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Abstract

Every day, we shift among various states of sleep and arousal to meet the many

demands of our bodies and environment. A central puzzle in neurobiology is how the

brain controls these behavioral states, which are essential to an animal’s well-being

and survival. Mammalian models have predominated sleep and arousal research,

although in the past decade, invertebrate models have made significant contributions

to our understanding of the genetic underpinnings of behavioral states. More recently,

the zebrafish (Danio rerio), a diurnal vertebrate, has emerged as a promising model

system for sleep and arousal research.

In this thesis, I describe two studies on sleep/arousal pathways that I conducted

using zebrafish, and I discuss how the findings can be combined in future projects to

advance our understanding of vertebrate sleep/arousal pathways. In the first study,

I discovered a neuropeptide that regulates zebrafish sleep and arousal as a result of a

large-scale effort to identify molecules that regulate behavioral states. Taking advan-

tage of facile zebrafish genetics, I constructed mutants for the three known receptors

of this peptide and identified the one receptor that exclusively mediates the observed

behavioral effects. I further show that the peptide exerts its behavioral effects inde-

pendently of signaling at a key module of a neuroendocrine signaling pathway. This
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finding contradicts the hypothesis put forth in mammalian systems that the pep-

tide acts through the classical neuroendocrine pathway; our data further generate

new testable hypotheses for determining the central nervous system or alternative

neuroendocrine pathways involved.

Second, I will present the development of a chemigenetic method to non-invasively

manipulate neurons in the behaving zebrafish. I validated this technique by express-

ing and inducing the chemigenetic tool in a restricted population of sleep-regulating

neurons in the zebrafish. As predicted by established models of this vertebrate sleep

regulator, chemigenetic activation of these neurons induced hyperactivity, whereas

chemigenetic ablation of these neurons induced increased sleep behavior. Given that

light is a potent modulator of behavior in zebrafish, our proof-of-principle data provide

a springboard for future studies of sleep/arousal and other light-dependent behaviors

to interrogate genetically-defined populations of neurons independently of optogenetic

tools.
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Chapter 1

Introduction

The following article is reproduced, with slight adaptation, for this thesis: Chiu CN
and Prober DA (2013) Regulation of zebrafish sleep and arousal states: current and
prospective approaches. Front. Neural Circuits 7:58. doi:10.3389/fncir.2013.00058

Animals engage in diverse activities that require adaptive changes in behavior. A

fundamental goal in neuroscience is to understand how the brain enables animals to

make dynamic changes in behavioral state in response to changing internal or envi-

ronmental demands. A particularly striking example of such a change in behavioral

state is the switch between sleep and wakefulness. Once awake, animals must further

modulate arousal levels, for example transitioning between inattentive and attentive

states, as required for the task at hand. Underscoring the significance of these be-

havioral states, sleep and arousal states are conserved across the animal kingdom,

from worms and flies to fish and humans (Allada & Siegel, 2008, Cirelli & Tononi,

2008). Despite the prevalent and severe consequences of sleep and arousal disorders

(Mahowald & Schenck, 2005), the mechanisms that regulate behavioral states and

transitions between states remain mysterious.

Theories that account for the regulation of sleep and arousal states span the hier-
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archy of biological organization, from organismal physiology, behavior, and cognition

to neurons and neural ensembles, and more recently to genetic and molecular mech-

anisms (Hobson & Pace-Schott, 2002, Pace-Schott & Hobson, 2002). The zebrafish,

which offers experimental advantages at many levels, is well suited to contribute to

our understanding of these states. These advantages include a simplified yet con-

served vertebrate brain, facile genetics, an increasingly well-characterized behavioral

repertoire, amenability to pharmacological and high-throughput assays, and optical

transparency for in vivo visualization of the brain (Lieschke & Currie, 2007). The

zebrafish is also gaining traction as a useful system for circuit neuroscience (Friedrich

et al., 2010, McLean & Fetcho, 2011, Portugues et al., 2013).

To introduce my thesis work, I will survey key concepts and open questions in

the field of sleep and arousal regulation, and then examine current approaches to

identifying these behavioral states in zebrafish. To exemplify these concepts and the

issues that arise when using zebrafish to study neuromodulation of sleep and arousal,

I will focus my discussion on studies that explore the role of hypocretin, an important

mammalian neuromodulator of sleep and arousal, in regulating zebrafish behavioral

state.
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1.1 Regulation of sleep and arousal: key concepts

and problems

In the early 20th century, the neurologist Constantin von Economo examined en-

cephalitis patients who suffered from profound sleep disorders, and he discovered that

excessive sleepiness was associated with a specific pattern of brain lesions located at

the junction of the brainstem and forebrain, whereas insomnia was associated with le-

sions in a nearby, more anterior region (Von Economo, 1930). Subsequently, Moruzzi,

Magoun and others found that sleep or arousal could be induced by lesion or electri-

cal activation along a subcortical pathway ascending from the brainstem (Moruzzi &

Magoun, 1949). These findings advanced the idea that sleep and arousal states are

actively generated and maintained by the brain. The main subcortical regions identi-

fied by von Economo and others (brainstem, posterior hypothalamus, basal forebrain)

are now known to contain distinct aminergic and peptidergic cell populations (Saper

et al., 2005). These systems promote arousal via ascending projections that increase

forebrain excitation as well as descending brainstem and spinal cord projections that

increase muscle tone and sensorimotor function (Jones, 2003).

Neuromodulatory systems that promote arousal include (refer to Figure 1.1):

• noradrenergic neurons of the locus coeuleus, located in the pontine brain-

stem

• serotonergic neurons of the raphe nuclei, located in the midbrain

• dopaminergic neurons, particularly those of the ventral periaqueductal gray
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(vPAG) and ventral tegmental area of the midbrain (VTA), and also the

A11 dopaminergic cell cluster, located in the hypothalamus

• histaminergic neurons of the tuberomammillary nucleus, located in the pos-

terior hypothalamus

• hypocretin (Hcrt) neurons, located in the lateral hypothalamus

• cholinergic neurons, located in the basal forebrain and also in the peduncu-

lopontine and laterodorsal tegmental nuclei, located in the pontine brain-

stem

In contrast to the many known arousal-promoting systems, attempts to identify

distinct sleep-promoting cell populations have been less fruitful. One exception is the

ventrolateral preoptic area (VLPO), which was identified as a cluster of cells in the

basal forebrain that provides inputs to systems in the hypothalamus and brainstem

that promote arousal (Saper et al., 2005). These neurons are likely the site of lesion

in von Economo’s insomnia patients, and subsequent work in animal models showed

that VLPO lesions reduce sleep by more than half (Lu et al., 2000). VLPO neurons

contain the inhibitory transmitters GABA and galanin, and these neurons are likely

to promote sleep by inhibiting arousal systems. The VLPO, in turn, is directly and

indirectly inhibited by arousal systems.

A crucial question is how these neural populations operate together to regulate dis-

tinct states and the transitions between them. The bistable flip-flop switch, adopted

from electronics theory, is one appealing circuit-level model that can explain the rapid

transition between distinct behavioral states such as sleep and waking (Saper et al.,
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Figure 1.1: Neuromodulatory systems that promote arousal in vertebrates.
The approximate locations of key neuromodulatory regions are shown for human (A) and
larval zebrafish (B) brains. Arrows indicate ascending projections that increase forebrain
excitation and descending projections that increase muscle tone and sensorimotor function.
Abbreviations of neuromodulatory regions: LC, locus coeruleus; RN, raphe nuclei; VTA,
ventral tegmental area; vPAG, ventral periaqueductal gray; A11, mammalian dopamine cell
group A11; DC, dopaminergic diencephalic cluster; TMN, tuberomammillary nucleus; LH,
lateral hypothalamus. Abbreviations of larval zebrafish brain anatomy: OB, olfactory bulb;
D, dorsal telencephalon; V, ventral telencephalon; TeO, optic tectum; H, hypothalamus; T,
thalamus; Ce, cerebellum; MO, medulla oblongata. Note human and larval zebrafish brains
are not depicted to scale. Figure as originally published in Chiu & Prober (2013).
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2001). The flip-flop circuit derives its features from two reciprocally inhibitory com-

ponents; this could be implemented in the brain by mutual inhibition between the

VLPO and arousal systems. Because the flip-flop switch is inherently unstable, the

circuit model might be supplemented by additional elements (i.e. neuromodulatory

systems) that serve to stabilize and sustain a wake or sleep state. For example, in

mammals, the neuromodulator Hcrt might serve to stabilize sleep-wake states by pro-

moting arousal. Indeed, loss of Hcrt signaling is a hallmark of narcolepsy, a disorder

characterized by fragmented sleep-wake states.

A more phenomenological but influential model proposes that sleep is regulated

by two main drives: homeostatic drive (also known as ”Process S”) that is regulated

by internal cues and circadian drive (”Process C”) that is regulated by environmental

cues (Borbély et al., 1989). Genetic approaches have made remarkable contributions

towards a molecular-level understanding of Process C. The core mechanism of the

circadian clock is conserved across species, and consists of a network of positive and

negative molecular feedback loops that can cell-autonomously maintain a 24-hour

periodic rhythm (Mohawk et al., 2012, Zhang et al., 2009). In mammals, neurons of

the hypothalamic suprachiasmatic nucleus (SCN) function as a ”master clock” that

orchestrates organismal circadian physiology and behavior, but it remains unclear

whether such master clocks are a mammalian innovation or are present throughout

the animal kingdom. Despite our mechanistic understanding of the circadian clock,

it remains unclear how the circadian system regulates behaviors associated with sleep

and wakefulness, although secreted peptides such as prokineticin 2 and transforming
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growth factor alpha/epidermal growth factor appear to play key roles (Cheng et al.,

2002, Foltenyi et al., 2007, Gilbert & Davis, 2009, Kramer et al., 2001, Van Buskirk

& Sternberg, 2007). Our understanding of mechanisms that underlie Process S are

more limited. One hypothesis is that adenosine, which accumulates as ATP energy

stores are depleted during wakefulness, might serve as a signal for sleep need (Porkka-

Heiskanen & Kalinchuk, 2011). Indeed, extracellular adenosine levels rise in specific

regions of the mammalian brain during prolonged wakefulness and decline during

sleep (Porkka-Heiskanen et al., 1997), and pharmacological activation of adenosine

signaling promotes sleep (Benington et al., 1995, Hendricks & Jesuthasan, 2007, Rihel

& Schier, 2012, Thakkar et al., 2001) and activates the VLPO (Gallopin et al., 2005,

Scammell et al., 2001). However, the role of adenosine in sleep remains controversial,

because adenosine receptor mutants exhibit relatively normal sleep/wake behaviors

(Bjorness et al., 2009, Huang et al., 2005, Stenberg, 2007, Urade et al., 2003, Wu

et al., 2009).

A common theme that has emerged from studies of sleep and arousal regulatory

mechanisms is that they play multiple roles in animal behavior and physiology. For ex-

ample, many of the key players in sleep and circadian function are linked to metabolic

regulation (Adamantidis & de Lecea, 2009, Bass, 2012). Indeed, at the same time

that Hcrt’s link to narcolepsy was discovered (Chemelli et al., 1999, Lin et al., 1999),

this peptide was also given the name orexin, because intracerebroventricular injection

of the peptide induced voracious feeding in rodents (Sakurai et al., 1998). Also, there

are well-documented links between obesity and abnormal circadian behaviors, includ-
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ing voluntary behaviors such as shift-work (Antunes et al., 2010). This has led to the

hypothesis that the circadian clock coordinates various physiological and behavioral

functions in addition to sleep, such as liver function and feeding. Additionally, a

number of sleep regulators have known interactions and/or overlap with regulators of

immune function (Krueger, 2008) and learning and memory (Harris & Aston-Jones,

2006). Similarly, memory, attention, anxiety, and depression are among the many

behavioral processes linked to arousal regulation and dysregulation (Johnson et al.,

2012), and several neurological disorders, including autism and schizophrenia, are

associated with sleep and arousal defects (Glickman, 2010, Pritchett et al., 2012).

Understanding how sleep and arousal are regulated might lead to new treatments

for neurological diseases, as well as explain normal individual variations in sleep and

arousal. Going forward, a few of the many outstanding questions regarding how

behavioral states are regulated include:

• What are the undiscovered genetic and neural substrates of sleep and

arousal states?

• Do conserved or diverse neural and genetic mechanisms regulate sleep and

arousal throughout the animal kingdom?

• Who are the downstream effectors of Process S and Process C? For example,

what are the neural and genetic pathways that link circadian input signals

to a circadian behavioral output?

• How are circadian, homeostatic, and other behaviorally-relevant drives in-

tegrated at the circuit level?
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• Are dynamic changes in neuromodulatory influences responsible for the

transitions between different behavioral states?

• Which are the redundant and unique properties among neuromodulator

systems that promote arousal? How do these systems participate in sleep

and arousal and also distinct aspects of behavior? Are there anatomical

and functional subdivisions within each arousal-promoting neuromodulator

system?

• Can we develop or discover effective remedies for sleep and arousal-related

disorders? In particular, can we learn enough about mechanism to treat

specific pathologies without grossly affecting other brain functions?

Despite their tremendous contributions to sleep and arousal research, prevalent

animal model systems have limitations in addressing some of these questions. For

example, drawbacks of rodent model systems include the relative complexity of their

nervous systems, the difficulty of monitoring the activity of genetically identified

neurons during behavior, and a nocturnal sleep/wake pattern that differs from diurnal

humans. Also, the long generation time, small litter size, and expense make the rodent

an unwieldy model for large-scale behavioral screening. On the other hand, the fruit

fly and worm are particularly amenable to genetic screens, but their nervous systems

lack anatomical structures and some neuromodulators analogous to mammals. In

this light, the zebrafish, a diurnal vertebrate with cutting-edge genetic and in vivo

neuroimaging capabilities and a successful track-record in high-throughput behavioral

screens, is an excellent system to complement the advances made using mammalian
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and invertebrate model systems.

1.2 Analysis of zebrafish behavioral states

After only a few days of development, larval zebrafish begin to swim around in their

environment, typically in brief, phasic locomotor episodes. High-speed infrared video

capture combined with computational image analyses have been used to quantita-

tively describe specific locomotor behaviors in larval zebrafish. For example, by

measuring values for indicator variables, such as those characterizing an animal’s

posture (tail bend location and amplitude, turning angle, yaw) and timing (tail-beat

frequency, swimming speed), it is possible to objectively define and differentiate ba-

sic locomotor modules such as scoots, burst swims, routine-turns, and escape-turns

(Budick & O’Malley, 2000). Similarly, an animal’s behavioral state can be defined

as a recurring, temporally enduring constellation of values of a set of indicator vari-

ables of the organism (Steriade & McCarley, 2005). Sleep and waking states are

typically defined in this manner. In humans and other mammals, these states can be

distinguished by obvious differences in behavior, but they are more conveniently iden-

tified by objective electrophysiological measures that correlate with behavioral state,

such as the electroencephalogram (EEG), which measures cerebral electrical activity

(Berger, 1929). In fact, the EEG and similar measures of global brain activity reveal

physiological subdivisions within sleep and waking, suggesting that they are not uni-

tary states (Lin & Gervasoni, 2008). The use of physiological criteria is a practical

and standardizable approach to defining behavioral states (Datta & Hobson, 2000,
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Rechtschaffen & Kales, 1968), although it is associated with the hazards of inferring

cause from inappropriate or indirect measures (Hobson & Steriade, 1986). With this

in mind, behavioral measures are most appropriate for describing behavioral states,

whereas physiological measures of sleep and arousal, while experimentally convenient

in some animals, should be carefully regarded as correlative.

There are also important methodological issues to address when measuring be-

havioral states in non-human animals such as zebrafish. First, tracking of individual

rather than groups of animals is ideal for resolving the temporal structure of sleep

and arousal states. Second, the impact of genetic variations (Valatx et al., 1972)

and prior experiences (Ganguly-Fitzgerald et al., 2006) on sleep and arousal must

be carefully controlled for reproducible measurements. Fortunately, with care, these

issues can be reasonably addressed using zebrafish (Figure 1.2). Large clutches of

embryos allow for experimental comparisons of siblings that are raised and tested

together in identical conditions. Because they can survive on their yolk sac for the

first week of development, the confounding effects of variable feeding behavior are

avoided. Most importantly, the small size of larval zebrafish (∼4mm in length) allows

for simultaneous behavioral tracking of individually-housed animals in a 96-well plate.

1.2.1 Zebrafish sleep states

In non-mammalian and non-avian animal model systems, sleep is defined according to

several behavioral criteria (Campbell & Tobler, 1984): 1) quiescent state regulated by

a circadian rhythm, 2) reduced sensory responsiveness, and 3) homeostatic regulation.
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Figure 1.2: Larval zebrafish locomotor activity assay. Individual zebrafish larva are
placed in each well of a 96-well-plate on the 4th day of development. The plate is placed in
a temperature-controlled chamber that is illuminated by white lights during the day and is
continuously illuminated by infrared lights. The larvae are monitored by an infrared camera
and the locomotor activity of each larva is recorded by a computer. (B) Representative
locomotor activity data for each of 20 individual wild-type larvae (gray traces) and their
mean locomotor activity (blue trace, standard error of the mean) is shown. Black and
white bars indicate day and night, respectively. Larvae are more active during the day than
at night, although there is considerable variability among individuals. (C) An example of
typical larval zebrafish behavior at the end of the day is shown. A rest bout is defined
as a period of at least 1 min of inactivity, which is associated with an increase in arousal
threshold (Prober et al., 2006). Rest latency indicates the time between lights off at night
and initiation of the first rest bout.
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Based on these criteria, behavioral sleep states have been demonstrated in flies and

worms (Hendricks et al., 2000, Raizen et al., 2008, Shaw et al., 2000, Van Buskirk &

Sternberg, 2007), and indeed, a number of studies have documented at least the first

criterion for behavioral sleep in many fish species (Reebs, 1992). Recently, larval and

adult zebrafish have been reported to exhibit all three behavioral criteria for sleep

(Prober et al., 2006, Yokogawa et al., 2007, Zhdanova et al., 2001).

Criterion 1: quiescent state regulated by circadian rhythm

Starting around 4 days post fertilization (dpf), zebrafish raised on a 24 hour alternat-

ing light:dark cycle (e.g. 14h light:10h dark) exhibit daily fluctuations in locomotor

activity (Hurd & Cahill, 2002, Prober et al., 2006). Like humans, zebrafish are di-

urnal and thus exhibit peak activity during the light phase and increased quiescence

during the dark phase (Figure 1.2. Particularly at night, zebrafish spend bouts of

several minutes or longer in a state of inactivity.

As has been observed in many other animals, larval and adult zebrafish that have

been entrained on a light:dark cycle maintain circadian oscillations in locomotor ac-

tivity even after external circadian cues are removed (Hurd & Cahill, 2002, Hurd

et al., 1998). The core molecular machinery of the mammalian circadian clock is well

conserved in zebrafish (Vatine et al., 2011, reviewed in), although zebrafish possess

two paralogs of some mammalian genes (Postlethwait et al., 1998). A notable differ-

ence between zebrafish and mammals is that zebrafish peripheral circadian clocks are

directly entrainable by light (Pando et al., 2001, Whitmore et al., 2000), a function

that may have evolved in zebrafish due to their relative transparency. This inno-
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vation suggests that zebrafish may not require a “master clock” analogous to the

mammalian SCN to orchestrate circadian rhythms throughout the body. We also

note that some widely-used inbred strains of laboratory mice lack enzymes required

to synthesize melatonin (Ebihara et al., 1986, Goto et al., 2007), a hormone produced

in the pineal gland which is thought to play a key role in transmitting circadian cues

in humans and zebrafish. Thus, the role of the pineal gland and melatonin might be

underestimated in mammalian research using these laboratory mouse strains. This

fact, together with the diurnal sleep/wake pattern of zebrafish, suggests that zebrafish

have some important advantages over rodents for modeling the circadian regulation

of human sleep.

Criterion 2: reduced sensory responsiveness

Sleeping animals exhibit reduced responsiveness to sensory stimuli, which distin-

guishes sleep from quiet wakefulness. During quiescent periods, larval zebrafish show

reduced responsiveness to mechanical stimuli (Zhdanova et al., 2001) and delayed re-

sponses to sudden changes in light intensity (Prober et al., 2006), and quiescent adult

zebrafish are less responsive to electrical stimuli (Yokogawa et al., 2007). Because

larval zebrafish exhibit reduced responsiveness after at least 1 minute of inactivity,

sleep in larval zebrafish has been operationally defined as a quiescent bout lasting at

least 1 minute. A similar approach has been used to define sleep in adult zebrafish as

a minimum 6-second inactive bout. (Yokogawa et al., 2007). Whether the difference

between adult and larval sleep is biological or methodological remains to be clarified.

Nonetheless, this approach to defining sleep states has been useful for identifying
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evolutionarily conserved sleep regulators in zebrafish (see next section). However,

additional work may further refine the definition of zebrafish sleep by using detailed

assays of physiology and arousal across various sensory modalities during quiescence.

For example, one report indicates that quiescence during day and night are not equiv-

alent, based on the observation that nighttime quiescence is associated with reduced

respiration and postural changes compared to daytime quiescence (Zhdanova, 2006).

Criterion 3: homeostatic regulation

A common approach to assaying homeostatic regulation of sleep is to test whether

compensatory sleep occurs following a period of deprivation. Indeed, both larval

and adult zebrafish exhibit this so-called “sleep rebound” behavior. In a study of

larval zebrafish (Zhdanova et al., 2001), a vibration stimulus applied during the last 6

hours of the night resulted in sleep rebound the following day. The reduced locomotor

activity during sleep rebound was accompanied by a significantly decreased sensitivity

to a mechanical stimulus as compared to siblings not subjected to sleep deprivation.

In a study of adult zebrafish (Yokogawa et al., 2007), electroshock or light stimuli

applied for 6 hours at night reduced locomotor activity the following day, although

arousal threshold was not assessed. Notably, sleep rebound in zebrafish has only been

observed in dark testing conditions, whereas light appears to be a potent arousal

stimulus that masks the effect of sleep deprivation (Yokogawa et al., 2007).

Although these data are suggestive of rebound sleep, further advances in both

technique and knowledge are needed to firmly establish homeostatic control of sleep

in zebrafish. One important consideration in the design of sleep deprivation studies
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is the possibility of off-target effects of the deprivation protocol. For example, while

light is a profoundly arousing stimulus for zebrafish, its utility as a specific sleep

deprivation stimulus is limited because light also affects the circadian clock. An-

other confounding effect of sleep deprivation that can vary with different deprivation

protocols is stimulus-induced stress, which may be caused by the prolonged and high-

amplitude stimulus application needed to overcome behavioral habituation and sleep.

The use of yoked test subjects that are stimulated randomly relative to sleep bouts

is an important control for stress effects. However, data using this methodology have

thus far only yielded modest effects of sleep deprivation on sleep rebound (Yokogawa

et al., 2007).

Technical issues aside, an important, unresolved scientific issue is whether the

amount of sleep rebound is proportionate to the amount of sleep deprivation in ze-

brafish. Additionally, better-refined definitions of zebrafish sleep and more sophisti-

cated methods of monitoring and quantifying sleep states will provide new possibilities

to study whether sleep deprivation affects sleep quality. For example, it would be in-

teresting to test the hypothesis that sleep deprivation increases the depth in addition

to the duration of sleep rebound in zebrafish.

1.2.2 Zebrafish arousal states

Whereas sleep and waking are relatively easy to define with objective behavioral

criteria, specific arousal states are more difficult to characterize. An animal’s arousal

state can be characterized by: 1) changes in frequency or intensity of voluntary
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locomotor activity, and 2) altered responsiveness to sensory or emotional stimuli (Pfaff

et al., 2008). In addition to these general characteristics, arousal can be characterized

by the specific behavioral outputs that it motivates, such as reward-seeking and sexual

or courtship behaviors.

Arousal-associated changes in locomotor activity can be triggered by intense stim-

uli. For example, in response to sudden changes in light intensity (e.g. light to

darkness over 10ms), larval zebrafish exhibit a biphasic response that begins with a

transient, high-amplitude movement followed by a sustained, low-amplitude increase

in locomotor activity that persists for at least several minutes (Emran et al., 2010,

Prober et al., 2006). In addition to external stimuli, arousal states are also triggered

by physiological drives such as hunger, sex, and pain. For example, adult zebrafish

respond to caloric restriction with the same bi-phasic behavioral response resulting

from mammalian hunger; starved fish are initially hyperactive, but become lethargic

after prolonged caloric restriction (Novak et al., 2005). Arousal states can also be

manifested as goal-seeking behaviors that change the structure of spontaneous loco-

motor activity. Food-seeking behavior is readily measured in larval zebrafish, which

begin to hunt for food almost as soon as they can swim. This behavior can be quanti-

tatively described by a temporal sequence that begins with ocular angle convergence

followed by a series of orienting “J-turns” and forward swimming towards the target

(Bianco et al., 2011, Borla et al., 2002, Gahtan et al., 2005, McElligott & O’Malley,

2005). These eye and tail movements are distinct from routine, spontaneous move-

ments, enabling the objective identification of a food-seeking arousal state in both
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free-swimming and partially restrained preparations.

Zebrafish exhibiting heightened locomotor activity can also exhibit enhanced sen-

sory responsiveness, consistent with the behavioral criteria for arousal. For example,

zebrafish exposed to a sudden change in water flow rate become hyperactive and re-

spond more quickly to a repeat application of the flow stimulus (Yokogawa et al.,

2012). Zebrafish also exhibit similarly enhanced responses to a whole-field visual mo-

tion stimulus, which is thought to be a crucial sensory cue underlying the behavioral

response to water flow. Notably, flow-induced arousal did not affect responses to elec-

troshock and touch stimuli, which is suggestive of distinct arousal states. Although

this study provides evidence of sensory modality-specific arousal states, the time-

courses and behavioral readouts of the other stimuli were substantially different from

the flow-related stimuli, leaving open the interesting question of what determines the

specificity of an arousal state.

1.3 Sleep/arousal neuromodulatory systems in ze-

brafish

The neuroanatomical and neurochemical systems that regulate sleep and arousal in

mammals are largely conserved in zebrafish (Figure 1.1). One notable difference

is that zebrafish lack midbrain dopaminergic neurons analogous to the mammalian

vPAG and VTA (Holzschuh et al., 2001, Kaslin & Panula, 2001, McLean & Fetcho,

2004, Rink & Wullimann, 2002), although the less-studied mammalian dopaminergic
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A11 group, which is noted for its roles in sensorimotor function and the human sleep

disorder restless legs syndrome (Mignot et al., 2002), has a likely homolog in zebrafish

ventral diencephalic dopamine clusters (Ryu et al., 2007, Tay et al., 2011). Also,

zebrafish do not have a layered cortex, a principal target of mammalian ascending

arousal systems, although homologies between mammalian cortical areas and zones

in the zebrafish dorsal telencephalon have been proposed based on common molecular

developmental patterns (Wullimann & Mueller, 2004). Basal forebrain and brainstem

cholinergic neurons have not been clearly described in zebrafish larvae.

Importantly, the neuropharmacology of mammalian behavior is well-conserved in

zebrafish (Rihel & Schier, 2012), and drugs or bioactive agents that affect sleep and/or

arousal in mammals produce comparable effects in zebrafish. Zebrafish exhibit a dose-

dependent decrease in locomotor activity when treated with known hyponotics and

sedatives, including melatonin, GABA receptor agonists (e.g. benzodiazepines, barbi-

turates, diazepam), histamine H1 receptor antagonists, and α2 adrenergic receptor ag-

onists (Renier et al., 2007, Ruuskanen et al., 2005, Sundvik & Panula, 2012, Zhdanova

et al., 2001). More recently, an unbiased screen of nearly 4000 small molecules corrob-

orated the roles of arousal and sleep modulators, including noradrenaline, serotonin,

dopamine, GABA, glutamate, histamine, adenosine and melatonin, in regulating ze-

brafish sleep/wake behavior (Rihel et al., 2010). Studies examining more specialized

aspects of arousal, such as sensorimotor responses, have also confirmed the role of

key monaminergic systems, including dopamine and serotonin, in regulating arousal

states in zebrafish (Burgess & Granato, 2007, Mu et al., 2012, Yokogawa et al., 2012).
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Conserved Hypocretin system in zebrafish

The hypocretin (Hcrt) neuromodulatory system is the best-characterized regulator of

sleep and arousal in zebrafish, and we focus on these studies to illustrate the current

discoveries, concepts and issues that arise when studying neuromodulators of zebrafish

sleep and arousal.

The zebrafish hcrt gene encodes two structurally-related peptides homologous

to mammalian Hcrt1 and Hcrt2 (Kaslin et al., 2004, Faraco et al., 2006). Among

vertebrates, including zebrafish, there is particularly high sequence homology near

the C-terminus of each Hcrt peptide, which is the critical region for biological activity

and receptor selectivity (Asahi et al., 1999, Darker et al., 2001, Lang et al., 2004). The

zebrafish genome contains a single hcrt receptor ortholog (hcrtr2 ; previously named

hcrtr), a G-protein coupled receptor (GPCR) that is structurally similar to the two

mammalian hcrt receptor paralogs (Prober et al., 2006, Yokogawa et al., 2007).

At 5 dpf, when larval zebrafish sleep/wake behaviors are first observed, hcrt is

specifically expressed in a bilateral nucleus in the posterior hypothalamus that encom-

passes ∼10 neurons per hemisphere, as determined by in situ hybridization (ISH) and

immunohistochemistry using a Hcrt1-specific antibody (Faraco et al., 2006, Prober

et al., 2006). Furthermore, enhanced green fluorescent protein (EGFP) expression

driven by various hcrt upstream promotor sequences faithfully recapitulates the en-

dogenous hcrt expression pattern (Faraco et al., 2006, Prober et al., 2006) (Figure 1.3).

This cluster expands to approximately 40 neurons in the adult zebrafish hypothala-

mus (Appelbaum et al., 2009, Kaslin et al., 2004, Appelbaum et al., 2010). While
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Figure 1.3: Hypocretin’s arousal-promoting role is conserved in zebrafish (A)
Dorsal view of a 4 dpf zebrafish larva that expresses GFP-Aequorin (GA) specifically in Hcrt
neurons. (B) Two-photon z-projection image of the boxed area in (A). Scale bars represent
100µm (A) and 50µm (B). (C) Overexpression of Hcrt using a heat shock-inducible promoter
(HS-Hcrt) increases locomotor activity. The mean locomotor activity of 20 HS-Hcrt larvae
and 20 of their wild-type siblings is shown. The spike in activity during the afternoon
of the 2nd and 3rd days of the experiment resulted from the addition of water to offset
evaporation. (D) The GA assay. A large-area photon-counting photomultiplier tube is
placed above a transparent behavior chamber in which a zebrafish larva that expresses
GA in specific neurons is allowed to freely swim. The larva is imaged using infrared (IR)
lights and an IR camera that is placed below the recording chamber. Spectral separation
between GA neuroluminescence and the IR illumination allows the simultaneous recording
of GA neuroluminescence and larval behavior. (E) Activity of Hcrt neurons during natural
behavior. Data for a representative 4 dpf larva is shown. The larva exhibited periods of
increased spontaneous locomotor activity (lower trace, thick line indicates 10min running
average) during the subjective day (hatched bar below graph) and little activity during
the subjective night (black bar below graph). Most neuroluminescence signals produced by
Hcrt neurons (upper trace) coincide with periods of robust locomotor activity during the
subjective day, suggesting that Hcrt neuron activity is associated with arousal.
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the zebrafish hcrt expression pattern is consistent with mammals, the number of hcrt

neurons is on the order of 102 fewer in zebrafish (Prober et al., 2006, Sakurai et al.,

1998, de Lecea et al., 1998, Lin et al., 1999, Peyron et al., 2000). Two molecular

markers of mammalian hcrt neurons, vesicular glutamate transporter and neuronal

pentraxin2, also colocalize with hcrt in zebrafish (Appelbaum et al., 2009, 2010).

Thus, the zebrafish provides a simple vertebrate system to study the development

and function of Hcrt neurons.

Zebrafish hcrt neurons send widespread ascending and descending projections to

brain areas associated with arousal (Figure 1.3), as they do in mammals (Peyron

et al., 1998, Taheri et al., 1999). Using a transgenic hcrt :EGFP line, Hcrt projec-

tions in larval zebrafish were found in close apposition to noradrenergic cells of the

locus coeruleus and processes of diencephalic dopaminergic cells in larval zebrafish

(Prober et al., 2006). By adulthood, Hcrt-immunoreactive fibers contact these tar-

gets, and also densely innervate the serotonergic raphe and possibly histaminergic

and cholinergic populations as well (Kaslin et al., 2004).

Consistent with widespread Hcrt neuron projections and with mammalian hcrtr

expression, zebrafish hcrtr2 expression is considerably more extensive than hcrt and

is detected in widespread areas of the zebrafish brain. In larval zebrafish, one study

used a high-resolution double fluorescent ISH method and found that hcrtr2 colocal-

izes with dopamine beta hydroxylase in noradrenergic cells of the locus coeruleus and

dopamine transporter in diencephalic dopaminergic cells (Prober et al., 2006), as in

mammals (Trivedi et al., 1998, Marcus et al., 2001). However, another study con-
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cluded that there is no hcrtr2 coexpression with these monoaminergic populations in

2 dpf or adult zebrafish, and instead reported that hcrtr2 is expressed in GABAergic,

adrenergic, cholinergic, and glycinergic systems (Yokogawa et al., 2007). The dis-

crepancies reported in these studies may stem from differences in detection method,

probe sensitivity and specificity, and possibly the developmental stages studied. For

example, the latter study made extensive use of a two-color chromogenic ISH proce-

dure, which cannot reliably report colocalization because the differently colored stains

can mask each other, the colors cannot be spectrally separated into distinct channels,

and high resolution imaging methods such as confocal microscopy cannot be used to

resolve chromogenic stained samples in three dimensions (Jowett & Yan, 1996, Vize

et al., 2009, Lauter et al., 2011). Neither study observed expression of hcrtr2 in his-

taminergic or serotonergic cells. However, the methods used in both studies, especially

fluorescent ISH, are often not sensitive enough to detect low-abundance transcripts

such as those encoding GPCRs, so negative data obtained using this method should

be interpreted with caution. Indeed, a close examination of data obtained by the

latter study suggests coexpression of faintly stained hcrtr2 in some monoaminergic

nuclei, which is consistent with the former study.

Several studies have also explored the functional role of the hcrt system in ze-

brafish. One study of larval zebrafish found that heat shock inducible overexpression

of a hcrt transgene promotes wakefulness by consolidating active states, increasing

arousal, and reducing sleep (Prober et al., 2006). Thus, the zebrafish Hcrt gain

of-function (GOF) phenotype (Figure 1.3) is comparable to the effects of intracere-
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broventricular injection of Hcrt peptide in rodents (Thakkar et al., 2001, España

et al., 2001) and goldfish (Nakamachi et al., 2006). Conversely, sleep fragmentation is

observed in adult zebrafish containing a null mutation in the hcrtr2 gene (Yokogawa

et al., 2007). This loss-of-function (LOF) result is strikingly similar to the sleep/wake

fragmentation observed in rodents, canines, and humans that lack Hcrt signaling (Sut-

cliffe & de Lecea, 2002). However, this study also made a controversial proposal that

the zebrafish Hcrt system may be functionally divergent from the mammalian Hcrt

system based on the observation that the hcrtr2 mutant displayed a mild decrease

in sleep, whereas Hcrt peptide injection caused a mild decrease in locomotor activ-

ity. However, the decreased sleep in hcrtr2 mutants was only significant compared to

unrelated, non-mutagenized animals, and the decreased locomotor activity following

Hcrt peptide injection may have resulted from the relatively high doses of peptide used

(280-2800 pmol/g body weight in adult zebrafish versus 2.8-28 pmol/g body weight

that increased locomotor activity in adult goldfish). Indeed, a subsequent study us-

ing the same hcrtr2 mutant did not report a decreased sleep phenotype (Appelbaum

et al., 2009). More recently, this debate seems to have been resolved by a report

that inducible ablation of hcrt neurons using a genetically targeted toxin increased

sleep and sleep/wake transitions in larval zebrafish (Elbaz et al., 2012). Thus, in non-

invasive, inducible zebrafish systems, Hcrt GOF consolidates sleep/wake states and

reduces sleep, whereas Hcrt LOF fragments sleep/wake states and increases sleep.

Taken together, the neuroanatomical and functional data from different research

groups indicate that the zebrafish Hcrt system is interconnected with major neu-
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romodulatory arousal systems, and regulates sleep/wake transitions by promoting

arousal. Thus, the zebrafish provides a simple model of the vertebrate Hcrt system.

The zebrafish system is poised to tackle unanswered questions about how Hcrt reg-

ulates sleep and arousal states. For example, although the zebrafish data point to a

role for Hcrt in arousal state regulation, its specific role in different forms of arousal is

unknown. Zebrafish can also be used to characterize the neural mechanisms through

which Hcrt affects sleep and arousal using GOF and LOF genetic tools, such as heat

shock inducible Hcrt transgenic zebrafish and the hcrtr2 mutant, in combination with

mutant and transgenic zebrafish that lack other neuromodulatory systems. The rela-

tively small number of Hcrt neurons should also facilitate studies of their development

and connectivity, as well as analysis of their activity during different behaviors. Fi-

nally, small molecule screens in zebrafish can be used to identify therapeutic pathways

for the treatment of narcolepsy.

1.4 Outline of Thesis

Still in its infancy, zebrafish research on sleep and arousal has focused on establishing

behavioral assays and identifying known regulators of behavioral states. Now that the

zebrafish has been established as a useful model of vertebrate sleep and arousal, it is

well suited among commonly used model organisms to address two long-standing yet

fundamental questions in sleep research: first, what are the genetic mechanisms that

regulate sleep and arousal behaviors, and second, what are the neural mechanisms

that underlie these behaviors?



26

In subsequent chapters, I describe two studies that address the genetic and neural

mechanisms that underlie sleep/arousal behavior. In Chapter 2, I introduce a large-

scale genetic overexpression approach to screening that led to the discovery of a new

regulator of sleep and arousal in the zebrafish. In follow up experiments, I uncover

some of the candidate input and output pathways that govern the action of this

neuropeptide. In Chapter 3, I introduce a new tool to manipulate neurons in vivo, and

I demonstrate the feasibility of using this tool to study the neural mechanisms of sleep

and arousal behavior in zebrafish. In Chapter 4, I discuss how these studies address

and develop new hypotheses in the field. Additionally, I suggest future directions, and

highlight ways in which the two present studies may be combined to further advance

our understanding of sleep and arousal regulation.
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Chapter 2

Discovery of a peptidergic
neuromodulator of sleep/arousal
behavior in zebrafish

Progress in understanding mechanisms that regulate mammalian sleep/arousal

has been limited by the challenge of performing unbiased screens in mammals. This

limitation is underscored by recent progress in understanding genetic and neuronal

mechanisms that regulate Drosophila sleep through the use of screens (Cirelli et al.,

2005, Koh et al., 2008, Pfeiffenberger & Allada, 2012, Rogulja & Young, 2012, Stavropou-

los & Young, 2011). In contrast to mammals, zebrafish are uniquely well suited among

vertebrate model systems for large-scale and unbiased screens. Indeed, two large-scale

forward genetic screens for developmental and simple behavioral phenotypes stimu-

lated the widespread adoption of zebrafish as a model system (Driever et al., 1996,

Haffter et al., 1996).

However, there are several limitations in using forward genetics to identify genes

that affect complex and quantitative behaviors such as sleep. First, as in mammals,

sleep varies considerably among individual zebrafish, making it difficult to identify
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a population of individuals that exhibit a recessive phenotype. Second, mapping

genes responsible for recessive phenotypes requires a significant amount of time and

labor, and it can be challenging for variable and quantitative phenotypes. Recent

advances in deep sequencing technologies can accelerate this process (Miller et al.,

2013, Obholzer et al., 2012), but they do not reduce the challenge of mapping a

variable quantitative trait such as sleep. These two factors likely underlie the relative

paucity of genes that have been identified by Drosophila forward genetic screens,

despite large-scale efforts in several labs. Third, chemical mutagens typically induce

thousands of mutations in each animal, and this high background mutational load may

affect behavior. These problems can be avoided by performing insertional mutagenesis

using retroviruses and transposons (Golling et al., 2002, Clark et al., 2011, Maddison

et al., 2011, Trinh et al., 2011, Varshney et al., 2013), but these mutagens are much less

efficient at inducing mutant phenotypes. This limitation is particularly problematic

for screens that use relatively low-throughput assays, such as those required to identify

sleep defects.

As an alternative to forward genetic approaches, reverse genetic techniques have

undergone rapid growth over the last few years and promise to transform the use

of zebrafish in the genetic analysis of behavior. One method, known as TILLING

(Kettleborough et al., 2011) uses chemical mutagenesis to create thousands of mutant

zebrafish, each of which is then screened for mutations in a gene of interest using deep

sequencing. This approach is expected to identify null mutations in most zebrafish

genes within the next few years, although it will likely fail to identify mutations
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in many small genes. A second approach uses zinc finger nuclease (ZFN) and TAL-

effector nuclease (TALEN) technologies (Bogdanove & Voytas, 2011). These nucleases

can be designed to create double-stranded DNA breaks at specific sites in the genome,

which are repaired by an error-prone process that often generates short insertions

or deletions. A disadvantage of these approaches is that they preclude behavioral

analysis of genes that are required for development.

In this study, we designed a new reverse-genetic screen approach to identify new

molecular regulators of sleep/wake behavior by overcoming some of the major limi-

tations of current screen approaches, and we discovered a novel peptide regulator of

zebrafish sleep/wake behavior, Neuromedin U (Nmu). Using a combination of phar-

macology and targeted mutation of Nmu receptors, we tested hypotheses about which

molecular pathways mediate Nmu signaling in sleep/wake behavior. Furthermore, we

performed histological assays to identify potential downstream pathways.

2.1 Methods

2.1.1 Generation of secretome library and microinjection as-

say

The LOCATE database (http://locate.imb.uq.edu.au) identifies approximately 4000

human proteins that are predicted or known to be secreted. Approximately 1600

open reading frames (ORFs) that encode a subset of these proteins are present in the

hORFeome 3.1 collection, cloned in Gateway Entry vectors (Lamesch et al., 2007).
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We constructed a Gateway Destination vector containing a heat shock-inducible pro-

moter (Halloran et al., 2000) 5’ to attR1 and an SV40 polyadenylation signal 3’ to

attR2, and the entire cassette was flanked by Tol2 transposase arms. LR clonase

(Invitrogen) was used to transfer each ORF into the Destination vector. Plasmid

preps were obtained using a Qiagen Biorobot 8000, purified using multiscreen PCR

µ96 filter plates (LSKMPCR10, Millipore), dried using a speedvac, and dissolved in

10 µL water. Plasmid concentrations were measured using the Quant-iT kit (Invit-

rogen) and adjusted to 100 ng/µl. The purification step allowed injection of twice as

much DNA compared to non-purified samples without increased toxicity. One nl of

an injection mix (50 ng/µL plasmid, 150 ng/µL tol2 transposase mRNA and 5 mg/ml

phenol red in 0.2 M KCl) was injected into the yolk of TLAB embryos at the one-cell

stage. Each clone was injected into 50 embryos, and up to 32 larvae were tested in

the behavioral assay. Injected animals were screened at 24 hpf and immediately prior

to the behavioral assay to remove any larvae that exhibited abnormal morphology or

locomotor behaviors. Clones for which fewer than 24 healthy larvae were available to

test were reinjected at 25 ng/µL. All experiments with zebrafish followed standard

protocols (Westerfield, 2000) in accordance with the Harvard University and Califor-

nia Institute of Technology Institutional Animal Care and Use Committee guidelines.

2.1.2 Secretome screen behavioral assay

Larval zebrafish were raised on a 14 hour:10 hour light:dark cycle at 28.5◦C, with

lights on at 9 am and off at 11 pm. Individual larvae were placed into each of the



31

80 wells of a 96-well plate (7701-1651, Whatman) containing 650 µL embryo water

(0.3 g/L Instant Ocean, 1 mg/L methylene blue, pH 7.0). Two Secretome clones were

tested in each plate. At 4 days post-fertilization (dpf), larvae injected with each clone

were loaded in alternating columns, and control larvae injected with the Destination

vector lacking an ORF were loaded in columns 1 and 10. Locomotor activity was

monitored for 72 hours using an automated videotracking system (Viewpoint Life

Sciences) with a Dinion one-third inch Monochrome camera (LTC0385, Bosch) fitted

with a fixed-angle megapixel lens (M5018-MP, Computar) and infrared filter. Larvae

were heat shocked at 37◦C for one hour starting at 4 pm at 5 dpf. The movement

of each larva was recorded using the quantization mode, and data from two cameras

were collected in alternating minutes by one computer. The 96-well plate and cam-

era were housed inside a custom-modified Zebrabox (Viewpoint Life Sciences) that

was continuously illuminated with infrared lights and illuminated with white lights

from 9 am to 11 pm. The 96-well plate was housed in a chamber filled with recir-

culating water to maintain a constant temperature of 28.5◦C. The parameters used

for detection were the following: detection threshold, 40; burst, 25; freeze, 4; bin

size, 60 seconds. Data were processed using custom PERL and Matlab (The Math-

works, Inc) scripts. Clones that induced heat-shock dependent locomotor activity

phenotypes were retested. Clones that produced the same phenotype upon retesting

were used to generate stable transgenic lines using Tol2 transposase. Stable lines

were identified by heat shocking the progeny of potential founders at 24 hours post-

fertilization (hpf), fixing the embryos with 4% paraformaldehyde/phosphate buffered
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saline (PBS) 1 hour after heat shock, and performing in situ hybridization using a

probe specific for the overexpressed ORF. Lines that produced strong and ubiquitous

gene overexpression were used for behavioral assays. Three independent stable lines

were behaviorally tested for each ORF.

2.1.3 Generation of zebrafish heat-shock inducible transgenic

lines

We used reciprocal BLAST to identify zebrafish orthologs for each human ORF that

produced a locomotor activity phenotype in stable transgenic lines. To clone the

zebrafish ORFs, we performed RT-PCR (Superscript III Reverse Transcriptase, Life

Technologies) using mRNA isolated from 5 dpf zebrafish larvae (Trizol, Life Technolo-

gies). In cases where the 5’ or 3’ end of an ORF was not annotated in Ensembl or

was ambiguous, 5’ or 3’ RACE (First Choice RLM-RACE Kit, Life Technologies) was

performed to identify the entire ORF. Each ORF was cloned into a vector containing

a heat-shock inducible promoter (Halloran et al., 2000) and ISce1 meganuclease sites,

and each vector was injected with ISce1 (New England Biolabs) into zebrafish em-

bryos at the one-cell stage to generate stable lines, which were identified as described

above.

2.1.4 Generation of zebrafish mutants

nmu, nmur1a, and nmur1b mutant zebrafish were generated using zinc finger nucle-

ases (ZFNs), as described (Chen et al., 2013). nmur2 mutant zebrafish were generated
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using TAL effector nucleases (TALENs), as described (Reyon et al., 2012). Plasmids

were obtained from Addgene. nmu mutants were genotyped using the primers

5’-TGACCGACAGAGAGCATGAG-3’, 5’-GGAGTAGTACCGCGAGCATC-3’ and

5’-CGATTAAAACAGTAAAAACGCAGA-3’, which generate 168 bp and 106 bp

bands for the WT allele and a 164 bp band for the mutant allele. nmur1 mutants

were genotyped using the primers 5’-AGACACCCTGTATTTTCTCCTCA-3’,

5’-GTAGAGGACGGGGTTTATGG-3’ and 5’-CACATCGGAGCTAGCGAAAC-3’,

which generate a 203 bp band for the WT allele, and 214 bp and 96 bp bands for

the mutant allele. nmur1b mutants were genotyped using the primers 5’-TCAAT

GATACAGTACAACTGCTCCTC-3’, 5’-AGGGTCCAAGGTATTTCTCCA-3’ and

5’-ATGGTGCTCCACCAAAGAA-3’, which generate 163 bp and 101 bp bands for

the WT allele and a 155 bp band for the mutant allele. nmur2 mutants were geno-

typed using the primers 5’-ATGACCGGGGTCTTAGGAAA-3’ and 5’-TGACGTTT

AACACGGAAGCA-3’, which generate a 244 bp band for the WT allele and a 227

bp band for the mutant allele.

2.1.5 in situ hybridization

Zebrafish samples were fixed in 4% paraformaldehyde/PBS for 12-16 hours at room

temperature. in situ hybridizations were performed using digoxygenin (DIG) la-

beled antisense riboprobes (DIG RNA Labeling Kit, Roche), as previously described

(Thisse & Thisse, 2008). Double-fluorescent in situ hybridizations were performed

using DIG- and 2,4-dinitrophenol (DNP)-labeled riboprobes and the TSA Plus DNP
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System (PerkinElmer, Wellesley, MA). PCR products generated from larval zebrafish

cDNA were used as templates for riboprobe synthesis using the following primers.

nmu: 5’-CATGAGGAACAGCAATCAATG-3’ and 5’-TAATACGACTCACTATAGG

GACACATACTCATCAGATCTTCTTCC-3’ (524 bp). nmur1a: 5’-GGCATTAAAC

CTCACCGAGA-3’ and 5’-TAATACGACTCACTATAGGGCACGTTTCGTCAAGAA

ATCAAA-3’ (1620 bp). nmur1b: 5’-GTGAACACGTCATGGTGCTC-3’ and

5’-TAATACGACTCACTATAGGGGCGTTGGTATTCAGAAACTGC-3’ (1206 bp).

nmur2 : 5’-CTCCTGACCTGCGCTGTAAT-3’ and 5’-TAATACGACTCACTATAG

GGGAGGAGCTGAACTTGACTTGC-3’ (1486 bp). Plasmids containing crh (gen-

bank clone CK352624, 849 bp) and cfos (genbank clone CA787334, 870 bp) expressed

sequence tags were used for riboprobe synthesis.

2.1.6 Drug treatment

A concentrated stock of (R)-5’-(phenylaminocarbonylamino)spiro [1-azabicyclo [2.2.2]octane-

3,2’(3’H)- furo [2,3-b]pyridine] (R-PSOP, AstraZeneca Neuroscience) was prepared in

dimethyl sulfide (DMSO) just prior to the experiment. R-PSOP stocks were diluted

into to final working concentration in standard embryo medium, E3. All conditions,

including DMSO control, contained 0.05% DMSO. 4 dpf fish were treated with drug

just prior to lights off before the commencement of the behavioral assay.
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2.1.7 Statistical Analyses

In all statistical tests, the significance threshold was set to p<0.05. Asterisks in

figures denote statistics for significant comparisons using Student’s t-test or pairwise

comparisons following ANOVA. Student’s t-test was used for experimental designs

containing 2 groups (i.e. HS-Nmu/+ versus WT comparisons, or 500µM RPSOP

versus DMSO). 1-way ANOVA was performed for >2 comparisons (i.e. R-PSOP drug

dosages and for Nmu mutants). 2-way ANOVA was performed for HS x Genotype

experiments (i.e. HS-Nmu in receptor mutants). When the 2-way ANOVA revealed

significant HSxGenotype interactions, further pairwise comparisons were performed

using the Tukey-Kramer procedure for multiple comparisons, and significant pairwise

comparisons are displayed on box plots. We did not observe any significant effects

of Genotype factor alone, and for simplicity, these non-significant results are not

displayed. ”Day” box plots and statistics combine all daytime periods, and ”Night”

box plots and statistics combine nighttime periods displayed in the corresponding

line graph. For heat-shock overexpression experiments, box plots and statistics were

generated from post-heat shock timepoints; pre-heat shock data were not included in

the box plot display and statistical analyses.
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2.2 Results

2.2.1 A novel behavioral genetic ovexpression screen

Our genetic screen featured 4 key design components (Figure 2.1). First, the screen

was conducted on a large-scale. From a publicly available database of human genes

known or predicted to encode secreted proteins (a.k.a. Secretome), we selected ∼1000

genes to test in the zebrafish. Second, we employed an inducible overexpression trans-

gene cassette (HS-Sec, or Heat-Shock Secretome Gene). Induction of ubiquitous over-

expression of a given Secretome candidate gene was achieved by incubating zebrafish

larvae at 37◦C for 1 hour. Third, we used a transgene injection approach for the

primary screen. By directly testing fish injected with a HS-Sec transgene, we could

circumvent the considerable labor, cost, and generation time involved with testing sta-

ble transgenic lines. Fourth, we employed a previously established high-throughput

locomotor activity assay to identify any genes that, when over expressed, produced a

quantifiable sleep/wake behavioral phenotype.

Screening was conducted in 2 phases. In Phase 1 of the screen, zebrafish single-

cell embryos were injected with HS-Sec. In Phase 2, we re-tested each of the HS-Sec

genes which produced a phenotype in Phase 1 using a stable transgenic line. In

both phases of the screen, the phenotypic testing was performed by transferring 4

dpf zebrafish larvae to a high-throughput locomotor activity recording chamber, after

which gene overexpression was induced on 5 dpf, and fish behavior was analyzed for

altered sleep/wake phenotypes.
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Figure 2.1: A behavioral genetic overexpression screen. A. The Heat Shock-
Secretome (HS-Sec) overexpression transgenesis cassette. B. In Phase 1 of the screen,
single cell zebrafish embryos are injected with the HS-Sec plasmid and Tol2 transposase
mRNA to improve transgenesis efficiency (Kawakami et al., 2000). Prior to induction of
gene overexpression, embryos are raised to 5 dpf at 28.5◦C, a non-permissive temperature
for the heat shock promotor. C. 1 hour, 37◦C heat shock treatment induces expression
of a Secretome gene in HS-Sec/+ larvae, as visualized by in situ hybridization analysis
(purple stain) in dissected brain tissue. In the no-heat shock control (28.5◦C), HS-Sec/+
larvae do not exhibit exogenous expression of the Secretome gene. The cartoon shows the
approximate orientation of the dissected brain from a zebrafish larva. D. In Phase 2 of
the screen, candidate Secretome genes were tested in stable transgenic zebrafish lines. E.
Zebrafish larvae from a stable transgenic line possessing the HS-Sec transgene for a gene
encoding human Neuromedin U (HS-Nmu/+, n=79) exhibited a significant increase in day
time locomotor activity compared to simultaneously monitored wild type sibling controls
(WT, n=43).
On all behavior figures in this chapter: Line plot values are mean ±S.E.M. White and black
boxes on the x-axis denote daytime light periods and nighttime dark periods, respectively.
Arrow indicates time of gene overexpression induction. Box plots indicate the median value
(solid black line), 25th and 75th percentiles (box), and data range (whiskers). Paramet-
ric analysis of the data denoted by *p<0.05, **p<0.001. For details of calculations and
statistical analyses, see Methods.
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2.2.2 Discovery of Neuromedin U, a neuropeptidergic regu-

lator of sleep/wake behavior

Overexpression of human Neuromedin U (HS-Nmu) produced the largest screen-wide

locomotor phenotype. We observed that following a 1 hour, 37◦C heat shock treat-

ment to induce trangene expression, zebrafish larvae possessing the HS-Nmu (human)

transgene exhibited significantly increased daytime locomotor activity and decreased

sleep as compared to their wild-type sibling controls (Figure 2.1). Given that known

mammalian neuromodulatory regulators of arousal are generally conserved in ze-

brafish (Chiu & Prober, 2013), we hypothesized that the zebrafish might also possess

an endogenous Nmu system to regulate locomotor behavior.

To determine whether the mammalian Nmu system is conserved in zebrafish, we

first cloned the zebrafish orthologue. We found that the zebrafish genome contains

a single nmu orthologue that encodes a predicted Nmu mature peptide that is 56%

identical to human Nmu-25 (Figure ?? and Figure 2.3). Based on structure-function

studies of vertebrate Nmu, the C-terminal heptapeptide sequence contains the critical

region for biological activity (Hashimoto et al., 1991, Sakura et al., 1991). We find

that there is almost complete conservation of this region; zebrafish Nmu retains 6 of

7 human Nmu C-Terminal amino acids, including a Phe residue that is important for

activity (Kurosawa et al., 1996) and an Arg residue that is indispensable for receptor

binding and activation (Sakura et al., 2000).

Using in situ hybridization analysis, we found that zebrafish nmu is expressed in

discrete nuclei within the central nervous system of 24-120 hpf zebrafish. At 24 hpf,
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A!
ATGAGGAACAGCAATCAATGTGAACGCGCAACCGCTCACAGCGCGATGAGCCCGGGAAACACCTCCGCCCTGATGCTCGC 80NMU_Dr
ATGAGGAACAGCAATCAATGTGAACGCGCAACCGCTCACAGCGCGATGAGCCCGGGAAACACCTCCGCCCT----CTCGC 76NMU_Dr d4

GGTACTACTCCTCTCCTTCATACCCATCACCACAAGTGCTCCGATGCTCTTGAATCCATCTTCACTAGAGCATGAGCAGC 160NMU_Dr
GGTACTACTCCTCTCCTTCATACCCATCACCACAAGTGCTCCGATGCTCTTGAATCCATCTTCACTAGAGCATGAGCAGC 156NMU_Dr d4

TACTAACCCAGATAACTGATTTGTGTTCATTCTACCTCTCCGCAGACCCGTCCTTTAGAACATCTGACGTCCTGGAGGAC 240NMU_Dr
TACTAACCCAGATAACTGATTTGTGTTCATTCTACCTCTCCGCAGACCCGTCCTTTAGAACATCTGACGTCCTGGAGGAC 236NMU_Dr d4

CTGTGTTTCCTAATGCTGGGATCACTGCAAAAATCGAAGGAGATCACAGCTCGAGAGACTAGCAAAAGGTTTTTATTTCA 320NMU_Dr
CTGTGTTTCCTAATGCTGGGATCACTGCAAAAATCGAAGGAGATCACAGCTCGAGAGACTAGCAAAAGGTTTTTATTTCA 316NMU_Dr d4

TTACACTAAACCAAACGGGGCAGGATTGTCTGATGGGACGTCTACTGTGTTGCACCCTCTTCTGGAGCTCATACCCCAGC 400NMU_Dr
TTACACTAAACCAAACGGGGCAGGATTGTCTGATGGGACGTCTACTGTGTTGCACCCTCTTCTGGAGCTCATACCCCAGC 396NMU_Dr d4

TTGCCAGAAGAAGAAGCAGGAGAATGAAATTAAATGAGAACCTTCAAGGTCCGGGACGCATCCAGAGCAGAGGATACTTC 480NMU_Dr
TTGCCAGAAGAAGAAGCAGGAGAATGAAATTAAATGAGAACCTTCAAGGTCCGGGACGCATCCAGAGCAGAGGATACTTC 476NMU_Dr d4

CTTTATCGGCCAAGAAATGGAAGAAGATCTGATGAGTATGTGTAA                                   525NMU_Dr
CTTTATCGGCCAAGAAATGGAAGAAGATCTGATGAGTATGTGTAA                                   521NMU_Dr d4

MLRTESCRPRSPAGQVAAA--SPLLLLLLLLAWCAGACRGAPIL-PQGLQPEQQLQLWNEIDDTCSSFLSIDSQPQASNALEELCFMIM 86NMU_Hs
MSRAAGHRPGLSAGQLAAATASPLLSLLLLLACCADACKGVPIS-PQRLQPEQELQLWNEIHEACASFLSIDSRPQASVALRELCRIVM 88NMU_Mm
MRNSNQCERATAHSAMSPGNTSALMLAVLLLSFIPITTSAPMLLNPSSLEHEQ---LLTQITDLCSFYLSADPSFRTSDVLEDLCFLML 86NMU_Dr
MRNSNQCERATAHSAMSPGNTSALSRYYSSPSYPSPQVLRCS                                               42NMU_Dr d4

GMLPKPQEQDEKDNTKRFLFHYSKTQKLGKSNVVSSVVHPLLQLVPHLHERRMKRFRVDEEFQSPFASQSRGYFLFRPRNGRRSAGFI 174NMU_Hs
EISQKPQEQSEKDNTKRFLFHYSKTQKLGNSNVVSSVVHPLLQLVPQLHERRMKRFKA--EYQSPSVGQSKGYFLFRPRNGKRSTSFI 174NMU_Mm
GSLQKSKEITARETSKRFLFHYTKPNGAGLSDGTSTVLHPLLELIPQLARRRSRRMKLNENLQGPGRIQSRGYFLYRPRNGRRSDEYV 174NMU_Dr
                                                                                         42NMU_Dr d4

B!

ATGGAGATTGAAGACTTCTGCCTTGACCAAGACGAGTATCTGGAGAAATACCTCGGGCCAAGACGATCCCCAGTGTTCCTGCCTGTAT 88Nmur1a_Dr
ATGGAGATTGAAGACTTCTGCCTTGACCAAGACGAGTATCTGGAGAAATACCTCGGGCCAAGACGATCCCCAGTGTTCCTGCCTGTAT 88Nmur1a_Dr i11

GCCTGACCTACCTCCTGATCTTCCTGGTGGGAGCGGTGGGAAACATCCTTACCTGCATTGTCATTGCTAAAAACAAAGTCATGCGGAC 176Nmur1a_Dr
GCCTGACCTACCTCCTGATCTTCCTGGTGGGAGCGGTGGGAAACATCCTTACCTGCATTGTCATTGCTAAAAACAAAGTCATGCGGAC 176Nmur1a_Dr i11

GCCGACCAACTTCTACCTGTTCAGCCTGGCCATTTCAGATCTTCTAGTGCTTCTCCTGGGAATGCCTTTGGAGCTTTATGAAATGTGG 264Nmur1a_Dr
GCCGACCAACTTCTACCTGTTCAGCCTGGCCATTTCAGATCTTCTAGTGCTTCTCCTGGGAATGCCTTTGGAGCTTTATGAAATGTGG 264Nmur1a_Dr i11

AGCAACTATCCGTTCCTTTTAGGCAAGGGCGGTTGTTACTTCAAGACTCTTCTCTTCGAGACTGTTTGCTTTGCGTCGATCTTGAACG 352Nmur1a_Dr
AGCAACTATCCGTTCCTTTTAGGCAAGGGCGGTTGTTACTTCAAGACTCTTCTCTTCGAGACTGTTTGCTTTGCGTCGATCTTGAACG 352Nmur1a_Dr i11

TAACTGCTTTGAGCGTTGAACGCTACATTGCTGTGATTCACCCACTCCGAGCCAAATACGTAGTAACCCGCACTCATGCAAAGCGCCT 440Nmur1a_Dr
TAACTGCTTTGAGCGTTGAACGCTACATTGCTGTGATTCACCCACTCCGAGCCAAATACGTAGTAACCCGCACTCATGCAAAGCGCCT 440Nmur1a_Dr i11

GATATTGAGCGTCTGGAGCATTTCCGTGCTTTGCGCCATTCCCAACACGATCCTCCACGGTATATTTACTCTCCCGCCTCCTAAAGGG 528Nmur1a_Dr
GATATTGAGCGTCTGGAGCATTTCCGTGCTTTGCGCCATTCCCAACACGATCCTCCACGGTATATTTACTCTCCCGCCTCCTAAAGGG 528Nmur1a_Dr i11

AAAGCAGCAGGAGTCATGCTCGACTCCGCCACATGCATGCTCGTGAAACCGCGCTGGATGTACAACCTGATCATCCAAATCACGACTC 616Nmur1a_Dr
AAAGCAGCAGGAGTCATGCTCGACTCCGCCACATGCATGCTCGTGAAACCGCGCTGGATGTACAACCTGATCATCCAAATCACGACTC 616Nmur1a_Dr i11

TGCTATTCTTCCTGTTGCCCATGTTGACCATCAGCGTTTTGTATCTGCTCATCGGCATGCAGCTGAAGCGGGAGAAGATGCTGCAGGT 704Nmur1a_Dr
TGCTATTCTTCCTGTTGCCCATGTTGACCATCAGCGTTTTGTATCTGCTCATCGGCATGCAGCTGAAGCGGGAGAAGATGCTGCAGGT 704Nmur1a_Dr i11

CCTGGAGGCCAAAGCCAGTTCGGGCCTGGACAGCTCATCTAATGTGCGCAGTCAGCAGCAGAAAACCCGTCGCCAGCAGGTGACCAAG 792Nmur1a_Dr
CCTGGAGGCCAAAGCCAGTTCGGGCCTGGACAGCTCATCTAATGTGCGCAGTCAGCAGCAGAAAACCCGTCGCCAGCAGGTGACCAAG 792Nmur1a_Dr i11

ATGTTGTTTGTTTTGGTGGTGATGTTCGGCATCTGCTGGGCTCCGTTTCACACCGACCG-----------CCTGATGTGGAGCTTCAT 869Nmur1a_Dr
ATGTTGTTTGTTTTGGTGGTGATGTTCGGCATCTGCTGGGCTCCGTTTCACACCGACCGGTTTCGCTAGCTCCGATGTGGAGCTTCAT 880Nmur1a_Dr i11

GGATCAGAAGGACAGCGAGCACATCGAGATCTTTGAGGTCTACGAGTACGTCCACGTCATCTCCGGGGTCTTTTTCTACCTGAGCTCG 957Nmur1a_Dr
GGATCAGAAGGACAGCGAGCACATCGAGATCTTTGAGGTCTACGAGTACGTCCACGTCATCTCCGGGGTCTTTTTCTACCTGAGCTCG 968Nmur1a_Dr i11

GCCATAAACCCCGTCCTCTACAATCTGATGTCCACCCGCTTCAGGGAGATGTTCAAAGAGGTGATGTGCCACCATAAATGGCGTCCCG 1045Nmur1a_Dr
GCCATAAACCCCGTCCTCTACAATCTGATGTCCACCCGCTTCAGGGAGATGTTCAAAGAGGTGATGTGCCACCATAAATGGCGTCCCG 1056Nmur1a_Dr i11

TCCCGAGAAAGCGCTCTCTGAGCATGACCAGAGTCACCGTTCGCAGCACCGTCAGTGACGTCCCGCCATGCAACGGCACTGTGACTAT 1133Nmur1a_Dr
TCCCGAGAAAGCGCTCTCTGAGCATGACCAGAGTCACCGTTCGCAGCACCGTCAGTGACGTCCCGCCATGCAACGGCACTGTGACTAT 1144Nmur1a_Dr i11

TGAAGGAGACGATTATGACGTGGATGAAGGTCAAGAAAATAAGACATGTCCCTAA                                 1188Nmur1a_Dr
TGAAGGAGACGATTATGACGTGGATGAAGGTCAAGAAAATAAGACATGTCCCTAA                                 1199Nmur1a_Dr i11

C!

Figure 2.2: Sequences of wild type and mutant NMU, Nmur1 and Nmur2.
Nucleotide sequences of open reading frames of zebrafish wild type and mutant nmu
(A, ENSDARG00000043299), nmur1a (C, ENSDARG00000060884), nmur1b (D, ENS-
DARG00000003944) and nmur2 (F, ENSDARG00000022570) are shown. Zebrafish
Nmur orthologs were identified by reciprocal Blast searches of mammalian and zebrafish
genomes. Red boxes indicate ZFN (C, D) and TALEN (A, F) binding sites. Align-
ments of amino acid sequences of human, mouse, wild type zebrafish and mutant ze-
brafish NMU (B; human, ENSG00000109255; mouse, ENSMUSG00000029236), Nmur1
(E; human, ENSG00000171596; mouse, ENSMUSG00000026237) and Nmur2 (G; human,
ENSG00000132911; mouse, ENSMUSG00000037393) are shown. Amino acids shaded in
black are identical to human. Blue lines indicate mature human NMU peptide (B) and
predicted human Nmur transmembrane domains (E, G). H. Phylogenetic tree of human,
mouse and zebrafish Nmu receptors.
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ATGATACAGTACAACTGCTCCTCTCCAAGTTCACTGTTCACAGTTGTTGTGAACACGTCATGGTGCTCCACCAAAGAAGAAGAATGT 87Nmur1b_Dr
ATGATACAGTACAACTGCTCCTCTCCAAGTTCACTGTTCACAGTTGTTGTGAACACGTCATGGTGCTCCACCA-----GAAGAATGT 82Nmur1b_Dr d5

CAAAACAGAACAGCAAACCTATCAGACCTCTGTCTATCCCGCAGTGCCTACCTGGAGAAATACCTTGGACCCTGTCGTTCACCTTTC 174Nmur1b_Dr
CAAAACAGAACAGCAAACCTATCAGACCTCTGTCTATCCCGCAGTGCCTACCTGGAGAAATACCTTGGACCCTGTCGTTCACCTTTC 169Nmur1b_Dr d5

TTTCTGCCTATATGTGTCACCTACCTGCTCATCTTTGTAGTAGGTGTGGTGGGCAACATCCTAACTTGTATTGTCATTACCCGTCAT 261Nmur1b_Dr
TTTCTGCCTATATGTGTCACCTACCTGCTCATCTTTGTAGTAGGTGTGGTGGGCAACATCCTAACTTGTATTGTCATTACCCGTCAT 256Nmur1b_Dr d5

CGCATCATGCGCACAACGACAAACTACTACCTGTTCAGCCTGGCCATTTCTGACCTCCTTGTGCTGTTGCTTGGCCTCCCGCTGGAG 348Nmur1b_Dr
CGCATCATGCGCACAACGACAAACTACTACCTGTTCAGCCTGGCCATTTCTGACCTCCTTGTGCTGTTGCTTGGCCTCCCGCTGGAG 343Nmur1b_Dr d5

CTTTATGAGCTCTGGAGCAACTATCCTTTTCTGTTTGGAATTTCTGGCTGCTACTTCAAAACCTGTCTCTTTGAGACAGTCTGCTTT 435Nmur1b_Dr
CTTTATGAGCTCTGGAGCAACTATCCTTTTCTGTTTGGAATTTCTGGCTGCTACTTCAAAACCTGTCTCTTTGAGACAGTCTGCTTT 430Nmur1b_Dr d5

GCCTCTGTTCTCAATGTTACAGCCTTAAGTGCAGAACGTTATAGAGCTATCATTCATCCTCTGCACACCAAACATGTTGCGACGAGT 522Nmur1b_Dr
GCCTCTGTTCTCAATGTTACAGCCTTAAGTGCAGAACGTTATAGAGCTATCATTCATCCTCTGCACACCAAACATGTTGCGACGAGT 517Nmur1b_Dr d5

GCTCATGCAAAGCGTGTTATCCTTGTGTTATGGGCTGTCTCTCTATTGTGTGCCTTGCCCAATACCAGTATTCATGGTGTGGAGATG 609Nmur1b_Dr
GCTCATGCAAAGCGTGTTATCCTTGTGTTATGGGCTGTCTCTCTATTGTGTGCCTTGCCCAATACCAGTATTCATGGTGTGGAGATG 604Nmur1b_Dr d5

TTAAAACCCCGTTTTGGACTTACTTTCCCAGAATCAGGTGTGTGTACAGTGGTACACGATAGGTGGATCTACAACCTGCTGGTGCAA 696Nmur1b_Dr
TTAAAACCCCGTTTTGGACTTACTTTCCCAGAATCAGGTGTGTGTACAGTGGTACACGATAGGTGGATCTACAACCTGCTGGTGCAA 691Nmur1b_Dr d5

GTGACAGCACTGCTGTTCTTCATACTGCCGATGCTGACTATCAGTGTGCTGTATGTGCTGATTGGCCTACAGCTGCACCGGGAAAGG 783Nmur1b_Dr
GTGACAGCACTGCTGTTCTTCATACTGCCGATGCTGACTATCAGTGTGCTGTATGTGCTGATTGGCCTACAGCTGCACCGGGAAAGG 778Nmur1b_Dr d5

GAGTGCTTTGATTCAAAGATCGTGCTCAATCAGGATGGGGTCAATCAGAGGGCACGTCATCGACAAGTCACAAAAATGCTTTGTGCA 870Nmur1b_Dr
GAGTGCTTTGATTCAAAGATCGTGCTCAATCAGGATGGGGTCAATCAGAGGGCACGTCATCGACAAGTCACAAAAATGCTTTGTGCA 865Nmur1b_Dr d5

TTGGTGATTGTGTTTGGAATCTGCTGGGCTCCCTTTCACATTGATCGTGTAATGTGGAGCTATATTGATGACTGGACTGCAGAGAAC 957Nmur1b_Dr
TTGGTGATTGTGTTTGGAATCTGCTGGGCTCCCTTTCACATTGATCGTGTAATGTGGAGCTATATTGATGACTGGACTGCAGAGAAC 952Nmur1b_Dr d5

CACCACATCTTTGAGTATGTGCATCTTCTATCTGGTGTCTTCTTCTACTTGAGCTCAGTGGTCAATCCCATCCTGTATAACCTCATG 1044Nmur1b_Dr
CACCACATCTTTGAGTATGTGCATCTTCTATCTGGTGTCTTCTTCTACTTGAGCTCAGTGGTCAATCCCATCCTGTATAACCTCATG 1039Nmur1b_Dr d5

TCTTCGCGCTTCAGAGAAATGTTCCGTGAGGTGGTGTGTCAAAAAGACCATCGTCAGCTCTCAATGAGTAGGGTCACATTACGTAGT 1131Nmur1b_Dr
TCTTCGCGCTTCAGAGAAATGTTCCGTGAGGTGGTGTGTCAAAAAGACCATCGTCAGCTCTCAATGAGTAGGGTCACATTACGTAGT 1126Nmur1b_Dr d5

GTTGTTTCTGCCTCTTTTTCTGCCTCCAATACAGTCTCATTTTCTGTAAAGTTCAACCCACGTGAGCTGCCACACACACTC      1212Nmur1b_Dr
GTTGTTTCTGCCTCTTTTTCTGCCTCCAATACAGTCTCATTTTCTGTAAAGTTCAACCCACGTGAGCTGCCACACACACTC      1207Nmur1b_Dr d5

D!

MTPLCLNCSVLPGDLYPGGARNPMACNGSAA---RGHFDPEDLNLTDEALRLKYLGPQQTELFMPICATYLLIFVVGAVGNGLTCLVI 85Nmur1_Hs
MV-----------------------CNISEF---KWPYQPEDLNLTDEALRLKYLGPQQMKQFVPICVTYLLIFVVGTLGNGLTCTVI 62Nmur1_Mm
M-------------------------------------EIEDFCLDQDEYLEKYLGPRRSPVFLPVCLTYLLIFLVGAVGNILTCIVI 51Nmur1a_Dr
M-------------------------------------EIEDFCLDQDEYLEKYLGPRRSPVFLPVCLTYLLIFLVGAVGNILTCIVI 51Nmur1a_Dr i11
MIQY--NCSS-PSSLFTVVVNTSW-CSTKEEECQNRTANLSDLCLSRSAYLEKYLGPCRSPFFLPICVTYLLIFVVGVVGNILTCIVI 84Nmur1b_Dr
MIQY--NCSS-PSSLFTVVVNTSW-CSTRRMSKQNSKPIRPLSIPQCLPGEIPWTLSFTFLSAYMCHLPAHLCSRCGGQHPNLYCHYP 84Nmur1b_Dr d5

LRHKAMRTPTNYYLFSLAVSDLLVLLVGLPLELYEMWHNYPFLLGVGGCYFRTLLFEMVCLASVLNVTALSVERYVAVVHPLQARSMV 173Nmur1_Hs
LRNKTMRTPTNFYLFSLAVSDMLVLLVGLPLELYEMQQNYPFQLGASACYFRILLLETVCLASVLNVTALSVERYVAVVRPLQAKSVM 150Nmur1_Mm
AKNKVMRTPTNFYLFSLAISDLLVLLLGMPLELYEMWSNYPFLLGKGGCYFKTLLFETVCFASILNVTALSVERYIAVIHPLRAKYVV 139Nmur1a_Dr
AKNKVMRTPTNFYLFSLAISDLLVLLLGMPLELYEMWSNYPFLLGKGGCYFKTLLFETVCFASILNVTALSVERYIAVIHPLRAKYVV 139Nmur1a_Dr i11
TRHRIMRTTTNYYLFSLAISDLLVLLLGLPLELYELWSNYPFLFGISGCYFKTCLFETVCFASVLNVTALSAERYRAIIHPLHTKHVA 172Nmur1b_Dr
SSHHAHNDKLLPVQPGHF                                                                      102Nmur1b_Dr d5

TRAHVRRVLGAVWGLAMLCSLPNTSLHGIRQLHVP---CRGPVPDSAVCMLVRPRALYNMVVQTTALLFFCLPMAIMSVLYLLIGLRL 258Nmur1_Hs
TRAHVRRMVGAIWVLATLFSLPNTSLHGLSQLTVP---CRGPVPDSAICSLVGPMDFYKLVVLTTALLFFCLPMVTISVLYLLIGLRL 235Nmur1_Mm
TRTHAKRLILSVWSISVLCAIPNTILHGIFTLPPPKGKAAGVMLDSATCMLVKPRWMYNLIIQITTLLFFLLPMLTISVLYLLIGMQL 227Nmur1a_Dr
TRTHAKRLILSVWSISVLCAIPNTILHGIFTLPPPKGKAAGVMLDSATCMLVKPRWMYNLIIQITTLLFFLLPMLTISVLYLLIGMQL 227Nmur1a_Dr i11
TSAHAKRVILVLWAVSLLCALPNTSIHGVEMLKPRFGLT---FPESGVCTVVHDRWIYNLLVQVTALLFFILPMLTISVLYVLIGLQL 257Nmur1b_Dr
                                                                                        102Nmur1b_Dr d5

RRERLLLMQEAKGRGSAAARSRYTCRLQQHDRGRRQVTKMLFVLVVVFGICWAPFHADRVMWSVV-SQWTDGLHL--AFQHVHVISGI 343Nmur1_Hs
RRERMLLQVEVKGRKTAATQETSHRRIQLQDRGRRQVTKMLFALVVVFGICWAPFHADRIMWSLVYGHSTEGLHL--AYQCVHIASGI 321Nmur1_Mm
KREKMLQVLEAKA--SSGLDSSSNVRSQQQKTRRQQVTKMLFVLVVMFGICWAPFHTDRLMWSFMDQKDSEHIEIFEVYEYVHVISGV 313Nmur1a_Dr
KREKMLQVLEAKA--SSGLDSSSNVRSQQQKTRRQQVTKMLFVLVVMFGICWAPFHTDRFR                           286Nmur1a_Dr i11
HRER--ECFDSKI--VLNQDGVN------QRARHRQVTKMLCALVIVFGICWAPFHIDRVMWSYIDDWTAENHHIFE---YVHLLSGV 332Nmur1b_Dr
                                                                                        102Nmur1b_Dr d5

FFYLGSAANPVLYSLMSSRFRETFQEALCLGA-CCHRLRPRHSSHSLSRMTTGSTLCDVGSLGSWVHPLAGN-DGPEAQQETDPS   426Nmur1_Hs
FFYLGSAANPVLYSLMSTRFRETFLQALGLGTQCCHRRQPYHGSHNHIRLTTGSTLCDVGHRNSRDEPLAVN-EDPGCQQETDPS   405Nmur1_Mm
FFYLSSAINPVLYNLMSTRFREMFKEVMCHHK---WRPVPRKRSLSMTRVTVRSTVSDVPPCNGTVTIEGDDYDVDEGQENKTCP   395Nmur1a_Dr
                                                                                        286Nmur1a_Dr i11
FFYLSSVVNPILYNLMSSRFREMFREVVCQKD---------HRQLSMSRVTLRSVVSASFSASNTVSF-SVKFNPRELPHTL      404Nmur1b_Dr
                                                                                        102Nmur1b_Dr d5

E!

Figure 2.2 (continued)
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ATGATGGCCCTGATCTGCCTTTGCGAGTCTGTGAATACATCAGACCAGGATTATGAGTTCTGCAACAGCAGTACGTTCAACTTCACTGG 89Nmur2_Dr
ATGATGGCCCTGATCTGCCTTTGCGAGTCTGTGAATACATCAGACCAGGATTATGAGTTCTGCAACAGCAGTACGTTCAACTTCACTGG 89Nmur2_Dr d17

AAATGACAGTGCACACTGTTACCTTCAGACCATTGATGAAGTTCTGTTTAAGCTTCTGGGCCCAAGACGATCTCCGTTCTTCTTCCCTG 178Nmur2_Dr
AAATGACAGTGCACACTGTTACCTTCAGACCATTGATGAAGTTCTGTTTAAGCTTCTGGGCCCAAGACGATCTCCGTTCTTCTTCCCTG 178Nmur2_Dr d17

TAACCTGTACTTACATCCTCATCTTCATGACCGGGGTCTTAGGAAACCTCCTGACCTGCGCTGTAATCACTAAAGATCGAAAAATGCAA 267Nmur2_Dr
TAACCTGTACTTACATCCTCATCTTCATGACCGGGGTCTTAGGAAACCTCCTGACCTGCGCTGTAATCACTAAAGATCGAAAAATGCAA 267Nmur2_Dr d17

ACTCCCACCAACTTGTATCTCTTTAGCCTGGCCATCTCCGATCTTCTAGTGCTACTCTTCGGGATGCCTCTGGAAATCTACGAACTTTG 356Nmur2_Dr
ACTCCCACCAACTTGTATCTC-----------------CGATCTTCTAGTGCTACTCTTCGGGATGCCTCTGGAAATCTACGAACTTTG 339Nmur2_Dr d17

GCAAAACTACCCTTTTCCCTTCGGCGAGAGCATCTGCTGCTTTAAAATCTTCTTGTTCGAAACAGTTTGCTTTGCTTCCGTGTTAAACG 445Nmur2_Dr
GCAAAACTACCCTTTTCCCTTCGGCGAGAGCATCTGCTGCTTTAAAATCTTCTTGTTCGAAACAGTTTGCTTTGCTTCCGTGTTAAACG 428Nmur2_Dr d17

TCACAGTGCTAAGTGTGGAGCGATACATAGCTGTGATTCACCCGCTCAAAACCCGTTACGCCATCACCAACAAGCACGCTCGAAGGGTC 534Nmur2_Dr
TCACAGTGCTAAGTGTGGAGCGATACATAGCTGTGATTCACCCGCTCAAAACCCGTTACGCCATCACCAACAAGCACGCTCGAAGGGTC 517Nmur2_Dr d17

ATCGCTGGGGTTTGGGCTATGTCTCTGCTCTGCGCCGTCCCGAACACCTCCCTCCATGGCCTGCAGTATCAGTATCTGCCGGAGAGGGT 623Nmur2_Dr
ATCGCTGGGGTTTGGGCTATGTCTCTGCTCTGCGCCGTCCCGAACACCTCCCTCCATGGCCTGCAGTATCAGTATCTGCCGGAGAGGGT 606Nmur2_Dr d17

TCAGGAATCGGCTACCTGCAACCTGCTCAAGCCCAAATGGATGTACAACTTGGTGATCCAGATCACAACTGTGCTCTTCTACTTTGTTC 712Nmur2_Dr
TCAGGAATCGGCTACCTGCAACCTGCTCAAGCCCAAATGGATGTACAACTTGGTGATCCAGATCACAACTGTGCTCTTCTACTTTGTTC 695Nmur2_Dr d17

CCATGATGATGATCAGCGTGCTGTATCTGATGATCGGTCTGACGCTTGGCAGAGGGCAGAAGCAGAAAAAGGACAAGCTGGGAAGCAAT 801Nmur2_Dr
CCATGATGATGATCAGCGTGCTGTATCTGATGATCGGTCTGACGCTTGGCAGAGGGCAGAAGCAGAAAAAGGACAAGCTGGGAAGCAAT 784Nmur2_Dr d17

CACAGCAACGACAGCTGGAAAATCCATCTGGACAGCAGACGGAGAAGGCAGGTCACCAAGATGCACTTTGTGGTGGTATTAGTGTTTGC 890Nmur2_Dr
CACAGCAACGACAGCTGGAAAATCCATCTGGACAGCAGACGGAGAAGGCAGGTCACCAAGATGCACTTTGTGGTGGTATTAGTGTTTGC 873Nmur2_Dr d17

CATCTGCTGGGCTCCGTTCCACATCGACCGGCTCTTATGGAGCTTCATCACCAGTTGGACAGACCACATGCATAACATCTTTGAATATG 979Nmur2_Dr
CATCTGCTGGGCTCCGTTCCACATCGACCGGCTCTTATGGAGCTTCATCACCAGTTGGACAGACCACATGCATAACATCTTTGAATATG 962Nmur2_Dr d17

TGCACATAATCTCCGGCGTGCTCTTCTACCTCAGTTCAGCTGTAAACCCCATAATCTACAACCTGCTTTCCAGCCGCTTCCGGGAACGG 1068Nmur2_Dr
TGCACATAATCTCCGGCGTGCTCTTCTACCTCAGTTCAGCTGTAAACCCCATAATCTACAACCTGCTTTCCAGCCGCTTCCGGGAACGG 1051Nmur2_Dr d17

TTTCAAGCGCTGGTGTGCAGTCGCCTGTCAACTAGATCCTCACGTAATGATTCCATGCCTTTTTACATCATACCCAAAGACCCCCCGAC 1157Nmur2_Dr
TTTCAAGCGCTGGTGTGCAGTCGCCTGTCAACTAGATCCTCACGTAATGATTCCATGCCTTTTTACATCATACCCAAAGACCCCCCGAC 1140Nmur2_Dr d17

TGATTTCAAACGGACTGGA                                                                      1176Nmur2_Dr
TGATTTCAAACGGACTGGA                                                                      1159Nmur2_Dr d17

F!

MSGM----EKLQNA--------SWIYQQKLEDPFQKHLNSTEEYLAFLCGPRRSHFFLPVSVVYVPIFVVGVIGNVLVCLVILQHQAMK 77Nmur2_Hs
MG-------KLENA--------SWI-----HDSLMKYLNSTEEYLAYLCGPKRSDLSLPVSVVYALIFVVGVIGNLLVCLVIARHQTLK 69Nmur2_Mm
MMALICLCESVNTSDQDYEFCNSSTFNFTGNDSAHCYLQTIDEVLFKLLGPRRSPFFFPVTCTYILIFMTGVLGNLLTCAVITKDRKMQ 89Nmur2_Dr
MMALICLCESVNTSDQDYEFCNSSTFNFTGNDSAHCYLQTIDEVLFKLLGPRRSPFFFPVTCTYILIFMTGVLGNLLTCAVITKDRKMQ 89Nmur2_Dr d17

TPTNYYLFSLAVSDLLVLLLGMPLEVYEMWRNYPFLFGPVGCYFKTALFETVCFASILSITTVSVERYVAILHPFRAKLQSTRRRALRI 166Nmur2_Hs
TPTNYYLFSLAVSDLLVLLLGMPLEVYELWHNYPFLFGPVGCYFKTALFETVCFASILSVTTVSIERYVAIVHPFRAKLESTRRRALRI 158Nmur2_Mm
TPTNLYLFSLAISDLLVLLFGMPLEIYELWQNYPFPFGESICCFKIFLFETVCFASVLNVTVLSVERYIAVIHPLKTRYAITNKHARRV 178Nmur2_Dr
TPTNLYLRSSSATLRDASGNLRTLAKLPFSLRREHLLL                                                   127Nmur2_Dr d17

LGIVWGFSVLFSLPNTSIHGIKFHYFPNGSLVPGSATCTVIKPMWIYNFIIQVTSFLFYLLPMTVISVLYYLMALRLKKDKSLEADEG- 254Nmur2_Hs
LSLVWSFSVVFSLPNTSIHGIKFQQFPNGSSVPGSATCTVTKPIWVYNFIIQATSFLFYILPMTLISVLYYLMGLRLKRDESLEADKV- 246Nmur2_Mm
IAGVWAMSLLCAVPNTSLHGLQYQYLPE--RVQESATCNLLKPKWMYNLVIQITTVLFYFVPMMMISVLYLMIGLTLGRGQKQKKDKLG 265Nmur2_Dr
                                                                                         127Nmur2_Dr d17

--------NANIQRPCRKSVNKMLFVLVLVFAICWAPFHIDRLFFSFVEEWSESLAAVFNLVHVVSGVFFYLSSAVNPIIYNLLSRRFQ 335Nmur2_Hs
--------TVNIHRPSRKSVTKMLFVLVLVFAICWTPFHVDRLFFSFVDEWTESLAAVFNLIHVVSGVFFYLSSAVNPIIYNLLSRRFR 327Nmur2_Mm
SNHSNDSWKIHLDSRRRRQVTKMHFVVVLVFAICWAPFHIDRLLWSFITSWTDHMHNIFEYVHIISGVLFYLSSAVNPIIYNLLSSRFR 354Nmur2_Dr
                                                                                         127Nmur2_Dr d17

AAFQNVISSFHKQW-HSQHDPQLPPAQRNIFLTECHFVELTEDIGPQFPCQSSMHNSHLPAALSSEQMSRTNYQSFHFNKT        415Nmur2_Hs
AAFRNVVSPSCK-WCHPQHRPQGPPAQKVIFLTECHLVELTEDAGPQFPCQSSIHNTQLTTVPCVEEVP                    395Nmur2_Mm
ERFQALVCSRLSTRS-SRNDS-MPFY--IIPK-----DPPT-DFKRTG                                         392Nmur2_Dr
                                                                                         127Nmur2_Dr d17

G!
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Figure 2.2 (continued)
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Figure 2.3: Nmu is conserved in zebrafish. A. The zebrafish predicted Nmu peptide
sequence is well conserved from the human Nmu mature peptide. (Schematic modeled after
(Malendowicz et al., 2012). Amino acids are color coded by type: blue=basic, red=acidic,
green=neutral and non-polar, light green=neutral and polar). B-F. Endogenous expression
of nmu transcript in the hypothalamus/pituitary (single arrow), brainstem (double arrow),
and spinal cord (arrowhead) of 24-120 hpf zebrafish. At 24 hpf (B), hypothalamic nmu
neurons are not yet specified. At 5dpf, zebrafish hypothalamic nmu expression differentiates
into a few specific ventral (E) and more dorsal (F) cell clusters. Scale bars=100µm.
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2 bilateral cell clusters occupy discrete regions of the brainstem and spinal cord, and

these clusters persist at 48 and 120 hpf timepoints when additional cells are specified

in the hypothalamus and pituitary. This pattern of expression in 120 hpf zebrafish

larvae accords with tissue distribution of nmu in the adult mammalian central nervous

system in pituitary, hypothalamus, brainstem, and spinal cord, but we did not observe

peripheral expression of nmu in the gastrointestinal or genitourinary tracts, as has

been reported in mammals (Austin et al., 1994, Howard et al., 2000, Szekeres et al.,

2000, Fujii et al., 2000, Ivanov et al., 2002, Graham et al., 2003, Nogueiras et al.,

2006).

We next tested whether Nmu function is evolutionarily conserved. We found that

the locomotor phenotype of zebrafish larvae overexpressing the zebrafish orthologue

recapitulated the increased locomotor activity phenotype induced by human Nmu

overexpression in zebrafish (Figure 2.3 and Figure 2.1). Our observed phenotype

concords with many mammalian studies in which various methods of Nmu admin-

istration results in increased locomotor activity and energy expenditure (Nakazato

et al., 2000, Wren et al., 2002, Novak et al., 2006, 2007, Peier et al., 2009, Semjonous

et al., 2009). Further analysis of zebrafish sleep and wake bout structure revealed

that overexpression of Nmu increases wake bout length and latency to sleep while

reciprocally decreasing sleep bout length and the number of sleep bout transitions.

Thus, the overall effect of Nmu on sleep/wake architecture is to consolidate activity

into periods of prolonged hyperactivity and insomnia in zebrafish (Figure 2.4).

The observed gain-of-function HS-Nmu phenotype predicts that a loss-of-function
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Figure 2.4: Nmu function is conserved in zebrafish A-D. Overexpression of zebrafish
neuropeptide Nmu (HS-Nmu, n=44) induces locomotor activity and insomnia compared to
simultaneously tested wild type siblings (WT, n=43). E-I. Sleep/wake architecture is altered
in HS-Nmu zebrafish.
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Figure 2.5: nmu -/- zebrafish exhibit normal locomotor activity and sleep. A-D.
No significant differences among nmu mutants and wild type fish were observed. E. Reduced
nmu transcript observed in the mutant is indicative of nonsense mediated mRNA decay.

manipulation of Nmu would result in hypoactivity. To test this, we generated a nmu

mutant. This is predicted to be a null mutation because it produces a stop codon

that should truncate the precursor upstream of the predicted Nmu peptide sequence

(Figure 2.2). Furthermore, we observed evidence of nonsense-mediated mRNA de-

cay (NMD) in nmu -/- fish by in situ hybridization analysis (Figure 2.5), suggesting

that prematurely truncated transcripts are degraded before they can be translated

into dominant negative or deleterious gain-of-function proteins (Chang et al., 2007).

However, when we tested these mutants in our locomotor activity assay, we observed

no differences in total locomotor activity or sleep among nmu -/-, nmu+/-, and nmu+/+

siblings(Figure 2.5). This negative result suggests that other redundant mechanisms

that regulate behavioral activity may compensate for the loss of nmu during devel-

opment.
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2.2.3 Nmur2 mediates the Nmu-induced sleep/wake pheno-

type

Next, we asked which Nmu receptors might be involved in regulating sleep/wake

behavior. The zebrafish genome encodes 2 zebrafish Nmur1 orthologues, designated

Nmur1a and Nmur1b, that are 52% and 49% identical to human Nmur1 (Figure 2.2),

and encodes a single orthologue of Nmur2 that is 44% identical to human Nmur2.

Using in situ hybridization analysis, we observed that nmur2 expression is primarily

expressed in discrete clusters in the zebrafish brain, including cell clusters in the

brainstem, hypothalamus and forebrain (Figure 2.6).

We detected more restricted expression of nmur1a in a discrete cluster of hy-

pothalmic cells, and we detected no nmur1b transcript in zebrafish up to 120 hpf.

Thus, like mammals, zebrafish nmur2 expression in CNS is more widespread com-

pared to nmur1 (reviewed by Brighton et al., 2004). Notably, we did not observe

Nmu receptor expression in tissue outside of the CNS in 24, 48, or 120 hpf zebrafish,

whereas in mammals, both nmur1 and to a lesser extent nmur2 are detected in many

peripheral tissues, especially in cells of the gastrointestinal and genitourinary systems.

To test the functional requirement of each of these receptors in mediating the Nmu

overexpression phenotype, we targeted a mutation to each of the 3 zebrafish Nmu

receptor genes, nmur1a, nmur1b, and nmur2 (Figure 2.2). For each of the 3 receptor

mutants, homozygotes, heterozygotes, or wild-types (Genotype factor) were tested

with and without the HS-Nmu transgene (HS-factor) (Figure 2.7 and Figure 2.8).

To determine whether the effects of HS-Nmu were dependent on receptor genotype,
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Figure 2.6: in situ hybridization analysis of Nmur gene transcripts in larval
zebrafish. A-B. Lateral views of distribution of nmur1a and nmur2 at 48 hpf. C. Highly
restricted expression of nmur1a in 5 dpf zebrafish brain. D-F. Widespread but discrete
expression of nmur2 in 5 dpf zebrafish brain, starting from a ventral focal plane (D) and
ending in a more dorsal focal plane (F). Scale bars=100µm.
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Figure 2.7: Nmu-induced hyperactivity and insomnia is mediated by nmur2.
A-I. Zebrafish with a homozygous mutation of nmur2 do not show significantly different
sleep/wake phenotypes compared to wild type, and homozygous mutants do not respond to
Nmu overexpression (compare HS-Nmu positive to HS-Nmu negative). In contrast, control
siblings with heterozygous mutant or homozygous wild-type receptor alleles exhibit Nmu
overexpression phenotypes. Number of subjects: HS-Nmu/+ nmur2 -/- (n=24), HS-Nmu/+;
nmur2+/- (n=42), HS-Nmu/+ (n=25), nmur2 -/- (n=13), nmur2+/- (n=39), WT (n=23).
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we tested for a significant interaction of Genotype and HS factors in each of the

receptor mutants. We observed a significant interaction of nmur2 Genotype x HS

factors, whereas we did not observe significant interaction of nmur1a Genotype x

HS factors or of nmur1b Genotype x HS factors. Importantly, post-hoc pairwise

comparisons revealed significant effects of heat shock in nmur2+/- and in nmur2+/+

fish, but no significant effect of heat shock in nmur2 -/- fish. Thus, at least one wild-

type allele of nmur2 is required to permit HS-Nmu sleep/wake phenotypes, and one

mutant allele of nmur2 is sufficent to diminish the Nmu overexpression phenotypes.

We found no significant main effect of receptor Genotype factor on observed locomotor

activity or sleep, day or night, for any of the three mutated receptor genes, whereas

the HS factor expectedly showed significant increases in locomotion in some of the

pairwise comparisons. To summarize these experiments, we observed that the HS-

Nmu sleep/wake phenotypes require nmur2, but not nmur1a or nmur1b.

Because we identified Nmur2 as a necessary mediator of HS-Nmu locomotor and

sleep phenotypes, we hypothesized that blocking Nmur2 function would result in

hypoactivity and altered sleep structure. Our lack of observed phenotypes in Nmu

and receptor mutants might have been due developmental mechanisms, so rather than

genetically blocking Nmur2 from the start of development, we acutely blocked Nmur2

function in 5 dpf wild-type zebrafish using a specific, pharmacological antagonist of

Nmur2, R-PSOP (Liu et al., 2009). As predicted by our hypothesis, we observed

that R-PSOP decreased locomotor activity and increased sleep in a dose-dependent

manner (Figure 2.9). Notably, Nmur2 antagonism significantly increased transitions
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Figure 2.8: Nmu-induced hyperactivity and insomnia do not require nmur1a
or nmur1b. Zebrafish with homozygous and heterozygous mutations of nmur1a (A,C)
or nmur1b(B,D) respond to Nmu overexpression, indicating that these receptors are not
required for HS-Nmu phenotypes. Number of subjects for nmur1a mutant experiment: HS-
Nmu/+; nmur1a-/- (n=22), HS-Nmu/+; nmur1a+/- (n=9), HS-Nmu/+ (n=22), nmur1a-/-

(n=23), nmur1a+/- (n=54), WT (n=18). Number of subjects for nmur1b mutant experi-
ment: HS-Nmu/+; nmur1b-/- (n=29), HS-Nmu/+; nmur1b+/- (n=43), HS-Nmu/+ (n=25),
nmur1b-/- (n=22), nmur1b+/- (n=39), WT (n=17).

to sleep, such that zebrafish larvae were highly prone to falling asleep during the day

and night. This result concords with our Nmu overexpression data, and together, our

results indicate that the function of endogenous Nmu is to promote and consolidate

wakefulness.

2.2.4 Nmu sleep/wake phenotypes do not require glucocor-

ticoid receptor

The that mechanisms link Nmu signaling via Nmur2 to a behavioral output are not

known. A prominent model first proposed by Hanada et al. (2001) suggests that the

Nmu locomotor phenotypes are a manifestation of the stress response that is mediated

by the hypothalamic-pituitary-adrenal (HPA) axis. The classic molecular pathway of
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Figure 2.9: Dose-dependent effects of Nmur2 antagonism on sleep/wake archi-
tecture. A-D. Zebrafish treated with 200µM or 500µM concentrations of Nmur2 antago-
nist, R-PSOP, exhibit reduced locomotor activity and increased sleep compared to DMSO
(vehicle) controls (n=12 per condition), whereas 100µM R-PSOP is not an effective dose.
E-I. Zebrafish treated with 500µM R-PSOP show altered sleep/wake structure, with a no-
table increase in frequency of sleep transitions(H) during both day and night (n=24 per
condition).
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the HPA axis begins with signaling at corticotropin releasing hormone (Crh) neurons

of the paraventricular nucleus (PVN) of the hypothalamus, and the signaling cascade

eventually results in activation of adrenal cells that initiate glucocorticoid signaling.

Several lines of evidence implicating the HPA axis in Nmu-mediated behaviors include:

1) crh -/- mice do not exhibit behavioral phenotypes that are caused by injection of

Nmu peptide into the brain (Hanada et al., 2003); 2) Nmu injection was found to

increase cfos expression in PVH (Ozaki et al., 2002, Ivanov et al., 2002); 3) among

other regions, hypothalamic PVH contains Nmur2 cells (Raddatz et al., 2000); 4)

Brain administration of Nmu increased plasma corticosterone levels in some, but not

all, reports (Wren et al., 2002, Ozaki et al., 2002, Gartlon et al., 2004); 5) crh-positive

neurons in the PVH are reduced in Nmu-/- mice (Hanada et al., 2004).

Based on predictions from mammalian data and generally well-conserved neu-

roendocrine systems in the larval zebrafish (Herget et al., 2014), we reasoned that the

zebrafish would serve as a good model to test the hypothesis that the Nmu-induced

hyperactivity phenotype requires glucocorticoid receptor, the classical target of the

HPA output cascade. To test this, we analyzed the effect of Nmu overexpression

in fish possessing a null mutation of the glucocorticoid receptor (gr -/-) (Ziv et al.,

2013). Surprisingly, the Nmu overexpression phenotype persists in the gr -/- mutant

(Figure 2.10). This result strongly suggests that Nmu’s behavioral effects are pre-

dominantly mediated by an alternative mechanism from the glucocorticoid receptor.
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Figure 2.10: Nmu sleep/wake phenotypes do not require a key signaling compo-
nent of HPA axis. A-D. Nmu overexpression phenotypes persists in gr−/− glucocorticoid
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tween gr−/− and WT. Number of subjects: HS-Nmu/+; gr -/- (n=29), HS-Nmu/+; gr+/-

(n=46), HS-Nmu/+ (n=29), gr -/- (n=21), gr+/- (n=44), WT (n=17).

2.2.5 Nmu-induced cfos activation in putative brainstem arousal

systems containing crh

Our findings highlight the importance of examining alternative mechanisms by which

Nmu might participate in sleep/wake regulation. We sought to generate new hy-

potheses by analyzing which cell populations are activated by Nmu overexpression.

Expression of cfos or its protein product is widely used as an indicator of activated

neurons, because ligand-binding to neurotransmitter receptors can lead to intracellu-

lar signaling cascades that cause transient cfos expression (Thompson et al., 1995).

Indeed, in vitro numerous functional assays of human and rat recombinant Nmur2

show that the receptor can potently mediate intracellular calcium signaling (reviewed
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by Brighton et al., 2004). Thus, we used cfos expression as a read-out for neurons

that respond to Nmu signaling, both directly and indirectly through Nmu receptor

signaling.

Using a cfos riboprobe, we found that Nmu overexpression activated several dis-

tributed cell populations, particularly in the forebrain and in discrete brainstem areas

(Figure 2.11). Notably, a few clusters of the cfos-positive neurons mapped closely

to nmur2 -positive neurons in the brainstem. We observed comparatively little cfos

expression in brains of non-transgenic siblings that underwent identical heat shock

treatment, suggesting that the cfos labeling observed in HS-Nmu transgenics is spe-

cific to Nmu overexpression and not heat shock treatment.

The approximate anatomical location of the cfos-positive neurons suggested that

they might belong to brainstem populations that promote arousal in vertebrates.

In addition to hypothalamic populations of Crh-positive neurons, in human brains,

Crh-positive neurons have been detected in brainstem arousal nuclei, including the

locus coeruleus, parabrachial nucleus, and pedunculopontine tegmentum. Thus, we

hypothesized that Nmu overexpression might activate some of these brainstem Crh

expressing neurons in zebrafish. To test this, we performed double fluorescent ISH

on brains from HS-Nmu fish and found that the brainstem cfos-positive neurons

colocalized with crh (Figure 2.11). Interestingly, colocalization of cfos and crh was

specific to the brainstem, whereas the hypothalamic crh-positive neurons, which are

homologous to mammalian PVH Crh-expressing neurons of the HPA axis (Herget

et al., 2014), do not colocalize with cfos. This result is consistent with our above



55

A

B

C

D D’ D’’

E’’E’E

F F’ F’’

cfos
crh

cfos cfos + crhcrh

cfos cfos + crhcrh

cfos cfos + crhcrh

cfos

cfos

l

c

l

r c

l
r c

l
r c

c

d

d

m

Figure 2.11: Nmu overexpression activates brainstem crh neurons. A. in situ
hybridization analysis of cfos expression 1 hour after heat-shock induction of Nmu overex-
pression in a 5 dpf HS-Nmu/+ transgenic zebrafish brain. B. In the control condition, the
same heat shock treatment does not elicit the same degree of cfos expression in wild-type
fish. C-F. Double fluorescent in situ hybridization analysis reveals brainstem colocaliza-
tion of cfos and crh expression following Nmu overexpression. A dorsal view of the entire
brain (C) shows brainstem populations of crh that appear to colocalize with cfos (dotted
boxes; upper box imaged at higher magnification in D-F), whereas diencephalic crh expres-
sion does not colocalize with cfos (arrowheads). The brainstem populations are presented
at higher magnification (D), and in orthogonal views (E,F) to demonstrate colocalization.
Scale bars=100um (A-C) and 20um(D-F).
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glucocorticoid receptor mutant experiment, and provides further evidence that the

HPA axis is not a critical mediator of Nmu signaling in arousal behavior.

2.3 Discussion

By combining injection-based gene overexpression with high-throughput locomotor

activity assays, we developed a novel approach to identifying molecular regulators of

zebrafish sleep/wake behavior.

Our design overcomes some typical screen limitations by combining several key

features:

• no mutant/transgenic stable lines, which reduces labor and generation time

• no mapping of gene mutation to behavior, which reduces labor

• no background mutations, which improves chances of phenotype repro-

ducibility

• heat shock inducible, which circumvents phenotype masking by develop-

mental compensation

• uses over expressed secreted proteins, which can produce more robust phe-

notypes compared to haplo-insufficient mutagenesis or tissue-restrictive ap-

proaches

• uses library of >1000 human genes that encode secreted proteins, which

reduces bias compared to a small-scale candidate approach

The collection of inducible overexpression plasmids generated in this study pro-

vides a resource library for the zebrafish research community that can be used to
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identify secreted factors that regulate other behaviors or developmental processes in

zebrafish. Furthermore, our approach could be extended in future studies to iden-

tify additional novel regulators of sleep/wake, for example, by screening for behavioral

phenotypes in fish that over express unannotated open reading frames in the zebrafish

genome.

Our screen identified human Neuromedin U as a candidate regulator of locomo-

tor activity in the zebrafish. Our results show that this basic locomotor function

and the key molecular features of the Nmu system are conserved from mammals to

zebrafish. We further characterized a role for Nmu and its receptor Nmur2 in reg-

ulating sleep/wake architecture in zebrafish. Additionally, our molecular studies of

downstream signaling pathways undermine the idea that Nmu-induced behavioral

phenotypes are manifested as a classical HPA axis-mediated stress response. Instead,

we propose here that Nmu’s role in sleep/wake regulation might be mediated by extra-

hypothalmic Crh neurons that activate brainstem arousal systems (Figure 2.12).

2.3.1 Conserved molecular circuitry and function of Nmu

We found that the gene, expression pattern in the brain, and peptide sequence of

Nmu are well-conserved from mammals to zebrafish. Furthermore, we found that Nmu

overexpression promotes wakefulness and hyperarousal in zebrafish. Compared to the

HS-(human)Nmu transgenic, the HS-(zebrafish)Nmu transgenic exhibited a larger,

more prolonged phenotype. However, it is unclear whether this reflects experimental

variation (note differences in average wild-type activity levels between experiments)
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Figure 2.12: Newly tested and revised hypotheses of Nmu signaling in
sleep/wake behavior. A. Rodent studies propose that Nmu-induced behavioral pheno-
types are mediated by the Crh neurons of the paraventricular hypothalamus (PVH). PVH
is the starting point of the hypothalamic-pituitary axis (HPA), in which glucocorticoids
participate as the final effector molecule of the HPA signaling cascade. B. Our experiments
in zebrafish demonstrate that Nmu’s actions are mediated independently of the glucocorti-
coid receptor (GR), and put forth the hypothesis that sleep/wake behaviors are mediated
by extra-hypothalamic sources of Crh that participate in brainstem arousal systems.
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or differences in dosage or potency of the human versus zebrafish genes. Nonetheless,

our data are completely consistent with the increased physical activity observed in

mammals following acute administration of Nmu peptide (Nakazato et al., 2000, Wren

et al., 2002, Novak et al., 2006, 2007, Peier et al., 2009, Semjonous et al., 2009).

The receptor circuitry is also conserved in zebrafish. In mammals, there are 2

known Nmu receptors. Zebrafish possess 2 orthologues of mammalian nmur1, desig-

nated nmur1a and nmur1b, and 1 orthologue of mammalian nmur2. Similar to mam-

malian receptor gene expression, zebrafish nmur2 is highly enriched in widespread

yet specific regions of the brain, whereas nmur1a is sparsely expressed in the brain

(Gartlon et al., 2004). We did not observe nmur1b expression at stages up to 120 hpf.

The effects of Nmu administration on physical activity are absent in Nmur2 knockout

mice, indicating that Nmur2 is required to mediate Nmu-induced locomotor activity

(Peier et al., 2009, Zeng et al., 2006). Similarly, we find that locomotor phenotypes

induced by Nmu overexpression is abolished by nmur2 -/- null mutation, whereas Nmu

overexpression-induced hyperactivity persists in nmur1a -/- and nmur1b-/- mutant fish.

Thus, the role of Nmur2 as the primary mediator of Nmu-induced locomotor activity

is conserved from mammals to zebrafish.

2.3.2 Role of Nmu/Nmur2 in regulating sleep/wake archi-

tecture

Our analyses of sleep/wake architecture further refine Nmu’s previously established

role in regulating physical activity in mammals. We found Nmu overexpression consol-
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idates waking bouts into periods of prolonged hyperactivity and shortens and reduces

initiations to sleep. The effect of Nmu on sleep/wake architecture has not been ex-

tensively examined in other species, but our results are consistent with the effect of

Nmu acute icv injection on sleep/wake of rats, namely prolonged wakefulness and

disrupted sleep (Ahnaou & Drinkenburg, 2011).

Our study is the first to examine the role of Nmu receptors in regulating sleep/wake

architecture. Although the rodent study by Ahnaou & Drinkenburg (2011) proposed

that their central administration of Nmu peptide likely targeted the brain-expressed

Nmur2, they were unable to rule out the possibility that these effects could be medi-

ated by nmur1 (which has been detected in the rodent brain, albeit at lower abun-

dance), or that administered Nmu could target peripherally expressed receptors, or

that their results might reflect endocrine signaling mechanisms downstream of Nmur2

or Nmur1. In this study, we found that neither nmur1a -/- nor nmur1b-/- fish exhibit

abnormalities in sleep/wake architecture. Importantly, we found that Nmu over-

expression does not disrupt sleep/wake architecture in nmur2 -/- fish, but that the

Nmu-induced sleep/wake phenotypes persist in nmur1a -/- and nmur1b-/- fish. Thus,

we have ruled out Nmur1a and Nmur1b as required mediators of Nmu-disrupted

sleep/wake architecture. We also observed for the first time that direct disruption of

Nmur2 signaling in wild-type fish by Nmur2 antagonist R-PSOP (Liu et al., 2009)

resulted in a dose dependent increase in sleep, as well as increases in the number of

sleep transitions. These experiments indicate that the function of endogenous Nmu

signaling is to promote and consolidate the wake state. Given the prevalence of insom-
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nia in sleep disorders (Colten & Altevogt, 2006), Nmur2 antagonists such as R-PSOP

could fulfill an unmet therapeutic need for individuals who have difficulty initiating

or maintaining sleep.

Although we did not observe a locomotor phenotype in nmur2 -/- mutant fish (or

in nmur1a -/- or nmur1b-/- fish) the sleep/topor phenotype produced by RPSOP is

consistent with the overexpression phenotype. Similar to our findings in zebrafish,

no locomotor phenotypes were observed in nmur2 -/- mice. We also did not observe

a locomotor phenotype in the nmu mutant. This particular result was somewhat

surprising because of the Nmu overexpression phenotype, and because mice possessing

a null homozygous mutation of nmu exhibit more than a 50% decrease in locomotor

activity (Hanada et al., 2004).

In zebrafish, the aforementioned discrepancies between the observed locomotor

phenotypes in inducible models and the lack of locomotor phenotypes in develop-

mental experiments might be explained partly by developmental changes that com-

pensate for the constitutive loss of nmur2. Notably, the lack of observed behavioral

phenotypes in our developmental loss of function models underscores the advantage

of using an inducible system to identify hits in a phenotypic screen. A similar dis-

crepancy exists among mammalian studies, in which pharmacological application of

Nmu increased locomotor activity, whereas a transgenic mouse with constitutive nmu

overexpression did not exhibit any locomotor phenotypes (Kowalski et al., 2005).

Alternatively, the inducible manipulations might engage different mechanisms than

chronic manipulations that could affect development.
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2.3.3 A revised hypothesis of Nmu downstream signaling

mechanisms

Multiple lines of evidence in mammalian systems point to a role for CRH as an es-

sential effector of hyperactivity and anorexia of Nmu-treated rodents. Hanada et al.

(2001) first predicted that Nmu’s effects might be mediated by glucocorticoid signal-

ing via the HPA axis. Additionally, a number of studies have linked the Nmu system

to HPA axis signaling (reviewed by Malendowicz et al., 2012), although whether the

endocrine effects are primary to Nmu administration and whether the effects seen

in in vitro and peripheral administration studies are recapitulated by the actions of

endogenous brain sources of Nmu remain unclear. The zebrafish is a useful system

to study HPA axis signaling, and glucocorticoid signaling and the physiological role

of glucocorticoid signaling in mediating stress is already present at early embryonic

stages of zebrafish (Wilson et al., 2013). In this study, we found that Nmu overex-

pression phenotype functions independently of a functional glucocorticoid receptor

in zebrafish. This result conflicts with the hypothesis that Nmu behaviors are mani-

fested as a classical HPA stress response. However, it is important to point out that

the mammalian and zebrafish data are not at odds because no one has tested whether

GR is necessary for Nmu phenotypes in mammals. Together with data from mam-

malian literature, this study underlines the importance of testing other candidate

mechanisms that may function downstream or parallel to Crh. The requirement of

Crh for the Nmu-induced hyperactivity has not yet been tested in zebrafish, but based

on the high degree of similarity of the Crh system and HPA axis between zebrafish
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and mammals, we think it is reasonable to make this tentative assumption for the

purposes of formulating some testable models.

Thus, assuming Crh is required for the zebrafish locomotor phenotype, there are

2 main alternative hypotheses to be tested. In one scenario, Nmu-induced sleep/wake

phenotypes are mediated via alternative signaling pathways downstream of the HPA

axis, such as glucocorticoid signaling at the mineralocorticoid receptor. This may

be tested in the same manner as our gr mutant experiment. In a second scenario,

Nmu’s actions on locomotor behavior are mediated by HPA axis-independent, extra-

hypothalamic Crh neurons that, though understudied, are well-documented. Again,

this may be tested by loss-of-function manipulations to identify specific Crh popu-

lations that are required for Nmu to produce a phenotype. However, more precise

techniques are needed to restrict manipulations at the neuron level as opposed to the

genomic manipulations performed in this study.

So far, our data on HS-Nmu induced cfos expression support the second hypothe-

sis, although it is possible that there are parallel mechanisms, and our data do not rule

these out. Our key observation is that Nmu overexpression results in specific activa-

tion of brainstem Crh nuclei, as well as strong activation within the forebrain. What

does this cfos activation patterns suggest about Nmu mechanism? It is tempting

to speculate that Nmu overexpression coordinates the activation of forebrain arousal

via activation of Crh neurons participating in the ascending pathways of brainstem

arousal nuclei. Indeed, Crh is expressed in the locus coeruleus and parabrachial nu-

clei of mammals, and Crh has been shown to directly activate arousal-promoting
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noradrenergic neurons of the locus coeruleus. Furthermore, central or systemic Crh

administration increases wakefulness and decreases sleep in rats (Ehlers & Kupfer,

1987, Marrosu et al., 1990).

Future studies that colocalize Nmur2 with Cfos, Crh, and other neurons are

required to determine which are the direct and relevant Nmu signaling pathways.

Thanks to the optical transparency of the larval zebrafish, one possible approach is

to non-invasively photo-ablate Crh neurons with a genetically-encoded fluorescent re-

porter. The requirement of brainstem Crh neurons in mediating Nmu overexpression

phenotypes may be tested in this manner. A potential downside of this approach is

that photo-ablation that targets Crh neurons might unintentionally extend to abla-

tion of neighboring cell populations or passing neurites, but this can be determined

empirically in future experiments. Additionally, more specific manipulations of Nmu

neurons (as opposed to ubiquitous overexpression of the Nmu gene) will help to dissect

the Nmu circuit.

2.3.4 Zebrafish as a minimalist model to dissect physiological

functions of brain Nmu system

Although the present study provides evidence for a role of Nmu in regulating sleep/wake

behavior, studies in other systems implicate Nmu in diverse physiological and patho-

physiological roles, including energy homeostasis, stress, circadian rhythm, smooth

muscle contraction, immunity, bone formation, gut ion transport, cardiovascular func-

tion, obesity, inflammation, and cancer (reviewed by ?). The many physiological
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functions attributed to Nmu are not surprising considering the many diverse tissues

in which Nmu and receptors have been detected. In mammals it has been particu-

larly difficult to determine the relative contributions of central or peripheral sources

of Nmu to various physiological functions.

In this study, we observed CNS-restricted expression of nmu and receptors in

the larval zebrafish. Although we cannot rule out the possibility that our in situ

hybridization method lacked sensitivity or access to specific tissues (e.g. the spinal

cord is known to be difficult to stain in whole mount developmental stages later than

72 hpf), in our hands, no peripheral expression of nmu or receptors was observed

even in 48 hpf zebrafish, when trunk and spinal cord tissues are readily stained in

whole-mount preparations. Of particular note, we observed that nmur1a expression is

highly restricted to a single bilateral cluster; at 5 dpf we observed only 10 neurons in

the hypothalamus. This is a striking result because mammalian nmur1 is also very

sparsely expressed in the brain, but it is overwhelmingly represented in peripheral

tissues. Although further histological work is needed to determine the level and the

developmental timing of CNS-restricted expression of Nmu and receptors in zebrafish,

we tentatively suggest that larval zebrafish may serve as a useful, minimalist Nmu

system to clarify the specific role of Nmu in the central nervous system independently

of peripherally expressed Nmu.
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2.3.5 Outlook

In summary, our findings here provide potential insights for re-interpreting mam-

malian data and highlight the need to identify alternative pathways through which

the neuropeptide Nmu and its receptor Nmur2 act within the central nervous sys-

tem to regulate sleep and arousal. The conserved yet simple zebrafish Nmu system

may provide experimental advantages, and development of new tools to specifically

target and manipulate Nmu neurons in the behaving fish would help to dissect the

downstream signaling mechanisms. More generally, our findings here demonstrate a

productive screening and follow-up approach to identifying and clarifying the roles of

neuropeptides in modulating behavior.
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Chapter 3

A chemigenetic tool to manipulate
neurons in behaving zebrafish

The complexity of mammalian neural circuits and the difficulty of manipulating

these circuits present major challenges in deciphering the neural mechanisms that

regulate sleep and arousal. In contrast, the conserved yet relatively simple nervous

system of zebrafish larvae presents an opportunity to characterize the basic neural

mechanisms that regulate vertebrate sleep.

A variety of transgenic tools have recently been developed that allow the stimu-

lation or inhibition of genetically defined neural populations. So-called optogenetic

tools allow genetically specified neurons to be stimulated or inhibited by specific wave-

lengths of light (Mattis et al., 2012). In principle, zebrafish larvae are well suited for

this technology due to their optical transparency, which is a significant advantage over

non-transparent organisms such as rodents, which typically require the use of fiber

optics to deliver light to specific brain regions. Indeed, this technology has been used

to functionally characterize the roles of specific neurons in sensory and motor control

in restrained zebrafish larvae (Arrenberg et al., 2009, Douglass et al., 2008, Wyart
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et al., 2009). However, zebrafish larvae exhibit robust behavioral responses to the

light stimulus, which can be problematic for experiments using freely behaving larvae

(Zhu et al., 2009). Alternative approaches using transgenes that modulate neural

activity in the presence of specific small molecules (Alexander et al., 2009, Arenkiel

et al., 2008, Magnus et al., 2011, Szobota et al., 2007) or at specific temperatures

(Pulver et al., 2009) avoid the confounding effects of light, but have yet to be tested

in zebrafish.

3.1 Experimental Procedures

3.1.1 Generation of transgenic zebrafish

Tg(hcrt:TRPV1-RFPT): The rat TRPV1 channel containing the E600K mutation,

which increases sensitivity to capsaicin by over 10-fold (Jordt et al., 2000), was fused

to TagRFP-T (Shaner et al., 2008) and cloned downstream of the zebrafish 1 kb hcrt

promoter (Faraco et al., 2006). The entire cassette was flanked by Tol2 transposase

arms. Transgenic lines were generated using the Tol2 transposase method (Takayasu

et al., 2006).

3.1.2 Drug treatment

Just prior to treatment, working concentrations of 1µM or 10µM Capsaicin (Csn,

Sigma) were diluted into embryo medium E3 from a frozen stock of 100mM Csn in

dimethyl sulfide (DMSO). All treatment conditions contained a final concentration
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of 0.05% DMSO. In behavior experiments, larvae were treated with Csn just prior to

lights-off at the start of the behavioral assay.

3.1.3 in situ hybridization and immunofluorescence

Zebrafish samples were fixed in 4% paraformaldehyde/PBS for 12-16 hours at room

temperature. Fluorescent in situ hybridizations were performed using 2,4-dinitrophenol.

(DNP)-labeled riboprobes and the TSA Plus DNP System (PerkinElmer, Wellesley,

MA). Plasmid containing cfos (genbank clone CA787334, 870 bp) expressed sequence

tag was used for riboprobe synthesis.

3.1.4 Locomotor Behavioral Assay

Larval zebrafish were raised on a 14 hour:10 hour light:dark cycle at 28.5◦C with

lights on at 9 am and off at 11 pm. In brief, individual larvae were placed into each

well of a 96-well plate (7701-1651, Whatman) containing 650 µL E3 embryo medium.

Locomotor activity was monitored for 72 hours using an automated videotracking

system (Viewpoint Life Sciences) with a Dinion one-third inch Monochrome camera

(LTC0385, Bosch) fitted with a fixed-angle megapixel lens (M5018-MP, Computar)

and infrared filter. The movement of each larva was recorded using the quantiza-

tion mode, and data from two cameras were simultaneously collected by one com-

puter. The 96-well plate and camera were housed inside a custom-modified Zebrabox

(Viewpoint Life Sciences) that was continuously illuminated with infrared lights and

illuminated with white lights from 9 am to 11 pm. The 96-well plate was housed



70

in a chamber filled with recirculating water to maintain a constant temperature of

28.5◦C. The parameters used for detection were: detection threshold, 29; burst, 15;

freeze, 3; bin size, 60 seconds. Data were processed using custom PERL and Matlab

(The Mathworks, Inc) scripts. Definitions of sleep/wake parameters are described by

Prober et al. (2006).

3.2 Results

In this study, we set out to develop a chemigenetic technique that could be used to

activate genetically-specified neurons and to elicit changes in the sleep/wake behavior

of larval zebrafish. We chose to use the rat transient receptor potential cation channel

subfamily V member 1 (TRPV1), which is a cation channel that is activated by the

small molecule capsaicin (Caterina et al., 1997). Rat TRPV1 offers a potentially

elegant way to non-invasively and specifically target neurons in zebrafish, because the

zebrafish TRPV1 ortholog contains a mutation that renders it insensitive to capsaicin

(Jordt & Julius, 2002, Gau et al., 2013). Therefore, we expected that in zebrafish,

only genetically-specified neurons which express the rat TRPV1 should be activated

by capsaicin treatment. Furthermore, because larval zebrafish have not yet developed

a blood-brain barrier, we could easily use non-invasive bath application of capsaicin to

activate TRPV1-expressing neurons without disruption to fish sleep/wake behavior.
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3.2.1 Generation of a Hcrt-TRPV1 transgenic zebrafish

Our motivation for this study was to develop a tool which could be used to study the

neural circuitry of sleep in zebrafish. Therefore, we targeted TRPV1 to neurons that

express Hypocretin (Hcrt), a neuropeptide which was previously demonstrated to

regulate sleep/wake behavior in larval and adult zebrafish (Prober et al., 2006, Elbaz

et al., 2012, Yokogawa et al., 2007). We generated a transgenic line Tg(hcrt:TRPV1-

RFPT), that expresses a fusion protein of rat TRPV1 and red fluorescent protein

under control of the Hcrt promotor (Figure 3.1). We characterized the TRPV1 ex-

pression in our transgenic line by colocalizing RFPT expression with the previously

established Hcrt neuron fluorescent reporter line, Tg(hcrt:GFP) (Prober et al., 2006).

We detected TRPV1-RFPT in 85% of GFP-positive Hcrt neurons. Conversely, we

detected GFP in 95% of TRPV1-RFPT-positive neurons. Thus, our Tg(hcrt:TRPV1-

RFPT) zebrafish line shows nearly comprehensive and highly specific expression of

the transgene in Hcrt neurons.

3.2.2 TRPV1-dependent activation of Hcrt neurons

After confirming the specific expression of TRPV1 in our transgenic line, we next

asked whether we could activate Hcrt neurons with TRPV1. Using cfos expression

as a readout of neuronal activation, we found that 10µM and 1µM doses of capsaicin

could activate over 95% of Hcrt neurons (Figure 3.2). In our wild-type negative control

conditions, we detected little to no cfos activation in Hcrt neurons after treatment

with capsaicin. As an additional negative control, we showed that when Hcrt neurons
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Figure 3.1: Expression of TRPV1-RFPT in zebrafish Hcrt neurons. A-C. A repre-
sentative sample of Tg(hcrt:TRPV1-RFPT) expression. Images show a maximum intensity
projection of a 50µm thick confocal z-stack. Pseudo-colored images show the confocal red
(TRPV1-RPFT) channel (A), green (GFP) channel (B), and both channels merged (C). D.
RFPT-positive and GFP-positive cell counts in double transgenic Tg(hcrt:TRPV1-RFPT)
and Tg(hcrt:GFP) fish and a comparison to control single transgenic Tg(hcrt:GFP) fish.
Scale bar =20µm.
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are activated with a 10µM dose of capsacin in the Tg(hcrt:TRPV1-RFPT) line, a

neighboring population of neurons (Qrfp) that does not express Hcrt or TRPV1

shows little to no activation. Thus, we show that it is possible to specifically activate

Hcrt neurons in the newly established transgenic line.

3.2.3 Dose-dependent ablation of Hcrt neurons

In the aforementioned cfos activation experiment, we noticed a hint of abnormal

morphology in the Hcrt neurons that were activated by a 10µM capsaicin dose (Fig-

ure 3.2). Specifically, TRPV1-positive, 10µM capsaicin-activated Hcrt neurons exhib-

ited slightly bloated somas and blebby neurites, which are indicative of deteriorating

cellular integrity. We reasoned that this might be a specific result of hcrt:TRPV1-

dependent excitation at 10µM capsacin because we did not observe this abnormal mor-

phology in Hcrt neurons treated with 1µM capsaicin, or in Qrfp neurons treated with

10µM capsaicin. We wondered whether a more prolonged activation using TRPV1

plus 10µM Capsaicin might be a useful tool to ablate neurons, so we performed a 24

hour time course of Hcrt cell number to test this.

We found that indeed, there was a dose-dependent ablation of Hcrt neurons (Fig-

ure 3.3). At 10µM capsaicin dose, 50% of Hcrt-GFP neurons were absent within 1

hour of capsaicin treatment. After 24 hours, 60% of Hcrt-GFP neurons were absent.

We suspect this is an underestimate of the number of ablated cells due to persis-

tence of GFP because an assay of Hcrt neurons by immunohistochemical detection

of endogenous protein showed 80% of cells were absent after the same treatment of
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Figure 3.2: Specific activation of Hcrt neurons in the TRPV1 transgenic. A-J.
Representative images of Hcrt (A-H) or Qrfp (I-J) neuron morphology, detected by anti-
GFP IHC (pseudo colored green), and cfos expression, detected by fluorescent ISH (pseudo
colored magenta), in TRPV1-positive (TRPV1+, A-B, E-F, I-J) or -negative (TRPV1-,
C-D, G-H) larval zebrafish brains after a 20-minute dose of 10µM (A-D, I-J) or 1µM (E-H)
capsaicin. Whole brain (A,C,E,G,I, Scale=100µm) and higher magnification views of the
boxed areas (B,D,F,H,J, Scale=20µm) are oriented rostral=left and caudal=right. Images
are maximum intensity projections of 40µm total thickness confocal z-stacks. K. Summary
quantification of average fraction of cfos-positive cells from the conditions shown in A-J.
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10µM capsaicin for 24 hours. This effect was not due to the capsaicin itself, because

the 10µM capsaicin dose did not affect the Hcrt cell numbers in TRPV1-negative

fish. Importantly, 1µM capsaicin did not reduce Hcrt cell numbers, even though we

observed activation of neurons at 1µM capsaicin in the previous experiment. There-

fore, we serendipitously ended up with a single tool with two applications: neuronal

activation at 1µM capsaicin, and neuronal ablation at 10µM capsaicin.

3.2.4 TRPV1 activation of Hcrt neurons produces behavioral

arousal and insomnia

Next, we tested whether activation and ablation of Hcrt neurons with TRPV1 results

in behavioral phenotypes that are predicted by respective GOF and LOF models of

Hypocretin function. Because the effects of genetic activation and ablation of the Hcrt

neurons have been characterized in larval zebrafish, we used the behavioral readouts

of previous studies to test the functionality of our TRPV1 transgenic.

Previously, Prober et al. (2006) used a Hcrt genetic overexpression model to es-

tablish that the zebrafish Hcrt system promotes wakefulness and arousal in larval

zebrafish. Thus, we hypothesized that activation of Hcrt neurons with TRPV1

would result in phenotypes similar to those observed in the Hcrt overexpression

model. Indeed, we found that activation of Hcrt neurons using 1µM capsacin in

the hcrt:TRPV1-RFPT transgenic resulted in significantly increased locomotor ac-

tivity, decreased sleep, hyperactivity, and lower propensity to initiate a sleep bout

(Figure 3.4).
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Figure 3.4: TRPV1 activation and ablation of Hcrt neurons in behaving ze-
brafish. A-F. Behavioral phenotypes following activation of Hcrt neurons with 1µM Csn
in hcrt-TRPV1-RFPT (magenta) zebrafish and comparison phenotypes of WT siblings iden-
tically treated and simultaneously recorded. G-L. Behavioral phenotypes following ablation
of Hcrt neurons with 1µM Csn in hcrt-TRPV1-RFPT (magenta) zebrafish and compar-
ison phenotypes of WT siblings (black) that were identically treated and simultaneously
recorded. Scale=50µm.
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3.2.5 TRPV1 ablation of Hcrt neurons produces torpor and

narcolepsy-like behavior

A genetic model of Hcrt ablation in larval zebrafish predicts that ablation of Hcrt neu-

rons by 10µM capsaicin should reduce activity and increase sleep transition number,

i.e. fragment sleep/wake (Elbaz et al., 2012). Indeed, we observed significant de-

creases in locomotor activity, increased sleep, and more frequent day time initiations

of sleep following 10µM capsaicin/TRPV1-mediated ablation of Hcrt neurons (Fig-

ure 3.4). Strikingly, the zebrafish neuron ablation phenotype resembles narcolepsy in

humans, which is a pathological condition associated with pronounced reductions in

Hcrt cell number.

3.3 Discussion

In this study, we validate the use of TRPV1 channels for specific activation and

ablation of neurons in behaving zebrafish. This technology offers some important

advantages over optogenetics, namely that this chemigenetic technique can be used

without disruption to sleep behavior or other light-dependent behaviors. We also

anticipate that this technology will play a complementary role with existing genetic

methods that report neuronal activity by release of light. For example, aequorin, a

luminescent Ca2+ indicator, has recently been developed to report the activity of

neurons in behaving zebrafish (Naumann et al., 2010). Additionally, TRPV1 can be

used in combination with fluorescent Ca2+ indicators such as GCaMP, whose use in
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combination with optogenetic tools such as ChR2 is complicated by the ability of blue

light to both activate ChR2 and excite GCaMP fluorescence. It will be interesting

to use our newly established hcrt:TRPV1-RFPT transgenic in conjunction with such

reporters of neural activity to understand how Hcrt neurons affect other neural circuits

and behavior. Likewise, it will be interesting to study how Hcrt neuron signaling

during behavior is altered by the activation of pre-synaptic neuron populations using

TRPV1. More generally, the chemigenetic technology developed in this proof-of-

principle study provides a springboard for future studies to characterize neural circuits

and the behaviors that they regulate.
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Chapter 4

Conclusion

Why and how we sleep is an enduring mystery. To understand the function and

regulation of sleep, we need to identify the key players and develop and employ

methodologies to interrogate the relevant brain systems. This thesis represents two

of the studies that I conducted in graduate school to tackle these broad issues. In

these concluding remarks, I will briefly summarize and discuss the significance of my

results, and I will propose a few directions for future research.

4.1 Significance of results

4.1.1 Discovery of a new sleep/arousal pathway

In Chapter 2, I described the discovery and characterization of a new regulatory mech-

anism of sleep, the Neuromedin U/ Nmur2 pathway. In characterizing this pathway

and downstream components in zebrafish, we found evidence that argues against the

previously proposed hypothesis that Nmu signaling with respect to behavior is man-

ifested as a stress response that is mediated by the hypothalamic-pituitary-adrenal
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axis. Instead we found new evidence that Nmu signaling may be mediated by arousal

centers in the brainstem. Thus, the main contribution of this work is that it identifies

a sleep-regulating circuit and generates new testable predictions about how sleep is

regulated by this circuit. Secondarily, we found that the larval zebrafish represents

a conserved but much simpler model of the vertebrate Nmu system, because in ze-

brafish, Nmu and its receptors do not appear to be represented in the periphery as in

mammals. This observation therefore identifies the zebrafish as a useful comparative

model to clarify the relative contributions of central and peripheral Nmu in other

aspects of animal physiology in which it has been implicated.

4.1.2 Development of a new technology to functionally dis-

sect sleep/arousal pathways in zebrafish

The study described in Chapter 2 highlighted a need for more precise methodologies to

manipulate neural circuitry underlying sleep. However, the currently available tools

in zebrafish preclude the study of sleep behavior because they are either invasive

(e.g. electrophysiology) or require visible light which disrupts sleep behavior (e.g.

optogenetics). Thus, in a study described in Chapter 3, we addressed this need by

developing a chemigenetic method. Our method employs a cation channel that is

activated by a behaviorally non-disruptive chemical to manipulate neurons that are

specified by genetics. We validated this technique and performed proof-of-principle

assays to show that this technology can be used in the freely behaving fish. Although

our motivation for developing this technology was to enable future studies of sleep
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neural circuitry in zebrafish, our method has broad applications in any zebrafish

neurobehavioral studies, with a particular advantage for the study of light-dependent

behaviors, such as feeding (zebrafish primarily use vision to hunt for food).

4.2 Future directions

The work here generates numerous avenues of future research, and I will describe just

a few of the possibilities here.

4.2.1 Identifying functionally connected sleep/wake circuits

Our study in Chapter 2 opened up a clear line of research questions regarding the

neuronal and genetic mechanisms that are downstream of the Nmu/Nmur2 sleep reg-

ulation pathway. One important question that we hope to address with the newly

developed zebrafish TRPV1 technology is which neurons are functionally connected

to the Nmu/Nmur2 sleep regulatory circuit. A starting point would be to reproduce

the HS-Nmu cfos results using the TRPV1 method. The steps would be to 1) identify

an Nmu gene enhancer region that can drive expression in endogenous Nmu neurons,

2) create a Tg(nmu:TRPV1) that expresses TRPV1 in Nmu neurons, and 3) deter-

mine which neurons are activated by Nmu neuron activation. Our hypothesis is that

activation of Neuromedin U neurons will phenocopy the ubiquitous overexpression of

Neuromedin U. Thus, we expect to see that in addition to Nmu neurons themselves,

brainstem Crh neurons and neurons in the forebrain are activated. Any differences

in cfos expression patterns that are observed following HS-Nmu versus nmu:TRPV1
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induced activation might be interpreted as off-target (in the case of HS-Nmu specific

signals) versus endogenous circuit-related, since the nmu:TRPV1 experiment should

be more restricted in its activation. Also, colocalization of nmur2 to any cfos positive

neurons will help to identify which neurons are likely directly or indirectly activated

by Nmu neurons or Nmu overexpression.

If this initial step is confirmed, it will be interesting to use additional types of

neural activity reporters other than cfos, because cfos expression is transient and

does not give a comprehensive picture of the identities of neurons that respond with

a longer or delayed time course of activation following a stimulus such as TRPV1.

Also, in some types of neurons, cfos is thought to be completely uncorrelated or anti-

correlated with neuron depolarization. Generally speaking, the best way to directly

record systems-level neural activity is to use electrophysiology, but this has not been

successful in the larval zebrafish for reasons of scale incompatibility between larval

zebrafish brains and current electrode technology. As an alternative, a promising

way to search brain-wide for neurons that are functionally connected to Nmu neurons

is a recently developed in vivo zebrafish whole-brain functional imaging approach.

This technology delivers single-cell resolution of zebrafish whole-brain activity using

genetically-encoded calcium indicators. By combining these with our TRPV1 tech-

nology, we could potentially capture brain-wide responses to nmu:TRPV1 activation

in order to identify which groups of neurons are activated by Nmu neurons over

behaviorally relevant time scales.

Many more iterations of the reductionist approaches described in Chapter 2 and in
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this section will eventually define the essential players in the Nmu/Nmur2 pathway.

We anticipate that most of the genes in the zebrafish genome will be mutated in

the next several years, and it will be straightforward to test whether any additional

candidate genes, such as Crh, are required for Nmu overexpression to alter sleep

behavior. Furthermore, as new zebrafish enhancers are identified, it will be possible

to test more specific hypotheses about which particular populations of neurons, such

as which Crh neurons, contribute to Nmu-mediated sleep and arousal behavior.

4.2.2 Identifying mechanisms of diurnal rhythms in zebrafish

As a diurnal vertebrate with excellent gene-editing resources, the zebrafish serves as

a useful comparative system to the genetics-friendly, nocturnal mouse and the non-

genetics-friendly, diurnal human. A research question that follows from this thesis

is how is the Nmu sleep/arousal regulatory pathway itself regulated with regards to

circadian activity patterns. An intriguing clue is that nmu transcription has been

observed to be negatively regulated by melatonin, a neuromodulator which itself is

negatively regulated by light. Thus, a simple model of how diurnal rhythms might

be mediated by melatonin regulation of Nmu signaling in the zebrafish might be that

during night time, high levels of melatonin inhibit Nmu production, which in turn

suppresses the behavioral effects of Nmu signaling in promoting arousal. In the day

time, negative regulation of Nmu is turned off, and thus the Nmu signaling pathway

can actively promote arousal. Indeed, preliminary data show that in zebrafish, nmu

expression is stronger during the day than in the night. Thus, it will be interesting
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to test this hypothesis in the diurnal zebrafish using its vast armory of genetic and

molecular tools. Indeed, the contribution of this pathway to regulating circadian

behavior may be underestimated in mice because commonly used laboratory mouse

strains produce little or no melatonin.

4.2.3 Next generation screen designs

Our genetic screen was successful in identifying an exciting avenue of sleep circuit re-

search, but the hunt for additional sleep regulators continues. Next generation screen

designs could extend the present screen of 1000 human secreted proteins by screening

through unannotated regions of the zebrafish genome. This approach might be better

suited for identifying any as yet unidentified secreted proteins that regulate sleep, and

testing of zebrafish rather than human genes may yield more robust phenotypes in

zebrafish. Another potential screen design is to use the TRPV1 activation/ablation

technology developed here in combination with a bipartite driver/effector system,

such as GAL4/UAS. The idea would be to screen through any GAL4 driver lines to

identify enhancer-defined cells that produce an abnormal behavior when activated

or ablated in the presence of capsaicin and a UAS:TRPV1 effector. This approach

offers at least three important advances over our present heat-shock overexpression

screen: 1) The use of GAL4 drivers should be useful for identifying sleep-regulating

neural circuits that are not defined by genes encoding secreted proteins. However,

the interpretation of the results might be limited by the specificity of expression of

any given GAL4 driver; 2) The use of a UAS:TRPV1/capsaicin inducible system is
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more behaviorally inert compared to heat shock overexpression, and this may be use-

ful to study more nuanced aspects of sleep and arousal (e.g. free running circadian

rhythms) that might be otherwise disturbed by a 1 hour heat shock treatment; 3) The

UAS:TRPV1 transgene potentially offers both a gain-of-function and loss-of-function

effector using the same zebrafish transgenic line. This 2-in-1 deal is advantageous

both for practical reasons (cost/labor/efficiency benefits) and for scientific reasons

(robust results are more easily obtained when experiments are well-controlled). All

in all, we expect that TRPV1 will serve as an excellent next step for genetic screens

for sleep regulators. Also, although I think sleep is a particularly fascinating topic to

study, the approaches described here should be easily applied to other behavioral or

non-behavioral phenotypic assays in zebrafish.

4.2.4 Differentiating different forms of sleep or arousal states

and their neural mechanisms

A common theme among neuromodulatory systems is that they play multiple over-

lapping roles in regulating animal physiology. For example, in mammals and now

in zebrafish, Neuromedin U and Hypocretin are both known to promote arousal.

Additionally, in mammals, it is also known that these two arousal neuropeptides

play opposite roles in feeding: Neuromedin U is anorexigenic, whereas Hypocretin is

orexigenic. These differences are a major clue that Neuromedin U and Hypocretin

systems engage different mechanisms to regulate behavior, and that they may also

mediate distinct forms of sleep/arousal. In the future, it will be interesting to ask
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if, how, and why there are different sleep/arousal states by studying the overlapping

and unique functional and mechanistic aspects of neuromodulatory arousal systems

such as Hypocretin and Nmu.

A straightforward extension of the approaches used in this thesis would be to study

how heat-shock overexpression or TrpV1 activation/ablation of the Hypocretin and

Neuromedin U systems cause similar or disimilar responses in a battery of different

behavioral tests. However, the spectrum of established behavioral assays is somewhat

limited in zebrafish relative to rodent systems, so development of a larger repertoire

of quantitative behavioral assays in zebrafish will help with this endeavor. A feeding

assay and various assays of arousal would be a good start. Additionally, it will be

interesting to determine whether there are different degrees of sleep quality or different

sleep states by examining whether there are any particular behavioral or physiological

indicators of sleep, as has been observed in humans (e.g. atonia, or characteristic

movements and brain coherence in sleep, and changes in cardiovascular function in

arousal). As various zebrafish arousal and sleep states are quantitatively determined,

all of the tricks of the zebrafish system can be brought to bear on understanding the

mechanisms that define and control these states.

4.2.5 Deciphering endogenous and systems-level functions of

Nmu and Hcrt

In my humble estimation, a major disadvantage of the aforementioned reductionist

approach is that it is difficult to interpret to what extent the activation or abla-
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tion manipulations reflect the kinds of signaling that occur endogenously and during

normal sleep/wake behaviors (although they provide an extremely productive ap-

proach for identifying neuronal connectivity and may prove useful for modeling cer-

tain pathophysiological states such as narcolepsy in zebrafish). Therefore, a useful

complementary approach would be to study the signaling of these neurons during

natural behavior. This might be achieved using GFP-Aequorin reporter (Naumann

et al., 2010). This technique is non-invasive, does not require excitation light, and

allows an animal to freely behave while the activities of genetically specified neurons

are monitored.

Additionally, it has not escaped my attention that the overexpression of Nmu

activates a large population of neurons in the zebrafish forebrain, as measured by cfos,

and my preliminary data not shown here suggest that, among other areas, there is

cfos across the olfactory bulb following Hcrt overexpression. If the specific activation

of these respective populations by Nmu and Hcrt neurons are confirmed by more

specific and direct neuronal methods as described above, then it would be of great

interest to examine the systems-level functions that these neuromodulators play in

aspects of neural coding. For example, it would be interesting to see if Nmu and Hcrt

neuromodulation participates in gain control of forebrain or olfactory neurons in order

to modulate the sensitivity of zebrafish to incoming internal or sensory signals during

sleep.
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4.3 Concluding remarks

These are still early days for using zebrafish as a model to study sleep and arousal

states, but it is already clear that zebrafish can provide new and important insights

into genetic and neural mechanisms that regulate behavior. In this thesis, I employed

a new high-throughput screen design to reveal new mechanisms that regulate sleep and

arousal. I also developed a new tool that exploits advantageous features of zebrafish

to enable new insights into the neural regulation of sleep and arousal. I expect that

these developments will lead to the discovery of new mechanisms that regulate sleep

and arousal states that would be difficult to obtain using other vertebrate model

organisms.
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