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ABSTRACT 

New and promising treatments for coronary heart disease are enabled by vascular scaffolds 

made of poly(L-lactic acid) (PLLA), as demonstrated by Abbott Vascular’s bioresorbable 

vascular scaffold. PLLA is a semicrystalline polymer whose degree of crystallinity and 

crystalline microstructure depend on the thermal and deformation history during processing.  

In turn, the semicrystalline morphology determines scaffold strength and biodegradation 

time. However, spatially-resolved information about the resulting material structure 

(crystallinity and crystal orientation) is needed to interpret in vivo observations.  

The first manufacturing step of the scaffold is tube expansion in a process similar to injection 

blow molding. Spatial uniformity of the tube microstructure is essential for the consistent 

production and performance of the final scaffold. For implantation into the artery, solid-state 

deformation below the glass transition temperature is imposed on a laser-cut subassembly to 

crimp it into a small diameter. Regions of localized strain during crimping are implicated in 

deployment behavior.  

To examine the semicrystalline microstructure development of the scaffold, we employed 

complementary techniques of scanning electron and polarized light microscopy, wide-angle 

X-ray scattering, and X-ray microdiffraction. These techniques enabled us to assess the 

microstructure at the micro and nano length scale. The results show that the expanded tube 

is very uniform in the azimuthal and axial directions and that radial variations are more 

pronounced. The crimping step dramatically changes the microstructure of the subassembly 

by imposing extreme elongation and compression. Spatial information on the degree and 

direction of chain orientation from X-ray microdiffraction data gives insight into the 

mechanism by which the PLLA dissipates the stresses during crimping, without fracture. 
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Finally, analysis of the microstructure after deployment shows that it is inherited from the 

crimping step and contributes to the scaffold’s successful implantation in vivo. 
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CHAPTER 1 

Introduction 

1.1 Chemical structure and uses of poly(L-lactic acid) 

Poly(L-lactic acid) (PLLA) is an aliphatic polyester made of lactic acid (2-hydroxy 

propionic acid) monomers. Lactic acid exists into two isomers: L(-) and D(+). The L(-) 

isomer is the most common form but the D(+) isomer can be produced by microorganisms 

or through racemization.1  Industrial polymerization of lactic acid is typically done via ring 

opening polymerization (ROP) that yields a high molecular weight (>100,000 g/mol) 

polymer (Fig. 1.1)2. The properties of a PLLA grade depend highly on the ratio of L- and 

D-isomers, and it is common practice to polymerize a controlled amount of the two isomers 

to tailor its properties for a specific application. Pure poly(L-lactic acid) (PLLA) is a 

semicrystalline polymer with 70% maximum achievable crystallinity, whereas poly(L-D-

lactic acid) random copolymer is completely amorphous.  

 

Figure 1.1 Ring-opening polymerization of L-lactic acid. 
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PLLA is considered a “green” polymer because it is biodegradable and its monomer 

can be made through fermentation of renewable plant sources, such as plant derived starch 

and sugars.3  Worldwide production of PLLA was 180,000 metric tons in 2012 and is 

expected to reach 800,000 by 2020.4 PLLA is a versatile polymer that can be processed 

with injection molding, sheet extrusion, blow molding, film forming, or fiber spinning to 

make consumer products such as films, bottles, and fibers for carpets and apparel1,5. 

Because of its biocompatibility and biodegradation, PLLA can be used for medical 

applications. In 1966,  the U.S. Army Medical Biomechanical Research Laboratory 

evaluated PLLA filaments, films, and coatings for use as surgical implants.6 Since then, 

PLLA has been used for fixing fractures in bones7–11, sutures12, endovascular implants13–

15, and even aesthetic medicine16. 

 

1.2 Semicrystalline morphology of PLLA 

Semicrystalline polymers have a nanostructure with both crystalline and 

amorphous domains (Fig. 1.2). The crystalline domains confer strength while the 

amorphous domains confer toughness and flexibility. The macroscopic properties of the 

material depend strongly on the fraction of crystalline material (degree of crystallinity), 

and on the morphology, spatial arrangement, size, and orientation distribution of the 

crystallites.  
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Figure 1.2 a) Schematic of crystalline and non-crystalline domains. Typical thickness of lamellar 

crystals is 10 nm. b) Enlarged view of the lamella/amorphous polymer interface. The leftmost arrow 

points at an individual lamella. Figure adapted from Shultz17. 

 

Crystallites grow by reorganizing random-coil chains into platelet-like lamellae 

bounded by the inter-lamellar region and separated by regions of non-crystalline material. 

Lamellae form when polymer chains enter and re-enter the polymer crystal, which results 

in lamellar dimensions much smaller than the chain length (Fig.1.3).  

PLLA has four different crystal morphs: α, α’, β, and γ. The α morph forms during 

crystallization from the melt at temperatures above 120 °C or from solution. It has an 

orthorhombic unit cell with dimensions a = 10.68 Å, b = 6.16 Å, and c (fiber axis) = 

28.86Å18 (Fig. 1.3) 1. Initially thought of as a slightly disordered α phase,  α’ was first 

identified by Zhang et al.19  and determined that its unit cell is hexagonal with dimensions 

a = b = 6.20 Å, and c = 28.80 Å20,21. A contradictory study by Wasanasuk et al. has reported 

                                                 
1 There are several reported values for the dimensions of the α unit cell. The first reported values were a = 

10.70 Å , b = 6.45 Å, and c (fiber axis) = 27.80 Å43,  but subsequent studies have reported  dimensions of a 

= 10.68 Å, b = 6.16 Å, and c = 28.86Å18,   and  a = 10.5 Å, b = 6.1 Å, and c = 28.80 Å44.  The accepted values 

are from Ref. 16. 



I-4 

 

that the α’ unit cell is orthorhombic, with dimensions a = 10.80 Å, b = 6.20 Å, and c = 

28.80 Å22.  The β morph forms when PLLA fibers are made through hot-drawing melt-

spinning23 or solution spinning24, and it has an trigonal unit cell with dimensions a = b = 

10.52 Å and c = 8.80 Å24. The γ morph forms by epitaxial crystallization on 

hexamethylbenzene at  155 °C, and it has an orthorhombic unit cell with a = 9.95, b = 6.25, 

and c = 8.80 A. For industrial applications other than fiber spinning and drawing, the α and 

α’ morphs are the most relevant.  

 

 

Figure 1.3 Schematic representation of the orthorhombic unit cell of PLLA’s α form. See text for 

unit cell dimensions. Figure from Wasanasuk.18  

 

The crystal polymorphism of PLLA has a large influence on its properties. For 

example, a high content in α morph results in high strength and high modulus but also, 

brittleness. Because industrial process like injection molding and film drawing are 

performed at temperatures that favor crystallization of the α morph, PLLA is often 

modified to suppress brittle behavior. Toughening of PLLA can be achieved by varying 
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the stereoisomer content25,26, blending27–29, plasticizing30–32, and copolymerizing33. 

Brittleness can also be avoided by tailoring the crystalline/amorphous ratio and the degree 

of orientation by varying processing conditions, e.g. controlling the shear in injection 

molding34 or changing the draw ratio of films35,36.  

Certain applications, e.g. medical implants, require pure PLLA, so toughness and 

high strength must be modulated by processing only. For manufacturing processes that 

involve strains in the solid state, a high content of α’ to α is desired because it renders 

PLLA more ductile.  Simultaneous wide-angle x-ray scattering and digital scanning 

calorimetry studies have shown that the α’ to α  transition happens in the solid state at 

temperatures between 100 and 120°C21 (above PLLA’s glass transition temperature, Tg ≈ 

60°C). Therefore, a high degree of crystallization and alignment of α’ could only be 

achieved at relatively low temperatures, close to the Tg. However, little is known about the 

strain phase behavior of pure poly(L-lactic) acid near Tg. 

 

1.3 Vascular scaffolds made of PLLA 

Coronary heart disease is the leading cause of the death in the United States37 and 

in the world38. Coronary heart disease is associated with the narrowing of the arterial 

vessels due to the buildup of atheromatic plaque. This results in hypertension, ischemia, 

angina, and in the case of compete occlusions, a heart attack.  Lifestyle changes such as 

exercise and cessation of smoking and/or medication can lower the risk of heart attacks. 

Some patients might need a more aggressive treatment for revascularization, usually either 

coronary bypass surgery, or balloon angioplasty combined with stenting. In coronary 

bypass surgery, a vessel graft is used to bypass the occluded artery in order to restore blood 
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flow. In balloon angioplasty, an obstructed vessel is enlarged by compressing the 

atheromatic plaque against the vessel walls by means of an inflatable balloon. Stents are 

expandable slotted tubes that are implanted in the artery and provide support to the newly 

expanded vessel once the balloon is withdrawn (Fig 1.4). 

 

 

Figure 1.4 a) A stent on a balloon is delivered in the artery narrowed by atheromatic plaque. b) 

The stent is expanded when the balloon is inflated, and it enlarges the diameter of the artery by 

pushing the plaque against the arterial walls. c) The balloon is removed but the stent remains to 

support the enlarged vessel. 

 

Typically, stents are made of either bare metal (BMS), or they can be drug-eluting 

(DES). Even though they are generally safe, there are several concerns about their long-

term performance. The biggest concern is late stent thrombosis due to continuous 

inflammation by the presence of a foreign body in the vessel. Furthermore, their stiffness 

prohibits restoration of regular vasomotion or further diameter enlargement, and their 

permanent nature makes any additional procedures in neighboring vessels more 
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challenging.39 These concerns were considered, and temporary polymeric bioresorbable 

scaffolds were suggested as an alternative in 1988, only two years after the first metal stents 

had been implanted in humans.15 However, it took two decades of research before 

cardiovascular scaffolds were tested in human clinical trials15.  

Bioresorbable polymeric scaffolds are both biodegradable and resorbable, i.e. their 

degradation products in the body enter metabolic pathways. PLLA is an excellent 

bioresorbable polymer because its monomer, lactic acid, is already produced by the body. 

Polymeric vascular scaffolds currently in development and clinical trials are made of 

PLLA, or PLLA copolymerized with other biocompatible polymers like 

poly(caprolactone) and poly(glycolic acid).40 One of the most successful bioresorbable 

scaffolds, manufactured by Abbott Vascular, is made entirely out of PLLA and has already 

demonstrated the clinical safety and efficacy required to receive the CE mark41. The 

mechanical performance and hydrolytic degradation of the scaffold in vivo depends on its 

semicrystalline morphology, because amorphous domains are more susceptible to 

hydrolysis.1 Additionally, the distribution and alignment of crystalline domains affects the 

strength of semicrystalline PLLA42. Therefore, in order to fully understand the in vivo 

performance of the scaffold we need to fully characterize the spatial distribution of 

microstructure of PLLA in the scaffold. 
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1.4 Objective 

The manufacture and use of a poly(L-lactic acid) scaffold involves three key steps: 

tube expansion, crimping, and deployment. Tube uniformity during expansion is required 

for consistent scaffold performance across patients, whereas the crimping and deployment 

steps determine the scaffold’s in vivo performance. Little is known about the effects of 

crimping on the morphology of metal stents, much less of polymeric scaffolds. The 

morphology after deployment depends highly on the semicrystalline morphology created 

during crimping, but until now there was no thorough investigation of the connection 

between the two. This thesis presents the results of the investigations on the microstructure 

evolution from tube expansion through deployment.  

 

1.5 Organization 

Chapter 2 employs polarized light microscopy (POM) and wide-angle X-ray 

diffraction to assess the axial, azimuthal, and radial variation of the expanded PLLA tube 

used to make the bioresorbable scaffold. The effects of crimping on semicrystalline 

morphology are studied with POM and X-ray microdiffraction and are presented in Chapter 

3. In Chapter 4, the relationship between microstructure developed during crimping and 

deployment is presented.  
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Chapter 2  

 

Axial, Azimuthal, and Radial Variation of PLLA Morphology 

After Tube Expansion 

 

2.1 Introduction 

New and promising treatments for coronary heart disease are enabled by vascular 

scaffolds made of poly(L-lactic acid) (PLLA)1 as demonstrated by Abbott’s Bioresorbable 

Vascular Scaffold (BVS, Fig 2.1).2 Clinical performance of PLLA scaffolds depends on 

the uniformity of structure within a given scaffold and the uniformity across batches of 

multiple scaffolds.  Consistent microstructure and wall thickness of the tube are required 

for even deployment, uniform acute radial strength, and structural integrity2,3 after 

implantation in the artery. PLLA is a semicrystalline polymer whose degree of crystallinity 

and crystalline microstructure depend on the thermal and deformation history during 

processing.4–8 In turn, the semicrystalline morphology determines scaffold strength and 

biodegradation time.9,10 A key processing step that affects the axial, azimuthal, and radial 

variations of structure in BVS is the expansion of an extruded tube of PLLA into the thin-

walled tube from which the scaffolds are cut.  

The expanded tube is a produced in a process similar to stretch-blow molding: an 

extruded tube “preform” is placed in a mold; compressed air is admitted into the preform; 

the preform is heated from room temperature to a temperature above the glass transition to 

allow for stretching driven by the elevated pressure inside the preform and axial tension 

applied to the distal end of the preform; and the expansion process is complete once the 
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preform’s outer diameter (OD) reaches the inner diameter (ID) of the mold.  Typically, the 

axial elongational strain is 20% and the azimuthal elongational strain is approximately 

400% (greater for material elements near the ID than for those near the OD). The resulting 

expanded tube is then removed from the mold, ready to be laser-cut into “as-cut” 

subassemblies (Fig. 2.1).  Controlling this tube-expansion process—and hence, the tube 

material properties—is crucial for consistent scaffold performance across all patients. 

 

Figure 2.1: The expanded tube is laser cut into the as-cut subassembly (3 mm dia. and 18 mm 

long). Struts are 200 microns wide and 150 microns thick. Cylindrical coordinates are used: z ≡ 

axial, θ ≡ azimuthal, and r ≡ radial. Images provided by Abbott Vascular.  

 

Similar to stretch blow molding11, the expansion process drives strain-induced 

polymer crystallization. The expansion deforms the polymeric material most strongly in 

the azimuthal direction, leading to a preferential orientation of the molecular axis of the 

PLLA chains around the tube circumference, which imparts high resistance to radial 

loading.8  The expanded tubing is more crystalline than the extruded tubing, and therefore 
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has higher strength and better dimensional stability.8 Blow molding of semicrystalline 

polymers is an intricate process that is performed near the glass transition temperature 

(PLLA has Tg of 58 - 68°C12,13), where viscoelastic properties have a strong, nonlinear 

temperature dependence, and involves competing rates of heating, deformation, 

crystallization, and cooling.14 Further challenges are present when the material is PLLA 

and the product is a vascular scaffold.  The walls of the current generation BVS are 150 

µm thick, imposing unusually tight tolerances15 (cf., beverage bottles), and the viscoelastic 

properties of PLLA are sensitive to small variations in, for example, water content16.  

Therefore, it is particularly important to characterize the variations of structure after the 

tubing expansion process.   

Here, a combination of polarized light microscopy and synchrotron X-ray 

scattering is used to examine variations in PLLA morphology after the expansion process.  

Crystalline and glassy domains in PLLA are interspersed on a scale of tens of nanometers. 

Of PLLA’s four different crystal morphs, only α and α’, which have only recently been 

distinguished17, are found in the scaffold.  Polarized light microscopy provides a large-

scale overall view of variations in structure over distances as large as 10 mm.  The resulting 

overview guides the selection of points at which to use synchrotron x-ray scattering to 

observe important aspects of the nanostructure (e.g., relative amount of crystalline material, 

relative amount of α vs α’ crystallites, crystallite orientation direction, and distribution).  

We studied the axial and azimuthal variations using four specimens from the same 

the expanded tube; to keep track of their original axial positions, the specimens were 

labeled A, B, C, and D (Figure 2.2). Each specimen was laser cut to create eight equally 

spaced axial beams with center-to-center azimuthal separation of 45° (Fig. 2.2, middle). To 
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keep track of the azimuthal position, a black line was drawn on the same azimuthal location 

on all four specimens and was assigned the θ = 0° position. 

  
 

Figure 2.2 Schematic of specimen geometry. An expanded tube (left) is laser cut into four 

specimens (A-D). Each specimen is laser-cut to create eight, equally spaced axial beams (center) 

with azimuthal separation of 45°; the asterisk indicates the assigned θ = 0° position. The specimens 

are then “unrolled” (right) and examined with polarized light microscopy and X-ray scattering. 

Each beam is 25 mm long, 0.6 mm wide, and 150 µm thick.  

 

X-ray scattering characterization has been used to decipher the structure PLLA. For 

the temperature and pressure conditions of the tube expansion, only the α and α’ crystal 

morphs are relevant.  The α’ to α ratio determines yielding behavior; high content in α 

phase results in a more brittle material.7 The tube expansion process is done at a range of 

temperatures where the α phase is very brittle, so a high content of α’ is desired. 

Furthermore, scaffold deployment requires a high elastic modulus, so the high content in 

α’ must be maintained through the rest of the processing steps.  

The x-ray diffraction peaks of the α phase are the (103), (010), (015), (110)/(200), 

(203), (204), and (207). However, for the α’ phase, the observed peaks are the (010), 

(110)/(200), (203), and (206).18 The (206) peak is extremely important because the peak 
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becomes more prominent upon deformation, and is related to the fact that α’ doesn’t readily 

transform to α at low temperatures.19  It is important to note that the dimensions of [110] 

and [200] planes are only slightly different between the two phases. A slight shift toward 

low q indicates a higher content of α. The most accepted unit cell dimensions for the 

orthorhombic α  phase are a = 10.68 Å; b = 6.17 Å; c = 28.86 Å20, and for the hexagonal 

α’ phase a = b = 6.20 Å; c = 28.80 Å 17,21.  

The orientation of the (110)/(200) peak indicates the primary orientation axis of an 

expanded tube, with crystals preferentially oriented with the chain axis in the 

circumferential direction (black arrow, Figure 2.3a). In our data analysis we extracted 

quantitative information for the q range of 0.6 -2.0 Å-1 (Fig. 2.3). 

 

 
 

Figure 2.3 a) Schematic diagram showing the relationship between the (110)/(200) peaks (circles 

on the vertical dumbbell) and the chain axis direction (black arrow) relative to the expanded PLLA 

tube.  b) A representative wide-angle scattering pattern (NSLS X27C) showing the q-range of 

quantitative analysis (inner and outer circles represent q = 0.6 and q = 2.0 Å-1, respectively). The 

two brightest peaks at q = 1.170 Å-1 correspond to the (110)/(200) crystal planes.                                        

c) Definition of the peak position in terms of the magnitude of the scattering vector, q, and the 

orientation angle, φ (black arc represents a peak).  When the (110)/(200) diffraction peaks are 

oriented along the 0° line (green circles in (a); dominant peaks in (b); φ defined in (c)), the polymer 

chains are oriented in the 90° line. 
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2.2 Results 

2.2.1 Azimuthal and axial variations of the expanded tube 

Polarized light examination 

All specimens were examined between crossed circular polarizers to survey the 

variations in orientation in the axial and azimuthal directions (defined in Fig. 2.2).  To more 

accurately record the Michel-Levy colors, each axial beam was examined through crossed 

linear polarizers in a Zeiss Universal microscope. To assign a retardance value to the 

observed colors, the shift of the observed colors was analyzed when quarter-wave and full-

wave retardation plates were inserted with their orientation along and orthogonal to the 

axial (z) direction of the PLLA beam. The Michel-Levy chart (Fig. 2.4, right) was used to 

determine the retardance values. A coarse-grained overview and high quality polarized 

light micrographs of specimens A-D are shown in Figs. 4 and 5, respectively. 

The coarse-grained views of the specimens (Fig. 2.5) show that small variations are 

predominantly in the azimuthal position; axial variations are even milder. High quality 

polarized light micrographs (Fig. 2.6) show that the specimens are, in fact, consistent with 

each other.  
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Figure 2.4 Motivation for X-ray scattering experiments. a) Cropped images of specimen D 

acquired in a Zeiss Universal microscope at 4X magnification through crossed linear polarizers 

equipped with a Canon DS30 digital camera. Based on the Michel-Levy color chart on the right, 

the optical path difference is 2300-2500 nm. Scale bar is 100 µm. b) Coarse-grained view of 

specimen D acquired with a Canon PowerShot SD770 IS camera through crossed circular 

polarizers. Scale bar is 1.0 cm.   

 

 
Figure 2.5 Coarse-grain view of the four specimens acquired with a Canon PowerShot SD770 IS 

camera through crossed circular polarizers.  They were cut from the same tube, as shown in Fig. 

2.2. All 0° positions are at the same azimuthal position of the expanded tube; the other segments 

were cut every 45°. Scale bar is 1.0 cm 
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Figure 2.6 Cropped polarized light micrographs of the top edges of specimens A-D between 

crossed linear polarizers. The azimuthal position of the segments increases from left to right (Fig. 

5, A-D). The Michel Levy color chart shows that the optical path difference is 2300-2500 nm. Scale 

bar is 100 µm.  

 

Synchrotron X-ray scattering characterization 

To characterize the crystalline microstructure of the specimens, we considered the 

following quantities: Imax,  qmax , q-FWHM, crystallinity index, Φmax,  and Φ-FWHM (Fig. 

6 shows the definition of the angle Φ for the (110)/(200) peak on the 2D scattering 

pattern—not to be confused with the scattering angle 2θ).  Because all our specimens come 

from the same batch of material and display the same kind of anisotropy, Φ-FWHM can be 

used as an orientation strength index and q-FWHM as a measure of crystal perfection.22  

Scattering patterns acquired at both X27C and X9 of the National Synchrotron 

Light Source, Brookhaven National Lab, have (110/200), (203), and (206) peaks (Fig. 2.7), 

but no signs of the (103) and (204) peaks.  Thus, the dominant crystal phase in the 

specimens is α’. At the q value of the (110)/(200) peak there are two bright peaks in the 

meridional direction (one indicated by the red arrow) and two weak peaks in the equatorial 
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direction. Physically, this corresponds to specimens that are biaxially oriented and have 

chain orientation axis predominantly in the azimuthal direction and a secondary orientation 

axis in the axial direction.23–25  

 
Figure 2.7 Representative scattering pattern of the PLLA specimens acquired at NSLS X27C. The 

different color arrows point out the three main peaks. From the center out, (110)/(200) peak at q = 

1.17 Å-1 (red arrow), (203) peak at q = 1.34 Å-1 (blue arrow), and (206) peak at q = 1.78 Å-1 (yellow 

arrow).   

 

 

Small- and wide-angle X-ray scattering data were acquired at NSLS X9. 

Unfortunately, the SAXS signal was overwhelmed by the Kapton substrate supporting the 

specimens, precluding further analysis.  Therefore, only WAXD data are analyzed to 

characterize uniformity of specimens A, C, and D (Figure 2.2; time constraints did not 

allow characterization of specimen B).  Only one WAXS quadrant was available due to the 

special setup of the beamline26 (Fig. 2.16).  The qmax for (110)/(200) in every diffraction 

pattern was 1.17 Å-1, with negligible standard deviation (1 x10-15 Å-1). The absence of 

variations in the wavevector of the (110)/(200) peak indicates that the relative amount of 
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the α and α’ phases is relatively constant. The values for Imax, q-FWHM (Figure 2.8), 

crystallinity index, Φmax,, and Φ-FWHM (Figure 2.8b, Φ defined in Fig. 2.6) were extracted 

from 88 scattering patterns per specimen (11 z-positions along each of the 8 beams).  The 

mean and standard deviation for the 11 Z-positions on a given beam are given in Tables 

2.1-2.4 (rows with azimuthal position of the beam).  Variations in the axial direction are 

evident in the comparison of specimens A, C, and D (averages over all the beams in each 

specimen are in the last row of each Table).  A visual representation of the data in the tables 

shows how small the variations are (Figure 2.9). 
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Figure 2.8 Definition of quantities used to characterize uniformity. a) Inset: Representative 

scattering pattern of the PLLA specimens from NSLS X9. Only the quadrant shown above was 

acquired due to the beamline setup. Graph: A representative I(q) curve . The quantities Imax,  qmax, 

and q-FWHM are defined. b) A representative I(Φ) curve. The quantities Φmax, and    Φ-FWHM are 

defined. The I(Φ) curve has only one peak because only one quadrant is available (full pattern has 

two).   

 

 

The variation in WAXS Imax, q-FWHM, Φmax, and Φ-FWHM in the axial and azimuthal 

direction are presented in tables 2.1-2.4. Figure 2.9 summarizes the tables 2.1, 2.3, and 

2.4. 
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Table 2.1: Variation of WAXS Imax for each axial beam of specimens A, C, and D. 

  Imax [counts x 10-6] 1 

 θ position 

[⁰]2 A C D 

0 10.6  ± 0.4 9.6 ± 0.1 8.9 ± 0.3 

45 10.0 ± 0.4 9.3 ± 0.9 8.6 ± 0.3 

90 10.0 ± 0.4 9.6 ± 0.8 8.8 ± 0.4 

135 10.5 ± 0.4 10.2 ±  0.7 9.8 ± 0.4 

180 10.7 ±  0.5 10.8 ± 0.2 10.5 ± 0.3 

225 10.6 ±  0.7 10.7± 0.2 10.1 ± 0.3 

270 11.7 ±  0.2 11.0 ± 0.2 9.5 ± 0.3 

315 12.9 ±  0.2 10.2 ± 0.1 9.2 ± 0.3 

Average 11.0 ±  0.1 10. 2 ± 0.1 9.4 ± 0.7 

 

 

 

Table 2.2: Variation of WAXS q-FWHM for each axial beam of specimens A, C, and D.  

 q-FWHM  [Å-1 x 10-2] 

θ position 

[⁰] A C D 

0 3.06 ± 0.03 2.93 ± 0.05 3.01 ± 0.02 

45 3.04 ± 0.03 2.86 ± 0.05 2.94 ± 0.04 

90 3.02 ± 0.03 2.91 ± 0.08 2.85 ± 0.04 

135 3.05 ± 0.02 2.93 ± 0.05 2.90 ± 0.04 

180 2.82 ± 0.03 3.00 ± 0.06 3.06 ± 0.03 

225 2.94 ± 0.08 2.96 ± 0.07 2.98 ± 0.04 

270 2.92 ± 0.03 2.98 ± 0.05 2.95 ± 0.03 

315 3.04 ± 0.03 3.00 ± 0.06 3.07 ± 0.02 

Average 2.98 ± 0.09 2.94 ± 0.07 2.97 ± 0.01 

 

 

 

 

 

 

 

                                                           
1 Each cell of the table represents the average and mean from 11 measurements 
2 θ position defined in Fig. 2.3. 
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Table 2.3:  Variation of Φmax for each axial beam of specimens A, C, and D.  

  Φmax, [⁰] 

 A C D 

0 -2.2 ± 0.4 -1.1 ± 1.0 0.0 ± 0.7 

45 -3.5 ± 0.2 -1.0 ± 0.8 -2.3 ± 0.5 

90 0.0 ± 0.5 0.8 ± 0.4 -0.9 ± 0.8 

135 1.3 ± 0.6 0.3 ± 0.8 0.7 ± 0.9 

180 -0.8 ± 0.5 -1.4 ± 1.5 -0.3 ± 0.7 

225 -3.8 ± 1.0 -1.5 ± 0.9 -2.2 ± 0.8 

270 0.1 ± 0.6 1.6 ±.6 -0.3 ± 0.4 

315 0.1 ± 0.6 2.2 ± 2.7 3.3 ± 0.9 

Average 1.0 ± 1.8 0.0 ± 1.8 -0.3 ± 1.8 

 

 

Table 2.4: Variation of Φ-FWHM for each axial beam of specimens A, C, and D.  

  Φ-FWHM [⁰] 

 A C D 

0 9.39 ± 0.20 8.16 ± 0.56 7.48 ± 0.14 

45 10.03 ± 0.22 8.31 ± 0.13 7.39 ± 0.12 

90 10.25 ± 0.21 8.50 ± 0.84 7.72 ± 0.13 

135 9.34 ± 0.26 8.12 ± 0.58 7.63 ± 0.11 

180 10.21 ± 0.83 7.81 ± 0.17 7.26 ± 0.24 

225 9.41 ± 0.64 8.36 ± 0.16 7.66 ±  0.37 

270 10.18 ± 0.67 8.76 ± 0.60 8.26 ± 0.09 

315 9.08 ± 0.13 8.49 ± 0.89 8.19 ± 0.16 

Average 9.74 ± 0.64 8.32 ± 0.61 7.69 ± 0.38 
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Figure 2.9 A, C, D): Coarse-grain views of specimens A, C, and D between crossed circular 

polarizers and corresponding maps showing the variation of quantities extracted from X-ray 

scattering data. a) Coarse-grain view of the specimen (see electronic document for color). The black 

dots on the image indicate the correspondence between the approximate physical location of the 

eleven points examined for each segment and each rectangle on the graph. The vertical scale bar is 

1.0 cm.  b) Variation in the maximum intensity of the dominant diffraction peak. c) Variation in 

Φmax [⁰]. d) Variation in Φ-FWHM [⁰].  For B-D in I-III the black rectangles on the graphs indicate 

the outliers.  
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2.2.2 Radial variations in as-cut thin sections 

To probe variations in structure as a function of position through the thickness of 

the expanded PLLA tube, sections 10-15 µm thick were cut starting from the outer diameter 

toward the inner diameter from an as-cut subassembly (Methods). To keep track of the 

radial position of each section, they were each assigned a number according to the order 

they were obtained. Hence, a small number indicates a section closer to the OD and large 

number (e.g. 10) indicates a section closer to the ID. Sections near the OD tended to remain 

relatively flat (Fig. 2.10 section 2 and Fig 2.11 sections 2 and 3).  Sections taken closer to 

the ID were observed to curl as soon as they were cut (Fig. 2.10 sections 7, 9, and 12), 

indicating substantial frozen-in stresses generated by the tubing expansion process.  

Polarized light examination of the sections showed that the sections that exhibited curling 

generally had greater retardance, which increased with proximity to the ID (progressing 

from 7 to 9 to 12 in Fig. 2.10 and from 5 to 7 to 8 in Fig 2.11). 

 

Figure 2.10:  Polarized light micrographs of 10-13 µm thick sections acquired in a Zeiss Universal 

microscope through crossed linear polarizers equipped with a Canon EOS DS30 camera.  The thin 

sections were cut from YW crests (Fig. 2.13, Methods) in the radial direction. The smallest number 

corresponds to the section closest to the outer diameter of the scaffold subassembly. The onset of 

curling is about 70 µm and the onset of higher retardance is about 90 µm from the outer surface of 

the as-cut subassembly. Scale bar is 100 µm.  
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Figure 2.11:  Polarized light micrographs of 10-13 µm thick sections acquired in a Zeiss Universal 

microscope through crossed linear polarizers equipped with a Canon EOS DS30 camera.  The thin 

sections were cut from U crests (Fig. 2.13, Methods) in the radial direction. The smallest number 

corresponds to the section closest to the outer diameter of the scaffold subassembly. Curling is only 

observed for section 5; the retardance increases at about 70 µm from the outer surface of the as-cut 

subassembly. Scale bar is 100 µm. 

 

2.3 Discussion 

2.3.1 Axial and Azimuthal variations 

The coarse-grained views of the specimens (Fig. 2.4) show that the Michel-Levy 

colors are almost constant along any individual beam, which indicates that axial variations 

are very small. Moving from one beam to the next (azimuthal steps of 45° going around 

the PLLA tube, Fig.2.2) the Michel-Levy color only varies in the range between a green 

and an adjacent pink in the same order. Detailed analysis of the specimens using waveplates 

(Fig. 2.14) indicates that the order of the retardance is beyond the fourth order, such that 

the change from pink (~2360 nm) to green (~2500 nm) is approximately a 6% change in 

retardance as a function of azimuthal position. In the axial direction, each individual sample 

covers a distance of approximately 3 cm (Fig.2.4) and the set of four specimens spans more 

than 12cm (Fig. 2.5). Even across the greater distance of A-D the retardance only ranges 

from fourth order yellow (~2260 nm) to fourth order green (~2500 nm)—less than 10% 

variation over a length scale of more than 12cm (Fig. 2.7). Thus, small variations are 

present in the azimuthal direction; axial variations are even milder. 
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A more quantitative interpretation of the birefringence of a semicrystalline material 

is difficult because it depends on multiple contributions: the degree of crystallinity (volume 

fraction Xc), the orientation distribution of the crystallites, and the level of frozen-in stresses 

that leads to birefringence in the amorphous material. Throughout the thickness of the 

present expanded tube of PLLA, the principal axes are along the azimuthal direction and 

the axial direction, so the total birefringence can be expressed additively.  A primitive two-

component equation suffices to show the challenge of interpreting the overall 

birefringence: 

 

∆𝑛 =  𝑓𝑐∆𝑛𝑐
∗𝑋𝑐 + 𝑓𝑜𝑎∆𝑛𝑜𝑎𝑋𝑜𝑎                                            (2.1) 

 

where  fc and foa  are the orientation factors of the crystallites and the oriented amorphous, 

∆𝑛𝑐
∗ is the intrinsic birefringence of the crystallites, ∆𝑛𝑜𝑎 is the birefringence of the oriented 

amorphous, and Xoa = 1- Xc  are the volume fractions of each component. The literature 

value of the intrinsic birefringence of PLLA crystals is not precisely known: Furuhashi et 

al. further determined the intrinsic birefringence for a purely α morph crystalline phase to 

be 0.031,27 slightly higher than the highest value observed by Kobayashi28 and Okhoshi29  

for oriented fibers. The birefringence of oriented amorphous PLLA depends on the 

magnitude of frozen-in stresses; as a representative value, Furuhashi et al. report a 

birefringence of 0.015.27  

The present PLLA specimens are 150 µm thick and exhibit retardance of 2300 to 

2500 nm, corresponding to a birefringence of 0.014 - 0.016.  Given the literature values for 

crystalline and oriented amorphous PLLA, this retardance could be explained by a fully 

amorphous materials with high frozen-in stress, or by a material that is roughly 50% 



II-18 

 

 
 

crystalline with highly oriented crystallites and 50% unoriented amorphous—or anything 

in between. This illustrates that polarized light microscopy alone cannot be used to evaluate 

volume fractions and orientation factors. For that level of detail, we turn to wide-angle X-

ray scattering.  

The variation in the maximum intensity of the dominant diffraction peak is typically 

about 4% for the measurements on a particular beam (specified by θ, Figs. 2-3), as indicated 

by the standard deviations (Table 2.1). Specimen A shows systematically stronger 

diffracted intensity, but only 0.8% greater than C and approximately 1.5% greater than D. 

In the azimuthal direction, the variations are readily observable, varying from 10% 

variation in specimen C to 20% variation in specimens A and D (see variations in Imax 

values as θ increases from 0° to 315° for each specimen in Table 2.1). These are consistent 

with inferences made using polarized light microscopy. The above uniformity is also seen 

in the degree of order of the crystallites (Table 2.2), the dominant orientation directions 

(Table 2.3), the distribution of orientation (Table 2.4), and the crystallinity index (Table 

2.5).   

2.3.2 Radial variations 

The polarized light micrographs of thin sections progressing from OD to ID (Figs. 

2.10-11, left to right) show that that the outermost 40-50 microns of the expanded tube 

have low anisotropy (first order silver Michel-Levy color, retardance ca. 280nm) and low 

frozen-in stresses (they hardly curl up).  Progressing toward the ID, there is evidence of a 

more strongly oriented region in the innermost 50-70 microns (first order gold to first order 

red, retardance 420 to 560nm), which has significant frozen-in stresses (tight curl).  It is 

striking that sections that are less than 50 microns apart in the radial direction show greater 
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differences in retardance than are seen over 12cm in the axial direction.  A semi-

quantitative comparison of the magnitude of the gradients could be based on the change in 

retardance divided by the distance over which the change occurs: axially, 10% change over 

12 cm; azimuthally, 6% change over 1 cm; and radially, 100% change over 50 μm.  Thus, 

relative to the axial structure variations, the gradients in the azimuthal direction are 10X 

greater—and those in the radial direction are 10,000X greater.  

 

2.4 Conclusions 

Bioresorbable scaffold performance depends on the uniformity of the expanded 

tube, which is crucial for consistent deformation during subsequent crimping and 

deployment.3 Processing of PLLA is known to be very difficult because even small 

fluctuations in water content, processing temperature and stereoregularity have a dramatic 

effect on the final morphology and material properties8. Here, we have used 

complementary materials characterization methods to interrogate structural variations in 

the axial, azimuthal, and radial directions.  Polarized light microscopy and extensive 

sampling with synchrotron X-ray scattering have shown that the tube has remarkable axial 

uniformity and mild azimuthal variations. In contrast, radial gradients are substantial.  The 

strongly oriented structure that is present near the ID of the expanded PLLA tube may 

provide much of the strength that holds the lumen open in the early months after 

implantation.30  This materials characterization approach can be extended to examine the 

time course of hydrolytic degradation in vitro or bioresorption in vivo.  For example, future 

work may examine the relationship between radial gradients in structure and the spatio-

temporal profile of bioresorption after implantation.   
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2.5 Methods 

2.5.1 Materials 

Axial beam specimens 

Four specimens were laser cut from the same PLLA expanded tube (Fig.2.2). Each 

specimen was laser cut to create eight equally spaced, 25.0 mm x 0.6 mm axial beams with 

azimuthal separation 45°. The beams are held together by thin “connectors.” A black mark 

indicates the 0° azimuthal position. The beam specimens were provided by Abbott 

Vascular. 

Thin sections of as-cut subassemblies 

Individual subassembly rings were emdedded in TissueTek (Sakure), glued into screws, 

and then transferred to the microtome to equilibrate at -25 ⁰C for 20 minutes. Thin sections 

10-15 µm thick were microtomed using a glass knife in the radial direction from an as-cut 

subassembly using a Powertome XL (RMC Products). The thin sections were provided by 

Abbott Vascular. 

 

 
Figure 2.12 Image of an as-cut sub-assembly with boxes indicating the W, Y, and U struts. 

 

2.5.2 Polarized light examination 

Optically anisotropic materials have a refractive index that varies with the direction 

of light passing through them.31  When a light ray passes through an anisotropic material it 
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is refracted into two rays: one that travels with the same velocity through the material and 

one that depends on the propagation direction within the material. These rays are mutually 

perpendicular and they are referred to as ordinary and extraordinary, respectively.32  

The difference in refractive indices, Δn, between the extraordinary and ordinary 

rays is called birefringence. In polymers, birefringence may be caused by different crystal 

orientations and/or frozen-in stresses.31  When multiple rays of light pass through a 

birefringent material of thickness t, one of the rays will be retarded with respect to a faster 

ray; this velocity difference is referred to as the retardance (Eq. 2.2) and gives rise to the 

colors observed when the sample is placed between crossed linear polarizers.32 The 

retardance colors are classified into orders according to the Michel-Levy chart31, and can 

be used to identify the value of birefringence of a specimen of known thickness. 

 

𝑅𝑒𝑡𝑎𝑟𝑑𝑎𝑛𝑐𝑒 = 𝑡(𝑛𝑚) ×  ∆𝑛                                (2.2) 

 

Coarse grained-views 

Coarse-grained views of each specimen were acquired by placing the specimens between 

two circularly polarized sheets and taking photographs with a Canon Elf 10.0 MP camera.  

Micrographs 

Polarized light micrographs were acquired in a Zeiss Universal microscope at 4X 

magnification through crossed linear polarizers equipped with a Canon EOS DS30 camera. 

Assignment of Michel Levy colors 

To determine the order of Michel Levy colors, a connector from specimen D was imaged 

using different wave plate compensators (Fig. 2.14). The color transitions after adding [-1, 

-1/4, 0, +1/4 and + 1] wavelengths (λ) were observed and compared to the Michel-Levy 

color chart.  In all cases, the yellow color on the bottom half of the connector acts as the 
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point of symmetry between the same order of red. Using the +λ and -λ red bands as 

reference, the sample’s middle red band was determined to be a 3° red. Moving toward the 

upper portion of the connector, the colors transition to a higher order (higher retardance). 

In the case of –λ, based on the aforementioned symmetry, the pink band immediately above 

the 2° red is the 3° red.  In the case of +λ, the absence of a distinct yellow band above the 

4° red indicates that the upper pink colored band is the 5° red. Given that the progression 

of colors toward the upper half is the same, the next band moving up is the 4° red. 

Comparison with the –λ and +λ case shows that the green and light peach/pink colors 

observed in the above the 4° red must then be in the 5° order and they correspond to a 

retardance of approximately 2500 nm. 

 

 

 

 Figure 2.13 Photoshop composite image of polarized light micrographs of a connector from 

specimen D with different compensators; the centermost image is the sample. Sequence from 

bottom left to top right: The same connector with [-1, -1/4, 0, +1/4, and + 1] wavelengths added 

using full- and quarter-waveplate compensators. Notice that subtracting a full wave brings the 

interference colors down to the second order (the minimum retardance point is indicated by the 

arrow, assigned to second order orange; the retardance increases moving away from the arrow, both 

up and down, indicated by the sequence of colors progressing orange, fuchsia, blue, turquoise, 
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green, yellow, peach).  By assigning the colors obtained with a full wave subtracted, the retardance 

of the sample (centermost of the five images) is obtained.  Moving from the point of least retardance 

in the connector to the beam at the top of the image, the retardance increases monotonically, 

allowing us to assign the order of the retardance in the beam (given in Figures 2.4 and 2.6).  The 

thin black border above the Michel-Levy colors at the bottom of the figure has white marks at 565, 

1130, 1685, 2260, and 2825nm.  Using the Michel Levy Chart, the green color of the beam is found 

to correspond to an OPD of approximately 2500 nm.  

 

2.5.3 X-ray scattering 

X-ray scattering experiments were performed at beamlines X27C and X9 at the National 

Synchrotron Light Source at Brookhaven National Lab (NSLS). 

NSLS X27C: Wide-angle X-ray scattering (WAXS) patterns were collected using a 

MarCCD detector at a distance of 134.8 mm from the samples. The source wavelength was 

1.371 Å and the beam spot size was 380 μm.  The diffraction patterns were calibrated for 

centering and detector distance using an alumina (Al2O3) standard. Each specimen was 

placed between three or four layers of X-ray transparent Kapton tape. Two WAXS patterns 

were acquired at different axial locations for each set, with two patterns per beam width. 

Radial and azimuthal integrations were performed using the software Polar® at the 

beamline’s work station. Further data processing was done using Matlab® algorithms 

developed in-house.  

NSLS X9:  Wide- and small-angle scattering patterns were collected simultaneously 

for specimens A, C, and D, with a source wavelength of 0.92 Å and beam spot size of 20 

μm. Eleven scattering patterns were acquired at approximately the same axial locations 2.5 

mm apart. There was no data acquisition for specimen D due to time limitations. A custom 

Photonics detector26 placed at 45° with respect to the plane of the sample captured a 

quadrant of  the wide-angle scattering pattern (Fig. 2.15). Small-angle X-ray scattering 

(SAXS) patterns were collected using a Mar CCD detector at a sample-to-detector distance 
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of 185 mm. Both WAXS and SAXS diffraction patterns were calibrated for centering and 

detector distance using silver behenate (AgC22H43O2).  Calculation of radial and azimuthal 

intensity profiles and further data processing was done using Matlab® algorithms 

developed in-house.  

 

 
Figure 2.14 The setup of beamline NSLS X9. a) Diagram of the optical train and the detector 

positions. b) The special Photonics detector is placed to the side of the SAXS detector. Figure 

adapted from Lin, 2013. 

 

2.5.4 Data analysis 

To compare X-ray scattering data from different beamlines, image analysis code 

was developed using MATLAB®. This code was used to obtain radial and azimuthal 

intensity profiles, and to extract quantitative values for maximum intensity, crystal 

orientation, and crystal spacing. All data was pre-processed for background subtraction and 

incident intensity variation. Some scattering patterns in each set had a very low intensity 

signal compared to the mean. We attribute this to partial placement of the beam on the 
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sample due to motor drift during the automated data acquisition. These outliers were 

removed by excluding the 2D patterns whose maximum intensity was less than 75% of the 

entire data set’s mean intensity. 
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CHAPTER 3  

Effect of Crimping on Scaffold Morphology 
 

3.1 Introduction 

Prior to implantation in the artery, the as-cut scaffold subassembly must be crimped 

(Fig. 3.1) and adhered onto a flexible catheter that can be guided through the vascular 

system. During crimping, the outer bends of the Y, W, and U crests (Fig. 3.1) of the as-cut 

subassembly are elongated and the inner bends are compressed until the scaffold is in full 

contact with the balloon and its outer diameter decreases 50-70%. Most stent effectiveness 

studies do not take into account the effect of crimping on deployment; in fact, some authors 

have stated that the crimping has a “minor influence on the overall expansion of the stent.1”  

However, a few studies have studied the impact of crimping on commercial metal stents 

and found that the crest bends store residual stresses from the deformation during 

crimping.2–5 Nevertheless, to the best of our knowledge, no studies have addressed the 

microstructural changes of polymeric scaffolds, which are extremely important for 

predicting deployment behavior and mechanical stability post-implantation.   
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Figure 3.1 Digital rendering of a crimped scaffold subassembly (without the balloon for clarity). 

The outer and inner diameter of the subassembly are referred to as OD and ID, respectively. The 

Y, W, and U crests are defined. 

 

Stents and scaffolds must be made from a ductile material that can withstand the 

compressive deformation during crimping and the subsequent expansion during 

deployment without losing radial strength. The deformation mechanisms of polymers are 

plastic deformation, crazing, and fracture. From a crystallographic point of view, this may 

happen through interlamellar separation, lamellar rotation, lamellar slip, and twinning.6–8  

During yielding, plastic flow of the material takes place without change in volume.9  

Crazing can be considered a precursor to cracks but unlike cracks, the two separated 

surfaces are spanned by many small fibrils with diameters in the range of 5-30 nm.10 There 

is always a competition between plastic deformation and crazing; the resulting behavior 

depends on the amount of crystallinity, crystal orientation,11–13 number of entanglements14, 

and the deformation temperature (lower temperature increases both plastic deformation and 

crazing)9.  When cracks form, they do so by breakdown of fibrils within a craze.  In 

practice, crazing can be beneficial: because crazes store very high local stresses (they are 

load-bearing), crazing increases the fracture toughness of polymer glasses.8,10,15  This is 
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particularly important if the structure must bear tensile load9, as in the case of the scaffold 

upon deployment.  

The deformation mechanisms of poly(L-lactic acid) (PLLA) have been studied in 

the context of uniaxial or biaxial extension, usually with grades containing at least 2-4% 

D-isomer and at temperatures typically above the glass transition temperature (Tg ≈ 60⁰C). 

Several authors have shown that drawing of amorphous PLLA near Tg (T = 70-90⁰C) 

results in very highly oriented crystallites of the α’ morph along the draw direction.16–19 

Cakmak and coworkers have shown that sequential biaxial stretching of PLLA films results 

in breakup and rearrangement of the crystallites in the second stretch direction.20–22 

Nanomechanical tensile testing has shown that PLLA yields by forming highly localized 

crazes which continue to increase in size and number until failure.23,24 Nonetheless, despite 

the ever-increasing use of PLLA in load-bearing medical applications, there is a surprising 

dearth of literature on the effects of compression (as in the case of crimping) on the 

microstructure of PLLA.   

Here, we have used a combination of scanning electron and polarized light 

microscopy and synchrotron X-ray microdiffraction to examine variations in PLLA 

morphology after crimping.  Scanning electron microscopy provides an overview of the 

bulk morphology of a crimped subassembly as well as micron-scale features. Polarized 

light microscopy provides a large-scale overall view of variations in polymer chain 

orientation, and can distinguish features such as shear bands and crazes. The microscopy 

results guide our X-ray microdiffraction measurements to map the crystalline 

microstructure.  
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3.2 Results 

3.2.1 Scanning electron microscopy 

Scanning electron micrographs (SEM) of crimped scaffold subassemblies show 

that extreme solid-state deformation occurred in localized regions near the bends of all U, 

Y, and W crests  (Fig. 3.2a). Near the outer perimeter of the bend, the scaffold is thinner 

than the original thickness of 150 μm and there is a pronounced bulge at the inner bend 

(Fig. 3.2b).  

 

 

Figure 3.2 a) Scanning Electron Micrograph (SEM) of a crimped subassembly. b) Higher 

magnification image of a U crest shows the bulging out of the inner bend. Images provided by 

Abbott Vascular. 

 

High magnification SEM images show the formation of a micro-crack at the inner 

bend (Fig. 3.3a). The tip of the micro-crack is consistent with a craze front advancing in 

the z-direction of the bend (Fig. 3.3b). The fibrils (Fig. 3.3c) observed at examination with 

high magnification of the microcrack’s tip further support the interpretation of crazing.  
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Figure 3.3 SEM images of a micro-fissure on a single U crest (not a thin section) at different 

magnifications. a) At low magnification, a micro-crack is observed at the inner U bend b) at higher 

magnification, the tip of the micro-crack is consistent with crazing c) Large magnification image 

of the same area shows the formation of microfibrils. SEM micrographs provided by Abbott 

Vascular.  [FLIP] 

 

3.2.2 Polarized light microscopy 

In Chapter 2, we showed that the radial variations in the microstructure of as-cut 

subassemblies is significant. Hence, we chose to study the microstructure of the crimped 

subassemblies using thin sections in the radial direction (Methods).  Polarized light 

micrographs of sections cut from W and U bends (defined in Fig. 3.1) show shear bands 

(Fig. 3.4) in the regions that correspond to the transition zone between the bulge at the 

inner bend and the plateau of relatively undeformed material on either side of the bulge 

(Fig. 3.2).  

The sequence of colors in the polarized optical micrographs (POM) reveals whether 

the retardance is increasing or decreasing.  For example, moving from the fuchsia color in 

the left arm of the crimped W (Figure 3.4a) toward the inner bend in the white rectangle, 

the progression of colors indicates a decrease in retardance from approximately 1500 nm 

(fuchsia) to 1400 nm (yellow) to 1300 nm (green) to 1200 nm (blue) to 1100 nm (purple) 

to 1000 nm (fuchsia) to 900nm (yellow) to 700 nm (sky blue) to 600 nm (navy blue) to 500 

nm (burgundy) to 400 nm (gold).   The decrease of retardance from the arm to the inner 

bend is also seen in the U crest (Fig. 3.4b) from approximately 1500 nm (fuchsia) to 1400 
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nm (yellow) to 1300 nm (green) to 1200 nm (blue) to 1100 nm (purple) to 1000 nm 

(fuchsia) to 900 nm (yellow).  If instead one follows a path from the fuchsia region in the 

left side of the crimped U to its outer bend, the sequence reverses (Figure 3.4b): after 

passing through the orange region the colors progress to fuchsia, lavender, jade, cream, 

pink, and aqua near the outer bend.  This sequence of colors indicates an increase in 

retardance from 1450 nm (orange) to 1500 nm (fuchsia) to 1600 nm (lavender) to 1800 nm 

(jade) to 1950 nm (cream) to 2100 nm (pink) to 2300 nm (aqua). Further analysis of the 

Michel-Levy colors after rotating the sample between crossed polarizers (Methods) can 

give an approximation of the chain orientation at the outer bend (Fig. 3.5). 

 

 

Figure 3.4 Polarized light micrographs of sections cut from a) a W crest about 40 μm away from 

the OD and b) a U crest about 45 μm away from OD. Rotation under polarized light (see Methods) 

shows that the features in the white rectangle in part are shear bands, the features in the yellow 

boxes are crazes, and the feature in the white oval is a micro-crack.  See text for explanation of the 

sequence of Michel-Levy colors along each dotted paths. Both polarized light micrographs were 

acquired in a Zeiss Universal microscope through crossed linear polarizers equipped with a Canon 

EOS DS30 camera. Scale bars are 100 µm. 
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Figure 3.5 Orientation analysis of the W section shown in Fig. 4. The horizontal line of the crosses 

along the outer bend indicates the chain orientation. The single x mark indicates the direction of 

the crossed linear polarizers for this particular micrograph.  Scale bars are 100 µm. 

 

The common features observed under polarized light are consistent with the bulge 

formation at the inner bend of all crests (Fig. 3.2a) and indicate that examination of thin 

sections from one type of crest can teach us about the microstructure of the other two.  

Mechanical test studies of deployment to failure have shown that failure occurs mainly at 

U crests. Therefore, we chose thin sections from U crests for X-ray microdiffraction 

experiments. 

3.2.3 Wide-angle X-ray microdiffraction 

The microstructure around the inner bend of the thin section shown in Figure 3.4b 

(and Fig. 3.12, Methods) was examined by X-ray microdiffraction.  To characterize the 

spatial microstructure evolution we considered the following quantities: Imax of I(Φ),  Φmax,  
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and Φ-FWHM (Fig. 2.3c of Chapter 2 shows the definition of the angle Φ for the 

(110)/(200) peak on the 2D scattering pattern—not to be confused with the scattering angle 

2θ). Because we are evaluating the structure within a single specimen, the maximum 

intensity of the  (110)/(200) peak can be used to evaluate the density of crystals aligned in 

the θ-direction25,  Φmax,  to evaluate the crystal orientation, and Φ-FWHM to evaluate the 

strength of orientation.25,26 

Selected X-ray microdiffraction patterns acquired at beamline2-ID-D of the 

Advanced Photon Source (APS) at Argonne National Lab show that the dominant crystal 

moprh is α’ (Fig. 3.6c). Depending on the position of each pattern (white crosses on Fig. 

3.6a) away from the symmetry plane (green line, Fig. 3.6a) the crystal orientation axis 

shifts symmetrically in the θ-direction (any row of patterns, Fig. 3.6c).  The quantitative 

analysis of all diffraction patterns (483 total, 10 μm apart) is shown in Figure 3.7. 

Diffraction patterns with bright reflections indicative of micro-fibrils are shown in Figure 

3.8. 
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Figure 3.6 a) Schematic showing the approximate positions (white “x”) of the X-ray 

microdiffraction patterns on an SEM image of a crimped U (different from the one used to obtain 

the present section). The green line shows the approximate axis of symmetry and the black line 

shows the approximate depth of the present thin section. Scale bar is 100 µm. b) Polarized light 

micrograph of the region examined with microdiffraction (Michel-Levy colors are altered by the 

Kapton substrate used for the experiments). The (x,z)-axes show the origin from which positions 

are specified in microns. White dots on the micrograph show the location at which the diffraction 

patterns in c were acquired. The location of each X-ray measurement was marked using mild beam 

damage. Scale bar is 100 µm. c) Selected microdiffraction patterns acquired at 2-ID-D with a 0.2 

μm beam spot size.  
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Figure 3.7 Quantitative analysis of the 483 x-ray patterns acquired at the inner bend of the present 

thin section. a) Polarized light micrograph of the region examined with X-ray microdiffraction 

(Michel-Levy colors are altered by the Kapton substrate used for the experiments). The boundaries 

of the data acquisition range are shown with respect to the (0, 0) position. The location of each X-
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ray measurement was marked using mild beam damage. Scale bar is 100 µm. b) Spatial variation 

in the maximum intensity of the I(Φ) curve. Black color represents the empty space between the 

arms of the U. c) Spatial variation in Φ-FWHM. Black represents the empty space between the 

arms of the U. d) Spatial variation in Φmax. Black represents the empty space between the arms of 

the U. White lines indicate the orientation of the crest’s arms. 

 

 

Figure 3.8 Selected microdiffraction patterns acquired at crazes with a 0.2 μm irradiated spot size. 

The polarized light micrograph shows the region examined with x-ray microdiffraction (Michel-

Levy colors are altered by the Kapton substrate used for the experiments). White dots on the 

micrograph show the location at which the diffraction patterns were acquired. The location of each 

X-ray measurement was marked using mild beam damage. Scale bar is 100 µm. 
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3.3 Discussion 

A thorough understanding of one specific section cut from a crimped “U” crest 

provides the foundation for understanding the three-dimensional field of polymer 

orientation and semicrystalline microstructure that is created during crimping.  For this 

purpose, a microtomed section cut from a depth of approximately 45 µm from the outer 

diameter (OD) surface (Fig. 3.1) of a crimped U is particularly instructive (black line, Fig. 

3.6a). The section is approximately 10 µm thick, representing about 1/15th of the total 

thickness of the scaffold.  During crimping, the “outer bend” is placed under tension in the 

θ-direction and thins in the r-direction.  As will be demonstrated in Chapter 4, this tension 

orients the chain axis approximately parallel to the outer bend (Fig. 3.9 b and c, curved 

black lines). In contrast to the relatively simple structure in the arms and the outer bend, 

dramatic variations in structure are observed near the “inner bend,” where material 

elements are compressed in the θ-direction and forced to bulge outward in the +r- and –r-

directions (Fig. 3.9b). Therefore, X-ray microdiffraction was performed in a region that 

spans the area under the bulge and extends laterally (θ-direction) beyond it. 

 

 

Figure 3.9 Schematic showing the polymer chain orientation evolution during crimping. a) In the 

as-cut U, the orientation is inherited from the tube expansion and polymer chains are oriented in 

the θ-direction in both arms and bend. The axes show the r-direction pointing outward.  b) During 

crimping, the arms perform a rigid body rotation; the absence of deformation leaves the 
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semicrystalline microstructure unchanged, simply rotated 50° (clockwise) on the right and -50° 

(counter-clockwise) on the left. The outer and inner bend experience elongation and compression 

in the θ-direction, respectively. The elongation at the outer bend (black lines) is discussed in the 

next chapter. The chain orientation in the compressive region is more complex. c) The results of 

this study show that the chain axes are oriented along r (dots in circles indicate c-axis normal to the 

page).  Between the θ-compression and θ-elongation regions, the chain axes are oriented along z. 

Emanating from the inner bend, there are crazes on the right side (red curved lines) and a plastic 

deformation zone (green crescent) on the left. 

 

In the as-cut subassembly, the PLLA chains are oriented primarily in the θ-direction 

(Fig. 3.9a) and the arms of the U bend are at approximately + 50° and -50°   (Fig. 3.11a, 

Methods). After crimping, the arms of the U bend are nearly parallel to the z-direction (Fig. 

3.11b, Methods).  Over most of their length, the arms rotate as a solid body (Fig. 3.9b). 

This explains the microdiffraction patterns acquired just outside the deformation field of 

the bulge, i.e. at positions (-80, -70), (-80, 110), and (100, 110) of Figure 3.5, which are 

very similar to those observed for the as-cut subassembly, simply rotated by ±50° (Fig.3. 

6c and Fig. 3.7d). The lack of deformation in the arms also explains the uniformity of the 

(110)/(200) peak intensity and the breadth of the orientation distribution (Fig. 3.7 b and c, 

lower left and lower right), which agree with those of the as-cut subassembly (Chapter 2). 

On a larger length scale, the arms show uniform Michel-Levy color (third-order fuchsia, 

retardance ~1500 nm, Fig. 3.4b; note that the section was inadvertently crumpled on the 

right edge, causing the apparent variation in retardance on the far right). Thus, in the arms, 

the semicrystalline structure is simply that inherited from the expanded tube. 

Rotation of the arms creates a high pressure zone, where most of the deformation 

occurs. The deformation zone is surprisingly small, e.g. the (110)/(200) intensity varies 

from <1000 nm near the origin to 6000 nm over a distance of less than 100 μm (Fig. 3.7b). 

At the point of strongest θ-compression, denoted as (0, 0), the inner bend forms a cusp 
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(sharp point where the two legs meet, Fig. 3.5b). Elevated pressure in the θ-compression 

zone drives material out in the +r and –r directions, creating the bulge seen in SEM (Fig. 

3.6a). Inherently, this represents an elongational deformation in the r-direction at the inner 

bend. The elongation in ±r results in the rotation of the c-axis out of the out of the (θ,z)-

plane manifested by the gradual disappearance of the (110)/(200) and (203) peaks moving 

from position (0, -70) to (0,0) (Fig. 3.6c). Another consequence of the high pressure is 

movement of material toward the outer bend along the –z-direction, which results in 

stretching along z at positions below the bulge (interior of the deformation zone, e.g. (0, -

70) of Fig. 3.6c). Thus, understanding the deformation field in 3D is vital to understanding 

the microstructural changes of the PLLA in the crimping process. 

The combination of arm rotation and high pressure results in shear in the (θ,z)-plane 

at the boundary between the solid body rotation zones and deformation zone. On the +x-

side of the deformation zone shear is manifested by the presence of crazes (Figs. 3.7 and 

3.9) and on the –x-side, shear is manifested by strong plastic deformation. The asymmetry 

in the mode of shear deformation explains a striking feature of the deformation zone: its 

asymmetry (Fig. 3.7 b and c). The asymmetry suggests that during crimping, the initial 

compression stress causes plastic deformation, but as the stress increases the material 

deforms by crazing (Fig. 3.9). In view of many other sections from several W, U, and Y 

crests that were examined, when Michel-Levy colors are observed, the retardances fields 

usually have this asymmetry. Thus, asymmetry appears to be the result of the competition 

between crazing and plastic deformation. Having both crazing and plastic deformation is a 

major component of toughness and resistance to fracture under stress.8,10  
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Crazing is evidenced by patterns showing discrete bright reflections (Fig. 3.8), 

which reveal the presence of highly drawn fibrils. The physical location of the fibril 

patterns corresponds to regions that remain dark at all rotations under polarized light (Fig. 

3.12, Methods). The multiplicity of the bright reflections indicates that multiple fibrils with 

different orientations are present in the 200 nm area probed by the microdiffraction beam 

(e.g. (30, 10), Fig. 3.8), which agrees with multiple, differently oriented nanofibers that 

connect opposite faces of the crazes seen in SEM images (Fig. 3.3c). While crazing is 

evident, the crazes appear to be thin and/or obliquely oriented relative to the microtomed 

sections: a beam spot that is only 200 nm across and passes through an optical path of 10 

µm predominantly samples material outside the craze (diffraction patterns are dominated 

by the same diffraction pattern as the surrounding material, with weaker signals from the 

fibrils; we cannot comment on the length of the crazes in the (θ,z)-plane because the step 

size of the raster scan is 10 µm). Thus, even though the material crazes, it does so in a way 

that absorbs the imposed stress and resists fracture.7 The craze fibril patterns are not seen 

in the plastic deformation zone on the other side (x<0) of the specimen, which again agrees 

with crazing at the regions of most intense shear to “protect” the other side7. 

The characteristic “comet” shape of the (110)/(200) peak is associated with the 

crazing region (there are no “comet” diffraction patterns in the plastic deformation zone on 

the x<0). Such patterns are rarely reported in the literature. Wilkes and coworkers13,27 

observed them in specimens that were subjected to elongation in a direction 45° to the 

lamellar normal. The findings of Cohen, Argon, and coworkers28,29 in relation to 

transformation of lamellar structure provide a potential link between the formation of the 

patterns in the region of the bend in which the θ-compression causes elongation in the ±r-
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direction and the shear in the (θ,z)-plane. In both studies, the lamellae were seen to rupture 

at strains associated with the onset of plastic deformation. The lamellar stack avoids 

rotation by localizing strain in bands, like fault lines (Fig. 3.10b). Thus, the comet “head” 

can be attributed to the bulk of the lamellae, which retain an orientation close to that of the 

surrounding material undergoing solid body rotation with little or no strain: the main peak 

accords with the rotation of the c-axis in the arms (Fig. 3.10d, blue arrow). In the bands of 

localized strain where the lamellae rupture, the c-axis tends to orient along a direction that 

connects the newly exposed edges of the lamellae with the direction that the material used 

to belong. Thus, while the displacement of the now separated lamellar stacks tracks the 

shear deformation, the c-axis of the material in the ruptures appears to rotate in the opposite 

direction to the vorticity (Fig. 3.10c). Therefore, the “tail” reflects a distribution of 

crystallites rotating opposite from the rotation direction of the arms (Fig. 3.10d, red boxes). 

The stronger intensity near the main peak tapering away as the angular deviation increases 

shows that the smaller the angular deviation, the greater the population of distorted crystals 

(the lower intensity of the tail can be attributed to the additional rotation of the crystal axis 

in the ±r-direction).  

 

Figure 3.10 Schematic showing the mechanism of lamellar rupture and fragment rotation. a) The 

undeformed lamellae have the c-axis pointing up (red arrow). They are subjected to shear with the 

vorticity direction, as shown in the circle. b) The lamella resist rotation by localizing the strain in 
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bands that will eventually rupture. c) Once the rupture occurs, the ruptured material rotates opposite 

from the rotation direction, while the bulk of the lamellar stacks tracks the shear deformation. d) In 

the final configuration after the rotation the lamellar fragments retain the original orientation 

(framed in red for emphasis), which is angled with respect to the new c-axis (blue arrow). Scheme 

adapted from Galeski et al. (1992).28 

 

3.4 Conclusions 

The deformation during the crimping process is a complex three-dimensional 

process that cannot be understood without considering the forces in all directions. The 

extreme pressure generated by the compression of the inner bend results in strong 

elongation out of the plane of the scaffold. These forces draw material from both the inner 

and outer bend to create the bulge, a feature observed at the inner bend of all crests of the 

crimped subassembly (U, W, and Y, Figures 3.1-3.2). The combination of high pressure 

and continued rotation of the arms creates shear in the (θ,z)-plane that is dissipated through 

plastic deformation and crazing on opposite sides of the bulge. These dissipation 

mechanisms are confined to a small deformation zone (less than 100 µm across), so most 

of the material maintains its structural integrity. The competing forces of shear in the (θ,z)-

plane and extension in the r-direction result in craze formation in a region in which lamellar 

breakup and coarse chain slip indicate that particularly high stresses developed during the 

crimping process. This spatial distribution of crazing may have a significant effect in the 

subsequent deployment of the scaffold (see Chapter 4). Here, we have shown that X-ray 

microdiffraction with sub-micron spot size is a powerful tool for mapping and 

understanding the spatial variation of microstructure. In view of the central importance of 

understanding the fully three-dimensional transformation of structure during crimping, 

future characterization work should apply X-ray microdiffraction to crimped-scaffold 

sections cut in the (θ,r)- and (r,z)-planes to directly verify and quantify the orientation 
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distribution inferred from the present results.  Coordinated studies of crimped, deployed, 

and partially hydrolyzed scaffolds are also recommended as a means of discovering the 

role of structural transformations during crimping and deployment on the time course of 

degradation30,31. 

 

3.5 Methods 

3.5.1 Materials 

Thin sections of as-cut subassemblies 

Individual crimped subassembly rings were embedded in TissueTek (Sakure), 

glued into screws, and then transferred to the microtome to equilibrate at -25 ⁰C for 20 

minutes. Thin sections 10 - 15 µm thick were microtomed using a glass knife in the radial 

direction from an as-cut subassembly using a Powertome XL (RMC Products). The thin 

sections were provided by Abbott Vascular. 

3.5.2 Determination of U crest bend angle 

To evaluate the bend angle of a U crest in the as-cut and crimped state, a protractor 

image was overlaid with a photograph of an as-cut subassembly and the SEM image of a 

crimped subassembly in Photoshop®. Black lines were used as guides to determine the 

angles. The angle of arms with respect to the bend is +50° and -50° and +5° and -5° for the 

as-cut and crimped subassembly, respectively. 
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Figure 3.11 Photoshop overlay of a protractor image with a) photograph of an as-cut subassembly 

and b) an SEM micrograph of a crimped subassembly.  

 

 3.5.3 Polarized light microscopy 

Micrographs 

Polarized light micrographs were acquired in a Zeiss Universal microscope at 4X 

or 10 X magnification through crossed linear polarizers equipped with a Canon EOS DS30 

camera. 

Determination of shear bands and crazes 

Sections were placed between crossed polarizers and rotated 360°. Images were 

acquired every 45° to determine the nature of the observed features. When the material 

remains continuous, light is not reflected or scattered. Therefore, light makes it through the 

specimen, which alternates between dark and light as the sample is rotated. Where 

discontinuities occur the interfaces reflect light, and any fibrils or other microscopic 

features scatter light and appear dark at all orientations as the sample is rotated under 

polarized light.  The bands that remain dark at all orientations of the rotation stage are not 

shear bands and are consistent with crazes and/or cracks. 
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Figure 3.12  Polarized light micrographs of the 10-13 µm thick section acquired in a Zeiss 

Universal microscope through crossed linear polarizers equipped with a Canon EOS DS30 camera. 

This section was cut at a distance of about 40 µm from the OD. The sample was rotate at increments 

of 45⁰ (choice of 0⁰ is arbitrary). 

 

Determination of axis orientation 

Rotation of a specimen between crossed linear polarizers can be used to determine 

the chain axis orientation in the millimeter scale. A specimen is placed between crossed 

linear polarizers and rotated 360 ° at small increments (Fig. 3.12a). The regions that appear 

dark have the chain axis parallel to the direction of either the polarizer or the analyzer (Fig. 

3.12b). 
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Figure 3.13 Polarized light micrographs of a section cut from a W crest of a crimped subassembly. 

a) The thin section is rotated counter-clockwise every 10° (choice of 0° is arbitrary). The white 

cross shows the orientation of the crossed linear polarizers. When a region of the specimen is dark 

the chain axis is oriented parallel to the horizontal line of the cross. b) A composite image of the 

shows the chain axis orientation along part of the outer bend. The same procedure can be applied 

to the rotation of the specimen clockwise. Scale bars are 100 µm. 

 

3.5.4 Wide-angle X-ray microdiffraction 

Wide-angle X-ray microdiffraction experiments were performed at beamline 2-ID-

D of the Advanced Photon Source at Argonne National Lab. Diffraction patterns were 

collected using a Mar CCD detector at distance of 119.73 mm from the sample holder.  The 

source wavelength was 1.227 Å and the beam spot size was 0.2 μm. The diffraction patterns 

were calibrated for centering and detector distance using a cerium oxide (CeO2) standard. 

The thin section was attached on Kapton tape and placed in front of the beam using an 

aluminum holder. To characterize the crystalline microstructure at the bend of the thin 

section presented herein, we acquired microdiffraction patterns from a 230 µm x 210 µm 

(Fig. 3.3) area. Data was acquired at positions spaced 10 µm apart for a total of 483 

patterns. The data acquisition time was 30 seconds. Image analysis code was developed 

using MATLAB®. This code was used for data reduction to obtain radial and azimuthal 
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intensity profiles, and to extract quantitative values for maximum intensity, crystal 

orientation, and crystal spacing. 
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CHAPTER 4  

 

Effect of Deployment on Scaffold Morphology 
 

4.1 Introduction 

Successful implantation of a balloon-expandable stent or scaffold in the artery 

depends on its structural integrity after deployment. Among the factors affecting success 

are the geometry and mechanical stability of the struts, and the correct sizing of the scaffold 

diameter and length for the each patient1–4.  Research on the effect of the expansion stresses 

during deployment so far has focused on two different aspects: first, the structural 

properties of metal stents and second, the impact on the artery itself.5,6 The pioneering work 

of Dumoulin and Cochelin demonstrated that Finite Element Analysis (FEA) can be used 

to predict the stresses on the stent struts7 and since then, FEA  has become a standard tool 

for the development of new products. For example, other studies have investigated the 

pressure limit to avoid failure during expansion8;  the importance of the balloon’s 

dimensions and uniformity of the balloon’s folding pattern9,10; the relationship between 

fracture and strut thickness11;  and the coupling of the stresses on the artery and the 

retraction of the stent12. 

The overwhelming majority of FEA deal with metallic stents and studies simplify 

the material as homogenous and isotropic. However, it has been demonstrated that because 

the dimensions of metallic stents are in the order of the individual grains, the specifics of 

microstructure plays a great role in the mechanics of fracture and stability during 

deployment13,14. For biodegradable polymeric scaffolds the presence of crystalline and 
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amorphous phases dictates both the stress dissipation during deployment and the scaffold’s 

subsequent degradation15. Thus, understanding the microstructure evolution of the PLLA 

scaffold during deployment is extremely important for understanding its in-vivo 

performance.  

During deployment, scaffolds are expanded by inflation of a ballooni. Once the 

desired diameter is reached, the balloon is deflated and withdrawn, leaving the scaffold in 

the expanded state to hold the blood vessel open. The scaffold strength is provided by rings 

connected by links parallel to the axial direction. Each ring is composed by alternating Y, 

W, and U crests (Fig. 4.1). Research on the expansion of various designs of biodegradable 

scaffolds has focused on bulk properties to assess their mechanical stability16–20. However, 

understanding the bulk behavior of polymers requires understanding of the underlying 

microstructure, e.g. crimping leads to the coexistence of very different microstructures in 

close proximity in the inner bends (see Chapter 3 and Fig. 4.1). Here, we combine scanning 

electron and polarized light microscopy with synchrotron X-ray microdiffraction to 

investigate the consequences of the structure formed during crimping on the physical 

changes during deployment. 
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Figure 4.1 Schematic showing the location of inner and outer bends for a) “W”, “Y, and b) “U” 

crests.  

 

4.2 Results 

4.2.1 Scanning electron microscopy 

Scanning electron microscopy (SEM) micrographs of expanded scaffolds show the 

diamond-shaped voids at the inner bends of U, Y, and W crests (Fig. 4.2). It is not possible 

to compare the size of the diamond-shaped voids of the Y and W crests (Fig. 4.2 a-b) to 

those of U crests (Fig. 4.2 c-d) because they are on opposite sides of the circumferential 

rings of the scaffold. Nevertheless, it appears that the diamond-shaped voids on the inner 

bends of Y and W crests are systematically smaller than those on U crests. High 

magnification SEM micrographs of diamond-shaped voids under U crests in both regularly 

expanded (Fig. 4.3 a) and expanded to failure (Fig. 4.3 b-c) show that the fundamental 

deformation mechanism of void formation does not change with expansion ratio. 
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Figure 4.2 Scanning electron microscopy (SEM) micrographs of scaffolds subjected to expansion 

to failure in vitro. The letters indicate the Y, W, and U crests. View of the inner bends Y and W 

crests from a) the inner diameter of the scaffold (the relationship to the cylindrical coordinate 

system is shown) and b) from the outer diameter.  c) View of U crests from the inner diameter and 

b) from the outer diameter of the scaffold. The W crests have a diamond shaped void on each side 

of the link and Y and U crests have one. The material that appears to peeling off (black arrow) is 

from the drug coating (not the PLLA core). Scale bars are 1000 μm. Image contrast has been 

adjusted for uniformity. Micrographs provided by Abbott Vascular. 

 

 

 

Figure 4.3 High magnification SEM micrographs of diamond-shaped voids under U crests of an 

expanded scaffold. a) Void created under regular expansion ratio. b) and c) Voids created under 

high expansion ratio. Scale bars are 100 μm. 
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4.2.2 Polarized light microscopy 

In view of the common features amongst the Y, W, and U crests observed with 

SEM, we continue our analysis using one type of crests (U) as a model. Thin sections in 

the (θ, z)-plane show the retardance increasing and the decreasing from the arms to inner 

bend (Fig. 4.4). For example moving  left to right in the deployed U cut from about 90 µm 

from the OD (Fig. 4.4) the retardance increases from 400 nm (gold) to 500 nm (burgundy) 

to 600 nm (navy blue) to 700 nm (sky blue) to 900 nm (yellow) and then decreases again 

sequentially from 700 nm to 600 nm to 500 nm. The inner bend region has a retardance of 

about of 400 nm and a micro-crack is observed (white rectangle, Fig. 4.4a)ii. Moving away 

from the center of the inner bend toward the right arm and the outer bend, the reverse 

sequence of colors is observed.  

 

Figure 4.4 Polarized light micrographs of sections cut from deployed U crest about 90 μm away 

from the OD. The dots on this image are used in the text to describe the increase and decrease of 

retardance. The micrograph was acquired in a Zeiss Universal microscope through crossed linear 

polarizers equipped with a Canon EOS DS30 camera. Scale bars are 100 µm. 
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4.2.3 X-ray microdiffraction 

The microstructure of the thin section shown in Figure 4.3 was examined by X-ray 

microdiffraction at beamline 2-ID-D of the Advanced Photon Source (APS) of Argonne 

National Lab. Selected diffraction patterns acquired from the line scans show that the 

dominant crystal form is α’ (Figs. 4.5 and 4.6). To quantify the spatial microstructure 

evolution we considered the following quantities: Imax of I(Φ), I(Φ)*P, Φmax, and Φ-FWHM 

(Fig. 4.7). (The maximum intensity of the (110)/(200) peak is weighted by a weighting 

factor, P, to account for the intersection of the diffraction sphere with the orientation sphere 

of the crystal population21 (see Methods, section 4.5.4)). The diffraction patterns 

correspond to crystals oriented mainly along the θ-direction. Selected diffraction patterns 

acquired at the inner bend of the section are shown in Figure 4.8. 
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Figure 4.5 a) Polarized light micrograph of the thin section that was examined with X-ray 

microdiffraction. The (x,z)-axes show the coordinate system. White dots on the micrograph show 

the location at which the diffraction patterns in a-c were acquired. Scale bar is 100 µm. b-d) 

Selected microdiffraction patterns acquired at 2-ID-D with a 0.2 μm beam spot size. The patterns 

have been rotated 138° from their original laboratory frame to match the orientation of the polarized 

light micrograph. 
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Figure 4.6 a) Polarized light micrograph of the thin section that was examined with X-ray 

microdiffraction. The (x,z)-axes show the coordinate system. White dots on the micrograph show 

the location at which the diffraction patterns in b and c were acquired. Scale bar is 100 µm. b) and 

c) Selected microdiffraction patterns acquired at 2-ID-D with a 0.2 μm beam spot size. The patterns 

have been rotated 138° from their original laboratory frame to match the orientation of the polarized 

light micrograph.  
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Figure 4.7 Quantitative analysis of the 98 microdiffractions patterns along the arms and outer bend 

of the thin section. a) Polarized light micrograph of the thin section with an overlay showing the 

line scans. From left to right, each scan has 37, 30, and 31 points. Scale bar is 100 µm. The red and 

blue lines indicate the first and last point of the first and third line scan, respectively. b) Variation 

in the maximum intensity of the I(Φ) curve. c) Variation in the maximum intensity of the I(Φ) curve 
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multiplied by the orientation weighing factor f. d) Spatial variation in Φ-FWHM. e) Spatial 

variation in Φ. 

 

 

Figure 4.8 a) Cropped polarized light micrograph shows the position of the 2D scan with respect 

to the line scans. Scale bar is 50 μm. b) Higher magnification polarized light micrograph of the 20 

μm x 40 µm area scan. Scale bar is 50 μm. c) Representative microdiffraction patterns from the 

area scan, rotated 138° to match the orientation of the polarized light micrograph. Their positions 

are indicated by the black dots on part b. Patterns are 2 um x 4 um apart. 
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4.3 Discussion 

To understand the structure of a deployed scaffold in relation to the structure 

created during crimping, we chose to study a section cut in the (r,θ)-plane of a U crest, like 

the section examined in Chapter 3. Here, the section was taken approximately 90 μm from 

the outer diameter, about 15 µm past the midplane (i.e., closer to the inner diameter (ID) 

than the outer diameter (OD), and past the deepest point of the diamond-shaped void). In 

the crimped state, material this close to the midplane was not displaced out of the (θ, z)-

plane. Similar to Chapter 3, the section is about 10 μm thick, representing 1/15th of the total 

thickness of the scaffold. During deployment, the outer bend experiences θ-compression 

(top of Fig. 4.9) and the inner bend experiences θ-elongation, (bottom of Fig. 4.9); the 

magnitude of the stress field varies strongly between the outer and inner bends, with the 

steepest gradient near the inner bend.22 It is interesting to note, however, that the structure 

at the outer bend shows no indication of compressive deformation.   

 

 
 

Figure 4.9: Schematic showing the forces involved in deployment. The expansion forces drive 

the arms away from each other. This imposes tensile stress on the inner bend and compressive 
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stress at the outer bend. The area of compressive stress is larger than the area of tensile stress. 

Schematic from Jang et al.22  

 

At the outer bend, the PLLA chains are strongly aligned with c-axis in the θ-

direction and are highly ordered as seen from the presence of higher order peaks (Fig. 4.5c 

and d). This type of microstructure can only be formed after stretching at a high draw 

ratio23–26 so it must be inherited from the elongation of the outer bend during the crimping 

process. During deployment, the outer bend is under compression, yet the strong 

orientation is not lost (Fig. 4. 5b-d, patterns (-415, -90) to (230, 150)) and there is no 

evidence of fracture or buckling (see SEM of outer bends, Fig. 4.2b and d).  The Φ-FWHM 

near the outer bend is remarkably uniform (Fig. 4.7d) and corresponds to a very narrow 

distribution of oriented crystals. This evidence points strongly to a dominant effect of 

crimping on the creation of order at the outer bend; during subsequent deployment, the 

structure in the outer bend constrains deformation and remains unmodified. 

The region of highly aligned crystals in the deployed sample can be compared to 

the microdiffraction results in the crimped state (Chapter 3, Fig. 3.6) to understand its shape 

and extent.  The present section has an approximately semi-circular area of high retardance 

(approximately 650 nm, turquoise/purple on Fig. 4.5a), which extends away from the outer 

bend (e.g., positions (-415, -90) and (-350, -40) in Fig. 4.5b). Although quantitative 

comparison between the deployed and crimped sections is not possible, the overall 

appearance of the broad arc of high orientation in the deployed one corresponds to a narrow 

arc in the crimped one.  For example, the displacement that occurs during deployment, 

would move the points at coordinates (-80, 70) and (100, -70) in the crimped section shown 

in Figure 3.6 to approximately (-190, 95) and an intermediate point between (230, 150) and 
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(325, 105) in the deployed section in Figure 4.5. The reorientation of the arms during 

deployment accounts for the change in orientation direction of the c-axis between the 

corresponding diffraction patterns (cf. Figures 3.6 and 4.5).  Thus, the semicrystalline 

structure in the deployed scaffold accords with that present in the crimped state. 

A surprising feature was discovered in the microdiffraction patterns in the arms of 

the deployed U crest, which show “comet”-shaped (100)/(200) peaks (Fig. 4.6 b and c) far 

away from the deformation zone of the bend (see Chapter 3).  The orientation of the comet 

“heads” corresponds to the arms rotating in the ±x-direction.  In a crimped section (e.g., 

Fig.3.6, pattern (30, 50)), comet shaped peaks were observed near the inner bend and in 

the small zone of intense deformation.  Here in the deployed U, the comet shaped patterns 

are observed over a large area: in the line scans shown in Figure 4.6a, the patterns with 

comet shaped peaks in Figure 4.6b and c are representative of 10 consecutive patterns that 

extend over approximately. Although we do not understand how these could form during 

deployment, the comets “tails” in the crimped state accord with lamellar fragments created 

during plastic deformation (Fig. 3.6). 

A striking feature of the diamond shaped voids is the absence of fibrils bridging 

across their surfaces (SEM micrographs Figs. 4.2 and 4.3). Furthermore, in contrast to the 

microdiffraction results in the crimped state, very few patterns show the discrete bright 

reflections associated with craze fibrils (Fig 4.8, patterns that are within 10 µm of the inner 

edge of the U crest). This is particularly interesting because hydration has been shown to 

facilitate craze formation in PLLA27 and deployment in vitro is performed in an aqueous 

medium. In view of many other sections that were examined with X-ray microdiffraction, 

the low occurrence of fibril patterns in the diamond shaped voids indicates that the 
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deformation of the inner bend during deployment does not involve additional crazing or 

fracture. Instead, the faces of diamond-shaped voids (Figs. 4.2 and 4.3) separate cleanly, 

which is characteristic of surfaces that are tangent to the c-axis orientation. In the literature 

on semicrystalline polymers, it is known that very low loads are required to open surfaces 

tangent to the chain direction28.  Therefore, we hypothesize that during deployment, the 

outer bend does not compress because the inner bend so easily elongates due to formation 

of the diamond-shaped voids. Indeed, the integrity of the outer bend appears to be protected 

by the low stress required to open the diamond shaped void. 

At first glance, it may seem surprising that the chain axis is not orthogonal to the 

surfaces of the diamond shaped voids: after the expansion process, the chains are oriented 

in the θ-direction, which would result in craze formation across the diamond shaped voids.  

However, the restructuring during crimping results in c-axis oriented along the r-direction 

the inner bend of a U crest (Fig. 4.10 and Chapter 3). During deployment, tensile stress is 

imposed in the θ-direction—orthogonal to the c-axis orientation along r. Consequently, the 

newly exposed surfaces form without breaking chains or forming crazes (Fig. 4.11).  This 

accords with clinical studies that observed diamond-shaped voids and found that they do 

not compromise the in vivo mechanical performance of the scaffold.29 
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Figure 4.10 Chain orientation at the inner surface of a diamond-shaped void. a) Scanning electron 

microscopy (SEM) micrograph of a scaffold subjected to expansion to failure in vitro. The black 

circle shows the diamond-shaped void at the inner bend of a U crest. Scale bar is 1000 μm. b) High 

magnification SEM micrograph of a diamond-shaped void created under regular expansion 

ratio. The white curved lines show that the chain c-axis is aligned in the r direction. Scale bar is 

100 μm. Micrographs provided by Abbott Vascular. 

 

 
 

Figure 4.11 Schematic showing the formation mechanism of a diamond-shaped void at the inner 

bend of a U crest. The blue double arrows indicate the polymer chain orientation and the red thick 

arrows indicate the tensile stress direction.  a) In the crimped U, the chains at the inner bend are 

aligned in the ±r direction. b) Shortly after expansion begins, micro-voids form. c) As the 

expansion continues, the number of micro-voids increases. d) Eventually, the micro-voids will 

start separating. e) Finally, the complete separation of surfaces results in diamond-shaped voids. 

 

4.4 Conclusions 

The microstructure of the deployed scaffolds cannot be understood without 

considering the crimping step. The outer bend experienced significant elongation during 

crimping, which introduced a strongly oriented population of crystallites. During 

deployment, the outer bend is under compression, yet the orientation is not lost and there 

is no evidence of fracture of buckling. Rather, the material resists deformation as a result 

of the structure that was created during crimping. Thus, structure formation during 
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crimping governs the behavior during deployment by creating an “iron band” along the 

outer bend that deforms only minimally and protects the crests from fracture during 

deployment. 

The salient feature of the inner bend is the diamond-shaped void. Its formation also 

has roots in the microstructure created during crimping, which causes the c-axis to orient 

in the r-direction at the inner bend. It is striking that these diamond-shaped voids do not 

involve crazes. There are no fibrils bridging across the fracture surfaces inspected by SEM, 

in which a large number of diamond-shaped voids are seen. This is particularly interesting, 

since deployment is performed in an aqueous environment, which facilitates formation and 

enlargement of crazes. This interesting behavior results from the relative orientation of the 

chains axis and the loading geometry: chains oriented along r peel apart relatively easily 

when a tensile stress is imposed along the θ-direction. This separation is manifested as 

diamond-shaped voids. Thus, the formation of diamond-shaped voids happens with no loss 

of material. 

Here, we have demonstrated that the microstructure created during crimping 

dictates the microstructure in the deployed state. The strong outer bend and pliable inner 

bend contribute to successful deployment30: the inner bend allows for gracefuliii expansion 

from the crimped state due to the mutually orthogonal directions of the chains and the 

tensile stress. This leaves the strong outer bend unperturbed during deployment, leaving 

intact the structure that resists the compressive forces of the artery. Together with results 

on the microstructure of crimped bioresorbable scaffolds (Chapter 3), the present study of 

the deployed state provides a foundation for further investigation, for example, of the 

relationships between microstructure and hydrolytic degradation.  
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4.5 Methods 

4.5.1 Materials 

To simulate the deformation the scaffolds experience upon deployment in the 

artery, a crimped subassembly was deployed in vitro before studying it. The crimped 

subassembly was submerged in a buffer solution at 37 °C and after a two-minute 

incubation, the balloon was inflated to expand the scaffold to its nominal, product-specific, 

diameter. After the expansion, the balloon was withdrawn and the scaffold was handled 

individually.  

Individual rings from a deployed scaffold were embedded in TissueTek (Sakure), 

glued into screws, and then transferred to the microtome to equilibrate at -25 °C for 20 

minutes. Thin sections 10 - 15 µm thick were microtomed using a glass knife in the radial 

direction from an as-cut subassembly using a Powertome XL (RMC Products). The thin 

sections were provided by Abbott Vascular. 

 

4.5.2 Polarized light microscopy 

Polarized light micrographs were acquired in a Zeiss Universal microscope at 4X or 10 X 

magnification through crossed linear polarizers equipped with a Canon EOS DS30 camera. 

 

4.5.3 Wide-angle X-ray microdiffraction 

Wide-angle X-ray microdiffraction experiments were performed at beamline 2-ID-

D at the Advanced Photon Source of Argonne National Lab. Diffraction patterns were 

collected using a Mar CCD detector at distance of 119.73 mm from the sample holder.  The 

source wavelength was 1.227 Å and the beam spot size was 0.2 μm.  The diffraction 
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patterns were calibrated for centering and detector distance using a cerium oxide (CeO2) 

standard. The thin sections were “sandwiched” between two 500 µm thick silicon nitride 

membranes (Silson Ltd.) placed in front of the beam using an aluminum holder. The data 

acquisition time was 300 seconds. Image analysis code was developed using MATLAB® 

and was used for data reduction to obtain radial and azimuthal intensity profiles, and to 

extract quantitative values for maximum intensity, crystal orientation, and crystal 

orientation distribution.  

The thin section presented in this chapter was investigated with line scans and an 

area map. The line scans had a step size of 15 µm along the arms and 9.6 µm along the 

outer bend; the map covered an area of 40 μm x 20 µm with a step size of 2 µm and 4 µm 

in the x- and z-directions of the laboratory frame.  

4.5.4 Calculation of orientation weighing factors 

The following discussion is adapted from Dean et al.21  

The scattered intensity from a diffraction plane depends on the orientation 

distribution of poles (plane normals) in the diffraction sphere (Fig. 4.12). In the 

experimental system described herein, the distribution arises after deformations during 

crimping and deployment create three different chain axes orientations. 
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Figure 4.12 Schematic showing the X-ray scattering geometry of the intersection of the orientation 

sphere with the diffraction sphere (dashed circle of radius r1 and width w). Scheme from Dean et 

al.21 

 

The relative intensity of an oriented peak can be related to the intensity diffracted 

by an equal number of unit cells if they were isotropically distributed over the orientation 

sphere (i.e., a uniform distribution of poles): 

Unoriented Pole Density (UPD) = 
2𝜋𝑟1𝑤

4𝜋𝜌2  = 
2𝜋𝑓𝑤

4𝜋ρ
                                    (4.1) 

where r1 represents the radius of the circle formed by the intersection of the diffraction 

sphere with the orientation sphere and w is the finite width of this circle, due to the variation 

in unit-cell dimensions; w is assumed to be the same for oriented and unoriented cases. The 

radius of the orientation sphere (ρ) for a particular diffraction is given Bragg’s Law, 

ρ =  
sin(𝜃)

𝜆
                                               (4.2) 
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where λ is the radiation wavelength and θ is the scattering angle (see equation 4.6 below).  

It is convenient to eliminate r1 using the ratio of the radii of the intersection circle and the 

orientation sphere, denoted f, which is related simply to the scattering angle of the 

diffraction plane of interest: 

               f = 
𝑟1

𝜌
= sin(

𝜋
2
− 𝜃).                                                   (4.3) 

If the same number of unit cells were present with a fiber-type orientation with 

plane normals oriented at an angle ϕ to the fiber axis, a different fraction of them would 

satisfy the diffraction condition.  Specifically, the whole population could then be viewed 

as populating a ring of area (2 π r2) rather than the entire orientation sphere; out of this 

ring, just two short segments of length w contribute to the observed diffraction:  

Oriented Pole Density (OPD) = 
2𝑤

2𝜋𝑟2
                                                (4.4) 

For an equal number of unit cells, the relative diffracted intensity for crystallites having a 

fiber-like orientation distribution with the (hkl) plane normal at angle ϕ with respect to an 

axis orthogonal to the X-ray beam (Figure 4.12) compared to an unoriented distribution is                           

P =  
2

π𝑓sin(𝜙)
                                                   (4.5)  

Using equations 4.1 and 4.2 and r2 =ρ sin(ϕ). For the hexagonal unit cell, the value of θ for 

an (hkl) plane can be calculated using  

𝑠𝑖𝑛2𝜃 = 
𝜆

4𝛼2
[
4

3
(ℎ2 + 𝑘2 + ℎ𝑘) + (

𝑎

𝑐
)
2
𝑙2)]                   (4.6) 

where α, and c are the unit cell dimensions. 
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Using of α = 6.2 Å for the α’ phase of PLLA and λ = 1.2276 Å (the X-ray wavelength at 

APS 2-ID-D) for the (110) plane, the scattering angle is θ110 = 11. 42° and f110= 0.98. 

Similarly, θ200 = 7.59° and f200 = 0.99 for the (200) plane. 

The angle 𝜙 is defined as the angle between the (hkl)-plane unit normal vector and 

the symmetry axis of the system. For a hexagonal system, such as PLLA’s α’ morph, the 

primary axis of symmetry is the c-axis.31 By definition, the plane unit normal of (110) is  

𝑃�⃗� 110
=𝑥 + 𝑦  and the angle between it and the c-axis unit normal (�⃗� 𝑐 =𝑧  ) is 90° (Fig. 

4.13). For calculation purposes, 𝜙 can be taken to be the (110) peak angle, Φmax.
32 Using 

the above values, P110 varies from 0.918 to 0.649 for 45°≤ 𝜙 ≤ 90° and, similarly, P200 

varies from 0.908 to 0.642 for 45°≤ 𝜙 ≤ 90°. Hence, the intensity must be weighed to 

accurately to represent the system properties. 

 

Figure 4.13 Schematic of the (110) plane (diagonal blue lines) and the plane unit normal, 𝑃�⃗� 110
, 

(red arrow) are shown in the frame of the hexagonal unit cell. 
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i Metallic self-expandable stents are also available in the market for peripheral applications (e.g. Innova™ 

by Boston Scientific). 
ii The micro-crack is identified by rotating the specimen between crossed linear polarizers. No light is 

refracted where discontinuities occur and the regions remain dark at all orientations. 
iii In solid mechanics, “graceful” fracture or failure refers to separation of surfaces without alteration of the 

material’s load-bearing capabilities.  
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Appendix A 

Data Analysis Code 

The following code was used to analyze the wide-angle X-ray scattering and 

microdiffraction data. I would like to acknowledge Esteban Hufstedler’s advice on 

handling images when developing this code. 

 

A.1 Reduction of data to acquire I(Φ) 

 

load S2Crimp3map1Names.mat % load the names of the data files 

 

% experimental parameters  

lamda = 1.2276*10^-10; 

Np =  2048; 

pixsize = 79.138 *10^-6; 

xc = 988; 

yc = 1060; 

SaDet = 119.7321* 10^-3; 

w= Np * pixsize; 

  

  

 % setup of matrices that will be used for the following interpolations 

[X, Y] = meshgrid(1:Np, 1:Np); 

X = X-xc; % rescale with center position  

Y = Y-yc; 

X = X*pixsize; %convert to actual distances 

Y = Y*pixsize; 

r = (X.^2 + Y.^2).^0.5; 

q = 4 * 10^-10*pi*sin(0.5*atan(r/SaDet))/lamda; 

  

 

rmin =  315; % rmin and rmax define the radius for the 110/200 peak. 

rmax = 370; 

nt = round(2*pi*rmax); % number of phi points 

nr = rmax-rmin; 

phi1 = deg2rad(-90); % Full circle of phi points the with matlab's default config. 

phi2 = deg2rad(270); 

     

  

for i = 1:483 

    im = medfilt2(imread(S2Crimp3map1Names{i}), [5 5]); 

    %create the mesh in x, y that the elemens of the 2D image will be mapped on 

    [x,y] = meshgrid(1:size(im,2),1:size(im,1));  

    % create the mesh in phi and r 
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    [phi, radius] = meshgrid(linspace(th1,th2,nt), linspace(rmin,rmax,nr)); 

    xi = xc+radius.*cos(phi); % these are the cartesian coordinates of each pixel 

    yi = yc+radius.*sin(phi); 

    % 2D interpolation: interpolate the values at (xi, yi) of the original 

    % the image im so that each pixel corresponds to an (xi, yi) of the 

    % unwrapped image 

    unwrapped = interp2(x, y, double(im), xi, yi);  

    unwrapped(isnan(unwrapped)) = 0; % fill out the NaN values with zero 

     

    % The summation gives IvsPhi 

    IvsPhi1(:,i) = sum(unwrapped); 

 

end 

  

phi1 = phi(1,:)*180/pi-90 ; % azimuthal angle on detector  

                                             %0 is top middle and + is 

                                             %clockwise 

                                              

save(‘Crimp3map1_IvsPhi’, ‘IvsPhi’) 

save(‘phi1’, ‘phi1’) 

 

 

A.2 Extraction of quantitative values from I(Φ) 

 

load Crimp3map1_IvsPhi.mat 

load bkg.mat  % background frame 

load phi1.mat 

I1 = IvsPhi1; 

  

 xx = ones(3500,1);  

 Int = ones(3500, 483); 

  

for i = 1: size(I1, 2) 

    x = phi2; 

    y = I1(:,i) – bkg; 

  

    pp = spline(x,y); % pp form of the spline 

    xx = linspace(x(1), x(length(x)), 3500)'; % xmesh 

    Int(:,i) = ppval(pp, xx); % evaluate spline 

    [phiMax(i), maxI1(i), w1(i)] = fwhmPhi(xx, Int(:, i)); 

        

end 
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% plot the data 

 % mesh of the data positions 

z = 0:10:200; % xpos 

az = 0:10:220;  %ypos 

Imax = reshape(maxI1, 23, 21); 

fig= figure('Units','pixels','Position',[100, 400, 600, 500]); 

f1 = 'Crimp3_map1_IntPhiMax'; 

 imagesc(z, az, Imax, [0 8000]) 

 axis image 

 colorbar 

  print(fig, f1,'-dpng', '-r300') 

 

  

A.3 Function used to extract values from the I(Φ) curves 
 

function [phi, maxI, w] = fwhmPhi(X, Y) 

% phi = Φmax; maxI = value of maximum intensity; w = FWHM 

 

num = numel(Y); 

f = Y(num/2:end); 

f = f-min(f); 

x = 1:numel(f); 

[maxVal,peakI] = max(f); 

  

% determine noise levels 

sf = smooth(f,5); 

noiseLevel = std(f-sf); 

maxs = max(sf); 

mins = min(sf); 

  

% use S/N to determine outliers 

if (maxs-mins)/noiseLevel >120 

    halfMaxVal = maxVal/2; 

    halfMaxX1 =round( interp1(f(1:peakI),x(1:peakI),halfMaxVal)); 

    halfMaxX2 = round( interp1(f(peakI:end),x(peakI:end),halfMaxVal)); 

    w = X(halfMaxX2) - X(halfMaxX1); 

    phi= X(peakI + num/2); 

    maxI = maxVal; 

elseif (maxs-mins)/noiseLevel <= 120 

    w = 40; 

    phi= 0; 

    maxI = 0; 

end 

 

end 
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