(X̄)

)(−1)i+1

. (5.26)

This is the expression that reduces to the form (5.23) when X is a complex

curve, so that dimX = 1. The interesting piece of the zeta function (its

numerator) comes from the action of the Frobenius map on H1(X̄).

In the case where the curve is singular, Weil’s theorem does not apply, but

it is a result of Aubry and Perret [10] that the zeta function still takes the

form (5.23). The only change is to the form of the numerator, which is no

longer as simple. However, it changes in a controlled way. Let ν : X̃ → X be

a resolution of singularities of the curve X over Fp. (That is, X̃ is a nonsingular

curve, and ν is an isomorphism away from the singular locus of X.) Then

np(X; t) = np(X̃; t) · ξ(t), (5.27)

where ξ(t) is a product of cyclotomic factors.
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As we have noted before, A-polynomial curves for hyperbolic knots are always

singular algebraic varieties. As such, we will now review some notions con-

nected to resolution of singularities that will be important in our analysis of

the figure-eight knot example. In particular, we will need to consider a res-

olution of singularities of our curve in order to compute its Hasse-Weil zeta

function, and identify the corresponding modular form.

Our chief example is the A-polynomial for the figure-eight knot, which we

write in the form

A(m, l) = −m4 + (1−m2 − 2m4 −m6 +m8)l −m4l2. (5.28)

We use the notation C : A(m, l) = 0 for the zero locus. We will sometimes use

the shorthand p(m) for the coefficient of l in the above expression, viewed as

an element of Z[m]. That is, p(m) = 1−m2 − 2m4 −m6 +m8. As above, by

an abuse of notation, p(x) will denote the same polynomial after the change

of variables x = m2.

To pass to a projective completion of this curve, we can view it as living in

the subset

C? × C? = {[m : l : s]|m 6= 0, l 6= 0, s = 1} ⊂ P2 (5.29)

of two dimensional projective space. This is the embedding considered in [54].

The closure C̄ of C ⊂ P2 is then the zero locus of the homogeneous polynomial

Ā(m, l, s) = −m4s5 + (s8 −m2s6 − 2m4s4 −m6s2 +m8)l −m4l2s3. (5.30)

The affine chart s = 1 returns the ordinary A-polynomial.

This curve is singular: that is, there exist simultaneous solutions to the equa-

tions

Ā(m, l, s) = 0, ∂mĀ = ∂lĀ = ∂sĀ = 0

for [m : l : s] ∈ P2. By Euler’s theorem on homogeneous functions, the

last three of these equations imply the first, and (for instance) the equation

∂mĀ = 0 follows from the other three at all points with m 6= 0. We compute

all the singular points explicitly as follows:
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Case 1: s 6= 0. Work in the chart s = 1. Then our three equations are as

follows:

0 = −m4 + p(m)l −m4l2,

0 = −4m3(1 + l2) + (8m7 − 6m5 − 8m4 − 2m)l,

0 = p(m)− 2m4l.

The first and third of these equations combine to give m4(l2 − 1) = 0. m = 0

cannot be singular since the third equation is not satisfied, so the only singular

points in this chart occur for l = ±1. The third equation can then be factored,

giving a list of possible m-values for each l, which can then be checked against

the second equation. The results are the universal singular points (m, l) =

(±1,−1) and (±i,+1).

Case 2: s = 0. It is automatic in this case that ∂sA = 0, since there

is no monomial of s-degree one in Ā. The other equations become m8l = 0,

8m7l = 0, m8 = 0. The unique singular point in this case is therefore [0 : 1 : 0].

Since it is defined by a polynomial with integral coefficients, the curve C can

naturally be studied over finite fields by reduction modulo p. However, C in

the form (5.30) does not appear to be the easiest or best choice for this kind

of study. It is desirable to have a nonsingular model of C. However, since C

has singular points whose coordinates are not integral, methods such as the

blow-up may give a new polynomial that, while having fewer singularities, is

no longer integral.

Therefore, we choose instead to look at a related curve E, which is the pro-

jective closure of the zero locus of the reduced A-polynomial:

A(x, y) = −x2 + (1− x− 2x2 − x3 + x4)y − x2y2. (5.31)

This curve is still singular. There are the two universal singular points at

(x, y) = (−1, 1) and (1,−1), which are nodal of order two. In addition, the

point at infinity [0 : 1 : 0] is a singularity of order three. The well-known

genus-degree formula,

g(E) =
1

2
(d− 1)(d− 2)−

∑

p∈E

1

2
rp(rp − 1), (5.32)

then shows immediately that E is of genus one.
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We note that changing variables to pass to the reduced form of theA-polynomial,

although it gives a two-to-one map on C? × C? ⊂ P2, does not extend to a

two-to-one map from P2 to itself when we embed E in projective space in the

same way we did for C. The map has problems at [0 : 0 : 1], as well as for

points at infinity. The A-polynomial curves avoid the origin, so there are no

problems at finite distance. However, on both C̄ and Ē, there are precisely

two points at infinity: [1 : 0 : 0] and [0 : 1 : 0]. The map from C̄ to Ē induced

by change of variables thus fails to be two-to-one on this locus. Moreover, the

map is not birational.

As is well known, every nonsingular elliptic curve can be defined by a minimal

equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (5.33)

where ai are constants. Borot and Eynard [25, §6.1.5] give the minimal equa-

tion for a nonsingular model of our elliptic curve E:

y2 + xy + y = x3 + x2. (5.34)

The variables x and y in (5.34) are obtained from our variables x and y in (5.31)

by birational transformations.

We can study reduction modulo p of the curve (5.34) and compute its zeta-

function by direct point counting. Our computational methodology is as fol-

lows. The local zeta function for a planar algebraic curve (singular or not)

takes the general form (5.23). Let us use the notation np(t) = β0 + β1t + · · ·
for the numerator. Ignoring questions of convergence, we can match terms

order by order in t between the expressions (5.21) and (5.23) to solve for the

coefficients βi from the known numbers Npk , computed numerically for small p

and k. For a fixed p, knowledge of Npk for all k ≤ n allows us to compute βi

for i ≤ n.

For the nonsingular minimal model of the curve associated to the figure-eight

knot, the results are tabulated in Table 5.1. The reader will observe that the

polynomial np(t) here has degree two, as it should for a nonsingular genus-one

curve.

Having done this, we can proceed to compute the modular form associated

to this elliptic curve. One way to state the association is as follows: To each
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Prime p Zeta numerator np(t)
2 1 + t+ 2t2

3 1 + t (bad reduction)
5 1− t (bad reduction)
7 1 + 7t2

11 1 + 4t+ 11t2

13 1 + 2t+ 13t2

17 1− 2t+ 17t2

19 1− 4t+ 19t2

23 1 + 23t2

29 1 + 2t+ 29t2

31 1 + 31t2

37 1 + 10t+ 37t2

41 1− 10t+ 41t2

43 1− 4t+ 43t2

47 1− 8t+ 47t2

53 1 + 10t+ 53t2

59 1 + 4t+ 59t2

Table 5.1: Zeta function numerators for the nonsingular elliptic curve (5.34),
computed directly by counting points.

elliptic curve E is associated an integer N called the conductor, which is

roughly speaking the product of all primes in a minimal set of primes of bad

reduction for the curve. This integer then defines a congruence subgroup of

the modular group,

Γ0(N) = {[ a bc d ] ∈ SL(2,Z) : c ≡ 0 (mod N)}.

For each prime p, the point-counting data over all finite fields of characteristic p

reduce to just one number: the middle coefficient of the numerator of the zeta

function, which we denote −ap(E). Thus ap(E) = p+1−#E(Fp). Modularity

essentially states that, after we extend this sequence multiplicatively in a well-

defined way to a sequence {an} defined for all natural numbers, the Fourier

series

f =
∑

n>0

ane
2πinτ

defines a modular form f(τ) of weight 2 on the upper half plane, for the

congruence subgroup Γ0(N). This modular form is a cusp form. Moreover, it

is a simultaneous eigenvector for all the Hecke operators that act on modular

forms: in particular,

Tpf = apf,
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where Tp is a set of Hecke operators that are defined for all prime p.

We can always identify the eigenform associated to a given curve by checking a

finite number of coefficients in its Fourier expansion. This is because, for all N ,

the space S2(Γ0(N)) of weight-2 cusp forms at level N is finite-dimensional. In

our case, the conductor of curve (5.34) is 15, and the vector space S2(Γ0(15))

turns out to be one-dimensional. Therefore, the modular form associated to

our curve is the unique (up to normalization) weight-2 cusp form at level 15:

f = q − q2 − q3 − q4 + q5 + q6 + 3q8 + q9 − q10 − 4q11 + · · · . (5.35)

The reader can easily see the correspondence between the coefficients in (5.35)

at prime powers of q and the first few coefficients occurring in the numerators

tabulated in Table 5.1.

5.4 Modularity and the q-Pochhammer symbol

The q-Pochhammer symbol is defined to be the product

(a; q)n =̂
∏

0≤k<n

(1− aqk). (5.36)

When the variable q is in the open unit disc in C, this expression makes sense

for n =∞. In particular, we can consider the special value a = q, for which

(q; q)∞ = q−1/24η(τ) =
∏

k>0

(1− qk). (5.37)

This equation defines η(τ), the Dedekind eta function. (We take τ ∈ H to

be related to q by the conformal transformation q = e2πiτ .) The eta function

obeys the well-known functional equation

η(−1/τ) =
√
−iτη(τ), (5.38)

which, together with the obvious invariance η(τ + 1) = η(τ), shows that η

transforms with weight 1/2 under the action of the modular group on the upper

half plane (up to a twist by a phase). In particular, the function η(τ)24 is (up

to a constant multiple) the discriminant function, a modular form of weight 12.

We refer the reader to [60] for more details. Many other modular forms can

be constructed as products of eta functions: for instance, the function

F (q) = q
∏

k>0

(1− qk)2(1− q11k)2 = η(τ)2η(11τ)2
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is a modular form of weight two for the congruence subgroup Γ0(11) [187].

One might ask whether eta functions generate all spaces of modular forms

this way. Rouse and Webb [179] consider “eta-quotients,” which are functions

on H of the form

f(τ) =
∏

d|N

η(dτ)rd , (5.39)

where rd are integers. We have the following theorem:

Theorem 8 (M. Newman, cited in [179]). Suppose that the following condi-

tions are satisfied:

•
∑

d|N drd ≡ 0 (mod 24),

•
∑

d|N(N/d)rd ≡ 0 (mod 24),

•
∏

d|N d
rd is the square of a rational number.

Then the eta-quotient (5.39) defined by the rd is a modular form for Γ0(N),

of weight

k =
1

2

∑

d|N

rd.

It is straightforward to check that there is a modular eta-quotient of weight

two at level 15. Indeed, this is exactly the modular form (5.35) associated to

the A-polynomial for the figure eight knot:

f(τ) = η(τ)η(3τ)η(5τ)η(15τ) = q(q; q)∞(3q; 3q)∞(5q; 5q)∞(15q; 15q)∞.

(5.40)

It would be interesting to find some relationship between (5.40) and some more

“quantum” occurrence of q-Pochhammer symbols, for instance in closed-form

expressions for colored Jones polynomials. However, since modularity does

not generalize straightforwardly to curves of higher genus, it is difficult to see

how this could come from a story that makes sense for all knots. Moreover,

there does not appear to be an obvious relation with the exact expression for

the (normalized) colored Jones polynomial for the figure eight,

JN(41; q) =
N−1∑

j=0

j∏

k=1

(
q
N−k

2 − q−N−k2

)(
q
N+k

2 − q−N+k
2

)
. (5.41)
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5.5 Locally blowing up singularities

In this section, we explicitly show how the resolution of singularities on the

curve C̄ can be used to understand the extra cyclotomic factors occurring in

its zeta function when compared to that for its nonsingular model Ē. We

begin by reviewing the essential idea of the blowup construction.

We want to come up with a general construction that will remove, or improve,

the singularities that occur when the tangent line to our curve at a point

is not unique. We would like to interpret these points as superpositions of

different points on a nonsingular curve; that is, self-intersections introduced

by projection. To do this, we need a way of picking apart or distinguishing

between the two components that lie on top of each other at such points.

Suppose the point we want to blow up is the origin of the affine plane A2 (over

an arbitrary field). We can consider the natural map, defined on A2 \ (0, 0),

which takes a point in the plane to the line through that point and the origin,

viewed as an element of P1. Explicitly, the map is

f : A2 → P1, (x, y) 7→ [x : y],

which is defined while x and y are not both zero.

We can consider the graph of this mapping as a subset of A2×P1. Obviously,

the graph is isomorphic to A2 \ (0, 0). Its closure is the algebraic set

B : xv − yu = 0,

where (x, y), [u : v] are coordinates on A2 and P1, respectively. B contains

the graph of f as the locus of points away from (x, y) = (0, 0), for which

projection on the first factor is an isomorphism. However, the inverse image

of (0, 0) under this projection is an entire copy of P1, which can be thought

of as labeling the distinct tangent lines through the origin. When we lift a

curve C passing through the origin to B, we will obtain a curve in B, together

with the entire P1 lying above the origin (which is termed the exceptional

divisor). The irreducible component of this algebraic set which is distinct

from the exceptional divisor is the blow-up of the curve. It will intersect the

exceptional divisor in a collection of points which correspond to the distinct

tangent directions of the curve at the origin, so that (for instance) a nodal

singular point will lift to two distinct nonsingular points on the blow-up. One

can imagine that, while f(0, 0) is not defined, the limit of f(p) for a sequence
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of points p ∈ C tending to the origin§ is defined, and is the point in P1

corresponding to the tangent line to C at (0, 0). By choosing an affine chart

on P1, we can view the blowup as a lift of our curve to A3.

To be completely explicit, let’s choose the chart on P1 where u 6= 0. Then we

can think of our map f from above as the map

A2 → A1, (x, y) 7→ y/x,

which is defined away from the locus x = 0. The closure of the graph of this

map in A3 is the algebraic hypersurface

Ba = {(x, y, z) ∈ A3 : y = xz}.

The “blowdown map” is the projection

π : Ba ⊂ A3 → A2, (x, y, z) 7→ (x, y).

This is an isomorphism away from x = y = 0, while it maps the entire z-axis

(exceptional divisor) to the blown-up point (0, 0).

Now, let ϕ be the embedding

ϕ : A2 ↪→ A3, (x, z) 7→ (x, xz, z).

This is obviously injective, and its image is contained in Ba. Indeed, imϕ is

exactly Ba, so that ϕ is an isomorphism of A2 with Ba ⊂ A3.

We consider the map ψ = π ◦ϕ from the affine plane to itself. That is, we first

embed the affine plane as the hypersurface Ba ⊂ A3, and then project back to

A2 with the blowdown map. Explicitly,

ψ(x, z) = (x, xz).

ψ is certainly not an isomorphism, since its image does not contain any point

of the form (0, y) with y 6= 0. However, the restriction of ψ to the open set

U = {(x, z) : z 6= 0} ⊂ A2 is an isomorphism of U with itself. Therefore ψ is a

birational equivalence of the plane with itself. One can think of it as mapping

the collection of horizontal lines to the collection of lines through the origin,

collapsing the entire vertical axis to a point.

§In the singular case, these points must be chosen properly, so as to all lie in the same
“direction away” from the origin.
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Figure 5.3: The singular algebraic curve y2 = x2(x + 1), together with its
blowup in A3. At right, π is vertical projection and returns the original
curve C, while ψ−1 is projection into the plane of the paper and returns the
nonsingular curve C ′, a simple parabola.

The inverse image ψ−1(C) of a curve will be an algebraic set whose irreducible

components are a new curve C ′, together with one or more¶ copies of the

exceptional divisor (z-axis). The curve C ′ is birationally equivalent to C, and

the map ψ : C ′ → C gives a resolution of (sufficiently simple) singularities

of C at the origin.

Example 13. Consider the curve

C : y2 − x2(x+ 1) = 0

in the affine plane. It has a nodal singularity, with two distinct tangent lines

at the origin (see figure 5.3). We calculate the inverse image by making the

coordinate substitution y = xz, obtaining the variety

x2(z2 − x− 1) = 0.

As we expect, two copies of the exceptional divisor x = 0 are present, as well

as the curve

C ′ : z2 = x+ 1,

which is nonsingular.

We would like to use the blowup to study the relation of point counting on

the singular curve E defined by (5.31) to that on its nonsingular model Ẽ,

¶The multiplicity of the exceptional divisor will correspond to the number of distinct
tangent lines C has at the origin—strictly greater than 1 if this is a singular point.
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defined by (5.34). One thing we can do to begin our analysis is simply count

points on both curves separately, and compare the outcomes to check how

the singularities affect these numbers. Results of this study are shown in

Table 5.2. As can be seen, Ẽ always has a nonnegative number of extra points

compared to E; this makes sense if we recall that the singular points of E are

self-intersections or ramification points of the normalization map ν : Ẽ → E,

so that several points on Ẽ may only count as one point on E. It is important

to note that this intuition may not always be valid if we are working over a

field that is not algebraically closed.

The number of extra points e(p, k) seems to always take the form

e(p, k) = e1(p) + (−1)k. (5.42)

That is, e(p, k) = e1(p)−1 for odd k and e1(p)+1 for even k, where e1(p) ≥ 1.

We will see that there is a simple way of understanding this regularity.

Recalling the definition (5.21) of the zeta function, and the Taylor series ex-

pansion
∑

k

cktk

k
= − log(1− ct),

we can see that the zeta function numerators for E have the correct Aubry-

Perret singular form. In particular, assuming the form (5.42) for the difference

in numbers of points, we have

Np,k = Ñp,k − e(p, k) = Ñp,k − e1(p)− (−1)k,

and therefore

Zp(E; t) = Zp(Ẽ; t)(1 + t)(1− t)e1(p). (5.43)

This specifies the extra cyclotomic factors in the numerator (at least for the

first five values of p shown in Table 5.2), which take a particularly simple form.

While one could in principle use a sequence of repeated blowups to construct

an explicit normalization map to E from a nonsingular curve, we prefer to

use the following trick (for which we know of no explicit reference in the

literature, and which we will not justify rigorously except by observing that

it works correctly). Since the blow-up is a local construction [195], we should

be able to work in an affine chart, treat each singular point separately, and

count points lying above the singular point on the blown-up curve to reproduce
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pk #E(Fpk) #Ẽ(Fpk)
21 4 4
22 6 8
23 4 4
24 14 16
25 44 44
26 54 56
27 116 116
31 5 5
32 7 9
33 29 29
34 79 81
35 245 245
51 5 5
52 23 25
53 125 125
54 623 625
55 3125 3125
71 7 8
72 61 64
73 343 344
74 2301 2304
111 15 16
112 125 128
113 1263 1264
114 14845 14848

Table 5.2: Direct comparison of point-counting data for the original A-
polynomial in reduced variables and the minimal model of Borot-Eynard.

the above results on “extra” points. (This basically amounts to counting the

distinct tangent directions through each singular point.)

Let’s move to the affine chart y = 1 for our curve E, since all singular points

are at finite distance in this chart. The resulting polynomial is

−x2z3 + (z4 − xz3 − 2x2z2 − x3z + x4)− x2z.

The singular points in this chart are (x, z) = (0, 0), (−1, 1), and (−1,−1).

Let w denote the new coordinate introduced in the blow-up. If we blow up

the origin, two points sit above: w = 0 and w = ∞ (recall that, properly

speaking, w is a coordinate on P1). Blowing up (−1, 1) gives us the equation

5 + 10w + 4w2 = 0 for points lying above the singular point, and similarly

blowing up (−1,−1) leaves us with the equation 3 − 6w + 4w2 = 0. Our
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hope is that studying these equations modulo p will allow us to reproduce the

overcounting data from above.

Over F3, the first of our quadratic polynomials becomes w2 + w − 1, which is

irreducible and has no points over F3. The second becomes w2 = 0, which has

the unique solution w = 0. Together with the two points lying over (0, 0), this

suggests that the counts on E and Ẽ should be equal.

Over F5, the first polynomial becomes −w2 = 0, which has just one point.

The second becomes 3−w−w2 = 0, which has no solutions in F5. Again, we

expect equality between point-counting on E and Ẽ, which is correct.

Over F7, the first polynomial becomes 5 + 3w+ 4w2, which has no roots in F7.

The second polynomial becomes 3 +w+ 4w2, which has the two distinct roots

w = 2 and w = 3. Together with the two points over the origin, we expect

one extra point on Ẽ, which is indeed the case.

Over F11, the polynomials are 5 − w + 4w2 and 3 + 5w + 4w2. The first has

the two roots w = 6 and w = 8. The second has no roots in F11. Once again,

we expect a total of one extra point, just as we should.

The periodicity-two behavior in k we noted above should be related to the fact

that the equations here are quadratic, and so two extra points appear when

a quadratic that is irreducible over Fp splits in a quadratic extension field.

Recalling that there is a unique finite field (up to isomorphism) of each prime

power cardinality, it is evident that Fp2 is a splitting field for any irreducible

quadratic over Fp.

If, indeed, we can always track the “extra” points of Ẽ locally by looking for

roots of our blow-up polynomials, we then have a good explanation for the

restricted form of the number of extra points e(p, k) in its dependence on p

and k. Indeed, we expect that

e(p, 1) ∈ {−1, 0, 1, 2, 3},

since we are replacing our three singular points with two points (lying over

the origin) together with two more points for each of our two quadratics that

splits in Fp (or one point for a quadratic that reduces to a perfect square).

The discriminants of our polynomials are 20 and −12 respectively, so we do

not expect the last case unless p = 2, 3, 5. Thus, for larger p, we anticipate

e(p, 1) ∈ {−1, 1, 3}. Moreover, if neither polynomial reduces to a perfect
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square, then we anticipate e(p, k) = 3 for all even k, since both polynomials

should split in this case. Thus there would seem to be three possibilities for

the extra data e(p, k), and we can discriminate between these cases by just

checking e(p, 1). p = 7 and p = 11, as we have seen, have e(p, 1) = 1. Are the

other cases ever realized?

The answer is yes. As can be easily checked, neither of our blowup polynomials

has a root over F17. Thus we expect e(17, 1) = −1, and this is in fact the case.

Moreover, working over F19, both of our blowup polynomials split (they have

roots {1, 6} and {14, 16}, respectively), and so we expect to find e(19, 1) = 3

(in fact, e(19, k) = 3 for all k). Direct calculation verifies this at k = 1 and 2.

How do each of these three cases appear in the zeta function numerator? We

can write the extra data in the form

e(p, k) =





1k + (−1)k + (−1)k, e(p, 1) = −1,

1k + 1k + (−1)k, e(p, 1) = 1,

1k + 1k + 1k, e(p, 1) = 3.

(5.44)

Here each term can be thought of as representing one of our singular points.

The singularity contributes 1k if its blowup polynomial splits in Fp, so that

two points always lie above the singular point on the resolution. It contributes

(−1)k if its blowup polynomial is irreducible in Fp, so that no points lie above

the singular point for odd k. The origin always contributes 1k in this case, since

there are always two rational points that lie above it. (For the special values

of p where a blowup polynomial has a repeated root in Fp, that singularity

contributes 0k.)

Therefore, for all primes p ≥ 7, the singular zeta function should take the form

Zp(E; t) = Zp(Ẽ; t)(1 + t)a(1− t)3−a, (5.45)

where a ∈ {0, 1, 2} is the number of blowup polynomials that are irreducible

over Fp. Thus, e(p, 1) = 3−2a. If this reasoning is correct, the only cyclotomic

polynomials that occur are for first and second roots of unity because the

singularities that need to be resolved are nodal (r = 2), and therefore have

blowup polynomials which are quadratic. Other cyclotomic factors should

correspond to singularities of higher degree.
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Knot Genus of A(m, l) Product of bad primes
41 1 3 · 5
52 2 7 · 23
61 3 3 · 257
62 4 11 · 1777
63 7 3 · 5 · 11 · 13 · 31
72 4 11 · 4409
73 5 13 · 78301
74 (1) 1 3 · 5
74 (2) 2 5 · 59
75 9 11 · 17 · 443 · 10589
76 12 19 · 139 · 1091 · 649787
77 72 ?
81 5 13 · 92051
820 5 2 · 3 · 5 · 733

Table 5.3: Primes of bad reduction for the A-polynomial curves listed by
Cooper et al. [54].

5.6 Conductors of A-polynomial curves

We close with another puzzling empirical observation about the arithmetic

structure of A-polynomials. The table below shows a list of primes of bad

reduction for these curves. The product of these primes will correspond to the

radical of the conductor. For a curve of genus g, the conductor N is bounded

from below by 11g (for instance, 11 is the smallest integer occurring as the

conductor of an elliptic curve).

For these curves, it seems that the conductor is always relatively small. In-

deed, for some knots (such as 820) the product of all bad primes is actually

less than 11g. There is no contradiction here, since primes may occur in the

conductor with multiplicity more than one.
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AFTERWORD

In the sea, Biscayne, there prinks

The young emerald, evening star,

Good light for drunkards, poets, widows,

And ladies soon to be married.

By this light the salty fishes

Arch in the sea like tree-branches,

Going in many directions

Up and down.

This light conducts

The thoughts of drunkards, the feelings

Of widows and trembling ladies,

The movements of fishes.

How pleasant an existence it is

That this emerald charms philosophers,

Until they become thoughtlessly willing

To bathe their hearts in later moonlight,

Knowing that they can bring back thought

In the night that is still to be silent,

Reflecting this thing and that,

Before they sleep!

It is better that, as scholars,

They should think hard in the dark cuffs

Of voluminous cloaks,

And shave their heads and bodies.

It might well be that their mistress

Is no gaunt fugitive phantom.

She might, after all, be a wanton,

Abundantly beautiful, eager,

Fecund,

From whose being by starlight, on sea-coast,

The innermost good of their seeking

Might come in the simplest of speech.

It is a good light, then, for those

That know the ultimate Plato,

Tranquillizing with this jewel

The torments of confusion.

—Wallace Stevens, “Homunculus et la Belle Étoile”
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113S. Gukov and M. Stošić. “Homological algebra of knots and BPS states.”
Geometry & Topology Monographs 18, 309–367. (2012). arXiv:1112.0030
[hep-th].

114S. Gukov and P. Su lkowski. “A-polynomial, B-model, and quantization.”
JHEP 1202, 070. (2012). arXiv:1108.0002 [hep-th].

115S. Gukov and J. Walcher. “Matrix factorizations and Kauffman homology.”
(2005). arXiv:hep-th/0512298 [hep-th].

116S. Gukov and E. Witten. “Branes and quantization.” Adv. Theor. Math.
Phys. 13. (2009). arXiv:0809.0305 [hep-th].

117J. A. Harvey and G. W. Moore. “Algebras, BPS states, and strings.” Nuclear
Physics B 463, 315–368. (1996). arXiv:hep-th/9510182 [hep-th].

118J. A. Harvey and G. W. Moore. “On the algebras of BPS states.” Com-
munications in Mathematical Physics 197, 489–519. (1998). arXiv:hep -
th/9609017 [hep-th].

119M. Heydeman, M. Marcolli, I. Saberi, and B. Stoica. “Tensor networks,
p-adic fields, and algebraic curves: arithmetic and the AdS3/CFT2 corre-
spondence.” (2016). arXiv:1605.07639 [hep-th].

120C. Holzhey, F. Larsen, and F. Wilczek. “Geometric and renormalized en-
tropy in conformal field theory.” Nuclear Physics B 424, 443–467. (1994).

121D. Huybrechts. Complex geometry: an introduction. Universitext. (Springer-
Verlag. 2005).

122A. Iqbal, C. Kozcaz, and C. Vafa. “The refined topological vertex.” JHEP
0910, 069. (2009). arXiv:hep-th/0701156 [hep-th].

123V. F. R. Jones. “A polynomial invariant for knots via von Neumann alge-
bras.” Bull. Amer. Math. Soc. 12, 103–111. (1985).

124A. Kapustin and E. Witten. “Electric–magnetic duality and the geometric
Langlands program.” Communications in Number Theory and Physics 1,
1–236. (2007). arXiv:hep-th/0604151 [hep-th].

125G. Kato. The heart of cohomology. (Springer-Verlag. 2006).

126S. H. Katz, A. Klemm, and C. Vafa. “Geometric engineering of quantum
field theories.” Nuclear Physics B 497, 173–195. (1997). arXiv:hep- th/
9609239 [hep-th].

http://dx.doi.org/10.1090/conm/613/12235
http://arxiv.org/abs/1211.6075
http://arxiv.org/abs/1211.6075
http://dx.doi.org/10.1007/s11005-005-0008-8
http://arxiv.org/abs/0412243v3
http://arxiv.org/abs/0412243v3
http://dx.doi.org/10.2140/gtm.2012.18.309
http://arxiv.org/abs/1112.0030
http://arxiv.org/abs/1112.0030
http://dx.doi.org/10.1007/JHEP02(2012)070
http://arxiv.org/abs/1108.0002
http://arxiv.org/abs/hep-th/0512298
http://arxiv.org/abs/0809.0305
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://arxiv.org/abs/hep-th/9510182
http://dx.doi.org/10.1007/s002200050461
http://dx.doi.org/10.1007/s002200050461
http://arxiv.org/abs/hep-th/9609017
http://arxiv.org/abs/hep-th/9609017
http://arxiv.org/abs/1605.07639
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://dx.doi.org/10.1088/1126-6708/2009/10/069
http://arxiv.org/abs/hep-th/0701156
http://dx.doi.org/10.1090/s0273-0979-1985-15304-2
http://dx.doi.org/10.4310/CNTP.2007.v1.n1.a1
http://dx.doi.org/10.4310/CNTP.2007.v1.n1.a1
http://arxiv.org/abs/hep-th/0604151
http://dx.doi.org/10.1016/S0550-3213(97)00282-4
http://arxiv.org/abs/hep-th/9609239
http://arxiv.org/abs/hep-th/9609239


257

127D. Kazhdan. Lecture notes in motivic integration. http://www.ma.huji.
ac.il/~kazhdan/.

128M. Khovanov. “A categorification of the Jones polynomial.” Duke Mathe-
matical Journal 3, 359–426. (2000). arXiv:math/9908171 [math.QA].

129M. Khovanov. “sl(3) link homology.” Algebr. Geom. Topol. 4, 1045–1081.
(2004). arXiv:math/0304375 [math.QA].

130M. Khovanov and L. Rozansky. “Virtual crossings, convolutions, and a cat-
egorification of the so(2N) Kauffman polynomial.” (2007). arXiv:math /
0701333 [math.QA].

131M. Khovanov and L. Rozansky. “Matrix factorizations and link homol-
ogy.” Fundamenta Mathematicae 199, 1–91. (2008). arXiv:math/0401268
[math.QA].

132M. Khovanov and L. Rozansky. “Matrix factorizations and link homology
II.” Geom. Topol. 12, 1387–1425. (2008). arXiv:math/0505056 [math.QA].

133H. Kim and I. Saberi. “Real homotopy theory and supersymmetric quantum
mechanics.” (2015). arXiv:1511.00978 [hep-th].

134N. Koblitz. p-adic numbers, p-adic analysis, and zeta-functions. Graduate
Texts in Mathematics 58. (Springer-Verlag. New York. 2012).

135T. Kohno. Conformal field theory and topology. Iwanami Series in Modern
Mathematics. (American Mathematical Society. 1998).

136K. Krasnov. “Holography and Riemann surfaces.” Adv. Theor. Math. Phys.
4, 929–979. (2000). arXiv:hep-th/0005106 [hep-th].

137J. M. F. Labastida and M. Mariño. “Twisted N = 2 supersymmetry with
central charge and equivariant cohomology.” Communications in Mathe-
matical Physics 185, 37–71. (1997). arXiv:hep-th/9603169 [hep-th].

138E. S. Lee. “An endomorphism of the Khovanov invariant.” Adv. Math.
197.2, 554–586. (2005). arXiv:math/0210213 [math.GT].

139S. Lee and M. Yamazaki. “3d Chern-Simons theory from M5-branes.” JHEP
1312, 035. (2013). arXiv:1305.2429 [hep-th].

140W. Lerche, C. Vafa, and N. P. Warner. “Chiral rings in N = 2 supercon-
formal theories.” Nuclear Physics B 324, 427–474. (1989).

141L. Lewark and A. Lobb. “New Quantum Obstructions to Sliceness.” (2015).
arXiv:1501.07138 [math.GT].

142F. Loeser. Arizona winter school lecture notes on p-adic and motivic inte-
gration. (2003) http://swc.math.arizona.edu/oldaws/03Notes.html.

143J. M. Maldacena and A. Strominger. “AdS3 black holes and a stringy exclu-
sion principle.” JHEP 12, 005. (1998). arXiv:hep-th/9804085 [hep-th].

http://www.ma.huji.ac.il/~kazhdan/
http://www.ma.huji.ac.il/~kazhdan/
http://arxiv.org/abs/math/9908171
http://arxiv.org/abs/math/0304375
http://arxiv.org/abs/math/0701333
http://arxiv.org/abs/math/0701333
http://arxiv.org/abs/math/0401268
http://arxiv.org/abs/math/0401268
http://arxiv.org/abs/math/0505056
http://arxiv.org/abs/1511.00978
http://arxiv.org/abs/hep-th/0005106
http://dx.doi.org/10.1007/s002200050081
http://dx.doi.org/10.1007/s002200050081
http://arxiv.org/abs/hep-th/9603169
http://arxiv.org/abs/math/0210213
http://dx.doi.org/10.1007/JHEP12(2013)035
http://dx.doi.org/10.1007/JHEP12(2013)035
http://arxiv.org/abs/1305.2429
http://dx.doi.org/10.1016/0550-3213(89)90474-4
http://arxiv.org/abs/1501.07138
http://swc.math.arizona.edu/oldaws/03Notes.html
http://dx.doi.org/10.1088/1126-6708/1998/12/005
http://arxiv.org/abs/hep-th/9804085


258

144J. Maldacena and L. Susskind. “Cool horizons for entangled black holes.”
Fortsch. Phys. 61, 781–811. (2013). arXiv:1306.0533 [hep-th].

145Yu. I. Manin. “p-adic automorphic functions.” Journal of Mathematical
Sciences 5, 279–333. (1976).

146Yu. I. Manin. “Reflections on arithmetical physics.” In Conformal invari-
ance and string theory . (Academic Press. 1987).

147Yu. I. Manin. “Closed fibers at infinity in Arakelov’s geometry.” preprint
PAM-479, Center for Pure and Applied Mathematics, University of Califor-
nia, Berkeley. 1989.

148Yu. I. Manin. “Three-dimensional hyperbolic geometry as ∞-adic Arakelov
geometry.” Inventiones mathematicae 104, 223–243. (1991).

149Yu. I. Manin and V. Drinfeld. “Periods of p-adic Schottky groups.” Journal
für die reine und angewandte Mathematik 262, 239–247. (1973).

150Yu. I. Manin and M. Marcolli. “Holography principle and arithmetic of
algebraic curves.” Advances in Theoretical and Mathematical Physics 5,
617–650. (2002). arXiv:hep-th/0201036.

151M. Marcolli. Arithmetic noncommutative geometry. University Lecture Se-
ries 36. (American Mathematical Society. Providence, Rhode Island. 2005).

152M. Mariño. “Open string amplitudes and large order behavior in topological
string theory.” JHEP 0803, 060. (2008). arXiv:hep-th/0612127.

153E. Melzer. “Non-archimedean conformal field theories.” Int. J. Mod. Phys.
A4, 4877. (1989).

154J. S. Milne. Motives: Grothendieck’s dream. (2012) http://www.jmilne.

org/math/.

155D. Montano and J. Sonnenschein. “The topology of moduli space and quan-
tum field theory.” Nuclear Physics B 324, 348–370. (1989).

156H. R. Morton and P. R. Cromwell. “Distinguishing mutants by knot poly-
nomials.” J. Knot Theory Ramif. 5, 225–238. (1996).

157D. Mumford. “An analytic construction of degenerating curves over com-
plete local rings.” Compositio Mathematica 24, 129–174. (1972).

158H. Murakami, T. Ohtsuki, and S. Yamada. “HOMFLY polynomial via an
invariant of colored planar graphs.” Enseign. Math. 44, 325–360. (1998).

159S. Nawata and A. Oblomkov. “Lectures on knot homology.” (2015). arXiv:1510.
01795 [math-ph].

160S. Nawata, P. Ramadevi, X. Sun, and Zodinmawia. “Super-A-polynomials
for twist knots.” JHEP 1211, 157. (2012). arXiv:1209.1409 [hep-th].

http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533
http://dx.doi.org/10.1007/bf01083779
http://dx.doi.org/10.1007/bf01083779
http://dx.doi.org/10.1142/9789812830517_0029
http://dx.doi.org/10.1142/9789812830517_0029
http://dx.doi.org/10.1007/bf01245074
http://dx.doi.org/10.1142/9789812830517_0012
http://dx.doi.org/10.1142/9789812830517_0012
http://dx.doi.org/10.4310/atmp.2001.v5.n3.a6
http://dx.doi.org/10.4310/atmp.2001.v5.n3.a6
http://arxiv.org/abs/hep-th/0201036
http://dx.doi.org/10.1088/1126-6708/2008/03/060
http://arxiv.org/abs/hep-th/0612127
http://dx.doi.org/10.1142/S0217751X89002065
http://dx.doi.org/10.1142/S0217751X89002065
http://www.jmilne.org/math/
http://www.jmilne.org/math/
http://dx.doi.org/10.1016/0550-3213(89)90470-7
http://dx.doi.org/10.1142/s0218216596000163
http://dx.doi.org/10.1007/978-1-4757-4265-7_5
http://dx.doi.org/10.1142/s021821659700025x
http://arxiv.org/abs/1510.01795
http://arxiv.org/abs/1510.01795
http://dx.doi.org/10.1007/JHEP11(2012)157
http://arxiv.org/abs/1209.1409


259

161S. Nawata, P. Ramadevi, and Zodinmawia. “Colored Kauffman homol-
ogy and super-A-polynomials.” JHEP 1401, 126. (2014). arXiv:1310.2240
[hep-th].

162N. A. Nekrasov. “Seiberg-Witten prepotential from instanton counting.”
Advances in Theoretical and Mathematical Physics 7, 831–864. (2003).
arXiv:hep-th/0206161 [hep-th].

163N. A. Nekrasov and S. L. Shatashvili. “Quantization of integrable systems
and four-dimensional gauge theories.” (2009). arXiv:0908.4052 [hep-th].

164J. Neukirch. Algebraic number theory. Grundlehren der mathematischen
Wissenschaften 322. (Springer-Verlag. 2013).

165W. D. Neumann and D. Zagier. “Volumes of hyperbolic three-manifolds.”
Topology 24, 307–332. (1985).

166L. Ng. “Framed knot contact homology.” Duke Math. J. 141, 365–406.
(2008). arXiv:math/0407071 [math.GT].

167L. Ng. “Combinatorial knot contact homology and transverse knots.” Adv.
Math. 227, 2189–2219. (2011). arXiv:1010.0451 [math.SG].

168H. Ooguri and C. Vafa. “Knot invariants and topological strings.” Nuclear
Physics B 577, 419–438. (2000). arXiv:hep-th/9912123 [hep-th].
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Appendix A

SUPPLEMENTAL BACKGROUND ON p-ADIC ANALYSIS

A.1 p-adic integration

Here we review some aspects of p-adic integration, including basic properties

and examples, the Fourier transform, and the p-adic gamma function Γp. A

more comprehensive review is found in [33]. For formal proofs, as well as

extensive integration tables, the reader may consult [203].

As already discussed, the unique additive Haar measure dx on Qp is normalized

so that ∫

Zp
dx = 1. (A.1)

To find the volume of the set Br, which consists of x ∈ {Qp, |x|p ≤ pr}, we

may scale the measure and reduce this to the integral above on Zp as:

∫

Br
dx = pr

∫

Zp
dx = pr. (A.2)

As r →∞, the volume diverges as in the real case. Compactifying the point at

infinity amounts to switching from the Haar measure to the Patterson-Sullivan

measure dµ0(x); these measures agree on Zp and differ in the complement by

dµ0(x) = dx/|x|2p.

With this measure the volume is computed with a change of variables:

∫

Qp
dµ0(x) =

∫

Zp
dx+

∫

Qp−Zp
|x|−2

p dx (A.3)

= 1 +
1

p

∫

Zp
du, u =

1

px
, du =

p dx

|x|2p
(A.4)

=
p+ 1

p
. (A.5)

A large class of elementary integrals may be evaluated using these methods;

see the above references for complete details.

We now turn our attention to the p-adic Fourier transform of a function f(x) :

Qp → C. As discussed in section 4.4, this involves integrating the function

against the additive character χ(x) = e2πi{kx} over all Qp. This generates a
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new complex valued function in terms of the p-adic momentum k ∈ Qp:

f̃(k) =

∫

Qp
χ(kx)f(x)dx, (A.6)

f(x) =

∫

Qp
χ(−kx)f̃(k)dk. (A.7)

The analogy with the real Fourier transform should be clear. In practice

evaluating this kind of integral often requires one to divide Qp into spheres

consisting of points with |x|p = pn and performing the integral on each sphere.

This can be seen in the example:

∫

Br
χ(kx)dx =




pr, |k|p ≤ p−r

0, otherwise.
(A.8)

As in the real case, one may find tables with numerous p-adic Fourier trans-

forms of elementary functions in the literature.

The final integral expression is that of the Gelfand-Graev-Tate Γ function:

Γp(α) =

∫

Qp
χ(x)|x|α−1

p dx =
1− ps−1

1− p−s . (A.9)

This function has some similar properties to the ordinary gamma function.

It is fairly ubiquitous in certain p-adic integral calculations, and we refer the

reader to literature on p-adic string theory for details.

A.2 p-adic differentiation

As already discussed, complex fields living on the boundary P1(Qp) are maps

f(x) : P1(Qp)→ C. (A.10)

In the archimedean case of 2d conformal field theory, we have f(z, z̄) : P1(C)→
C and it makes sense to define holomorphic and antiholomorphic derivatives
∂f
∂z

and ∂f
∂z̄

. In the p-adic case, analogous differentiation expressions no longer

make sense, as we would be dividing a complex number by a p-adic number

and such an operation is not defined.

The only notion of derivative we may use is the Vladimirov derivative [71, 203],

and it can be thought of as a nonlocal pseudo-differential operator. Roughly

speaking, this operation is the p-adic analog of Cauchy’s Differentiation For-

mula in which the derivative of a function at a point is expressed as a weighted
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integral of the function over a curve. It is also know as a normal derivative [225]

in the context of the p-adic string where it is interpreted as the derivative of

the embedding coordinates Xµ normal to the boundary of the worldsheet.

Becaues this operator is defined on Qp without any reference to an embed-

ding or worldsheet, we opt to refer to it as a Vladimirov derivative. The nth

Vladimirov derivative is defined by

∂n(p)f(x) =

∫

Qp

f(x′)− f(x)

|x′ − x|n+1
p

dx′. (A.11)

Some authors may choose a different normalization in front of this integral;

usually in the form of p-adic gamma functions. At first sight the expression

above may not resemble any familiar notions of differentiation. We may see

this as a good notion for derivative in two ways; in the case of the p-adic

string this expression is the limit of the normal derivative on Tp as we go

to the boundary, as shown in [225]. We may also compute the Vladimirov

derivative of some special p-adic functions and compare with the real case.

This is done in the following section.

Examples

We wish to first compute the derivative of the additive character, χ(kx). This

function is the p-adic analog of a plane wave with momentum k, so we expect

it to be an eigenfunction of the derivative with eigenvalue related to k.

∂n(p)χ(kx) =

∫

Qp

χ(kx′)− χ(kx)

|x′ − x|n+1
p

dx′. (A.12)

Using the properties of the additive Haar measure of Qp, we can shift the

integration measure,

y = k(x′ − x), dy = |k|pdx′ (A.13)

and simplify the integral

∫

Qp

χ(kx′)− χ(kx)

|x′ − x|n+1
p

dx′ (A.14)

= |k|np
∫

Qp

χ(y + kx)− χ(kx)

|y|n+1
p

dy (A.15)

= |k|npχ(kx)

∫

Qp

χ(y)− 1

|y|n+1
p

dy, (A.16)
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where we used the additive property of the character to extract the x depen-

dence. The integral appears to diverge at y ∼ 0; this divergence is actually

canceled by the numerator and can be seen by introducing an infrared cutoff.

Regularization of this integral is discussed in [19] and [96]. The result is

∫

Qp

χ(y)− 1

|y|n+1
p

dy =
1− p−n−1

1− pn = Γp(−n), (A.17)

where we have used the definition of the p-adic gamma function in Eq. (A.9).

So the end result is

∂n(p)χ(kx) = Γp(−n)|k|npχ(kx). (A.18)

Up to the factor of the gamma function (which could be absorbed into the

normalization of the derivative,) we see the additive character χ(kx) is an

eigenfunction of the Vladimirov derivative with the eigenvalue given by the

p-adic norm of its “momentum.”

Another example we may wish to compute is the nth derivative of |x|sp for some

s ∈ C. This may be most easily be computed by Fourier transform and serves

as an example of an alternative representation of the Vladimirov derivative:

∂n(p)|x|sp =

∫
χ(−kx)|k|np |̃x|spdk, (A.19)

where |̃x|sp is the p-adic Fourier transform of |x|sp, given in [203, 226]:

|̃x|sp =

∫
χ(kx)|x|spdx = Γp(s+ 1)|k|−s−1

p (A.20)

everywhere it is defined. Applying this formula twice to the derivative we wish

to compute, we arrive at

∂n(p)|x|sp = Γp(s+ 1)Γp(n− s)|x|s−np , (A.21)

which should resemble the ordinary nth derivative of a polynomial function.
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A-polynomial, 19

additive characters of Qp, 182

AJ-conjecture, 40

Alexander polynomial, 14

almost-complex structure, 67

Atiyah–Bott symplectic form, 34

B

Bergman kernel, 37

bicomplex, 107

blowing up, 240

Bogomolov decomposition, 72

BPS bound, 55

Bruhat–Tits tree, 155

BTZ black hole

archimedean, 160

p-adic, 206

C

cabling formulas, 17

Calabi-Yau, 72

canceling differential, 49

categorification, 7, 8, 42

Chern–Simons functional, 32

Chern-Simons theory, 17, 32

chiral ring

as truncation of elliptic genus,

114

in four dimensions, 117

of free chiral superfield, 112

cobordism category, 2

colored differentials, 53

colored HOMFLY homology, 46, 52

colored HOMFLY-PT polynomial,

18

colored Jones polynomials, 17

commutative, 44, 50

commutative differential graded al-

gebra, 76

constants of the motion, 32

D

decategorification, 7

defect-changing operators, 124, 140

de Rham homotopy groups, 78

Donaldson theory, 2

double complex, see bicomplex

E

entanglement entropy, 197–204

F

folding trick, 134

formal, 58, 79

fusion of topological defects, 135

G

generalized volume conjecture, 41

geometric transition, 129

Grothendieck ring, 219

H

Heisenberg group, 83

HOMFLY homology, 45

HOMFLY-PT polynomial, 14

homological volume conjecture, 44

homologically thick knots, 53

Hopf link, 12

hyper-Kähler manifolds, 72
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J

jet spaces, 220

Jones polynomial, 14

K

Kähler, 68

Kähler identities, 68

Khovanov homology, 43, 45

knot, 9

knot complement, 20

knot contact homology, 53

knot diagram, 9

knot Floer homology, 48, 53, 54

knot group, 20

knot invariant, 10

L

Lagrangian submanifold, 28

Laplacian, 55

on graphs, 187

Lefschetz operators, 68

limit shape, 42, 52

link, 9

Liouville one-form, 27

longitude, 20

M

mapping cone, 139

Massey products, 57

measures on Qp, 157

meridian, 20

minimal CDGA, 77

minimal model, 78

moduli space of flat connections, 33

motivic measure, 219

multiplicative characters of Qp, 196

Mumford curve, 164

mutants, 19, 53

N

Newton polygon, 24

non-commutative, 44, 50

normalized, 15

O

observable, 29

P

p-adic mode expansion, 182

in bulk reconstruction, 194

p-adic normal derivative, see Vladi-

mirov derivative

perfect tensors, 168–171

phase space, 27

Q

Q-deformation, 53

q-deformation, 32

quantizable, 31

quantization, 7, 26

quantum dimension, 12

quantum group invariants, 11, 127

quantum volume conjecture, 40

R

reciprocal, 23

recurrence relation, 40

refined algebraic curve, 44

Reidemeister moves, 9

representation variety, 21

S

Schläfli symbol, 166

Schottky group, 158

Schottky uniformization

archimedean, 158

p-adic, 164

shift operator, 36



269

skein relations, 11

spectral sequence, 107

super-A-polynomial, 50

symmetric monoidal functor, 3

T

t-deformation, 52

tempered, 24

tensor networks, 165–180

tilings, 172

topological quantum field theory, 2

topological recursion, 37

twist fields, 199

U

unnormalized, 12, 15, 43

unreduced knot homology, 43

V

Vladimirov derivative, 264
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