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Abstract

In this work, we further extend the recently developed adaptive data analysis

method, the Sparse Time-Frequency Representation (STFR) method. This method

is based on the assumption that many physical signals inherently contain AM-FM

representations. We propose a sparse optimization method to extract the AM-FM

representations of such signals. We prove the convergence of the method for periodic

signals under certain assumptions and provide practical algorithms specifically for the

non-periodic STFR, which extends the method to tackle problems that former STFR

methods could not handle, including stability to noise and non-periodic data analy-

sis. This is a significant improvement since many adaptive and non-adaptive signal

processing methods are not fully capable of handling non-periodic signals. Moreover,

we propose a new STFR algorithm to study intrawave signals with strong frequency

modulation and analyze the convergence of this new algorithm for periodic signals.

Such signals have previously remained a bottleneck for all signal processing methods.

Furthermore, we propose a modified version of STFR that facilitates the extraction

of intrawaves that have overlaping frequency content. We show that the STFR meth-

ods can be applied to the realm of dynamical systems and cardiovascular signals. In

particular, we present a simplified and modified version of the STFR algorithm that

is potentially useful for the diagnosis of some cardiovascular diseases. We further

explain some preliminary work on the nature of Intrinsic Mode Functions (IMFs)

and how they can have different representations in different phase coordinates. This

analysis shows that the uncertainty principle is fundamental to all oscillating signals.
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CHAPTER 1

Introduction

1.1. Preamble

Accessing and utilizing the information hidden in such signals requires methods

for processing and analyzing signals. Such methods must be able to denoise and

analyze the signal in order to properly process the data. Mathematically, the easiest

way to construct a signal processing method is to project the recorded signal on a

predetermined algebraic basis or dictionary. A classical method of doing this task is

the Fourier Transform (FT) method and a more recent one is the Wavelet Transform

(WT) method [5, 41].

When a signal is periodic, the FT method is a powerful signal processing method.

Using the FT method, one can project the data into the orthonormal basis of the

Fourier domain (the frequency domain). This transition is a shift from the time do-

main to the frequency domain. The FT method can also perform as a robust method

for denoising periodic signals. Fast and efficient implementation of FT, namely the

Fast Fourier Transform (FFT) method, is popular among scientists and engineers.

The shortcomings of the FT method can be categorized into two different groups.

The first is the assumption of the periodicity (or stationarity) of the signal.

In fact, most of the signals that we encounter in practice are non-periodic. The

second problem is the lack of time information in the frequency domain: since the

frequencies extracted by the FT method are constants, one cannot perceive whether

a certain event has occurred at a certain time simply by looking at the frequency

content of the signal and the coefficients of the analysis. In order to overcome the

time-frequency resolution of the FT method, the WT method was proposed as a
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method that incorporates a time-frequency analysis of the signal by constructing a

large dictionary of some orthonormal functions.

The FT and WT methods share one common property: decomposition is per-

formed on a predefined basis, which is troublesome if the signal is not stationary.

Recently, Norden Huang proposed Empirical Mode Decomposition (EMD), a new

method of adaptive signal processing [30, 32, 33] in which the basis of the projection

is adaptive. EMD which uses multiscale data-driven decompositions called Intrinsic

Mode Functions (IMFs), is a step forward in data analysis. It has eliminated most of

the issues present in the FT and WT methods.

In particular, EMD can produce a faithful extraction even if the signal is not

periodic, and makes a sparser time-frequency analysis of the data. In fact, projection

into a basis is not the ultimate goal in many recently developed signal processing

methods. Researchers wish to have a projection that is as sparse as possible. In other

words, it is important to have a representation of the signal in a basis by keeping only

a few coefficients containing the pertinent information. In fact, in these methods,

one should project the observed signal on a large overdetermined basis (dictionary

[10, 12, 42]).

Since the IMFs are extracted adaptively from the data in EMD, the final decompo-

sition is in general sparser than FT or WT method the extractions. If the data has a

certain frequency scale-separation property, the extracted IMFs convey certain phys-

ical properties of the signal. Unfortunately, the empirical nature of the the EMD’s

decomposition makes it hard to analyze the results rigorously. In order to eliminate

this problem, Hou and Shi have proposed a rigorous mathematical system as a coun-

terpart of the EMD method [25, 24, 26]: the Sparse Time-Frequency Representation

(STFR) method.

1.1.1. Scope of the Thesis. The main focus of this thesis is to further develop

STFR methods. This development is two-fold. First, we introduce a non-periodic
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STFR method that can analyze non-periodic signals and can robustly deal with sig-

nals polluted with noise. Second, we propose and prove the convergence of a new

STFR method that can easily analyze intrawave signals, signals with intense Fre-

quency Modulation (FM) that cannot currently be handled using Hou and Shi’s

STFR methods [25, 24, 26].

Technically speaking, this analysis can be done by relaxing the definition of the

dictionaries that Hou and Shi have already used, see (1.2.3). To the best of our

knowledge, this is the first time that intrawave signals can be extracted with high

accuracy by an adaptive method.

This thesis also presents some real physical applications of our methods. We

show that our methods can be applied in diverse fields like dynamical systems and

cardiovascular signals. We demonstrate that our method is capable of extracting

useful physical and biomedical information from the signals. Such information can

possibly be used in system identification and medical diagnosis.

Finally, the thesis also clarifies theoretical understanding of the nature of IMFs.

We show that an IMF can have infinitely many representations and that consequently,

the uncertainty principle is an indispensable part of oscillating signals. Lacking

a unique representation does not decrease the merit of any adaptive data analysis

method, including the STFR method, but only shows the richness of the field and

requires that an adaptive method can pick a certain representation based on a fixed

preference.

1.2. A Brief Introduction to the STFR Method and its Applications

All STFR methods are based on the assumption that a relatively big subclass of

the oscillatory signals are signals of the form

(1.2.1) x (t) = a (t) cos θ (t) ,
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with only one extrema between the zeros of the signal, in which the envelope is strictly

positive, a (t) > 0, and the phase function θ (t) is a one-to-one, strictly increasing map

between the time coordinate, t, and the phase coordinate, θ. The time derivative of

this phase function is called the Instantaneous Frequency (IF). With some abuse

of notation, we can say that the STFR methods deal with signals that have both

Amplitude Modulation (AM) and Frequency Modulation (FM). The type of signal,

in Equation (1.2.1) is called an Intrinsic Mode Function (IMF) in STFR and EMD

terminology. A number of methods can extract each IMF from a combination of

many IMFs, with different levels of accuracy. Methods that perform such extraction

well include, but are not limited to, EMD [32], EEMD [56], Optimization based EMD

[27], Wavelet [41], STFR [25, 24, 26], and Synchrosqueezed wavelet transforms [17].

However, when it comes to signals with strong frequency modulation, these methods

have difficulties extracting a unique IMF specifically when the data is polluted with

noise. Among these methods, the STFR method provides a better physical and

mathematical understanding.

Physically speaking, θ (t) carries information about the rate of the change of the

signal in time. The envelope of each IMF is set to be from a certain collection of

functions. In mathematical terms we can express it as

(1.2.2) a (t) ∈ V (θ (t)) s.t. a (t) > 0,

where

(1.2.3) V (θ) = span

{
1, cos

(
θ

λ

)
, sin

(
θ

λ

)
| λ > 2

}
.

A finite linear combination of a collection of the IMFs is called an Intrinsic Signal

(IS),

(1.2.4) s (t) =
M∑
i=1

ai (t) cos θi (t) .

The goal of the STFR method is to extract each IMF from an IS.
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1.2.1. EMD Method. Most of the non-adaptive time-frequency signal analy-

sis methods are based on the projection of a signal on to a predetermined basis or

dictionary, such as a Fourier transform (FT) or Wavelet transform (WT). However,

since the projection of the signal is on a predefined set of functions, the extraction

is not adaptive and, possibly, not sparse. In order to get a better time-frequency

resolution, the intuition is to project the signal on an adaptive basis that is found

from the signal itself. Empirical Mode Decomposition and the more recent Ensemble

Empirical Mode Decomposition were developed to do just that.

Empirical Mode Decomposition (EMD) methods were originally proposed to over-

come the problem of predetermined bases which was hampering a proper sparse de-

composition in the WT and FT methods. EMD [32] tries to find the basis of decom-

position adaptively from the original signal in an empirical way. The EMD method

uses Intrinsic Mode Function (IMF) [32] as constructing blocks of signals. An EMD

definition of an IMF is:

Definition. An IMF is a function that satisfies the following two conditions:

• The number of extrema and the number of zero crossings are equal or differ at

most by one on the whole data set

• The mean value of the envelopes defined by the local maxima and the local

minima is zero at any point.

EMD decomposes a signal into an extracted IMF and a residue through a sift-

ing process. The extracted IMF is then post-processed to find the Instantaneous

Frequency (IF) either through Hilbert Transform (HT) or another sifting process

[32, 33]. To summarize, for a signal x (t), the decomposition looks like

x (t) =
n∑
k=1

ck (t) + rn (t) ,

where ck’s are the IMFs extracted from the signal and rn (t) is the residue.
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1.2.2. Ensemble Empirical Mode Decomposition (EEMD)Method. EMD

is highly sensitive to noise. In order to fix this shortcoming, Wu and Huang [56] pro-

posed EEMD in 2009. EEMD minimizes noise effects by adding white noise to the

signal. While the EMD and EEMD methods have attracted a lot of attention, they

lack a theoretical basis. The STFR methods were introduced to fill the empirical gap.

1.2.3. STFR Methods. Although STFR methods were inspired by the EMD

and EEMD methods [32, 56], they make use of techniques from compressive sensing

theory [10, 12] and matching pursuit [42]. Compressive Sensing (CS) and Matching

Pursuit (MP) methods try to find a sparse reconstruction of an observed signal from

a predefined finite large dictionary. STFR, on the other hand tries to find a sparse

reconstruction of an observed signal from a predefined infinite large dictionary. STFR

methods use two major steps: they first construct a highly redundant dictionary of

all IMFs, namely D, and then find the sparsest decomposition by solving a non-linear

and non-convex optimization problem

(1.2.5)
Minimize M

Subject to : s (t) = ∑M
i=1 ai (t) cos θi (t) , ai (t) cos θi (t) ∈ D, i = 1, ...,M,

which is an L0 minimization problem. We explain possible approximations by which

one can find a close solution of this problem. Hou and Shi have proposed a number

of algorithms for approximating this problem [25, 24, 26] by decomposing the signal

into two parts, a mean a0 and a modulated oscillatory part, namely the IMF, a1 cos θ:

s (t) = a0 (t) + a1 (t) cos θ (t) ,

where θ, a1, and a0 are the unknown phase function, envelope, and mean respectively.

Upon finding one of the IMFs, a1 cos θ, the residue (or the mean) a0 is treated as a

new signal and the same procedure is repeated until the residue is smaller than a

preset value.
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1.2.3.1. Total Variation Method. Hou and Shi [24] proposed the TV 3 minimization

of the form

(1.2.6)
Minimize TV 3 (a0) + TV 3 (a1)

Subject to : s (t) = a0 (t) + a1 (t) cos θ1 (t) , θ
′
1 (t) > 0,

as an approximation to the original problem (1.2.5). This problem is solved in an

iterative manner. First, an initial guess on θ1 is set. Then based on that, the value of

a1 is approximated and the phase θ1 is again updated. This procedure is repeated until

there is no progress in updating the phase function. This approach is an exponential

step compared to the EMD and EEMD methods; however, the algorithm is not stable

to noise.

1.2.3.2. Periodic Fourier-based Sparse Time-Frequency Method. To address the

noise instability problem, Hou and Shi, proposed the Periodic Fourier-based STFR

method [25], which performs well on periodic data even in the presence of noise. This

method implicitly solves

Minimize ‖s (t)− a (t) cos θ (t)‖2
2

Subject to : a (t) cos θ (t) ∈ D

using a Fast Fourier Transformation (FFT) iterative scheme. The Periodic STFR

algorithm works in the following way: an initial guess is proposed on the phase

function θ0. In the first step, the whole signal is mapped to the phase function space

and the Fourier transform of the signal is then found in that space. At this step,

the possible candidates for the envelope functions are found. Later, the new phase

function is updated and the algorithm begins a new iteration.

While this algorithm works well for periodic data, the algorithm does not extract

the IMFs properly for non-periodic data.

1.2.3.3. Non-Periodic Sparse Time-Frequency Method. TV STFR is not accurate

for noisy signals and Periodic STFR is not suitable for non-periodic signals. Non-

periodic STFR has a slower speed of convergence than Periodic STFR since it uses a
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L1-norm regularized with L2-norm optimization rather than FFT for each iteration.

Nevertheless, it can successfully be applied to non-periodic signals and also to signals

polluted with noise.

In the non-periodic STFR algorithm, we assume that the envelopes of the IMFs

have a sparse structure in their respective dictionary. This assumption is not far from

reality since we are using an infinitely large dictionary when we try to extract IMFs.

This assumption can be formulated in the following way:

(1.2.7)

Minimize
a,b,θ

δ (‖a (λ)‖1 + ‖b (λ)‖1) + ‖s (t)−A (t) cos θ (t)‖2
2

Subject to : A (t) =
´∞

2

(
a (λ) cos θ(t)

λ
+ b (λ) sin θ(t)

λ

)
dλ,

dθ(t)
dt

> 0.

In this formulation, the envelope A (t) of the IMF A (t) cos θ (t) is assumed to have a

sparse structure that is captured by ‖a (t)‖1 +‖b (t)‖1. In this formulation, the dictio-

nary is used explicitly by A (t) =
´∞

2

(
a (λ) cos θ(t)

λ
+ b (λ) sin θ(t)

λ

)
dλ. The following

example shows the performance of this type of STFR.

Example. We tested the algorithm on a signal with a linear trend and two con-

stant envelope and frequency IMFs, f (t) = 6t+ cos (8πt) + 0.5 cos (40πt) (see Figure

1.1). The algorithm extracted IMFs (see red lines in Figures 1.2-1.4). Besides some

tiny boundary misalignment, the extractions were accurate, suggesting that the non-

periodic STFR method is accurate away from the boundaries.

When compared with other STFR methods, the only shortcoming of the Non-

Periodic STFR method is the speed of the algorithm.

1.2.4. Extraction of Intrawave, Sharp, and Rare Event Signals using

Sparse Time-Frequency Method. In general, intrawave signals are oscillatory

signals that have intense frequency modulation in at least one θ-coordinate. By

intense modulation we mean that the IF has oscillations that is comparable with the

oscillation of the IMF itself. The EMD method can extract one intrawave IMF in the
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Figure 1.1. Signal with a Linear Trend: The horizontal axis is the
time variable and the vertical one is the signal itself.
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Figure 1.2. Extracted Trend: The linear trend is in blue and the
extracted trend is in red. Except the right boundary, the error is small
in the extracted trend.
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Figure 1.3. Extraction of the first IMF: The extracted IMF is in
red. As can be seen, except from the boundaries the extraction is
faithful.
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Figure 1.4. Extraction of the second IMF: The extracted second
IMF is in red. It is almost indistinguishable from the high-frequency
original IMF.
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absence of noise. However, neither EMD nor EEMD can extract even one intrawave

IMF in the presence of noise. If the frequency modulation becomes even more intense,

the resulting signal is called a sharp signal. Analyzing these IMFs has so far been a

challenging problem in signal processing. Rare events are IMFs with compact support

in the time domain. A rare event is essentially like a spike. Adaptive methods like

EMD/EEMD are not able to process such signals with acceptable accuracy.

Since the main difficulty in dealing with intrawave signals comes from their wide

band representation in the frequency domain, which cannot be properly analyzed

using methods with explicit or implicit narrow band filters, we propose a method that

modifies the normal envelope dictionary in an STFR framework in order to extract

intrawave signals with high accuracy. This small modification, which is enlarging

the STFR filter, allows us to treat intrawave signals without major changes to the

original STFR Algorithms. Furthermore, we show that although enlarging the filter

requires that the IMF components of the IS must have enough separate time-frequency

representations, the method is not problematic when extracting non-separable time-

frequency IMFs from a signal provided they are extracted simultaneously.

Not only is the algorithm that we use to extract the IMFs stable, then, it is also

stable to noise perturbation. The EMD/EEMD methods fail to extract the two IMFs

properly. In fact all other adaptive methods fail to extract one IMF with intrawave

frequency modulation in the presence of noise, let alone two IMFs with intrawave

characteristics that have mode mixture.

1.2.5. Analysis of Convergence of Sparse Time-Frequency Method. We

prove that for any signal, whether intrawave or not, increasing the filter span reduces

extraction error. We show that STFR converges to an IMF that is close to one of the

IMF representations, but with an error associated with the width (span) of the filter.

We assume that an IS can be represented in the following format:

(1.2.8) f (t) = f0 (t) + f1 (t) cos θ (t) ,
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for f1 (t) > 0, dθ
dt

= θ′ > 0 and t ∈ [0, 1]. We assume that the signal is periodic with

mean zero. The main convergence theorem states that:

Theorem. Assume that the instantaneous frequency in equation (1.2.8) isM0-sparse;

i.e. θ′ ∈ VM0 = span
{
ei2πkt, |k| ≤M0, k ∈ Z

}
. Furthermore, assume that

∣∣∣f̂0,θ̄ (k)
∣∣∣ ≤ C0

|k|p
,
∣∣∣f̂1,θ̄ (k)

∣∣∣ ≤ C0

|k|p

for C0 > 0 and p ≥ 4. If the initial guess satisfies

∥∥∥F(4θ0)′
∥∥∥

1
2πM0

≤ 1
4 , then there exists

an η0 > 0 such that for L > η0 we have

∥∥∥F (θ − θm+1)′
∥∥∥

1
≤ Γ1λ

2p−2L−p+2 + 1
2

∥∥∥F (θ − θm)′
∥∥∥

1

for λ > 1 and Γ1 > 0.

Here, f̂θ̄ (k) =
´ 1

0 f
(
θ̄
)
e−i2πkθ̄dθ̄ and (F (g))k =

´ 1
0 g (t) e−i2πktdt. This theorem

can be generalized to the case where the signal is polluted with noise. Take

(1.2.9) f (t) = f0 (t) + f1 (t) cos θ (t) + =,

where = is a periodic perturbation to the original signal.

Theorem. Assume that the instantaneous frequency in equation (1.2.9) isM0-sparse;

i.e. θ′ ∈ VM0. Furthermore, assume that

∣∣∣f̂0,θ̄ (k)
∣∣∣ ≤ C0

|k|p
,
∣∣∣f̂1,θ̄ (k)

∣∣∣ ≤ C0

|k|p

for C0 > 0 and p ≥ 4. If the initial guess satisfies

∥∥∥F(4θ0)′
∥∥∥

1
2πM0

≤ 1
4 , then there exists

an η0 > 0 such that for L > η0, and ‖=‖∞ ≤ ε0 (ε0 sufficiently small) we have

∥∥∥F (θ − θm+1)′
∥∥∥

1
≤ Υ0 (L, λ) ‖= (t)‖∞ + Γ1λ

2p−2L−p+2 + 1
2

∥∥∥F (θ − θm)′
∥∥∥

1

for λ > 1, Γ1 > 0 and Υ0 (L, λ).
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These theorems explain only that we have a convergent algorithm, not that the

algorithm’s extraction is unique. Uniqueness is a difficult theoretical problem that

requires further research for more clarification.

1.2.6. Applications of Sparse Time-Frequency Method. In this thesis, we

study the application of STFR in two different fields: dynamical systems and cardio-

vascular disease diagnosis.

1.2.6.1. Dynamical Systems: In many scientific applications that requires signal

analysis, such as biological investigations, the complexity of the underlying physi-

cal problem is perplexing and the appropriate governing equation that describes its

dynamics is unknown. Researchers would like to be able to determine whether the

underlying dynamical system is linear or nonlinear, including quantifying the degree

of any nonlinearity.

We present a method for quantifying the nonlinearity of IMFs given by the STFR

method. The main idea is to establish a connection between the IMFs and classical

second order differential equations. We show that each IMF can be associated with

a solution of a second order ordinary differential equation of the form ẍ+ p (x, t) ẋ+

q (x, t) = f (t). This method provides a new way to interpret the hidden intrinsic

information contained in the extracted IMF of a signal.

1.2.6.2. Cardiovascular Disease Diagnosis: Cardiovascular Diseases (CVD) are

one of the main causes of death in the United States every year [39]. With an in-

creasing number of deaths every year, there is a need to develop new CVD diagnosis

methods.

Using the Periodic STFR method, we observed that the IF changes its trend before

and after the closure of heart aortic valve (i.e. dicrotic notch). Since we observed the

the IF trend shift, we proposed a modified version of STFR, the Intrinsic Frequency

(InF) method, to better address the special type of the signals that we were analyzing.

The InF method assumes that there are two constant dominant frequencies before

and after the dicrotic notch. These frequencies are called intrinsic frequencies.



14

It is assumed that before and after the dicrotic notch, we have the following simple

waveforms for the general IMF of the aortic pressure wave at time t:

si = ai cosωit+ bi sinωit+ p̄, i = 1, 2.

This assumption has shown its credibility as an index to characterize the heart and

cardiovascular diseases [44]. In this formula, i = 1 corresponds to the behavior of

the IMF before the valve closure, and i = 2 to the behavior of the IMF after that.

Here, ai, bi are constants and correspond to the envelopes of the IMF. The constants

ω1, ω2 correspond to the InFs of the IMF. p̄ is the mean pressure during the heartbeat

period.

Take [0, T ] to be the whole period of the pressure wave and T0 as the location of

the dicrotic notch: 0 < T0 < T . Also, define the indicator function as

1[x,y) (t) =


1, x ≤ t < y,

0, else.

Now, the main IMF of the pressure waveform can be expressed as

S (ai, bi, p̄, ωi; t) = (a1 cosω1t+ b1 sinω1t+ p̄) 1[0,T0) (t) +

(a2 cosω2t+ b2 sinω2t+ p̄) 1[T0,T ) (t) .

The goal is to extract the IMF carrying most of the energy and consequently

the InFs, ω1, ω2, from the observed aortic pressure waveform f (t). Taking t as a

continuous variable, one can use the least squares minimization to find the unknowns.

minimize
ai,bi,ωi,p̄

‖f (t)− S (ai, bi, p̄, ωi; t)‖2
2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

Using this modified version of the STFR method, we can identify the optimum

heart rate from the aortic pressure wave alone.
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We employed the InF algorithm on pressure wave signals collected from human

beings (both invasively using a catheter and non-invasively using an iPhone camera)

and dogs (invasively using a catheter). We found that heart performance (the Ejection

Fraction1 (EF)) can be predicted using the normalized values of the InFs and the

normalized value of p̄. The performance of the InF algorithm clearly shows potential

for use in health care systems.

1Ejection Fraction is essentially a measure of the percentage of blood leaving the heart in each
contraction. Ejection Fraction is a good measure of the performance of the heart. A very low
Ejection Fraction corresponds to some cases of Heart Failure. A very traditional way of measuring
the Ejection Fraction is through Echocardiography.
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CHAPTER 2

Literature Review

While there are different methods for signal processing, this chapter provides

an introductory overview of the more prevalent methods of signal decomposition

and processing, focusing on Fourier methods, Wavelet methods, and Empirical Mode

Decomposition methods, as well as a brief review of the Total Variation (TV) STFR

method[24], a first generation STFR method. Further details on these topics can be

found in the references cited in this chapter. This overview follows the steps of the

work by Guignard [23].

2.1. Fourier Methods

The classical approach to signal decomposition, Fourier analysis or Fourier Trans-

form, was first proposed by French mathematician Joseph Fourier, who initially used

it to solve heat transfer problems [7]. The most famous because of its simplicity

and accuracy, Fourier analysis decomposes a signal over a frequency space. Here, we

briefly introduce the method in mathematical terms.

2.1.1. Fourier Series.

Definition 1. Take the 2π-periodic real function f ∈ L1 (0, 2π), and N ∈ N. The

Partial Fourier Series of order N of the function f is defined by

(2.1.1) FN (f (t)) = a0 +
N∑
n=1

(an cos (nt) + bn sin (nt)) ,

having

a0 = 1
2π

ˆ 2π

0
f (t) dt,

an = 1
π

ˆ 2π

0
f (t) cos (nt) dt,
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bn = 1
π

ˆ 2π

0
f (t) sin (nt) dt.

This real definition can be extended into the complex form.

(2.1.2) FN (f (t)) =
N∑

n=−N
cne

int,

with

(2.1.3) cn = 1
2π

ˆ 2π

0
f (t) e−intdt.

The Fourier Series of a function, if exists, is defined as

F (f (t)) = lim
N→∞

FN (f (t)) .

In order to extend the Fourier Series from L1 (0, 2π) functions into L2 (0, 2π), we first

need to show that the set

(2.1.4)
{

1√
2π
,
cos (mt)√

π
,
sin (nt)√

π

}
,

is an orthonormal set for m,n ∈ N. This can be shown using the relations
ˆ 2π

0
cos (mt) sin (nt) dt = 0,

ˆ 2π

0
sin (mt) sin (nt) dt =


π, m = n

0, m 6= n
,

and ˆ 2π

0
cos (mt) cos (nt) dt =


π, m = n

0, m 6= n
.

The following theorem shows that the set (2.1.4) is an orthonormal basis for L2 (0, 2π)

[5].

Theorem 1. Let f ∈ L2 (0, 2π). Then

lim
N→∞

‖FN (f (t))− f (t)‖2 = 0,
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where ‖FN (f (t))− f (t)‖2 =
(´ 2π

0 |FN (f (t))− f (t)|2 dt
) 1

2 . Furthermore, the Par-

seval’s identity is satisfied
ˆ 2π

0
|f (t)|2 dt = 2π

N∑
n=−N

|cn|2 .

2.1.2. Fourier Transform (FT). The Fourier transform is the continuous ver-

sion of the Fourier Series. Here the function is not necessarily periodic and it is

defined on the whole real axis.

Definition 2. Let f ∈ L1 (R). Then, the Fourier Transform of f is defined as

F (k) = 1√
2π

ˆ ∞
−∞

f (t) e−iktdt.

If F ∈ L1 (R), the function f can be recovered by

f (t) = 1√
2π

ˆ ∞
−∞
F (k) eiktdk.

To properly define the Fourier Transform if f ∈ L2 (R), but is not in L1 (R), one

must find a sequence of functions fN ∈ L1 (R) ∩ L2 (R) which converges to f in the

L2 sense. Then the above definition can be used for fN as N goes to infinity.

2.1.3. Fast Fourier Transform (FFT). In practice, the recorded signal is al-

ways in a discrete format, f = (f0, . . . , fN−1)T . Without loss of generality, one can

assume that the data is recorded on a uniform mesh, tn = 2πn
N

, for n = 0, . . . , N − 1.

Using the trapezoidal rule, one can evaluate (2.1.3) to find the Fourier Series F =

(F0, . . . , FN−1)T in a discrete way:

Fk =
N−1∑
n=0

fne
− i2πkn

N ,

for k = 0, . . . , N − 1. The original signal can be recovered using

fn = 1
N

N−1∑
k=0

Fke
i2πkn
N .
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Now, the discrete Fourier transform can be be written in a matrix multiplication

form. Take the following Vandermonde matrix by letting ω = e
2πi
N .

M =



1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

... ... ... ... ...

1 ωN−1 ω2(N−1) · · · ω(N−1)2


Hence, F = Mf . This matrix multiplication needs O (N2) operations. However, by

rearranging the terms in odd and even members in f , the algorithm can speed up to

O (N logN) [15]. The latter is called the FFT method. In fact, the FFT method is

a descendant of the divide and conquer algorithms.

2.1.4. Windowed Fourier Transform (WFT). Since Fourier Series suffers

from the fact that there is no information about temporal instances in the Fourier

domain, WFT was proposed by Gabor [41]. WFT analyzes a small part of the signal

by multiplying it by a window function that is real, symmetric and non-zero:

Fg (k, s) = 1√
2π

ˆ ∞
−∞

f (t) g (t− s) e−iktdt.

where g is the window function. While this provides information regarding the time-

frequency nature of the signal, it does not completely find the time-frequency con-

tent of the signal. Depending on the length of the support of the window function,

one can get different time-frequency resolutions due to the Heisenberg Uncertainty

Principle. Furthermore, it is almost impossible to distinguish between the different

time-frequency contents of the different components of a signal that is made up of

many AM-FM signals.

2.1.5. Heisenberg Uncertainty Principle. A time signal f and its Fourier

transform F cannot be simultaneously localized in a small domain of the time and

frequency sheet [5]. This phenomenon tells us that no variation of the FT method,
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including the WFT, can exactly state whether a certain frequency has happened at

a certain time.

To enable better time-frequency resolution, the Wavelet Transform (WT) was

introduced [16]. WT does not defy the Heisenberg Uncertainty Principle; however, it

tries to present a decomposition that eliminates the principle’s side effects as much

as possible.

2.2. Wavelet Methods

Wavelet Transform was introduced to analyze a signal at different scales more

accurately than WFT [16]. WT extracts the details of a signal at different time and

frequency scales.

2.2.1. The Wavelet Transform. A wavelet is a complex function ψ : R → C

satisfying the following conditions:

(1) ψ ∈ L2 (R)

(2) Cψ := 2π
´
R∗
|F(ψ)(a)|2
|a| da <∞,

where F (ψ) is the FT of ψ, and R∗ = R−{0}. A wavelet dictionary D is the dilation

and translations of the wavelet ψ:

(2.2.1) D = {ψa,b (t) , (a, b) ∈ R∗ × R} ,

where ψa,b (t) = |a|−
1
2 ψ

(
t−b
a

)
. The parameters a, b are the scaling and translational

parameters respectively. The wavelet transform of a signal is defined as the inner

product of the signal f and the wavelet function:

(2.2.2) Wf (a, b) := 〈f, ψa,b〉 = |a|−
1
2

ˆ ∞
−∞

f (t)ψ
(
t− b
a

)
dt.

One can recover the original function from the transform by

(2.2.3) f = 1
Cψ

ˆ
R∗×R

a−2 (Wf (a, b)) (ψa,b (t)) dadb.
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The parameter b is a translational parameter that can spot the occurrence, in the

time domain of a certain frequency, which is characterized by the scaling parameter

a. Hence, the wavelet transform Wf (a, b) conveys the information regarding the

time-frequency content of a signal. Numerical approximation of Wavelet Analysis is

called Multiresolution Approximations.

2.2.2. Multiresolution Approximations. A fast and numerically feasible ap-

proximation of a signal at different scales requires an orthonormal basis of L2 (R) at

different scales, in other words, an orthogonal projection on {Vj}j∈Z, as defined in

Definition 3, so that the behavior of the signal at different scales can be captured.

Here we present the properties of multiresolution spaces [41]:

Definition 3. The sequence of closed subspaces of L2 (R), namely {Vj}j∈Z, is a

multiresolution approximation, if the following properties are satisfied:

1- Translation Invariance: f (t) ∈ Vj ⇔ f (t− 2jn) ∈ Vj for all (j, n) ∈ Z2.

2- Nesting: Vj+1 ⊂ Vj for all j ∈ Z.

3- Scaling: f (t) ∈ Vj ⇔ f
(
t
2

)
∈ Vj+1 for all j ∈ Z.

4- Separation:
∞⋂

j=−∞
Vj = {0}.

5- Density:
∞⋃

j=−∞
Vj = L2 (R).

6- Existence of Riesz Basis: There exists θ such that {θ (t− n)}n∈Z is a Riesz basis

of V0.

Using this definition, the following theorem constructs a family of orthonormal

basis for Vj [41].

Theorem 2. Let {Vj}j∈Z be a multiresolution approximation and φ be the scaling

function satisfying

F (φ) (ξ) = F (θ) (ξ)(∑∞
k=−∞ |F (θ) (ξ + 2kπ)|2

) 1
2
.
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Then the family {φj,n}n∈Z is an orthonormal basis of {Vj}j∈Z. Here, φj,n is defined

as

φj,n = 1√
2j φ

(
t− 2jn

2j

)
.

To find the orthonormal basis of L2 (R), one must first find the orthogonal com-

plement of Vj, namely Wj, in Vj−1,

Vj−1 = Vj ⊕Wj.

This can be achieved using Theorems 3 and 4 [5, 41].

Theorem 3. Let φ be a scaling function and let ψ be the function that satisfies

F (ψ) (ξ) = e
iξ
2 H

(
ξ

2 + π

)
F (φ) (ξ) .

Here H(ξ) = 1√
2
∑∞
n=−∞ hne

−inξ, with hn = 〈φ (t) , φ−1,n (t)〉. Then the family {ψj,n}n∈Z
is an orthonormal basis of {Wj}j∈Z, with

ψj,n = 1√
2jψ

(
t− 2jn

2j

)
.

Theorem 4. The family{ψj,n}(j,n)∈Z2 , is an orthonormal basis of L2 (R).

These theorems enabled the development of the Fast Wavelet Transform (FWT)

algorithm. The FWT algorithm decomposes an approximation fj ∈ Vj into a coarser

approximation fj+1 ∈ Vj+1 and the details wj+1 ∈ Wj+1 and is then applied to

fj+1 ∈ Vj+1. In other words, for a K − 1 step algorithm we have

fj = fj+K +
j+K∑
k=j+1

wk.

For further details of the algorithm, see [41].

FWT is essentially the wavelet counterpart of FFT. It is a numerical implemen-

tation of the WT method. FWT gives a better time-frequency resolution than WFT.

However, since the projection of the signal is on a predefined set of wavelet functions,



23

the extraction is not adaptive. In order to get a better time-frequency resolution, the

intuition is to project the signal on an adaptive basis that is found from the signal

itself. Empirical Mode Decomposition and the more recent Ensemble Empirical Mode

Decomposition were developed to do just that.

2.3. Empirical Mode Decomposition (EMD) Methods

Empirical Mode Decomposition (EMD) methods were originally proposed to over-

come the problem of predetermined bases which was hampering a proper sparse de-

composition in the WT and FT methods. EMD [32], which tries to find the basis

of decomposition adaptively from the original signal in an empirical way, has gained

much acceptance in the engineering and scientific community [30, 31].

2.3.1. EMDAlgorithm. The EMDmethod uses Intrinsic Mode Function (IMF)

[32] as constructing blocks of signals. IMFs are defined slightly differently in different

methods. Here, we present an EMD definition of an IMF.

Definition 4. An IMF is a function that satisfies the following two conditions:

• The number of extrema and the number of zero crossings are equal or differ at

most by one on the whole data set

• The mean value of the envelopes defined by the local maxima and the local

minima is zero at any point.

EMD decomposes a signal into an extracted IMF and a residue through a sifting

process. The extracted IMF is then post-processed to find the Instantaneous Fre-

quency (IF) either through Hilbert transform or another sifting process [32, 33]. To

summarize, for a signal x (t), the decomposition looks like

x (t) =
n∑
k=1

ck (t) + rn (t) ,

where ck’s are the IMFs extracted from the signal and rn (t) is the residue. The residue

is not itself an IMF but is more like a trend that is either completely increasing, or
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Algorithm 1 EMD Sifting Algorithm
• 1: k = 1
• 2: Find all local extrema of x (t)
• 3: Interpolate the minima (using cubic spline) to get the lower envelope
emin (t)
• 4: Interpolate the maxima (using cubic spline) to get the upper envelope
emax (t)
• 5: Compute the mean m (t) = emax(t)+emin(t)

2
• 6: Extract the detail dk (t) = x (t)−m (t)
• 7: if dk (t) satisfies the definition of an IMF then
• 8: return c (t) = dk (t)
• 9: else
• 10: x (t) = dk (t)
• 11: k = k + 1
• 12: go to 2.
• 13: end if

decreasing, or has only one local minimum or maximum. The original EMD sifting

algorithm, which is explained in Algorithm 1 [23], extracts only one IMF from the

signal. Hence, when one IMF c (t) is extracted from the signal x (t), then x (t)− c (t)

is considered to be a new signal (if it is not already a residual) and the sifting process

is now performed on this new signal. This procedure is done repeatedly until all IMFs

are extracted.

There is a problem with the sifting algorithm: the sifting process can inadvertently

eliminate physical information about the extractions by over-smoothing. In order to

prevent such an error, a stopping criterion is needed [32]. Taking a parameter like

SD =
N∑
i=1

|dk (ti)− dk+1 (ti)|2

(dk (ti))2 ,

it is possible to define an empirical stopping criterion. Here, it is assumed that the

signal is sampled on discrete points ti, i = 1, . . . , N . Usually, if SD is less than 0.2 or

0.3, the sifting process must stop. Unfortunately, this is another empirical nature of

the algorithm.

Once the first IMF is extracted, it is subtracted from the whole signal and the

result is treated as a new signal and the sifting algorithm is then again applied to the
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residue. The extractions finally stop when the residual is too small or it is monotonic.

Once all the IMFs are extracted, the IF can be found by the Hilbert transform or

another sifting process on the IMF [33]:

First, the Hilbert transform of the j-th IMF cj is defined as

hj (t) = 1
π

 ∞
−∞

cj (τ)
t− τ

dτ.

Next, the analytic signal of the Hilbert transform is defined as

zj (t) = cj (t) + ihj (t) = aj (t) eiθj(t).

At the end, the IF is defined as the time derivative of θj (t). In other words, ωj (t) =
dθj(t)
dt

. The problem with this approach is that the found IF is based on a certain

definition that is derived from an analytic signal.

2.3.2. Ensemble Empirical Mode Decomposition (EEMD) Algorithm.

EMD is highly sensitive to noise. In order to fix this shortcoming, Wu and Huang [56]

proposed EEMD in 2009. EEMD minimizes noise effects by adding white noise to the

signal. The method then follows with finding the IMF, repeating the same procedure

with many other realizations of the white noise, and finally take the average of these

IMFs as the corresponding IMF. The number of times that the white noise is added

is called the ensemble number E. The EEMD algorithm is detailed in Algorithm 2,

[23].

The total number of IMF extractions should remain the same throughout each

time that the noise is added to the signal xi (t), which is a shortcoming of the EEMD.

The proposed number is usually blog2Nc−1 for a signal of lengthN [56]. This is again

another empirical value beside the empirical nature of the algorithm. Furthermore,

the extracted functions are not necessarily IMFs [56]. While the EMD and EEMD

methods have attracted a lot of attention, they lack a theoretical basis. The STFR

methods were introduced to fill the empirical gap. In the next section we start with

the first rigorous STFR method.
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Algorithm 2 EEMD Algorithm
• 1: for i = 1 7−→ E do
• 2: Let wi (t) be a white noise series
• 3: Compute xi (t) = x (t) + wi (t)
• 4: Perform the decomposition of xi (t) using the EMD method:

xi (t) =
n∑
j=1

cj,i (t) + rn,i (t) ,

• 5: end for
• 6: Compute the (ensemble) mean IMFs

cj (t) = 1
E

E∑
i=1

cj,i (t) ,

for j = 1, . . . , n.

2.4. STFR Methods

Although STFR methods were inspired by the EMD and EEMD methods [32, 56],

they make use of techniques from compressive sensing theory [10, 12] and matching

pursuit [42]. Compressive Sensing (CS) and Matching Pursuit (MP) methods try to

find a sparse reconstruction of an observed signal from a predefined finite large dic-

tionary. STFR, on the other hand tries to find a sparse reconstruction of an observed

signal from a predefined infinite large dictionary. STFR methods use two major

steps: they first construct a highly redundant dictionary of all IMFs, namely D, then

find the sparsest decomposition by solving a non-linear and non-convex optimization

problem (2.4.2), an L0 minimization problem. Solving it is fundamentally difficult.

In the coming parts, we explain possible approximations by which one can find a close

solution of problem (2.4.2).

In order to explain the STFR methods, we need some preliminary definitions.

The set of the collection of IMFs constitute a dictionary. However, before defining

the dictionary of IMFs, we need another definition.

Definition 5. The envelope functions set V (θ) is

V (θ) = span

{
1, cos θ

λ
, sin θ

λ
| λ ≥ λ0

}
,
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where λ0 is called the level of smoothness.

A common value for λ0 is 2 so that the frequencies of the envelope terms are

always less than or equal to 1
2 , in θ-coordinate. This states that the envelope is not

as oscillatory as cos θ.

Definition 6. The IMF dictionary D is defined as

(2.4.1) D =
{
a (t) cos θ (t) | a (t) ∈ V (θ (t)) , a (t) > 0, dθ (t)

dt
> 0, dθ (t)

dt
∈ C

}
.

The goal of the STFR methods is to find the sparsest decomposition among all

possible IMFs in a dictionary. In mathematical terms, the sparsest decomposition of

the signal is to be found by solving a nonlinear optimization problem

(2.4.2)
Minimize M

Subject to : s (t) = ∑M
i=1 ai (t) cos θi (t) , ai (t) cos θi (t) ∈ D, i = 1, ...,M.

The assumption behind this optimization problem is that the nature of the signal

is nothing but an IS. This problem is an L0 minimization. Like other optimization

problems, the constraint s (t) = ∑M
i=1 ai (t) cos θi (t) can be relaxed into an inequality

in L2-norm if noise (or approximation error) is present in observation.

The optimization problem (2.4.2) is NP hard. Hou and Shi have proposed a

number of algorithms for approximating this problem [25, 24, 26] by decomposing the

signal into two parts, a mean a0 and a modulated oscillatory part, namely the IMF,

a1 cos θ:

s (t) = a0 (t) + a1 (t) cos θ (t) ,

where θ, a1, and a0 are the unknown phase function, envelope, and mean respectively.

This sequential decomposition is nothing but a matching pursuit [42] to find one of the

IMFs, a1 cos θ. After this has been extracted, the residue (or the mean) a0 is treated

as a new signal and the same procedure is repeated until the residue is smaller than
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a preset value. This part of the STFR methods is essentially the same as the one we

observed in the EMD and EEMD methods.

2.4.1. Total Variation (TV) Method. To find a good acceptable approxima-

tion, Hou and Shi [24] proposed an adaptive STFR method based on total variation

minimization, the TV STFR method. They used TV to impose a smoothness condi-

tion on the mean a0 (t) and envelope a1 (t) functions. It is well known that minimizing

the total variation TV (g) =
´ b
a
|g′ (x) |dx would generate the “stair case.” As a result,

Hou and Shi proposed the TV 3 minimization1 of the form

(2.4.3)
Minimize TV 3 (a0) + TV 3 (a1)

Subject to : s (t) = a0 (t) + a1 (t) cos θ1 (t) , θ
′
1 (t) > 0,

as an approximation to the original problem (2.4.2). This enforces a higher order

regularity of the local median and envelope. Minimizing the third-order total variation

of any function tends to produce a piecewise constant approximation to the third order

derivative of the function. Thus, a TV 3 minimization tends to produce a cubic spline

approximation for a0 (t) and a1 (t). In this sense, this method is similar to that of the

EMD method.

This problem is solved in an iterative manner. First, an initial guess on θ1 is

set. Then based on that, the value of a1 is approximated and the phase θ1 is again

updated. This procedure is repeated until there is no progress in updating the phase

function. Here, the definition of the dictionary is not used explicitly. The smooth-

ness requirements of the mean a0 and the envelope a1 are enforced through a TV 3

minimization. This approach is an exponential step compared to the EMD method

and fixed-basis methods like FT and WT methods. Unfortunately, the algorithm is

not stable to noise.
1TV n (g) =

´ b

a
|g(n+1) (x) |dx =

∥∥g(n+1)
∥∥

1
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2.4.2. Periodic Fourier-based Sparse Time-Frequency Method. While

TV STFR performs well for signals with no noise perturbation, noise is an indis-

pensable part of almost all signals. To address this problem, Hou and Shi, proposed

the Periodic Fourier-based STFR method [25], which performs well on periodic data

even in the presence of noise.

2.4.2.1. Theory and Algorithm. Without loss of generality, assume that the signal

s is sampled over a uniform grid tj = j
N

for j = 0, 1, . . . , N − 1 and even N . The

Periodic STFR algorithm is explained in Algorithm 3. The Periodic STFR algorithm

works in the following way: an initial guess is proposed on the phase function θ0.

In the first step, the whole signal is mapped to the phase function space and the

Fourier transform of the signal is then found in that space. At this step, the possible

candidates for the envelope functions akθn
k
, bkθn

k
are found by (2.4.7) and (2.4.8). Later,

in Step 5, the new phase function is updated and the algorithm begins a new iteration.

The cutoff function in the algorithm is

(2.4.12) χ (ω) =


1, −1

2 < ω < 1
2 ,

0, otherwise.

2.4.2.2. Technical details of the algorithm’s updater, envelope extraction, and un-

derlying theory. The algorithm’s updater (2.4.9) assumes θnk is the nth guess on the

phase function. This guess needs to be updated by a perturbation 4θ. In other

words, θn+1
k = θnk +4θ. Having this, one can state

Ank cos (θnk +4θ) = Ank cos (4θ) cos (θnk )− Ank sin (4θ) sin (θnk )

= akn cos (θnk ) + bkn sin (θnk ) ,

with

akn = Ank cos (4θ) ,

bkn = −Ank sin (4θ) .
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Algorithm 3 Periodic STFR Algorithm

• k = 1, rk−1 = s
• Step 0: n = 0, θnk = θ0
• Step 1: Interpolate rk−1 from the t-coordinate into a uniform grid in θ-
coordinate. In other words, for j = 0, . . . , N − 1:

(2.4.4)
(
rk−1
θn
k

)
j

= Interpolate
(
t, rk−1, (θnk )j

)
• Step 2: Apply the Fourier transform to rk−1

θn
k

for (θnk )j = 2πLθn
k

j
N
:

(2.4.5) Fθn
k

(
rk−1
θn
k

)
ω

= 1
N

N∑
j=1

(
rk−1
θn
k

)
j
e
−iω

(θnk)
j

Lθn
k , ω = −N2 + 1, . . . , N2

• Step 3: For the Fourier inverse defined as

(2.4.6)
(
F−1
θn
k

(
Fθn

k

(
rk−1
θn
k

)))
j

= 1
N

N
2∑

ω=−N2 +1

Fθn
k

(
rk−1
θn
k

)
ω
e
iω

(θnk)
j

Lθn
k , j = 0, . . . , N − 1,

apply a cutoff function χ to Fθn
k

(
rk−1
θn
k

)
to calculate the envelopes

(2.4.7) akθn
k

= F−1
θn
k

[(
Fθn

k

(
rk−1
θn
k

)
ω+Lθn

k

+ Fθn
k

(
rk−1
θn
k

)
ω−Lθn

k

)
χ

(
ω

Lθn
k

)]
,

(2.4.8) bkθn
k

= F−1
θn
k

[
−i
(
Fθn

k

(
rk−1
θn
k

)
ω+Lθn

k

−Fθn
k

(
rk−1
θn
k

)
ω−Lθn

k

)
χ

(
ω

Lθn
k

)]
.

• Step 4: Interpolate the calculated envelopes background into the t-coordinate
for j = 0, . . . , N − 1, by

(
akn
)
j

= Interpolate
(
θnk , a

k
θn
k
, tj
)

and
(
bkn
)
j

=
Interpolate

(
θnk , b

k
θn
k
, tj
)
.

• Step 5: Update the phase function

(2.4.9) 4θ′ = PVM0

(
d

dt
arctan

(
bkn
akn

))
,4θ (t) =

ˆ t

0
4θ′ (s) ds,

(2.4.10) θn+1
k = θnk + β4θ.

Choose β ∈ [0, 1] such that the phase function is always strictly increasing:

(2.4.11) β = max
{
α ∈ [0, 1] | d

dt
(θnk + α4θ) > 0

}
.

The projection, PVM0
, into VM0 = span

{
ei2πkt, |k| ≤M0, k ∈ Z

}
is a smooth-

ing step. M0 is fixed.
• Step 6: If

∥∥∥θn+1
k − θnk

∥∥∥ ≤ εI , then IMFk = akn cos θnk + bkn sin θnk , n ← 0,
rk = rk−1 − IMFk,k ← k + 1. Else, n← n+ 1, goto Step 1.
• Step 7: If

∥∥∥rk∥∥∥ ≤ εII , stop. Else, goto Step 0.
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Hence, the perturbation 4θ is

4θ = − arctan
(
bkn
akn

)
.

Since arctan (.) is not good function to handle numerically due to jumps, the derivative

of this function is used. Also, in order to denoise the updater (2.4.9), a projection on

PVM0
is used.

In this algorithm, the envelopes akθn
k
, bkθn

k
are extracted as shown in (2.4.7) and

(2.4.8). We need the following lemma to be able to depict the justification.

Lemma 1. For a function f ∈ L1 (R), we have

F [f (t) cos (t)] (k) = 1
2 (F [f ] (k − 1) + F [f ] (k + 1)) ,

F [f (t) sin (t)] (k) = 1
2i (F [f ] (k − 1)−F [f ] (k + 1)) .

Proof. The proof is just direct calculations with cos (t) = eit+e−it
2 and sin (t) =

eit−e−it
2i . �

An IMF is concentrated around frequency 1 in its corresponding θ-coordinate, if

there is no mode mixture. In other words, if the signal is s, then one of the IMFs c

in one of the θ-coordinates approximately looks like

(2.4.13) Fθ [c] (k) ≈ Fθ [s] (k)χ (k − 1) .

Here, χ (k) is a low-pass filter centered at 0. We know that the IMF has a represen-

tation like

c (θ) = a (θ) cos (θ) + b (θ) sin (θ)

in the sought θ-coordinate. Using Lemma 1 we have

(2.4.14)

Fθ [c] (k) = 1
2 (Fθ [a] (k − 1) + Fθ [a] (k + 1)) + 1

2i (Fθ [b] (k − 1)−Fθ [b] (k + 1)) .
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Since we have assumed that a (θ) , b (θ) are in V (θ), if we multiply (2.4.14) by χ (k − 1)

we have

Fθ [c] (k)χ (k − 1) = 1
2 (Fθ [a] (k − 1)− iFθ [b] (k − 1)) .

Using this and approximation (2.4.13) we have

Fθ [s] (k)χ (k − 1) ≈ 1
2 (Fθ [a] (k − 1)− iFθ [b] (k − 1)) ,

which is equivalent to

(2.4.15) Fθ [s] (k + 1)χ (k) ≈ 1
2 (Fθ [a] (k)− iFθ [b] (k)) .

Now, if we multiply (2.4.14) by χ (k + 1) , and follow the same steps as we just took,

we have

(2.4.16) Fθ [s] (k − 1)χ (k) ≈ 1
2 (Fθ [a] (k) + iFθ [b] (k)) .

Combining (2.4.15) and (2.4.16) we have

Fθ [a] (k) ≈ (Fθ [s] (k + 1) + Fθ [s] (k − 1))χ (k) ,

Fθ [b] (k) ≈ −i (Fθ [s] (k + 1)−Fθ [s] (k − 1))χ (k) .

Hence, the Step 3 of the algorithm and equations (2.4.7) and (2.4.8) are clearly

explained.

2.4.2.3. Numerical Examples. In this part, we show a few examples on the capa-

bilities of this algorithm. We will show the algorithm is able to extract the IMFs from

an IS even in the presence of heavy noise perturbation.

Example 1. For a tested signal (Figure 2.1) with constituent IMFs that are constant

envelope IMFs with IFs shown in Figure 2.2, we used the periodic algorithm intro-

duced in this section and extracted IMFs and IFs (shown in red in Figures 2.3-2.6).

The method was accurate with almost no error in the extraction of the IMFs and

their corresponding IFs. In other words, in the absence of noise, the extractions are
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Original Signal

Figure 2.1. The Original Signal: The horizontal axis is the time
variable and the vertical axis shows the signal itself.

almost accurate since the IFs are completely separate in the frequency domain, see

Figure 2.2.

Example 2. We added white noise with amplitude one to the same signal that was

used in Example 1 (original signal is shown in Figure 2.1 and the noisy signal in

Figure 2.7). Using the periodic algorithm introduced in this section, we extracted

IMFs and IFs (shown in red in Figures 2.8-2.11). Even in the presence of noise, the

extractions remain accurate. While the second IF is not captured properly (Figure

2.11) the IMF corresponding to the second IMF is recovered from the original noisy

signal with good accuracy.

Examples 1 and 2 show that the Periodic STFR method has good accuracy, even

when noise is present. While this algorithm works well for periodic data, for non-

periodic data, the algorithm would not extract the IMFs properly as the Gibbs phe-

nomenon pollutes the extraction. In the next chapter, we propose another algorithm
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Figure 2.2. The Instantaneous Frequencies of the Signal Shown in
Figure (2.1): The horizontal axis is the time variable and the vertical
axis shows two different IFs of the constituent IMFs of the signal.
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Figure 2.3. First IMF Extraction: The horizontal axis is the time
variable. The extracted IMF is in red and the original IMF is in blue.
The extraction is almost with no error.
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Figure 2.4. First IMF IF: The horizontal axis is the time variable.
The extracted IF of the first IMF is in red. It completely overlaps the
lowest IF content of the signal.
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Figure 2.5. Second IMF Extraction: The horizontal axis is the time
variable. The extracted IMF is in red and the original IMF is in blue.
The extraction is almost with no error.
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Figure 2.6. Second IMF IF: The horizontal axis is the time variable.
The extracted IF of the second IMF is in red. It completely overlaps
the highest IF content of the signal except near the boundaries.
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Figure 2.7. Original Noisy Signal: The horizontal axis is the time
variable and the vertical axis shows the signal itself.
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Figure 2.8. First IMF Extraction: The horizontal axis is the time
variable. The extracted IMF is in red and the original IMF is in blue.
The extraction has some minor error.
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Figure 2.9. First IMF IF: The horizontal axis is the time variable.
The extracted IF of the first IMF is in red. It does not overlap the
original IF of the signal. However, it is capturing its trend properly.



38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-1.5

-1

-0.5

0

0.5

1

1.5

Comparison of IMF
2
 and the approximated IMF

Figure 2.10. Second IMF Extraction: The horizontal axis is the
time variable. The extracted IMF is in red and the original IMF is in
blue. The extraction is acceptable even in the presence of noise.
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Figure 2.11. Second IMF IF: The horizontal axis is the time vari-
able. The extracted IF of the second IMF is in red. It does not com-
pletely cover the whole trend of the IF due to the presence of noise
perturbation.
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where this problem is addressed properly. In the next chapter, we introduce the non-

periodic STFR method by which one can even handle non-periodic IS signals in the

presence of noise perturbation.
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CHAPTER 3

Non-Periodic Sparse Time-Frequency Method

TV STFR is not accurate for noisy signals and Periodic STFR is not suitable

for non-periodic signals (in particular it cannot accurately extract the trend of a

non-periodic signal). In this chapter, we propose a non-periodic STFR method that

overcomes the limitations of previous STFR methods. Non-periodic STFR has a

slower speed of convergence than Periodic STFR since it uses a L1-norm regularized

with L2-norm optimization rather than FFT for each iteration. Nevertheless, it can

successfully be applied to non-periodic signals and also to signals polluted with noise.

3.1. Theory and Algorithm

Non-periodic STFR uses the same approach as Periodic STFR: we try to extract

the sparsest representation of IMFs from an IS. Essentially, we are looking for an

appropriate approximation to the problem,

(3.1.1)
Minimize M

Subject to : s (t) = ∑M
i=1 ai (t) cos θi (t) , ai (t) cos θi (t) ∈ D, i = 1, ...,M.

In the non-periodic STFR algorithm, we assume that the envelopes of the IMFs have

a sparse structure in their respective dictionary. This assumption is not far from

reality since we are using an infinitely large dictionary when we try to extract IMFs.

This assumption can be formulated in the following way:

(3.1.2)

Minimize
a,b,θ

δ (‖a (λ)‖1 + ‖b (λ)‖1) + ‖s (t)−A (t) cos θ (t)‖2
2

Subject to : A (t) =
´∞

2

(
a (λ) cos θ(t)

λ
+ b (λ) sin θ(t)

λ

)
dλ,

dθ(t)
dt

> 0.
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In this formulation, the envelope A (t) of the IMF A (t) cos θ (t) is assumed to have

a sparse structure that is captured by ‖a (t)‖1 + ‖b (t)‖1. Here, δ is the regulariza-

tion parameter to enforce the sparsity. In this formulation, the dictionary is defined

explicitly by

A (t) =
ˆ ∞

2

(
a (λ) cos θ (t)

λ
+ b (λ) sin θ (t)

λ

)
dλ,

such that a, b ∈ C1. One can understand this similarity by referring to the definition

of the dictionary:

D =
{
a (t) cos θ (t) | a (t) ∈ V (θ (t)) , a (t) > 0, dθ (t)

dt
> 0

}
,

where

V (θ) = span

{
1, cos θ

λ
, sin θ

λ
| λ ≥ λ0

}
.

The optimization in (3.1.2) is in a continuous format. In order to solve such an

optimization problem using a computer algorithm, we need a discrete format of the

problem.

3.1.1. Discrete Formulation. Here, for the sake of simplicity in implementa-

tion, we set θ (0) = 0. The following vectors and matrices can help us to convert it

into a discrete format suitable for implementation. We start with the semi-discrete

version of the envelop function A (θ):

(3.1.3) A (θ) = āc +
∑
l

ackl cos θ
kl

+ bckl sin θ

kl
,

(3.1.4) {kl}ml=1 ⊂ [2,∞) .

This formulation states that the envelope of a to-be-extracted IMF has a representa-

tion derived from dictionary D. The same formulation stands for B (θ):

(3.1.5) B (θ) = ās +
∑
l

askl cos θ
kl

+ bskl sin θ

kl
.
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In fact A (θ) and B (θ) are numerical counterparts of the envelope of the IMF A (t).

In other words, we assume that the IMF looks like A (θ) cos θ + B (θ) sin θ, when

θ (0) = 0 is enforced. The definition of the IMF dictionary is used explicitly when

having {kl}ml=1 ⊂ [2,∞) side by side with equation (3.1.3). In practice, we pick O (210)

uniformly distributed points between 2 and 10, as instances for the values of kl. So

far, the semi-discrete version of (3.1.2), using the numerical counterparts of A (t) (see

(3.1.3)), is

δ
(
|āc|+∑m

l=1

(∣∣∣ackl ∣∣∣+ ∣∣∣bckl ∣∣∣)
)

+δ
(
|ās|+∑m

l=1

(∣∣∣askl ∣∣∣+ ∣∣∣bskl ∣∣∣)
)

+||s (θ) −
(
āc +∑m

l=1

(
ackl cos θ

kl
+ bckl sin θ

kl

))
cos θ

−
(
ās +∑m

l=1

(
askl cos θ

kl
+ bskl sin θ

kl

))
sin θ||22.

In this formula āc, ackl , b
c
kl
, ās, askl , b

s
kl
∈ R. Now, in the discrete domain, for i =

1, . . . , N , define

(3.1.6)

θ = {θi} ∈ RN ,

s = {s (ti)} ∈ RN ,

C =
{

cos θi
kl

}
= {Cil} ∈ RN×m,

S =
{

sin θi
kl

}
= {Sil} ∈ RN×m,

where θi = θ (ti). Next, define the envelope vectors A,B as

(3.1.7) A = [C,S,1]


ac

bc

āc

 , B = [C,S,1]


as

bs

ās

 .

Other matrices needed to describe the algorithm are

(3.1.8)
Ψ = [C,S,1] , Sinθ = diag(sin θ),

x =
[

ac bc āc as bs ās
]T
, Cosθ = diag(cosθ),
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Algorithm 4 Non-periodic STFR Algorithm
• k = 1, rk−1 = s
• Step 0: n = 0, θ(n)

k = θ0

• Step 1: Find x(n)
k =

([
ac bc āc as bs ās

]T)(n)

k
by solving the convex

minimization problem:
(3.1.10) Minimize δ‖x(n)

k ‖1 + ‖s−H(n)
k x(n)

k ‖2
2

• Step 2: Calculate

(3.1.11) An
k = [C,S,1](n)

k


 ac

bc
āc




(n)

k

,Bn
k = [C,S,1](n)

k


 as

bs
ās




(n)

k

• Step 3: Update the phase vector

(3.1.12) θ
(n+1)
k = θ

(n)
k − arctan

(
Bn
k

An
k

)

• Step 4: If
∥∥∥θ(n) − θ(n−1)

∥∥∥ ≤ εI , then IMFk = H(n)
k x(n)

k , n ← 0, rk = rk−1 −
IMFk,k ← k + 1. Else, n← n+ 1, goto Step 1.
• Step 5: If

∥∥∥rk∥∥∥ ≤ εII , stop. Else, goto Step 0.

(3.1.9) H = H (θ) = [CosθΨ,SinθΨ] ∈ RN×2(2m+1).

Here, the vector x is the vector of all unknowns and is assumed to have a sparse

structure in the whole dictionary. All in all, the problem that we want to solve is

minimize
x,θ

δ ‖x‖1 + ‖s−Hx‖2
2 .

3.1.2. Algorithm. Algorithm 4 explains each step of the non-periodic STFR

method. Take the sampled signal to be like a column vector s. Please note that the

compact form of the updater in the third step of this algorithm is not used explicitly.

Instead, we use the discrete version of equation (2.4.9) (see step 5 of Algorithm 3):

4θ′ = d

dt
arctan

(
Bn
k

An
k

)
,4θ (t) =

ˆ t

0
4θ′ (ξ) dξ.

Least-squares l1-regularized minimization (3.1.10) is used in this algorithm for two

reasons: first, we assume that the envelope can be approximated by a sparse number

of terms and second, it acts as an stabilizer of the l2 norm. Furthermore, unlike TV
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STFR and periodic STFR, non-periodic STFR uses the dictionary explicitly in the

algorithm. We use the method introduced in [34] to solve (3.1.10) numerically.

3.2. Numerical Examples

We ran a number of tests on this method, which show that it has all the strong

attributes of other STFR methods. The regularization parameter δ was taken to

be O (1) for the cases that we do not have noise and O (50) for the cases that we

have noise. One can even pick different values of δ when extracting different IMFs.

However, this makes the method slightly empirical than completely mathematical.

The initial guess in all the cases were picked as constant-frequency random numbers.

For example, if we intended to extract a trend, we used to take a low constant-

frequency number for the initial guess.

Example 3. We first tested the algorithm’s performance on an example signal with

a linear trend and two constant envelope and frequency IMFs, f (t) = 6t+cos (8πt)+

0.5 cos (40πt) (see Figure 3.1). The algorithm extracted IMFs (see red lines in Figures

3.2-3.4). Besides some tiny boundary misalignment, the extractions were accurate,

suggesting that the non-periodic STFR method is accurate away from the boundaries.

Example 4. In order to further test the abilities of the method, we tested a more

complex signal (see Figure 3.5)

f (t) = 6t2 + cos
(
10πt+ 10πt2

)
+ cos


60πt 0 ≤ t ≤ 0.5

80πt− 10π 0.5 ≤ t ≤ 1

in which one of the IMFs has a jump in its IF. The trend in this case is quadratic.

The IMFs were again extracted with high accuracy except for some boundary effects

(see Figures 3.6-3.8) suggesting the method remains accurate even when the IF of

one of the IMFs has some irregularities.
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Figure 3.1. Signal with a Linear Trend: The horizontal axis is the
time variable and the vertical one is the signal itself.
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Figure 3.2. Extracted Trend: The linear trend is in blue and the
extracted trend is in red. Except the right boundary, the error is small
in the extracted trend.
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Figure 3.3. Extraction of the first IMF: The extracted IMF is in
red. As can be seen, except from the boundaries the extraction is
faithful.
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Figure 3.4. Extraction of the second IMF: The extracted second
IMF is in red. It is almost indistinguishable from the high-frequency
original IMF.
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Figure 3.5. Signal with a Quadratic Trend: The horizontal axis is
the time variable and the vertical one is the signal itself.
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Figure 3.6. Extracted Trend: The quadratic trend is in blue and
the extracted trend is in red. There is almost no error in the extraction.

Example 5. To further test the method, we ran the algorithm on a signal that con-

tained some intrawave modulation in one of the IMFs (intrawave signals are addressed

in greater detail in the next chapter). The signal used (see Figure 3.9) is described
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Figure 3.7. Extraction of the first IMF: The extracted IMF is in
red. As can be seen, except from the boundaries the extraction is
faithful.
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Figure 3.8. Extraction of the second IMF: The extracted IMF is in
red. Like the previous example, the extraction is accurate, except near
the right boundary.
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Figure 3.9. Signal with a Hump-like Trend: The horizontal axis is
the time variable and the vertical one is the signal itself.

in mathematical terms as

f(t) = 1
1.2 + cos (2πt) + 1

1.5 + sin (2πt) cos (32πt+ 0.2 cos (64πt)) .

The trend is like a hump. The IMFs were again extracted with high accuracy except

near the boundaries (see Figures 3.10, 3.11).

Example 6. To check the stability of the algorithm with noise perturbation, we ran

a series of tests that added white noise (represented by χ (t)) to an IMF. In this

example, the signal used (see Figure 3.12) was:

f (t) = cos (60πt+ 10 sin (2πt)) + χ (t) .

The extracted IMF was compared to the original one (see Figure 3.13). Even in the

presence of heavy noise, the extraction is still acceptable, showing the stability of the

non-periodic STFR method in the presence of noise.
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Figure 3.10. Extracted Trend: The trend is in blue and the ex-
tracted trend is in red. There is almost no error in the extraction,
except near the boundaries.
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Figure 3.11. Extraction of the IMF: The extracted IMF is in red.
Since the signal has intrawave modulation, the extraction has slight
phase lags seen near the peaks and troughs. Still, the extraction is
faithful.
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Figure 3.12. Signal with Noise Perturbation: The horizontal axis is
the time variable and the vertical one is the signal itself.
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Figure 3.13. Extraction of the IMF: The extracted IMF is in red.
Even in the presence of noise perturbation, the generality of the extrac-
tion is acceptable.
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Figure 3.14. Signal with a Quadratic Trend Polluted with Noise
Perturbation: The horizontal axis is the time variable and the vertical
one is the signal itself.

Example 7. To further test the method’s stability, we tested it on the signal from

Example 4 plus white noise (see Figure 3.14)

f (t) = 6t2 + cos
(
10πt+ 10πt2

)
+ cos


60πt 0 ≤ t ≤ 0.5

80πt− 10π 0.5 ≤ t ≤ 1
+ χ(t).

The trend is extracted fairly well, (see Figure 3.15). The IMFs are also acceptable (see

Figures 3.16, 3.17). In fact, there is no observable phase error in extraction. Although

there are jumps near the peaks and troughs of the IMFs, the trends of the IMFs are

extracted properly, except for some boundary error. This further demonstrates the

stability of the non-periodic STFR method in the presence of noise.

When compared with other STFR methods, the only shortcoming of the Non-

Periodic STFR method is the speed of the algorithm (see Table 3.1). In particular,

non-periodic STFR can be seen as a strong trend detector compared to even the

EMD\EEMD [58].
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Figure 3.15. Extracted Trend: The linear trend is in blue and the
extracted trend is in red. Due to the presence of noise, the extracted
trend deviates from the original trend slightly.
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Figure 3.16. Extraction of the first IMF: The extracted IMF is in
red. The only part of the extraction that is not completely acceptable
is the right boundary of the extraction.
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Figure 3.17. Extraction of the second IMF: The extracted IMF
is in red. Here, the noise perturbation has more effect on the IMF
extraction. However, the generality of the extraction is still acceptable.

Periodic STFR TV STFR Non-Periodic STFR
Accuracy in envelope

Extraction
High Medium-High Medium

Accuracy in IF
Extraction

High Medium-High Medium

Accuracy in IMF
Extraction

High High High

Speed High Medium Medium
Non-Periodic Data No Yes Yes
Noise Stability High Low High

Boundary Error for
Non-Periodic Data

High Medium Low

First Guess
Initialization

No Yes No

Table 3.1. Comparison of the STFR Methods
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CHAPTER 4

Extraction of Intrawave, Sharp, and Rare Event Signals

using Sparse Time-Frequency Method

In general, intrawave signals are oscillatory signals that have intense frequency

modulation in at least one θ-coordinate. By intense modulation we mean that the

IF has oscillations that is comparable with the oscillation of the IMF itself. If the

frequency modulation becomes even more intense, the resulting signal is called a sharp

signal. The difference between the intrawave and sharp signal is in the intensity of the

frequency modulation. Analyzing these IMFs has so far been a challenging problem

in signal processing, specifically for adaptive methods.

Rare events are IMFs with compact support in the time domain. We consider

them to be signals with constant very high frequency occurring at a very small time

period. A rare event is essentially like a spike. Since they have a compact support,

analysis of rare events is relatively hard. Even adaptive methods like EMD/EEMD

are not able to process such signals with acceptable accuracy. In this chapter, we

propose algorithms to analyze intrawave, sharp and rare event signals.

4.1. Intrawave Signals

Few previous methods have attempted the difficult task of extracting intrawave

signals. One approach [54] uses the concept of wave shape function to tackle the

problem. However, it is not clear how the shape function is learned. The EMD

method can extract one intrawave IMF in the absence of noise. However, neither

EMD nor EEMD can extract even one intrawave IMF in the presence of noise. As

can be seen from the sparsity of literature in this field, no method that we know of

can faithfully extract intrawave IMFs, and this theoretically challenging problem has
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been an open problem for many years. Nevertheless, these signals are abundant in

second order ordinary differential equations, specifically conservative systems, and if

one is eager to identify the original ODE from an observed signal, one must be able

to extract intrawave signals properly. Here, we present a method for extracting an

intrawave signal with the highest possible accuracy. This means that we propose a

method that does not break an intrawave signal into subharmonics.

Before formally defining an intrawave signal in mathematical terms, we consider

a clarifying example, using a model intrawave problem:

(4.1.1) x (t) = cos
(
ωt+ M ω

p
sin (pt)

)
,

where ω is the carrier frequency, M ω < ω is the strength of frequency modulation,

and p is the frequency of the frequency modulation. This example follows initial work

by Van der Pol [51]. By taking θ (t) = ωt, one can map the signal (4.1.1) into the

θ-coordinate,

(4.1.2) x (θ) = cos
(
θ + M ω

p
sin

(
p

ω
θ
))

.

Simplifying this we have

x (θ) = cos θ cos
(
M ω
p

sin
(
p

ω
θ
))
− sin θ sin

(
M ω
p

sin
(
p

ω
θ
))

.

Expanding the terms cos
(
Mω
p

sin
(
p
ω
θ
))

and sin
(
Mω
p

sin
(
p
ω
θ
))

, using Fourier trans-

form, we have

(4.1.3)
x (θ) =

{
J0
(
Mω
p

)
+ 2∑∞k=1 J2k

(
Mω
p

)
cos

(
2k p

ω
θ
)}

cos θ−{
2∑∞k=1 J2k−1

(
Mω
p

)
sin

(
(2k − 1) p

ω
θ
)}

sin θ,

where Jk is the the Bessel function of the first kind of order k. Hence, the original

signal (4.1.1) can be expressed in the form x (θ) = a (θ) cos θ + b (θ) sin θ, where

(4.1.4) a (θ) =
{
J0

(
M ω
p

)
+ 2

∞∑
k=1

J2k

(
M ω
p

)
cos

(
2k p
ω
θ
)}

,
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(4.1.5) b (θ) = −
{

2
∞∑
k=1

J2k−1

(
M ω
p

)
sin

(
(2k − 1) p

ω
θ
)}

.

For a fixed Mω
p
, as k → ∞, Jk

(
Mω
p

)
decreases. However, if Mω

p
is large enough,

many of the high frequency terms in this formula would make a considerable tail in

the Fourier domain. This thick tail is the main source of difficulty in intrawave IMF

extraction. In the STFR method, an explicit band filter is used at each iteration

[25]. This band filter is essentially the numerical counter part of (1.2.3). At the same

time, in EMD, an implicit filter is used [20, 57, 55]. The narrow band filters used in

these methods decompose a wide band signal into subharmonics instead of a single

IMF. Intrawave signals, then, would be elusive for analysis in any method that uses

a narrow band filter. In what follows, we show the problem in STFR terminology in

detail.

At each iteration with θ as an initial guess, the STFR algorithm picks terms that

are in V (θ) in order to extract the envelope (see (1.2.3)). Hence, having θ (t) = ωt in

(4.1.1), the maximum number of terms that can be collected by the STFR method for

the envelope a (θ), based on dictionary (1.2.3) and equation (4.1.3), is kmax =
⌊
ω
4p

⌋
.

For b (θ), this value is kmax =
⌊
ω
4p + 1

2

⌋
. In other words, the approximated envelopes

ã (θ), b̃ (θ) would look like

(4.1.6) ã (θ) =

J0

(
M ω
p

)
+ 2
b ω4pc∑
k=1

J2k

(
M ω
p

)
cos

(
2k p
ω
θ
) ,

(4.1.7) b̃ (θ) = −

2
b ω4p+ 1

2c∑
k=1

J2k−1

(
M ω
p

)
sin

(
(2k − 1) p

ω
θ
) .

Obviously, if ω
4p � 1, the only term that will be collected by the STFR algorithm is

J0
(
Mω
p

)
. The other terms would be discarded. In other words, the STFR algorithm

will break an intrawave signal into many subharmonics in extraction. The formal

definition for an intrawave signal, then, is:
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Definition 7. A signal x (t) = a (t) cos θ (t), having only one extremum between two

consecutive zeros, is an Intrawave Signal in coordinate θ, if the envelope a > 0 in

θ-coordinate, when decomposed by Fourier transform, has terms like cos νθ and sin νθ

for ν ≥ 1
2 .

Since the main difficulty in dealing with intrawave signals comes from their wide

band representation in the frequency domain, which cannot be properly analyzed

using methods with explicit or implicit narrow band filters, we propose a method

that modifies the normal envelope dictionary (1.2.3) in an STFR framework in order

to extract intrawave signals with high accuracy.

Specially, in order to capture more terms of a (θ) and b (θ), we need to modify the

dictionary (1.2.3), or more precisely the filter, as follows

(4.1.8) V (θ) = span

{
1, cos

(
θ

λ

)
, sin

(
θ

λ

)
| λ > λ0 > 0

}
.

Here λ0 should be as small as possible such that enough terms in a (θ) and b (θ) can

be collected. In this case, the maximum number of terms that can be collected by

the STFR method, based on dictionary (4.1.8), is kmax =
⌊

ω
4pλ0

⌋
for a (θ). For b (θ),

this value is kmax =
⌊

ω
4pλ0

+ 1
2

⌋
. Obviously, the choice of λ0 depends on the decay rate

of Jk
(
Mω
p

)
and the ratio ω

p
. At the same time, if the recording of the signal is noisy,

this parameter should be picked carefully not to collect noise.

This small modification would allow us to treat an intrawave signals without

major changes to the original STFR Algorithms 3, and 4. Furthermore, we show

that although enlarging the filter requires that the IMF components of the IS must

have enough separate time-frequency representations, the method is not problematic

when extracting non-separable time-frequency IMFs from a signal provided they are

extracted simultaneously. The convergence of the modified algorithm will be proved

for the case of periodic signals in the next chapter.
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4.2. Algorithmic Analysis

Our filter modification for capturing the thick tail of the intrawave signals has

not been implemented in EMD [32] or the Synchrosqueezed wavelet method [17, 50].

However, for both periodic and non-periodic STFR method [25], it is straightforward.

The filters or envelope dictionaries must be made wider. This fact manifests itself in

the shape of the cutoff function in the periodic Algorithm 3,

(4.2.1) χ (ω) =


1, − 1

λ
< ω < 1

λ
,

0, otherwise,

where λ is a measure of the span of the filter. In the next chapter, we prove that

convergence enhances if λ → 1+. However, our numerical results will show that

under intense frequency modulations λ → 0+ can be used legitimately, though with

extreme caution when noise is present. For the non-periodic STFR Algorithm 3.1,

the modification should be implemented where we define the envelope dictionary

(4.2.2) {kl}ml=1 ⊂ [λ,∞) .

The filter parameter λ must be set based on the characteristics of the intrawave signal

that we aim to extract. However, λ = 1+ is always a very good practical starting

guess.

4.3. Numerical Examples

The following test cases illustrate the credibility of our STFR method for extract-

ing intrawave IMFs.

Example 8. Here we study the effect of the filter width on one intrawave IMF with

constant envelope. Consider the mild intrawave signal

x (t) = cos
(

8πt+ 1
π

sin (4πt)
)
.
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The IF of this signal is 8π+4 sin (4πt). The strength of frequency modulation is 4, and

the frequency of the frequency modulation is 4π. Compared to the carrier frequency,

8π, the modulated frequency is not negligible. Hence, we expect to get incomplete

and inaccurate extraction if a narrow-band filter is used. As expected for a normal

narrow-band filter with parameter λ = 2, the IMF extraction error is relatively large

(see Figure 4.1). Increasing the length of the filter enhances the extraction drastically:

a wider filter with parameter λ = 1+ reduces the maximum error by 10−2 (see Figure

4.2). While a narrow-band filter only extracts one of the harmonics of the intrawave

signal, acting like a one-mode Fourier transform, then, making the filter wider collects

more subharmonics as a whole. Consequently, the result looks much better.

Finally, there is an observation that we want to mention regarding Figure 4.1. We

recall that when using a narrow band filter, the total number of terms that can be

collected by the algorithm is kamax =
⌊
ω
4p

⌋
and kbmax =

⌊
ω
4p + 1

2

⌋
in the best case, for

a good constant initial guess. In our case, kamax = 0, kbmax = 1. Hence, the main

contribution comes from J0
(
Mω
p

)
, which is 0.9748, in this example. This observation

can be seen perfectly well in Figure 4.1. The plot in the bottom left corner of the

figure shows that the extracted envelope is roughly 0.975. Also, the extracted IMF

in the bottom right corner of the same figure shows that there is a tiny phase shift,

which we can certainly say comes from kbmax = 1.

Example 9. Here, we mix the intrawave signal from Example 8 with a high-frequency

signal

v (t) = (1 + 0.3 cos (8πt))
(

cos
(

40πt+ 5
2 sin (2πt)

))
.

This high-frequency signal has small intrawave modulation as well. However, it is not

comparable to the frequency modulation of cos
(
8πt+ 1

π
sin (4πt)

)
. The final form of

the signal is

x (t) = cos
(

8πt+ 1
π

sin (4πt)
)

+ (1 + 0.3 cos (8πt))
(

cos
(

40πt+ 5
2 sin (2πt)

))
.
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Figure 4.1. Mild Intrawave Signal vs Narrow Band Filter
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Figure 4.2. Mild Intrawave Signal vs Wide Band Filter

We successfully extracted the intrawave part, cos
(
8πt+ 1

π
sin (4πt)

)
using a filter

with parameter λ = 1+ (see Figure 4.3) and successfully extracted the rest of the
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Figure 4.3. Intrawave Part of the Mixed Signal
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Figure 4.4. High Frequency Part of the Mixed Signal

signal using a normal filter with parameter of λ = 2 (see Figure 4.4). The maximum

error in extraction is less than 5× 10−3 for both IMFs.
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Example 10. To further test our approach, we considered a case in which the in-

trawave modulation is intense. The signal has very sharp peaks and flat troughs. The

mathematical form of the signal is

x (t) = cos
(

8πt+ 21
8πt sin (8πt)

)
.

Here, even if the filter parameter is taken to be λ = 1+, the results are not yet

acceptable (see Figure 4.5). When filter parameter is decreased to λ = 0.3, the

extraction is now possible (see Figure 4.6), although the envelope is not recovered

exactly (Figure 4.6 bottom left). To compare our results with other adaptive methods,

we analyzed the signal with the Synchrosqueezed Wavelet transform method [17, 50],

which unfortunately decomposes the intrawave signal into its harmonics (see Figure

4.7). Matlab code for the Synchrosqueezed Wavelet transform can be found in [9].

To further test the method’s accuracy, we considered an intense intrawave signal with

a changing envelope using λ = 0.3. Again, although the envelope extraction is not

accurate, the final extraction of the signal is reliable (See Figure 4.8). In contrast, the

EMD was unable to decompose the intrawave in one piece (see Figure 4.9) suggesting

that our method is more general than other adaptive methods.

Example 11. To investigate the effect of noise on the extraction of an intrawave

signal we used an intrawave signal with strong frequency modulation (see Figure

4.10) of form

x (t) = cos
(

8πt+ 21
8πt sin (8πt)

)
+ 0.1N (0, 1) .

Here, N (0, 1) is a normal Gaussian random variable. Again using λ = 0.3, the final

extraction is faithful, even though there minor error in the extraction of the envelope

and the instantaneous frequency (Figure 4.11). In this case, the noise perturbation

was not large compared to the energy of the signal. To test the signal with more

noise, we used

x (t) = cos
(

8πt+ 21
8πt sin (8πt)

)
+N (0, 1) .
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Figure 4.5. Intense Intrawave Extraction Failure
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Figure 4.6. Intense Intrawave Extraction

This signal is buried in noise (see Figure 4.12). Using λ = 0.8 the extraction is

acceptable in spite of errors in extracted envelope and IF even in the presence of

intense noise perturbation ( see Figure 4.13). We would like to point out that if we



65

t
f

Extracted Contour(s)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

4.6

21

97

4.5e+02

2e+03

k=1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

1

t

x
c
(t

)

Reconstruction of Extracted Contour

 

 

x(t)
x

1
(t)

Figure 4.7. Synchrosqueezed Wavelet Comparison. Top: The fre-
quency spectrum shows that the Synchrosqueezed method detects two
major frequency trends. Bottom: The first IMF extracted using this
analysis is like the first dominant harmonics. In this analysis, Morlet
wavelet was used.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50
IF Comparison

t

IF

 

 

Exact IF

Extracted IF

0 0.2 0.4 0.6 0.8 1
−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

t

IMF Extraction Error

E
rr

o
r

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Envelope Comparison

t

E
n
v
e
lo

p
e

 

 

Exact Envelope

Extracted Envelope

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
IMF Comparison

t

IM
F

 

 

Exact IMF

Extracted IMF

Figure 4.8. Intense Intrawave with Non-Constant Envelope
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had taken smaller values of λ, the algorithm would have diverged due to the strong

presence of noise.
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Figure 4.11. Extraction Result of the Mildly Noisy Signal
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Figure 4.13. Extraction Result of the Intensely Noisy Signal

4.4. Mixed Intrawaves, Sharp Signals, Rare Events

In this section, we work on examples where we have a mixture of intrawave, sharp

signals and rare events. Mode mixture1 is a challenging problem for all adaptive data

processing methods. In this section, we propose an approximate method to extract

IMFs with mode mixture. The essence of the method is simple: when two or more

IMFs have mode mixture in an IS, we can extract them simultaneously since we know

the number of mixed IMFs.

4.4.1. Algorithm. For a signal with only two IMFs with mode mixture in the

specified IS s, Algorithm 4 would still be applicable with only a minor change: extract

both IMFs simultaneously. Mathematically, we have

(4.4.1) Minimize δ

∥∥∥∥∥∥∥
 x(n)

1,k

x(n)
2,k


∥∥∥∥∥∥∥

1

+

∥∥∥∥∥∥∥s−
(
H(n)

1,k ,H
(n)
2,k

) x(n)
1,k

x(n)
2,k


∥∥∥∥∥∥∥

2

2

,

1Mode mixture is a case when two or more IMFs in an IS have overlapping or very close IFs at some
instances in time.
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where the subscripts 1, 2 belong to the IMFs that have mode mixture. In the presence

of intrawave IMFs, the width of the filter must also be changed. Similar for the

periodic Algorithm 3, both IMFs should be extracted simultaneously with a wide

band filter but the rest of the algorithm would remain intact. None of the sparse

time frequency methods can extract them successfully, to the best of our knowledge.

Here we present test cases that show how this method works.

4.4.2. Numerical Examples.

Example 12. Here, we investigate the extraction of two intrawave signals with strong

frequency modulation that do not have well separated scales. The signal is of the form

f (t) = cos θ1 + cos θ2 (see Figure 4.14). The IMFs have intense intrawave charac-

teristics and the mode mixture is apparent in the signal. since the signals are not

separate in the time-frequency domain, the extraction of such IMFs is challenging.

To overcome this difficulty, we use a wide band filter and we extract the IMFs simul-

taneously (see Figure 4.15) resulting in a fairly successful extraction. The error of

the extraction is acceptable, as no other method is capable of such performance. The

only a priori knowledge that we have used is that there are two IMFs in the original

signal. However, this assumption can be dropped in an iterative search method.

It is straightforward to show formally why the extraction in Example 12 works.

Let’s assume that the signal can be written as

(4.4.2) x (t) = cos
(
ω1t+ M ω1

p1
sin (p1t)

)
+ cos

(
ω2t+ M ω2

p2
sin (p2t)

)
.

Assume that we intend to extract both IMFs simultaneously. Assume that the initial

guesses are θ1 (t) = ω1t and θ2 (t) = ω2t. Using the expansion in (4.1.3), we can write

(4.4.2) as

x (θ1, θ2) =
{
J0

(
M ω1

p1

)
+ 2

∞∑
k=1

J2k

(
M ω1

p1

)
cos

(
2k p1

ω1
θ1

)}
cos θ1



70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

IF

t

IF

 

 

IF1

IF2

Figure 4.14. IF: The horizontal axis is the time variable and the
vertical axis shows the IF.

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Found IMF1 vs Original IMF1

t

 

 

Extracted IMF

Exact IMF

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Found IMF2 vs Original IMF2

t

 

 

Extracted IMF

Exact IMF

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2
Residual

t
0 0.2 0.4 0.6 0.8 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Original Signal vs Extracted IMF1 + IMF2

 

 

Original Signal

Extracted IMFs

Figure 4.15. Results of the Extraction

−
{

2
∞∑
k=1

J2k−1

(
M ω1

p1

)
sin

(
(2k − 1) p1

ω1
θ1

)}
sin θ1
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+
{
J0

(
M ω2

p2

)
+ 2

∞∑
k=1

J2k

(
M ω2

p2

)
cos

(
2k p2

ω2
θ2

)}
cos θ2(4.4.3)

−
{

2
∞∑
k=1

J2k−1

(
M ω2

p2

)
sin

(
(2k − 1) p2

ω2
θ2

)}
sin θ2.

The sparse representation of (4.4.3) suggests the use of definition (4.1.8) for both

θ1, θ2 in a singular form (i.e. with a small λ0). In the presence of noise, one should

penalize the sparsity more than ever or the noise would be absorbed in the IMFs,

which occurs due to the presence of high frequency mixture of the noise and high

frequency terms in (4.4.3).

Example 13. To test the stability of the algorithm in the presence of noise pertur-

bation, we take the original signal to be

f (t) = cos (12πt+ 0.4 sin (12πt)) + cos (16πt+ 0.3 cos (16πt)) +N (0, 1) .

In spite of some blurring near the peaks and troughs, the result of the extraction is

acceptable compared to the original signal (see Figure 4.16), showing that even in the

presence of heavy noise, the algorithm works well.

Not only is the algorithm that we use to extract the IMFs stable, then, it is also

stable to noise perturbation. The EMD/EEMD methods fail to extract the two IMFs

properly. In fact all other adaptive methods fail to extract one IMF with intrawave

frequency modulation in the presence of noise, let alone two IMFs with intrawave

characteristics mode mixture.

4.4.2.1. Rare Events. So far, we have only considered intrawave and sharp signals.

The method is also applicable to rare event signals. In this dissertation, a rare event

should satisfy these conditions:

(1) The signal is compactly supported.

(2) Since the rare event is only happening in a short period of time, we assume

that the envelope and the IF of the event is constant.
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Figure 4.16. Results

With these assumptions, extraction of a rare event is trivial as long as the location

of the event is known. However, if the rare event is mixed with other IMFs, the

extraction becomes nonlinear and hard. Here, we present this issue in an example

and explain how to solve this problem.

Example 14. Here we take two constant envelope IMFs; one is a sharp signal, and

the other is a rare event (see Figure 4.17 and 4.18). After using a WFT to find the

approximate location of the rare event (see Figure 4.19), we extract both IMFs using

a simultaneous extraction. In contrast to formulation (4.4.1), here one dictionary is

the adaptive STFR dictionary with a wide band filter H(n)
1,k , and the second is a fixed

dictionary of all rare events in the approximate location of the rare event. The signals

were successfully extracted with good accuracy (see Figure 4.20).

We have shown in this chapter that the problems of mode mixture, intrawave

extraction, and rare events can be addressed efficiently and accurately using modified

STFR methods. No other adaptive signal processing method can address all these

problems in one package.
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Figure 4.19. Spectrum
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Figure 4.20. Results of the extraction. The red curves correspond
to the extracted IMFs.
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CHAPTER 5

Analysis of Convergence of Sparse Time-Frequency Method

So far in this thesis, we have concentrated on the algorithms and numerical meth-

ods. It is now time to prove why some of these algorithms work. In this chapter,

we prove the convergence of the periodic STFR method. This proof is useful both

for the case of ordinary IMF and intrawave extractions. This proof is based on our

recent results in [26].

5.1. Convergence Analysis

In this section, we prove that for any signal, whether intrawave or not, increasing the

filter span reduces the extraction error. We will show that the STFR method will

converge to an IMF that is close to one of the IMF representations, but with an error

associated with the width (span) of the filter. Notation for this section is listed in

Table (5.1).

In this section, we assume that an IS can be represented in the following format:

(5.1.1) f (t) = f0 (t) + f1 (t) cos θ (t) ,

for f1 (t) > 0, θ′ > 0 and t ∈ [0, 1]. We assume that the signal is periodic with mean

zero. In fact, even if the signal f (t) is periodic with a non-zero mean, we can redefine

it by reducing the mean of the signal from the signal itself. Lemma 2 helps us to

bound the nth derivative of the mth approximated phase function θ̄m and is later used

to bound some of the integrals in the main theorem.

Lemma 2. If
(
θ̄m
)′
∈ VM0, where VM0 = span

{
ei2πkt, |k| ≤M0, k ∈ Z

}
then

(5.1.2)
∣∣∣∣(θ̄m)(n)

(t)
∣∣∣∣ ≤ (2πM0)n−1

∥∥∥∥F ((θ̄m)′)∥∥∥∥
1
,
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Domain Symbol Analysis Synthesis
θ Fθ (.) (Fθ (g))k =

´ θend
θ0

g(θ) exp
(
−i2πkθ
|θend−θ0|

)
dθ

|θend−θ0|

g (θ) =
∞∑

k=−∞
(Fθ (g))k exp

(
i2πkθ
|θend−θ0|

)

t ∈ [0, 1] F (.) (F (g))k =´ 1
0 g (t) e−i2πktdt

g (t) =
∞∑

k=−∞
(F (g))k ei2πkt

θ̄ (̂)θ̄ f̂θ̄ (k) =´ 1
0 f

(
θ̄
)
e−i2πkθ̄dθ̄

f
(
θ̄
)

=
∞∑

k=−∞
f̂θ̄ (k) ei2πkθ̄

t PVM0
(.) PVM0

(g) =
M0∑

k=−M0
(F (g))k ei2πkt

RVM0
(g) = ∑

|k|>M0

(F (g))k ei2πkt

k ∈ Z ‖.‖1,M0
‖z‖1,M0

=∑
|k|≤M0

|z (k)|

Table 5.1. Coordinates and Symbols

for n ∈ N.

Proof. By definition, we have

∣∣∣∣(θ̄m)(n)
(t)
∣∣∣∣ =

∣∣∣∣∣∣
∑
|k|≤M0

(
F
((
θ̄m
)(n)

))
k
ei2πkt

∣∣∣∣∣∣
≤

∑
|k|≤M0

∣∣∣∣(F ((θ̄m)(n)
))

k

∣∣∣∣
≤

∑
|k|≤M0

∣∣∣∣(F ((θ̄m)(n)
))

k

∣∣∣∣
=

∑
|k|≤M0

|i2πk|n−1
∣∣∣∣(F ((θ̄m)′))

k

∣∣∣∣
= (2πM0)n−1

∥∥∥∥F ((θ̄m)′)∥∥∥∥
1
.

�

Lemma 2 leads to Lemma 3, which bounds integrals like
∣∣∣´ 1

0 e
iδ4θe−iεθ̄

m
dθ̄m

∣∣∣ that occur
frequently in the main theorem. These integrals would be bounded by the norm of

the Fourier transform of the phase correction 4θ′. In fact, this bound would help us

construct a contraction in the main theorem.
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Lemma 3. If
(
θ̄m
)′
> 0, t ∈ [0, 1], θ̄m (0) = 0, θ̄m (1) = 1, and

(
θ̄m
)′
,4θ′ ∈ VM0.

Also if eiδ4θe−iεθ̄m is periodic, then for ε 6= 0, we have

(5.1.3)
∣∣∣∣∣
ˆ 1

0
eiδ4θe−iεθ̄

m

dθ̄m
∣∣∣∣∣ ≤ P n

mM
n
0

|ε|n
n∑
j=1
|δ|j (2πM0)−j (‖F (4θ′)‖1)j .

Proof. Using integration by parts, we haveˆ 1

0
eiδ4θe−iεθ̄

m

dθ̄m = 1
(iε)n

ˆ 1

0

 dn

d
(
θ̄m
)n eiδ4θ

 e−iεθ̄mdθ̄m.
Now, using Lemma 2, we have

∣∣∣∣∣
ˆ 1

0
eiδ4θe−iεθ̄

m

dθ̄m
∣∣∣∣∣ ≤

∣∣∣∣∣∣ 1
|ε|n

ˆ 1

0

 dn

d
(
θ̄m
)n eiδ4θ

 dθ̄m
∣∣∣∣∣∣

≤
P


∥∥∥F((θ̄m)′

)∥∥∥
1

min(θ̄m)′ , n

Mn
0(

min
(
θ̄m
)′)n
|ε|n

n∑
j=1
|δ|j (2πM0)−j (‖F (4θ′)‖1)j

=P
n
mM

n
0

|ε|n
n∑
j=1
|δ|j (2πM0)−j (‖F (4θ′)‖1)j .

Here P (x, n) is a polynomial of degree n − 1 and P n
m = P


∥∥∥F((θ̄m)′

)∥∥∥
1

min(θ̄m)′ , n

. This

completes the proof. �

Remark 1. Here we present a simple calculation on how to compute the polynomial

P (x, n) for small n. For example for n = 2, we have

∣∣∣∣∣∣∣
d2

d
(
θ̄m
)2 e

iδ4θ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣i
 (δ4θ)′′((

θ̄m
)′)2 −

(δ4θ)′
(
θ̄m
)′′

((
θ̄m
)′)3 + i

(
(δ4θ)′

)2

((
θ̄m
)′)2

 eiδ4θ
∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣
(δ4θ)′′((
θ̄m
)′)2

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
(δ4θ)′

(
θ̄m
)′′

((
θ̄m
)′)3

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
(
(δ4θ)′

)2

((
θ̄m
)′)2

∣∣∣∣∣∣∣∣∣
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≤
max

∣∣∣(δ4θ)′′∣∣∣
min

((
θ̄m
)′)2 +

max
∣∣∣(δ4θ)′∣∣∣max

∣∣∣∣(θ̄m)′′∣∣∣∣
min

((
θ̄m
)′)3 +

max
∣∣∣∣((δ4θ)′)2

∣∣∣∣
min

((
θ̄m
)′)2

≤

1 +

∥∥∥F((θ̄m)′
)∥∥∥

1
min(θ̄m)′

 2πM0

∥∥∥F ((δ4θ)′)∥∥∥
1

+
∥∥∥F ((δ4θ)′)∥∥∥2

1


min

((
θ̄m
)′)2 ,

where we have used
(
θ̄m
)′
,4θ′ ∈ VM0 . In other words, we have P (x, 2) = K (x+ 1)

for some positive constant K.

Here we present the convergence theorem. The essence of the algorithm is as

follows. We try to construct a contraction iterative scheme on
∥∥∥F (θ − θm)′

∥∥∥
1
, where

θm is the approximate value of θ at the mth step. This contraction is built upon

the error bounds of the extracted envelopes at each iteration of the algorithm. The

notations of this proof follow the notations of Algorithm 3.

Theorem 5. [Convergence Theorem] Assume that the instantaneous frequency in

equation (5.1.1) is M0-sparse; i.e. θ′ ∈ VM0. Furthermore, assume that

∣∣∣f̂0,θ̄ (k)
∣∣∣ ≤ C0

|k|p
,
∣∣∣f̂1,θ̄ (k)

∣∣∣ ≤ C0

|k|p
,

for C0 > 0 and p ≥ 4. If the initial guess satisfies

∥∥∥F(4θ0)′
∥∥∥

1
2πM0

≤ 1
4 , then there exists

an η0 > 0 such that for L > η0 we have

∥∥∥F (θ − θm+1)′
∥∥∥

1
≤ Γ1λ

2p−2L−p+2 + 1
2

∥∥∥F (θ − θm)′
∥∥∥

1
,

for λ > 1 and Γ1 > 0.

Proof. We know that if 4θm = θ − θm, then am = f1 cos ∆θm, and bm =

−f1 sin ∆θm. Let ãm, b̃m be approximate envelope functions. Set the error in en-

velopes as 4am = a − ãm, and 4bm = b − b̃m. Using these, we get f = f0 +
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am cos θm + bm sin θm. Let Lm = θm(1)−θm(0)
2π and θ̄m = θm

2πLm . Then, we have

f = f0 + am cos 2πLmθ̄m + bm sin 2πLmθ̄m. If we take the Fourier transform in θ̄m

coordinate (See Table (5.1)), we get

f̂θ̄m (k) = f̂0,θ̄m (k)+

(
âm
θ̄m

(k − Lm) + âm
θ̄m

(k + Lm)
)

2 +

(
b̂m
θ̄m

(k − Lm)− b̂m
θ̄m

(k + Lm)
)

2i .

Consequently, one can find

âmθ̄m (k) = f̂θ̄m (k + Lm) + f̂θ̄m (k − Lm)

−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+1
2 (−âmθ̄m (k + 2Lm)− âmθ̄m (k − 2Lm))

+ 1
2i
(
b̂mθ̄m (k + 2Lm)− b̂mθ̄m (k − 2Lm)

)
,

and

b̂mθ̄m (k) = if̂θ̄m (k + Lm)− if̂θ̄m (k − Lm)

−if̂0,θ̄m (k + Lm) + if̂0,θ̄m (k − Lm)

+ i

2 (−âmθ̄m (k + 2Lm) + âmθ̄m (k − 2Lm))

+1
2
(
b̂mθ̄m (k + 2Lm) + b̂mθ̄m (k − 2Lm)

)
.

In the periodic STFR algorithm, ˆ̃am
θ̄m

, ˆ̃bm
θ̄m

are approximated as

ˆ̃amθ̄m (k) =


f̂θ̄m (k + Lm) + f̂θ̄m (k − Lm) , −Lm

λ
≤ k ≤ Lm

λ
,

0, otherwise,

ˆ̃bmθ̄m (k) =


i
(
f̂θ̄m (k + Lm)− f̂θ̄m (k − Lm)

)
, −Lm

λ
≤ k ≤ Lm

λ
,

0, otherwise.
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Here, 1 < λ defines the width of the filter. Hence, for 4âm
θ̄m

and 4b̂m
θ̄m

we have

4âmθ̄m (k) =



{−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+1
2

(
−âm

θ̄m
(k + 2Lm)− âm

θ̄m
(k − 2Lm)

)
|k| ≤ Lm

λ
,

+ 1
2i

(
b̂m
θ̄m

(k + 2Lm)− b̂m
θ̄m

(k − 2Lm)
)
},

âm
θ̄m

(k) , |k| > Lm
λ
,

4b̂mθ̄m (k) =



{−if̂0,θ̄m (k + Lm) + if̂0,θ̄m (k − Lm)

+ i
2

(
−âm

θ̄m
(k + 2Lm) + âm

θ̄m
(k − 2Lm)

)
|k| ≤ Lm

λ
,

+1
2

(
b̂m
θ̄m

(k + 2Lm) + b̂m
θ̄m

(k − 2Lm)
)
},

b̂m
θ̄m

(k) , |k| > Lm
λ
.

The ideal case for updating the phase function is dθnew
dt

= dθm

dt
− d

dt
arctan b̃m

ãm
. How-

ever, the algorithm works in a way that we must choose dθm+1

dt
in VM0 . Hence,

dθm+1

dt
= PVM0

(
dθnew
dt

)
. So, at each step, we force dθm

dt
to be in VM0 . In other

words, dθm

dt
∈ VM0 for all m ≥ 0, m ∈ Z. This short analysis tells us that dθm+1

dt
=

dθm

dt
−PVM0

(
d
dt

arctan b̃m

ãm

)
. Since θ ∈ VM0 is sufficiently differentiable, and dθm

dt
∈ VM0 ,

then (θ − θm = 4θm) ∈ VM0 . Having these in mind, we can find

d

dt
4θm+1 = d

dt

(
θ − θm+1

)
= dθ

dt
− dθm

dt
+ PVM0

(
d

dt
arctan b̃m

ãm

)

=PVM0

d

dt

(
arctan b̃m

ãm
− arctan bm

am

)
+RVM0

(
d

dt
4θm

)
.

We know arctan b̃m

ãm
− arctan bm

am
is in C1. For any g ∈ C1, we have PVM0

d
dt

(g) =
d
dt
PVM0

(g). Hence, the Fourier transform of the IF error is

(
F
(
4θm+1

)′)
k

=
(
F
(
PVM0

d

dt

(
arctan b̃m

ãm
− arctan bm

am

)))
k

+
(
F
(
RVM0

(4θm)′
))

k

= (i2πk)
(
F
(
PVM0

(
arctan b̃m

ãm
− arctan bm

am

)))
k

+
(
F
(
RVM0

(4θm)′
))

k
.
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As
(
F
(
PVM0

(
arctan b̃m

ãm
− arctan bm

am

)))
k

= 0 for |k| > M0, then

∥∥∥F (4θm+1)′
∥∥∥

1
≤ (2πM0)

∥∥∥F (PVM0

(
arctan b̃m

ãm
− arctan bm

am

))∥∥∥
1

+
∥∥∥F (RVM0

(4θm)′
)∥∥∥

1
.

Now, we know that for any function g (t), we have

∥∥∥F (PVM0
(g)
)∥∥∥

1
=

M0∑
k=−M0

|(F (g))k| =
M0∑

k=−M0

∣∣∣∣∣
ˆ 1

0
g (t) e−i2πktdt

∣∣∣∣∣
≤

M0∑
k=−M0

ˆ 1

0
|g (t)| dt ≤

M0∑
k=−M0

‖g‖∞ = (2M0 + 1) ‖g‖∞ .

Hence, the l1 norm of the Fourier of the IF error is

∥∥∥∥F (4θm+1
)′∥∥∥∥

1
≤ (2πM0) (2M0 + 1)

∥∥∥∥∥arctan b̃m

ãm
− arctan bm

am

∥∥∥∥∥
∞

+
∥∥∥F (RVM0

(4θm)′
)∥∥∥

1
.

Since θ′ is sparse in VM0 , then the last term vanishes. In fact, we previously showed

that dθm

dt
∈ VM0 , hence

(
F (4θm)′

)
k

=
(
F (θ − θm)′

)
k

=


(F (θ′))k −

(
F
(
(θm)′

))
k
, |k| ≤M0,

(F (θ′))k = 0, |k| > M0,

so,

RVM0
(4θm)′ =

∑
|k|>M0

(
F (4θm)′

)
k
ei2πkt =

∑
|k|>M0

(F (θ′))k e
i2πkt = 0,

and then
(
F
(
RVM0

(4θm)′
))

k
= 0. Finally, we have the following bound on the IF

error:

∥∥∥F (4θm+1)′
∥∥∥

1
≤ (2πM0) (2M0 + 1)

∥∥∥arctan b̃m

ãm
− arctan bm

am

∥∥∥
∞
.
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The last term on the right hand side of this bound can be simplified further. If we

use the fact that x2 + xy ≤ x2

2 − y
2 for real x and y, we have

∣∣∣∣∣arctan b̃m

ãm
− arctan bm

am

∣∣∣∣∣ =
∣∣∣∣∣arctan

(
b̃mam − ãmbm

amãm + bmb̃m

)∣∣∣∣∣ ≤
∣∣∣∣∣ b̃mam − ãmbmamãm + bmb̃m

∣∣∣∣∣
=
∣∣∣∣∣ (am +4am)4bm − (bm +4bm)4am

(am)2 + (bm)2 + (4am) am + (4bm) bm

∣∣∣∣∣
≤(|am|+ |4am|) |4bm|+ (|bm|+ |4bm|) |4am|

(am)2+(bm)2

2 −
(
(4am)2 + (4bm)2

)
≤D (|4am|+ |4bm|) ,

for D = max
(

f1+|4am|
f2
1
2 −((4am)2+(4bm)2)

, f1+|4bm|
f2
1
2 −((4am)2+(4bm)2)

)
, in which we have taken into

account that f1 > 0. Now, consider the fact that

|4am (t)| = |4am (θ)| =
∣∣∣4am (θ̄m)∣∣∣ =

∣∣∣∣∣∣
∞∑

k=−∞
4âmθ̄m (k) ei2πkθ̄m

∣∣∣∣∣∣
≤

∞∑
k=−∞

|4âmθ̄m (k)| = ‖4âmθ̄m‖1 ,

and as, in general ĝθ̄ (−k) = ĝθ̄ (k) for any g, then |ĝθ̄ (−k)| = |ĝθ̄ (k)|. Consequently,

the bound on the envelopes errors can be expressed as

|4am| ≤ ‖4âmθ̄m‖1

≤ 2
∑

(1− 1
λ)Lm≤k≤(1+ 1

λ)Lm

∣∣∣f̂0,θ̄m (k)
∣∣∣

+
∑

(2− 1
λ)Lm≤k≤(2+ 1

λ)Lm

(
|âmθ̄m (k)|+

∣∣∣b̂mθ̄m (k)
∣∣∣)

+
∑
|k|>Lm

λ

|âmθ̄m (k)| ,
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and

|4bm| ≤
∥∥∥4b̂mθ̄m∥∥∥1

≤ 2
∑

(1− 1
λ)Lm≤k≤(1+ 1

λ)Lm

∣∣∣f̂0,θ̄m (k)
∣∣∣

+
∑

(2− 1
λ)Lm≤k≤(2+ 1

λ)Lm

(
|âmθ̄m (k)|+

∣∣∣b̂mθ̄m (k)
∣∣∣)

+
∑
|k|>Lm

λ

∣∣∣b̂mθ̄m (k)
∣∣∣ .

Before we use approximations on these terms, recall that according to one of our as-

sumptions, we have: “The observation is periodic with mean zero.” Hence, f̂0,θ̄m (0) =

0. Furthermore, as ei2πkθ̄e−i2πωθ̄m is periodic, so is ei2πθ̄m(kLmL −ω)eik4θ
m

L , and then we

have the following estimate using these facts and Lemma 3:

(5.1.4)

∣∣∣f̂0,θ̄m (ω)
∣∣∣ ≤ 2C0

(
αλ
|ω|

)p−1

+2C0P
n
m

(
M0λ

2π|εω|

)n (p−2∑
j=1

(
γ
L

)j
π2

3 + 2
n∑
j=p

∣∣∣ ω
αλ

∣∣∣j−p+1 ( γ
L

)j)
+2C0P

n
m

(
M0λ

2π|εω|

)n (
2
(
γ
L

)p−1 (
1 + |ω|

αλ

))
.

Here, γ = ‖F(4θm)′‖1
2πM0

. The proof of this inequality can be found in in Appendix A.

To find the estimate on âm
θ̄m

(k), we follow a similar approach. The approximation

procedure is detailed in Appendix B.

|âmθ̄m (ω)| ≤2C0

(
αλ

|ω|

)p−1

+
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π |ω|

)n n∑
j=1
γj

+ C0P
n
m

(
M0λ

2π |εω|

)n 2p
p− 1

n∑
j=1

2jγj

+ C0P
n
m

(
M0λ

2π |εω|

)np−2∑
j=1

2j
(
γ

L

)j π2

3 +
n∑
j=p

2j+1
∣∣∣∣ ωαλ

∣∣∣∣j−p+1 (γ
L

)j(5.1.5)

+ C0P
n
m

(
M0λ

2π |εω|

)n (
2p
(
γ

L

)p−1
(

1 + |ω|
αλ

))
.
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There is a similar bound for b̂m
θ̄m

(ω) as well:

∣∣∣b̂mθ̄m (ω)
∣∣∣ ≤2C0

(
αλ

|ω|

)p−1

+
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π |ω|

)n n∑
j=1
γj

+ C0P
n
m

(
M0λ

2π |εω|

)n 2p
p− 1

n∑
j=1

2jγj

+ C0P
n
m

(
M0λ

2π |εω|

)np−2∑
j=1

2j
(
γ

L

)j π2

3 +
n∑
j=p

2j+1
∣∣∣∣ ωαλ

∣∣∣∣j−p+1 (γ
L

)j
+ C0P

n
m

(
M0λ

2π |εω|

)n (
2p
(
γ

L

)p−1
(

1 + |ω|
αλ

))
.

Now we approximate the terms in the inequality for |4am|. One can find the detail

of this approximation in Appendix C. We have a similar inequality for |4bm|. These

can be expressed in the following way

(5.1.6) |4am| ≤ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ ,

(5.1.7) |4bm| ≤ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ ,

where C1 and C2 depend on C0, M0, ε, α, P n
m, n, p. Before moving forward, we need

to show that parameters like α and P n
m are uniformly bounded. We start with α. We

have

|1− α| =
∣∣∣∣1− Lm

L

∣∣∣∣ =
∣∣∣∣∣∣1−

θm(1)−θm(0)
2π

θ̄m(1)−θ̄m(0)
2π

∣∣∣∣∣∣ =
∣∣∣∣∣∆θm (1)−∆θm (0)

2πL

∣∣∣∣∣
≤
∥∥∥∥∥(∆θm)′

2πL

∥∥∥∥∥
∞
≤
∥∥∥∥∥F (∆θm)′

2πL

∥∥∥∥∥
1

= γM0

L
≤ M0

4L ≤
1
8 .(5.1.8)

Here, we have used the fact that γ ≤ 1
4 . At the last part of the proof, we will show

that this condition remains intact for all iterations. The last inequality in (5.1.8)

can be true for the condition L ≥ 2M0. Hence, 7
8 ≤ α ≤ 9

8 . In order to prove

the boundedness of P n
m at every step, we need to find bounds on

∥∥∥∥F ((θ̄m)′)∥∥∥∥
1
and

min
(
θ̄m
)′
. If we take the condition min

(
θ̄′
)
≥ M0

2L , we get θ̄′ ≥ M0
2L > M0

4L ≥
γM0
L

=
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∥∥∥F(∆θm)′

2πL

∥∥∥
1
≥
∣∣∣ (∆θm)′

2πL

∣∣∣. Using this, we have

∣∣∣∣(θ̄m)′∣∣∣∣ =
∣∣∣∣∣ (θm)′

2πLm

∣∣∣∣∣ =
∣∣∣∣∣(θ −∆θm)′

2παL

∣∣∣∣∣ ≥ 8
9

∣∣∣∣∣(θ −∆θm)′

2πL

∣∣∣∣∣
=8

9

∣∣∣∣∣θ̄′ − (∆θm)′

2πL

∣∣∣∣∣ ≥ 8
9

(
θ̄′ − (∆θm)′

2πL

)
≥ 8

9

(
θ̄′ − M0

4L

)

≥8
9

(
θ̄′ − M0

4L

)
≥ 8

9

(
θ̄′ − θ̄′

2

)
≥ 4

9 min
(
θ̄′
)
.

We also have

∥∥∥∥F ((θ̄m)′)∥∥∥∥
1

= 1
α

∥∥∥∥∥F
(

(θ −∆θm)′

2πL

)∥∥∥∥∥
1

= 1
α

∥∥∥∥∥∥F
(
θ̄′
)
−
F
(
(∆θm)′

)
2πL

∥∥∥∥∥∥
1

≤8
7

∥∥∥F (θ̄′)∥∥∥
1

+

∥∥∥F ((∆θm)′
)∥∥∥

1
2πL

 = 8
7

(∥∥∥F (θ̄′)∥∥∥
1

+ M0γ

L

)

≤8
7

(∥∥∥F (θ̄′)∥∥∥
1

+ M0

4L

)
.

These two estimates pave the way to rigorously prove that P n
m is bounded at every

single step. Now it is time for a bound on D. In fact, if we bound D uniformly over

all steps, we can set a contraction. Assuming that 1 < λ < λ0, and since f1 > 0,

taking the condition

C1λ
2p−2
0

L−p+1 + C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p) ≤
√

2
4 min f1,

would result in1

|4am| ≤C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ

≤C1λ
2p−2
0

Lp−2 + C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p) ≤
√

2
4 min f1.

1Remember that if f1 has a zero crossing, this condition would never be satisfied. Hence, the rest
of the proof will not be valid.
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Similarly, we have the same bound for |4bm|, and then

D = max

 f1 + |4am|
f2
1
2 −

(
(4am)2 + (4bm)2

) , f1 + |4bm|
f2
1
2 −

(
(4am)2 + (4bm)2

)


≤
max f1 +

√
2

4 min f1

min
(
f2
1
2 −

(
(4am)2 + (4bm)2

)) ≤ max f1 +
√

2
4 min f1

min f2
1
2 −

1
4 min f 2

1

=4 max f1 +
√

2 min f1

min f 2
1

= E0.

The latter shows that D is also bounded. So, we get

∥∥∥∥F (4θm+1
)′∥∥∥∥

1
≤ (2πM0) (2M0 + 1)

∥∥∥∥∥arctan b̃m

ãm
− arctan bm

am

∥∥∥∥∥
∞

≤ (2πM0) (2M0 + 1)D (|4am|+ |4bm|)

≤E0 (4πM0) (2M0 + 1)C1λ
2p−2L−p+2

+ E0 (4πM0) (2M0 + 1)C2λ
2nLmax(−n,−2p+1,−n−p+2,−2p)γ.

The last inequality is nothing but
∥∥∥F (4θm+1)′

∥∥∥
1
≤ Γ1λ

2p−2L−p+2

+Γ2λ
2nLmax(−n,−2p+1,−n−p+2,−2p)

∥∥∥F (4θm)′
∥∥∥

1
.

If we have the condition that Γ2λ
2n
0 L

max(−n,−2p+1,−n−p+2,−2p) ≤ 1
2 , we have the con-

traction that we were looking for. Before finishing, we need to state the follow-

ing: ∃η0 > 0 such that L > η0, then all the conditions L ≥ 2M0, min
(
θ̄′
)
≥ M0

2L ,
C1λ

2p−2
0

Lp−2 + C2λ2n
0

4L−max(−n,−2p+1,−n−p+2,−2p) ≤
√

2
4 min f1, and Γ2λ

2n
0 L

max(−n,−2p+1,−n−p+2,−2p) ≤ 1
2

would be satisfied. As a result, we have

∥∥∥F (θ − θm+1)′
∥∥∥

1
≤ Γ1λ

2p−2L−p+2 + 1
2

∥∥∥F (θ − θm)′
∥∥∥

1
.

Having this bound, the condition γ ≤ 1
4 would remain intact for all iterations. In

other words, when there is a contraction on
∥∥∥F (θ − θm+1)′

∥∥∥
1
, this term would remain
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bounded. Hence, if

∥∥∥F(4θ0)′
∥∥∥

1
2πM0

≤ 1
4 for the first iteration, it will remain bounded by

1
4 for all iterations. This completes the proof. �

A corollary of this is that if f0 has only high-frequency components, there would

be no interference between f0 and f1 cos θ. Hence, the convergence proof would be

true for λ > 0, as well. Furthermore, since it is possible that an Intrinsic Signal has

multiple representations and this theorem states merely that the algorithm converges

to an IMF in one of these representations, the algorithm’s result is not necessary

unique. The theorem does not mention which representation the algorithm converges

to. The theorem that we observed, in this part, says that if in a representation we

have
∣∣∣f̂0,θ̄ (k)

∣∣∣ ≤ C0
|k|p ,

∣∣∣f̂1,θ̄ (k)
∣∣∣ ≤ C0

|k|p , then increasing the width of the filter will reduce

the error in extraction. More specifically, if in a representation we have a wide band

signal (like an intrawave signal), we are more likely to capture it by widening the filter

width. This approach helps us to find a sparser representation compared to the case

in which one uses a normal envelope dictionary 1.2.3. From the algorithmic point of

view, the initial guess θ0 and the parameter λ define the representation to which we

converge. In practice, if the IMFs that constitute the signal are separated enough

in the time-frequency domain, the reduction of the parameter λ is always beneficial.

This idea is illustrated in the following example.

Example 15. Again consider our generic intrawave IMF x (t) = cos
(
ωt+ Mω

p
sin (pt)

)
.

We can have many representations for this signal. The first representation would be

(5.1.9) x (t) = cos
(
ωt+ M ω

p
sin (pt)

)
,

for θ̄ = ωt+ Mω
p

sin (pt). The second representation would be

x (θ) =
{
J0

(
M ω
p

)
+ 2

∞∑
k=1

J2k

(
M ω
p

)
cos (2kpt)

}
cos (ωt)

−
{

2
∞∑
k=1

J2k−1

(
M ω
p

)
sin ((2k − 1) pt)

}
sin (ωt) ,



88

for θ̄ = ωt. So, with a constant initial guess for θ0 close to θ̄ = ωt, the second

representation is the one that is seen by the algorithm at the first iteration. Hence,

if a narrow-band filter (large value of λ) is used, only the first harmonic is extracted

by the algorithm. In order to capture more terms in the envelope of the second

representation, we need a smaller value of λ.

5.2. Recovery of Signals Polluted by Noise

The next theorem shows that if the observation is polluted by noise, under mild

presence of noise, the algorithm still converges. Take

(5.2.1) f (t) = f0 (t) + f1 (t) cos θ (t) + =,

where = is a periodic perturbation to the original signal (5.1.1).

Theorem 6. [Convergence Theorem in the Presence of Noise] Assume that the in-

stantaneous frequency in equation (5.2.1) is M0-sparse; i.e. θ′ ∈ VM0. Furthermore,

assume that ∣∣∣f̂0,θ̄ (k)
∣∣∣ ≤ C0

|k|p
,
∣∣∣f̂1,θ̄ (k)

∣∣∣ ≤ C0

|k|p
,

for C0 > 0 and p ≥ 4. If the initial guess satisfies

∥∥∥F(4θ0)′
∥∥∥

1
2πM0

≤ 1
4 , then there exists

an η0 > 0 such that for L > η0, and ‖=‖∞ ≤ ε0 (ε0 sufficiently small) we have

∥∥∥F (θ − θm+1)′
∥∥∥

1
≤ Υ0 (L, λ) ‖= (t)‖∞ + Γ1λ

2p−2L−p+2 + 1
2

∥∥∥F (θ − θm)′
∥∥∥

1
,

for λ > 1, Γ1 > 0 and Υ0 (L, λ).

Proof. The proof of this theorem is essentially the same as the proof of the Conver-

gence Theorem in the absence of noise. There is only one minor change. Using the
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same trend of proof as before, we have

4âmθ̄m (k) =



{−=̂θ̄m (k + Lm)− =̂θ̄m (k − Lm)

−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+1
2

(
−âm

θ̄m
(k + 2Lm)− âm

θ̄m
(k − 2Lm)

)
+ 1

2i

(
b̂m
θ̄m

(k + 2Lm)− b̂m
θ̄m

(k − 2Lm)
)
}, |k| ≤ Lm

λ
,

âm
θ̄m

(k) , |k| > Lm
λ
,

4b̂mθ̄m (k) =



{−i=̂θ̄m (k + Lm) + i=̂θ̄m (k − Lm)

−if̂0,θ̄m (k + Lm) + if̂0,θ̄m (k − Lm)

+ i
2

(
−âm

θ̄m
(k + 2Lm) + âm

θ̄m
(k − 2Lm)

)
+1

2

(
b̂m
θ̄m

(k + 2Lm) + b̂m
θ̄m

(k − 2Lm)
)
}, |k| ≤ Lm

λ
,

b̂m
θ̄m

(k) , |k| > Lm
λ
.

Here, in simple words, we have 4am (t) = =ma,trunc (t) +4amold (t), where =ma,trunc
(
θ̄m
)

is the truncated part of = in a:

=ma,trunc
(
θ̄m
)

=
∞∑

k=−∞
=̂ma,trunc,θ̄m (k) ei2πkθ̄m

=
∑
|k|≤Lm

λ

(
−=̂θ̄m (k + Lm)− =̂θ̄m (k − Lm)

)
ei2πkθ̄

m

.

Also, 4amold (t), in Fourier domain, is defined as

4âmold,θ̄m (k) =



{−f̂0,θ̄m (k + Lm)− f̂0,θ̄m (k − Lm)

+1
2

(
−âm

θ̄m
(k + 2Lm)− âm

θ̄m
(k − 2Lm)

)
+ 1

2i

(
b̂m
θ̄m

(k + 2Lm)− b̂m
θ̄m

(k − 2Lm)
)
}, |k| ≤ Lm

λ
,

âm
θ̄m

(k) , |k| > Lm
λ
.

This formula is telling us that we only need to find a bound on =mtrunc (t), and then

use the results of the Theorem 5 to finalize the proof. One can simplify =ma,trunc
(
θ̄m
)
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, using

χλ (k) =


1, |k| ≤ Lm

λ
,

0, |k| > Lm
λ
,

as

=ma,trunc
(
θ̄m
)

=
∞∑

k=−∞

(
−=̂θ̄m (k + Lm)− =̂θ̄m (k − Lm)

)
χλ (k) ei2πkθ̄m

=e−i2πLmθ̄m
∞∑

k=−∞

(
−=̂θ̄m (k)

)
χλ (k − Lm) ei2πkθ̄m

+ ei2πLmθ̄
m
∞∑

k=−∞

(
−=̂θ̄m (k)

)
χλ (k + Lm) ei2πkθ̄m .

Here, we need to pay attention to
∞∑

k=−∞
=̂θ̄m (k)χλ (k + Lm) ei2πkθ̄m for further simpli-

fications. Rename =̂θ̄m (k)χλ (k + Lm) as P̂1,θ̄m (k). Hence, we have

P1
(
θ̄m
)

=
ˆ 1

0
= (τ) χ̌1,λ

(
θ̄m − τ

)
dτ,

where

χ̌1,λ
(
θ̄m
)

=
∞∑

k=−∞
χλ (k + Lm) ei2πkθ̄m =

∑
Lm(− 1

λ
−1)≤k≤Lm( 1

λ
−1)

ei2πkθ̄
m

.

Also, rename −=̂θ̄m (k)χλ (k − Lm) as P̂2,θ̄m (k). Hence, we get

P2
(
θ̄m
)

=
ˆ 1

0
= (τ) χ̌2,λ

(
θ̄m − τ

)
dτ,

where

χ̌2,λ
(
θ̄m
)

=
∞∑

k=−∞
χλ (k − Lm) ei2πkθ̄m =

∑
Lm(− 1

λ
+1)≤k≤Lm( 1

λ
+1)

ei2πkθ̄
m

.
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As a consequence, one can find

∣∣∣=ma,trunc (θ̄m)∣∣∣ ≤
∣∣∣∣∣∣e−i2πLmθ̄m

∞∑
k=−∞

(
−=̂θ̄m (k)

)
χλ (k − Lm) ei2πkθ̄m

∣∣∣∣∣∣
+
∣∣∣∣∣∣e−i2πLmθ̄m

∞∑
k=−∞

(
−=̂θ̄m (k)

)
χλ (k − Lm) ei2πkθ̄m

∣∣∣∣∣∣
=
∣∣∣∣∣∣
∞∑

k=−∞
P̂2,θ̄m (k) ei2πkθ̄m

∣∣∣∣∣∣+
∣∣∣∣∣∣
∞∑

k=−∞
P̂1,θ̄m (k) ei2πkθ̄m

∣∣∣∣∣∣
=
∣∣∣∣∣
ˆ 1

0
= (τ) χ̌2,λ

(
θ̄m − τ

)
dτ

∣∣∣∣∣+
∣∣∣∣∣
ˆ 1

0
= (τ) χ̌1,λ

(
θ̄m − τ

)
dτ

∣∣∣∣∣
≤‖= (t)‖∞

(ˆ 1

0

∣∣∣χ̌2,λ
(
θ̄m − τ

)∣∣∣ dτ +
ˆ 1

0

∣∣∣χ̌1,λ
(
θ̄m − τ

)∣∣∣ dτ) .
Since, χ̌2,λ

(
θ̄m − τ

)
and χ̌1,λ

(
θ̄m − τ

)
are periodic, we have

ˆ 1

0

∣∣∣χ̌i,λ (θ̄m − τ)∣∣∣ dτ = −
ˆ θ̄m−1

θ̄m
|χ̌i,λ (τ)| dτ

=
ˆ θ̄m

θ̄m−1
|χ̌i,λ (τ)| dτ =

ˆ 1
2

− 1
2

|χ̌i,λ (τ)| dτ,

for i = 1, 2. So, we get

∣∣∣=ma,trunc (θ̄m)∣∣∣ ≤‖= (t)‖∞

ˆ 1
2

− 1
2

|χ̌1,λ (τ)| dτ +
ˆ 1

2

− 1
2

|χ̌2,λ (τ)| dτ


≤‖= (t)‖∞
ˆ 1

2

− 1
2

∣∣∣∣∣∣∣
∑

Lm(− 1
λ
−1)≤k≤Lm( 1

λ
−1)

ei2πkτ

∣∣∣∣∣∣∣ dτ

+ ‖= (t)‖∞
ˆ 1

2

− 1
2

∣∣∣∣∣∣∣
∑

Lm(− 1
λ

+1)≤k≤Lm( 1
λ

+1)
ei2πkτ

∣∣∣∣∣∣∣ dτ.
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Now, using the identity ei2πkt = πt
sinπt

´ k+ 1
2

k− 1
2
ei2πωtdω, we get

∣∣∣=ma,trunc (θ̄m)∣∣∣ ≤‖= (t)‖∞
ˆ 1

2

− 1
2

∣∣∣∣∣∣∣
∑

Lm(− 1
λ
−1)≤k≤Lm( 1

λ
−1)

πt

sin πt

ˆ k+ 1
2

k− 1
2

ei2πωtdω

∣∣∣∣∣∣∣ dt

+ ‖= (t)‖∞
ˆ 1

2

− 1
2

∣∣∣∣∣∣∣
∑

Lm(− 1
λ

+1)≤k≤Lm( 1
λ

+1)

πt

sin πt

ˆ k+ 1
2

k− 1
2

ei2πωtdω

∣∣∣∣∣∣∣ dt

≤π2 ‖= (t)‖∞
ˆ 1

2

− 1
2

∣∣∣∣∣∣e
i2π(Lm( 1

λ
−1)+ 1

2)t − ei2π(Lm(− 1
λ
−1)− 1

2)t

2πit

∣∣∣∣∣∣ dt
+ π

2 ‖= (t)‖∞
ˆ 1

2

− 1
2

∣∣∣∣∣∣e
i2π(Lm( 1

λ
+1)+ 1

2)t − ei2π(Lm(− 1
λ

+1)− 1
2)t

2πit

∣∣∣∣∣∣ dt.
In the last inequality, we have used the fact that max

− 1
2≤t≤

1
2

(
πt

sinπt

)
≤ π

2 . From Theorem

5, we know that Lm
L
≤ 9

8 . Hence, the above bound would be

∣∣∣=ma,trunc (θ̄m)∣∣∣ ≤ Υ (L, λ) ‖= (t)‖∞ ,

for some constant Υ (L, λ). The same thing is true for
∣∣∣=mb,trunc (θ̄m)∣∣∣:

∣∣∣=mb,trunc (θ̄m)∣∣∣ ≤ Υ (L, λ) ‖= (t)‖∞ .

Hence, we get

|4am| ≤ Υ (L, λ) ‖= (t)‖∞+ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ ,

|4bm| ≤ Υ (L, λ) ‖= (t)‖∞ + C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ .

Now, if ‖F(4θm)′‖1
2πM0

= γ ≤ 1
4 , one can find η0 > 0 such that L > η0 in a way that all

the following conditions are satisfied for sufficiently small ε0 (in ‖= (t)‖∞ ≤ ε0),

L ≥ 2M0,

min
(
θ̄′
)
≥ M0

2L ,
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Υ (L, λ) ‖= (t)‖∞ + C1λ
2p−2
0

L−p+1 + C2λ
2n
0

4L−max(−n,−2p+1,−n−p+2,−2p) ≤
√

2
4 min f1,

Γ2λ
2n
0 L

max(−n,−2p+1,−n−p+2,−2p) ≤ 1
2 ,

then we have, for some real positive constant Υ0 (L, λ),

∥∥∥F (θ − θm+1)′
∥∥∥

1
≤ Υ0 (L, λ) ‖= (t)‖∞ + Γ1λ

2p−2L−p+2 + 1
2

∥∥∥F (θ − θm)′
∥∥∥

1
.

�

5.3. Envelope and Mean Properties

Two of the assumptions used in Theorems 5 and 6 were
∣∣∣f̂0,θ̄ (k)

∣∣∣ ≤ C0
|k|p ,

∣∣∣f̂1,θ̄ (k)
∣∣∣ ≤ C0

|k|p .

The condition
∣∣∣f̂θ̄ (k)

∣∣∣ ≤ C
|k|p for C > 0 and p ≥ 4 sets a connection between f and θ̄.

On the other hand, one might be interested in the connection between f and t. We

first start with a L2
t/L

1
t Bound. Here, we use the assumption that p ≥ 4 in order to be

consistent with the convergence theorems of this section. . However, this assumption

can be relaxed to p ≥ 1.

Theorem 7. If
∣∣∣f̂θ̄ (k)

∣∣∣ ≤ C
|k|p for C > 0 and p ≥ 4, then

(5.3.1)
‖f‖

L2
t

‖f‖
L1
t

≤
√

3 + 2
2p−1

(max(θ̄′))√
min(θ̄′)

.

Proof. As
∣∣∣f̂θ̄ (k)

∣∣∣ ≤ C
|k|p for C > 0 and p ≥ 4, the function f is at least in C2

θ̄
.

Consequently, it is also in C2
t . Hence, f belongs to Lqt and Lqθ̄ for q ≥ 1. So we have

∣∣∣f̂θ̄ (k)
∣∣∣ =

∣∣∣∣∣
ˆ 1

0
f
(
θ̄
)
e−i2πkθ̄dθ̄

∣∣∣∣∣
≤max

(
θ̄′
)(ˆ 1

0
|f (t)| dt

)
.

In other words, we have

∥∥∥f̂θ̄∥∥∥∞ ≤ max
(
θ̄′
)
‖f‖L1

t
.
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Since
∥∥∥f̂θ̄∥∥∥∞ = max

{∣∣∣f̂θ̄ (0)
∣∣∣ , C}, for the 2-norm of f̂θ̄, we get

∥∥∥f̂θ̄∥∥∥2

2
=
∑
k

∣∣∣f̂θ̄ (k)
∣∣∣2 =

∣∣∣f̂θ̄ (0)
∣∣∣2 +

∑
|k|≥1

∣∣∣f̂θ̄ (k)
∣∣∣2

≤
∣∣∣f̂θ̄ (0)

∣∣∣2 + 2C2∑
k≥1

1
k2p

≤
∥∥∥f̂θ̄∥∥∥2

∞

(
3 + 2

2p− 1

)
.

Here we approximated the sum by an integral. By Parseval’s identity, we know∥∥∥f̂θ̄∥∥∥2
= ‖f‖L2

θ̄

, hence we find out that

‖f‖2
L2
θ̄

≤
∥∥∥f̂θ̄∥∥∥2

∞

(
3 + 2

2p−1

)
.

Now, we need to find the lower-bound of ‖f‖L2
θ̄

in terms of ‖f‖L2
t
. We have

‖f‖2
L2
θ̄

=
ˆ 1

0

∣∣∣f (θ̄)∣∣∣2 dθ̄
=
ˆ 1

0
|f (t)|2 dθ̄

dt
dt

≥min
(
θ̄′
)
‖f‖2

L2
t
.

Now, combining all together, we have

min
(
θ̄′
)
‖f‖2

L2
t
≤ ‖f‖2

L2
θ̄

≤
∥∥∥f̂θ̄∥∥∥2

∞

(
3 + 2

2p−1

)
≤
(
max

(
θ̄′
))2
‖f‖2

L1
t

(
3 + 2

2p−1

)
,

which is
‖f‖

L2
t

‖f‖
L1
t

≤
(
3 + 2

2p−1

) 1
2 (max(θ̄′))√

min(θ̄′) .

�

This can be seen as a condition that we need for the envelope or trend (mean) in the

convergence theorem. It is now time for a more general bound.
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Theorem 8. Assume
∣∣∣f̂θ̄ (k)

∣∣∣ ≤ C
|k|p for C > 0 and p ≥ 4. Also take 1 ≤ r ≤ ∞ and

1 ≤ q <∞ then

(5.3.2)
‖f‖

L2
t

‖f‖Lr
t

≤
(
3 + 2

qp−1

) 1
2q
(

3 + 2
qp
q−1−1

) q−1
2q
‖θ̄′‖

L

r
r−1
t√

min(θ̄′)
.

Proof. Again, first of all, we need a bound on
∣∣∣f̂θ̄ (k)

∣∣∣ for 1 ≤ r ≤ ∞:

∣∣∣f̂θ̄ (k)
∣∣∣ =

∣∣∣∣∣
ˆ 1

0
f
(
θ̄
)
e−i2πkθ̄dθ̄

∣∣∣∣∣ =
∣∣∣∣∣
ˆ 1

0
f (t) e−i2πkθ̄(t)θ̄′dt

∣∣∣∣∣
≤‖f‖Lrt

∥∥∥θ̄′∥∥∥
L

r
r−1
t

.

Hence, we get ∥∥∥f̂θ̄∥∥∥∞ ≤ ‖f‖Lrt
∥∥∥θ̄′∥∥∥

L
r
r−1
t

.

Since
∥∥∥f̂θ̄∥∥∥∞ = max

{∣∣∣f̂θ̄ (0)
∣∣∣ , C}, for the q-norm, 1 ≤ q <∞, of f̂θ̄ we have

∥∥∥f̂θ̄∥∥∥qq =
∑
k

∣∣∣f̂θ̄ (k)
∣∣∣q =

∣∣∣f̂θ̄ (0)
∣∣∣q +

∑
|k|≥1

∣∣∣f̂θ̄ (k)
∣∣∣q

≤
∣∣∣f̂θ̄ (0)

∣∣∣q + 2Cq
∑
k≥1

1
kqp

≤
∥∥∥f̂θ̄∥∥∥q∞

(
3 + 2

qp− 1

)
.

In the last inequality, the sum is bounded by an integral. By Parseval’s identity, we

know
∥∥∥f̂θ̄∥∥∥2

= ‖f‖L2
θ̄

. Now, using the Holder inequality, we have

∥∥∥f̂θ̄∥∥∥2

2
= ‖f‖2

L2
θ̄

=
∑
k

∣∣∣f̂θ̄ (k)
∣∣∣2 =

∑
k

f̂θ̄ (k) f̂θ̄ (k)

≤
∥∥∥f̂θ̄∥∥∥q

(∑
k

∣∣∣f̂θ̄ (k)
∣∣∣ q
q−1

) q−1
q

≤
∥∥∥f̂θ̄∥∥∥q ∥∥∥f̂θ̄∥∥∥∞

3 + 2
qp
q−1 − 1


q−1
q

.
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Now, using
∥∥∥f̂θ̄∥∥∥qq ≤ ∥∥∥f̂θ̄∥∥∥q∞ (3 + 2

qp−1

)
and

∥∥∥f̂θ̄∥∥∥∞ ≤ ‖f (t)‖Lrt
∥∥∥θ̄′∥∥∥

L
r
r−1
t

, we get

‖f‖2
L2
θ̄

≤ ‖f‖2
Lrt

∥∥∥θ̄′∥∥∥2

L
r
r−1
t

(
3 + 2

qp−1

) 1
q

(
3 + 2

qp
q−1−1

) q−1
q
.

Finally, since min
(
θ̄′
)
‖f‖2

L2
t
≤ ‖f‖2

L2
θ̄

, we find out that

‖f‖
L2
t

‖f‖Lr
t

≤
(
3 + 2

qp−1

) 1
2q
(

3 + 2
qp
q−1−1

) q−1
2q
‖θ̄′‖

L

r
r−1
t√

min(θ̄′)
.

�

5.4. Uniqueness Issues

The theorems, proven in this chapter explain only that we have a convergent

algorithm, not that the algorithm’s extraction is unique. Uniqueness is a difficult

theoretical problem. In this section, we explain insights about how we can handle

this topic in implementation and numerical analysis.

Here, we reduce uniqueness into sparsity. In fact, any signal can have many represen-

tations. In our STFR methodology, we prefer a representation in which there is the

least number of IMFs extracted from the signal. In other words, a sparse represen-

tation is the unique representation in STFR numerical terminology. If two different

extractions would result in the same number of IMFs, both of them are acceptable.

However, we pick the one in which the components have the smoothest envelopes

compared to the IFs.

Most importantly the result of a numerical implementation of STFR must be sparse.

In other words, we pick the set of IMFs as the constituent blocks of a signal if we

cannot find another set that contains fewer IMFs. A preferred extraction is the one

that has fewer IMF components. In fact, as we observed, in the case of intrawave

signals, widening the filter width would help to find the smallest number of IMFs in

an extraction.
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One should keep in mind that if there is any mode mixture present (the IFs are

not separate in time-frequency domain), it is highly possible to have a non-sparse

extraction. In order to tackle this problem, one should find an estimate of the number

of mode mixtures and then try to extract the mode mixed IMFs simultaneously, which

would impose sparsity. Quantitatively, having two extractions with the same number

of IMFs, the smoothness measure (SM) can be one of the following.

SMTV = TV (ã (t))

TV
(

˜̇θ (t)
) ,

SMmax−local = max
 ˜̇a (t)

˜̇θ (t)

 .
In these definitions, ã (t) is the extracted envelope, ˜̇θ (t) is the extracted IF, and TV

is the total variation. In case of many IMFs, one can sum up the SM of all extracted

IMFs to judge the quality of extraction.

5.5. Appendices

In this section we provide the omitted parts of the proof presented in this chapter.

5.5.1. Appendix A (Approximating
∣∣∣f̂0,θ̄m (ω)

∣∣∣). In order to find a bound on∣∣∣f̂0,θ̄m (ω)
∣∣∣, in (5.1.4), during the following calculations, we will bound some of the

summations by integrals. In detail, we have

∣∣∣f̂0,θ̄m (ω)
∣∣∣ =

∣∣∣∣∣
ˆ 1

0
f0
(
θ̄m
)
e−i2πωθ̄

m

dθ̄m
∣∣∣∣∣ =

∣∣∣∣∣
ˆ 1

0
f0
(
θ̄m
(
θ̄
))
e−i2πωθ̄

m

dθ̄m
∣∣∣∣∣

=
∣∣∣∣∣∣
∑
k 6=0

f̂0,θ̄ (k)
ˆ 1

0
ei2πθ̄

m(αk−ω)eik
4θm
L dθ̄m

∣∣∣∣∣∣
≤

∑
|αk|> |ω|

λ

∣∣∣f̂0,θ̄ (k)
∣∣∣+ ∑

0<|αk|≤ |ω|
λ

∣∣∣f̂0,θ̄ (k)
∣∣∣ ∣∣∣∣∣
ˆ 1

0
ei2πθ̄

m(αk−ω)eik
4θm
L dθ̄m

∣∣∣∣∣ .
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Since we have
∣∣∣f̂0,θ̄ (k)

∣∣∣ ≤ |k|−p for k 6= 0, and using Lemma 2 and 3 in Section 3, we

get

∣∣∣f̂0,θ̄m (ω)
∣∣∣ ≤C0

∑
|k|> |ω|

αλ

|k|−p + C0
∑

0<|k|≤ |ω|
αλ

|k|−p
∣∣∣∣∣
ˆ 1

0
ei2πθ̄

m(αk−ω)eik
4θm
L dθ̄m

∣∣∣∣∣

≤2C0 (αλ)p−1 |ω|−p+1

+ 2C0P
n
m

(
M0λ

2π

)n
|εω|−n

∑
0<|k|≤ |ω|

αλ

n∑
j=1
|k|j−p


∥∥∥F (4θm)′

∥∥∥
1

2πM0L

j

≤2C0

(
αλ

|ω|

)p−1

+ 2C0P
n
m

(
M0λ

2π |εω|

)n ∑
0<|k|≤ |ω|

αλ

p−2∑
j=1
|k|j−p

(
γ

L

)j


+ 2C0P
n
m

(
M0λ

2π |εω|

)n ∑
0<|k|≤ |ω|

αλ

 n∑
j=p
|k|j−p

(
γ

L

)j
+ |k|−1

(
γ

L

)p−1



≤2C0

(
αλ

|ω|

)p−1

+ 2C0P
n
m

(
M0λ

2π |εω|

)np−2∑
j=1

(
γ

L

)j π2

3


+ 2C0P

n
m

(
M0λ

2π |εω|

)n2
n∑
j=p

∣∣∣∣ ωαλ
∣∣∣∣j−p+1 (γ

L

)j
+ 2

(
γ

L

)p−1
(

1 + |ω|
αλ

) .
In the inequalities above, we have also used the fact that if 0 < k ≤ ω

αλ
then 1

ω−αk <

λ
λ−1

1
ω
< λ

ε
1
ω
provided 0 < ε � 1 and λ ≥ 1 + ε. Also we called ‖F(4θm)′‖1

2πM0
= γ. We

recall that in these calculations n > p. This finalized the derivation of the bound on

(5.1.4).

5.5.2. Appendix B (Approximating
∣∣∣âm
θ̄m

(ω)
∣∣∣). This approximation (see (5.1.5))

is essentially the same as the one we saw in Appendix A, except that we also use
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Jensen’s inequality. In the main theorem of this section, we extensively use this

lemma. So, we present the following lemma to introduce the inequality.

Lemma 4. [Jensen’s Inequality] If ϕ is a convex function, and ai ∈ R+ for i ∈ N,

i > 1, then

(5.5.1) ϕ
(∑

aixi∑
ai

)
≤
∑
aiϕ (xi)∑
ai

.

A proof of this lemma can be found in [8]. A consequence of this lemma is that,

for j ∈ N + {0}, we have

(5.5.2) 2−j
∣∣∣∣∣1 + k

L

∣∣∣∣∣
j

=
∣∣∣∣∣121 + 1

2
k

L

∣∣∣∣∣
j

≤ 1
2

|1|j +
∣∣∣∣∣ kL
∣∣∣∣∣
j
 .

This bound is used several times in the next approximations. As mentioned above,

we also bound summations by integrals. So, for
∣∣∣âm
θ̄m

(ω)
∣∣∣ we have

|âmθ̄m (ω)| =
∣∣∣∣∣
ˆ 1

0
am

(
θ̄m
)
e−i2πωθ̄

m

dθ̄m
∣∣∣∣∣ =

∣∣∣∣∣
ˆ 1

0
am

(
θ̄m
(
θ̄
))
e−i2πωθ̄

m

dθ̄m
∣∣∣∣∣

=1
2

∣∣∣∣∣∣
ˆ 1

0

(
ei∆θ

m + e−i∆θ
m
) ∞∑
k=−∞

f̂1,θ̄ (k) ei2πθ̄m(αk−ω)eik
4θm
L dθ̄m

∣∣∣∣∣∣
≤1

2

∣∣∣∣∣∣
ˆ 1

0

∞∑
k=−∞

f̂1,θ̄ (k) ei2πθ̄m(αk−ω)ei4θ
m( kL+1)dθ̄m

∣∣∣∣∣∣
+ 1

2

∣∣∣∣∣∣
ˆ 1

0

∞∑
k=−∞

f̂1,θ̄ (k) ei2πθ̄m(αk−ω)ei4θ
m( kL−1)dθ̄m

∣∣∣∣∣∣ .
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Now, we break up the the summation
∞∑

k=−∞
into summations over k = 0, |αk| > |ω|

λ
,

and 0 < |αk| ≤ |ω|
λ

and also use the first and second lemma in Section 3 to get

|âmθ̄m (ω)| ≤2C0

(
αλ

|ω|

)p−1

+
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π |ω|

)n n∑
j=1
γj

+ C0P
n
m

(
M0λ

2π |εω|

)n ∑
0<|k|≤ |ω|

αλ

|k|−p
n∑
j=1

∣∣∣∣∣1 + k

L

∣∣∣∣∣
j

+
∣∣∣∣∣1− k

L

∣∣∣∣∣
j
 γj

≤2C0

(
αλ

|ω|

)p−1

+
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π |ω|

)n n∑
j=1
γj

+ C0P
n
m

(
M0λ

2π |εω|

)n ∑
0<|k|≤ |ω|

αλ

|k|−p
n∑
j=1

2j
1 +

∣∣∣∣∣ kL
∣∣∣∣∣
j
 γj

≤2C0

(
αλ

|ω|

)p−1

+
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π |ω|

)n n∑
j=1
γj

+ C0P
n
m

(
M0λ

2π |εω|

)n 2p
p− 1

n∑
j=1

2jγj

+ C0P
n
m

(
M0λ

2π |εω|

)np−2∑
j=1

2j
(
γ

L

)j π2

3


+ C0P

n
m

(
M0λ

2π |εω|

)n n∑
j=p

2j+1
∣∣∣∣ ωαλ

∣∣∣∣j−p+1 (γ
L

)j
+ 2p

(
γ

L

)p−1
(

1 + |ω|
αλ

) .
The latter finalized the derivation of the bound on

∣∣∣âm
θ̄m

(ω)
∣∣∣; see (5.1.5).

5.5.3. Appendix C (Bounds on |4am|, |4bm|). In order to find the bound

on |4am| (see (5.1.6)), we first check the term involving
∣∣∣f̂0,θ̄m (ω)

∣∣∣. Taking
2

∑
(1− 1

λ)Lm≤ω≤(1+ 1
λ)Lm

∣∣∣f̂0,θ̄m (ω)
∣∣∣ = i,
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we have

i ≤4
∑

(1− 1
λ)Lm≤ω≤(1+ 1

λ)Lm
C0

(
αλ

|ω|

)p−1

+ 4
∑

(1− 1
λ)Lm≤ω≤(1+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n p−2∑
j=1

(
γ

L

)j π2

3

+ 8
∑

(1− 1
λ)Lm≤ω≤(1+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n n∑
j=p

∣∣∣∣ ωαλ
∣∣∣∣j−p+1 (γ

L

)j

+ 8
∑

(1− 1
λ)Lm≤ω≤(1+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n (
γ

L

)p−1
(

1 + |ω|
αλ

)
.

Here, we can use a trick to bound the summations with integrals. When
(
1− 1

λ

)
Lm ≤

ω ≤
(
1 + 1

λ

)
Lm, we know that ω will at least start from 1. The latter is due to the

fact that λ > 1, and hence,
(
1− 1

λ

)
Lm > 0. So, we can always find a fixed ε > 0

such that 0 <
∣∣∣1− 1

1−ε

∣∣∣Lm < min
((

1− 1
λ

)
Lm, 1

)
. We can take this ε to be the same

as the one we used before. So, the whole inequality, using the fact that Lm = αL,

becomes

i ≤4C0α

p− 2

(
ε

1− ε

)−p+2
λp−1L−p+2

+
4π2C0P

n
m

(
M0λ
2πε

)n
α−n+1

3 (n− 1) L−n+1
(

ε

1− ε

)−n+1 p−2∑
j=1

(
γ

L

)j

+ 8C0

(
M0λ

2πε

)n
P n
mα
−n+2

(
ε

1− ε

)−n+2
L−p+2 1

p+ 2

n∑
j=p

(
γ

L

)j

+ 8C0P
n
m

(
M0λ

2πε

)n (
γ

L

)p−1

(
αL

(
ε

1−ε

))−n+1

n− 1 +

(
αL

(
ε

1−ε

))−n+2

αλ (n− 2)

 .
Here, we use the assumption that γ ≤ 1

4 . This assumption would remain intact

throughout the steps for large enough L. In fact, the condition γ ≤ 1
4 would

remain intact for all iterations. In other words, when there is a contraction on∥∥∥F (θ − θm+1)′
∥∥∥

1
, this term would remain bounded. Hence, if

∥∥∥F(4θ0)′
∥∥∥

1
2πM0

≤ 1
4 for

the first iteration, it will remain bounded by 1
4 for all iterations. Hence, using this,
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we have
p−2∑
j=1

(
γ
L

)j
≤
(
γ
L

) ∞∑
j=1

(
γ
L

)j−1
≤ 4γ

3L . For the second sum, we use the same trick,

namely
n∑
j=p

(
γ
L

)j
≤
(
γ
L

)p ∞∑
j=1

(
γ
L

)j−1
≤ (4L)−p 4γ

3L . So, we get

i ≤4C0α

p− 2

(
ε

1− ε

)−p+2
λp−1L−p+2

+
4π2C0P

n
m

(
M0λ
2πε

)n
α−n+1

3 (n− 1) L−n+1
(

ε

1− ε

)−n+1 4γ
3L

+ 8C0

(
M0λ

2πε

)n
P n
mα
−n+2

(
ε

1− ε

)−n+2
L−p+2 1

p+ 2 (4L)−p 4γ
3L

+ 8C0P
n
m

(
M0λ

2πε

)n (
γ

L

)p−1

(
αL

(
ε

1−ε

))−n+1

n− 1 +

(
αL

(
ε

1−ε

))−n+2

αλ (n− 2)

 .
Simplifying further, we get

i ≤4C0α

p− 2

(
ε

1− ε

)−p+2
λp−1L−p+2

+ 16
9 π

2C0P
n
m

(
M0

2πε

)n α−n+1

n− 1

(
ε

1− ε

)−n+1
L−nλnγ

+ 8
3C0P

n
m

(
M0

2πε

)n
α−n+2

(
ε

1− ε

)−n+2 4−p+1

p+ 2L
−2p+1λnγ

+ 8C0P
n
m

(
M0

2πε

)n
α−n+1

(
ε

1−ε

)−n+1

n− 1 L−n−p+1λnγ

+ 8C0P
n
m

(
M0

2πε

)n
α−n+1

(
ε

1−ε

)−n+2

(n− 2) L−n−p+2λn−1γ.

Now, we check the term involving
∣∣∣âm
θ̄m

(k)
∣∣∣+ ∣∣∣b̂m

θ̄m
(k)
∣∣∣. Taking

∑
(2− 1

λ)Lm≤ω≤(2+ 1
λ)Lm

(
|âmθ̄m (ω)|+

∣∣∣b̂mθ̄m (ω)
∣∣∣) = k
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we have

k ≤4
∑

(2− 1
λ)Lm≤ω≤(2+ 1

λ)Lm
C0

(
αλ

|ω|

)p−1

+ 2
∑

(2− 1
λ)Lm≤ω≤(2+ 1

λ)Lm

∣∣∣f̂1,θ̄ (0)
∣∣∣P n

m

(
M0

2π |ω|

)n n∑
j=1
γj

+ 2
∑

(2− 1
λ)Lm≤ω≤(2+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n 2p
p− 1

n∑
j=1

2jγj

+ 2
∑

(2− 1
λ)Lm≤ω≤(2+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n p−2∑
j=1

2j
(
γ

L

)j π2

3

+ 2
∑

(2− 1
λ)Lm≤ω≤(2+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n n∑
j=p

2j+1
∣∣∣∣ ωαλ

∣∣∣∣j−p+1 (γ
L

)j

+ 2
∑

(2− 1
λ)Lm≤ω≤(2+ 1

λ)Lm
C0P

n
m

(
M0λ

2π |εω|

)n
2p
(
γ

L

)p−1
(

1 + |ω|
αλ

)
.

In this case, due to the presence of the term
(
2− 1

λ

)
Lm ≤ ω ≤

(
2 + 1

λ

)
Lm, the

substitution of the sum with an integral is much easier. Since λ > 1, we have

1 < 2 − 1
λ
< 2. As a result, αL = Lm <

(
2− 1

λ

)
Lm ≤ ω. Hence, for any ζ > 1 we

have

∑
(2− 1

λ)Lm≤ω≤(2+ 1
λ)Lm

1
ωζ
≤

∑
αL<ω

1
ωζ

= 1
(αL)ζ

∑
1< ω

αL

1(
ω
αL

)ζ = 1
(αL)ζ

∑
1<k

1
kζ

≤ 1
(αL)ζ

ˆ ∞
1

1
kζ

= (αL)−ζ

ζ − 1 .
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Consequently, we get

k ≤ 4C0

p− 2λ
p−1L−p+1

+ 8
3
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π

)n α−n

n− 1L
−nγ

+ 16p
p− 1C0P

n
m

(
M0

2πε

)n α−n

n− 1L
−nλnγ

+ 8π2

3 C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−1λnγ

+ 2−p+4C0P
n
m

(
M0

2πε

)n
α−nL−2pλnγ

+ 2−p+3C0P
n
m

(
M0

2πε

)n α−nL−n−p+1λnγ

n− 1

+ 2−p+3C0P
n
m

(
M0

2πε

)n α−nL−n−p+2λnγ

(n− 2)λ .

Finally, we find the bound on the term that involves
∣∣∣âm
θ̄m

(k)
∣∣∣. This term appears in

the bound of |4am|. We have

∑
|ω|>Lm

λ

|âmθ̄m (ω)| ≤2
∑

|ω|>Lm
λ

C0

(
αλ

|ω|

)p−1

+
∑

|ω|>Lm
λ

∣∣∣f̂1,θ̄ (0)
∣∣∣P n

m

(
M0

2π |ω|

)n n∑
j=1
γj

+
∑

|ω|>Lm
λ

C0P
n
m

(
M0λ

2π |εω|

)n 2p
p− 1

n∑
j=1

2jγj

+
∑

|ω|>Lm
λ

C0P
n
m

(
M0λ

2π |εω|

)n p−2∑
j=1

2j
(
γ

L

)j π2

3

+
∑

|ω|>Lm
λ

C0P
n
m

(
M0λ

2π |εω|

)n n∑
j=p

2j+1
∣∣∣∣ ωαλ

∣∣∣∣j−p+1 (γ
L

)j

+
∑

|ω|>Lm
λ

C0P
n
m

(
M0λ

2π |εω|

)n
2p
(
γ

L

)p−1
(

1 + |ω|
αλ

)
.
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Again we have for any ζ > 1

∑
|ω|>Lm

λ

1
|ω|ζ

= 2
(
λ

αL

)ζ ∑
λω
αL
>1

1(
λω
αL

)ζ
= 2

(
λ

αL

)ζ ∑
1<k

1
kζ
≤ 2

(
λ

αL

)ζ ˆ ∞
1

1
kζ

= 2
(
λ

αL

)ζ 1
ζ − 1 .

Hence, we can again bound the summations with integrals. So, we get

∑
|ω|>Lm

λ

|âmθ̄m (ω)| ≤ 4C0

p− 2λ
2p−2L−p+1

+ 8
3
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π

)n α−n

n− 1L
−nλnγ

+ 16p
p− 1C0P

n
m

(
M0

2πε

)n α−n

n− 1L
−nλ2nγ

+ 8π2

3 C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−1λ2nγ

+ 2−p+5C0P
n
m

(
M0

2πε

)n
α−nL−2p−1λ2n−2γ

+ 2−p+5C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−p+1λ2nγ

+ 2−p+5C0P
n
m

(
M0

2πε

)n α−n

(n− 2)λL
−n−p+2λ2n−2γ.
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Finally, combining all, we have

|4am| ≤4C0α

p− 2

(
ε

1− ε

)−p+2
λp−1L−p+2 + 4C0

p− 2λ
p−1L−p+1

+ 4C0

p− 2λ
2p−2L−p+1

+ 16
9 π

2C0P
n
m

(
M0

2πε

)n α−n+1

n− 1

(
ε

1− ε

)−n+1
L−nλnγ

+ 8
3
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π

)n α−n

n− 1L
−nγ

+ 8
3
∣∣∣f̂1,θ̄ (0)

∣∣∣P n
m

(
M0

2π

)n α−n

n− 1L
−nλnγ

+ 8
3C0P

n
m

(
M0

2πε

)n
α−n+2

(
ε

1− ε

)−n+2 4−p+1

p+ 2L
−2p+1λnγ

+ 16p
p− 1C0P

n
m

(
M0

2πε

)n α−n

n− 1L
−nλnγ

+ 8C0P
n
m

(
M0

2πε

)n
α−n+1

(
ε

1−ε

)−n+1

n− 1 L−n−p+1λnγ

+ 8π2

3 C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−1λnγ

+ 2−p+4C0P
n
m

(
M0

2πε

)n
α−nL−2pλnγ

+ 8C0P
n
m

(
M0

2πε

)n
α−n+1

(
ε

1−ε

)−n+2

(n− 2) L−n−p+2λn−1γ

+ 2−p+3C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−p+1λnγ

+ 2−p+3C0P
n
m

(
M0

2πε

)n α−n

(n− 2)λL
−n−p+2λnγ

+ 16p
p− 1C0P

n
m

(
M0

2πε

)n α−n

n− 1L
−nλ2nγ

+ 8π2

3 C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−1λ2nγ

+ 2−p+5C0P
n
m

(
M0

2πε

)n
α−nL−2p−1λ2n−2γ

+ 2−p+5C0P
n
m

(
M0

2πε

)n α−n

n− 1L
−n−p+1λ2nγ

+ 2−p+5C0P
n
m

(
M0

2πε

)n α−n

(n− 2)λL
−n−p+2λ2n−2γ.
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The latter is nothing but

|4am| ≤ C1λ
2p−2L−p+2 + C2λ

2nLmax(−n,−2p+1,−n−p+2,−2p)γ .

This finishes the derivation of the bound for (5.1.6). This bound can be used, as it

is, for the term that includes ∑
|k|>Lm

λ

∣∣∣b̂m
θ̄m

(k)
∣∣∣, in (5.1.7).
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CHAPTER 6

Applications of Sparse Time-Frequency Method in

Dynamical Systems

For signal analysis in many scientific applications such as biological investigations,

the complexity of the underlying physical problem is perplexing, and the appropriate

governing equation that describes its dynamics is unknown. While several domi-

nating components could contribute to complex phenomena, it is believed that every

dominating component can be characterized by a dynamical system. Even if the char-

acteristics of the underlying system are unknown, data collection makes it possible

to roughly sketch the characteristics. Researchers would like to be able to quantify

those characteristics and then determine whether the underlying dynamical system is

linear or nonlinear, including quantifying the degree of any nonlinearity. This chapter

proposes one possible approach to these problems via STFR methods [25, 24, 26].

The definition of linearity, that the output of a system is linearly dependent on the

input, is not practical since the governing system is often not known precisely, which

makes it difficult even to define what is input and what is output. Furthermore, the

solution typically consists of several dominating components. Possibly, they each ac-

count for a different physical mechanism. Since some components could be linear and

others nonlinear, working on the entire data is not recommended. Instead, the data

should be decomposed into several dominating components and each one analyzed

separately. Extracting these intrinsic physical components from the data without

compromising their hidden physical structure and integrity is highly nontrivial.

In this chapter, we present a method to quantify the nonlinearity of the IMFs

given by the STFR method. The main idea is to establish a connection between the

IMFs and classical second order differential equations. One of the main results of this
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chapter is that we show that each IMF can be associated with a solution of a second

order ordinary differential equation of the form ẍ + p (x, t) ẋ + q (x, t) = f (t). We

do this both theoretically and numerically. We further assume that the coefficients

p (x, t), q (x, t) and f (t) are slowly varying with respect to t. Thus, we can freeze

these coefficients locally in time and absorb the forcing function into q. This leads to

the reduced autonomous second order ODE, i.e. ẍ+ p (x) ẋ+ q (x) = 0. Further, we

can reformulate the second order ODE in a conservative form: ẍ+ Ṗ (x) + q (x) = 0,

where dP (x)
dx

= p (x). We then have the following weak formulation of the equation by

integrating by parts:

〈
x, φ̈

〉
−
〈
P (x) , φ̇

〉
+ 〈q (x) , φ〉 = 0,

where 〈·, ·〉 is the standard inner product, and φ is a smooth test function of compact

support. Assuming that p (x) and q (x) have a sparse representation in terms of the

polynomial basis, we can represent P (x) and q (x) as follows: P (x) = ∑M
k=0 pkx

k+1,

q (x) = ∑M
k=0 qkx

k for some integer M > 0. Then we obtain the following weak

formulation: 〈
x, φ̈

〉
−

M∑
k=0

pk
〈
xk+1, φ̇

〉
+

M∑
k=0

qk
〈
xk, φ

〉
= 0.

Based on the above weak formulation, we can design a l1-based optimization method

to solve for pk and qk, for an extracted and known IMF,

(pk, qk) = arg min
αk,βk

γ
M∑
k=0

(|αk|+ |βk|)

+
N∑
i=1

∣∣∣∣∣〈x, φ̈i〉−
M∑
k=0

αk
〈
xk+1, φ̇i

〉
+

M∑
k=0

βk
〈
xk, φi

〉∣∣∣∣∣
2

,

where φi’s are smooth test functions of compact support and N is the number of

the functions. We will provide some guidance how to choose these test functions

optimally.

This method provides a new way to interpret the hidden intrinsic information

contained in the extracted IMF of an IS. Depending on the local form of nonlinearity
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in p (x, t) and q (x, t), we can define the degree of nonlinearity for each associated

IMF. We can also recover accurately the coefficients for the nonlinear terms in p and

q. What we sketch in this chapter generalizes a similar concept recently introduced

by Huang et. al. [29].

6.1. IMFs and Second Order ODEs

6.1.1. Looking for a physical explanation. The main question that one could

legitimately ask is: why should one pick dictionaries with elements looking like r cos θ?

In this chapter we use mathematical theory and numerical examples to confirm the

assertion that many physical signals have IMF manifestations. As a result, this

specific choice of dictionary is better motivated.

The canonical forms of linear and nonlinear equations used in this dissertation are

detailed here before we move onto continuing the assertion. Usually a second order

homogeneous Ordinary Differential Equation (ODE) is expressed as

(6.1.1) u
′′ + a (x)u′ + b (x)u = 0.

However, in this dissertation, equations like

(6.1.2)
(
p (x) v′

)′
+ q (x) v = 0,

or

(6.1.3) v
′′ + q (x) v = 0

are of more interest in theory1. To convert (6.1.1) into (6.1.2), one needs to take

v = u, p (x) = e
´ x a(ξ)dξ, and q (x) = b (x) e

´ x a(ξ)dξ. In order to convert (6.1.1) into

(6.1.3), one needs to take v = e
1
2
´ x a(ξ)dξu, and q (x) = b (x)− 1

4a
2 (x)− 1

2a
′ (x). The

latter transformation is interesting since e± 1
2
´ x a(ξ)dξ is always positive and will not

change the zeros of the solution. Hence, if u has an IMF representation, so does v,
1 d()

dx and ()
′
are used interchangeably in the chapter. The same thing applies to d()

dt and (̇).
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and vice versa. In this section, the general form of the nonlinear second order ODE

is taken to be as ẍ+ q (x, ẋ) = 0.

As will be shown, the solutions of many of the second order ODEs are IMFs.

Using Fourier Transformation to analyze a given IMF would generally produce a

large number of Fourier coefficients, suggesting the need for a method that produces

a sparser representation.

Theory accompanied by examples show how linear and nonlinear homogeneous

second order ODEs have solutions that are essentially IMFs. STFR, combined with

the ODE-IMF solution mentality, can help to extract information about the governing

ODE of a signal. This is called System Identification.

6.1.2. Linear Homogeneous Second Order ODEs. Here, we show how we

can have IMF solutions for Linear Second Order ODEs by Prüfer transformation.

6.1.2.1. Prüfer transformation for Linear Second Order ODEs. Take the following

differential equation in the canonical form

(6.1.4)

d
dx

(
P (x) du

dx

)
+Q (x)u = 0,

u (a) = u0,

u
′ (a) = u

′
0,

where P > 0, P ∈ C1 [a, b] and Q ∈ C [a, b]. Remember that it is possible to

have b = ∞. The solution of this differential equation can be represented in a new

coordinate system using the Prüfer transformation [46]

(6.1.5)
u = r sin θ,

P du
dx

= r cos θ.

This transformation2 explicitly shows that the envelope r is strictly positive:

r =
√
u2 + (Pu′)2 > 0.

2θ and r are called the Prüfer variables; namely the Prüfer angle and Prüfer radius, respectively.
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The last inequality holds true since for any non-zero initial conditions, the solution

should not get to zero for both u and u′ . Using (6.1.5), one can convert (6.1.4) into

(6.1.6)



θ
′ = Q sin2 θ + 1

P
cos2 θ,

r
′ =

(
1
P
−Q

)
r cos θ sin θ,

u0 = r0 sin θ0,

P (a)u′0 = r0 cos θ0,

θ0 ∈ [0, 2π) .

If Q > 0, the phase derivative is always positive and θ is strictly increasing. In other

words, considering r > 0, the solution is nothing but an IMF. This transformation

shows that a large class of second order linear ODEs have solutions that are in the

form of IMFs. Furthermore, this transformation shows that the oscillatory solutions

of Legendre, Hermite, Laguerre and Chebychev equations are all of the IMF type

in certain domains. This first shows that IMFs are more prevalent in Physics and

Applied Mathematics than previously thought.

In addition, the solution can be an IMF in the complete classical sense. This can

be observed as Pu
′ = r cos θ shows that the derivative of the solution u goes to zero

only once between two consecutive zeros of the solution itself. In the following, a few

examples support the ideas expressed so far.

Example 16. (Linear IMFs) The solution of

(6.1.7) d

dx

(
du

dx

)
+ u = 0

is an IMF of a constant envelope and constant IF: u = c1 cos (x) + c2 sin (x).

Example 17. (Chebychev IMFs) The Chebyshev’s Differential Equation, for |x| <

1, α > 0 is

(6.1.8) d

dx

(√
1− x2du

dx

)
+ α2
√

1− x2
u = 0.
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The solution of this equation is

(6.1.9) u = c1 cos
(
−α cos−1 x

)
+ c2 sin

(
−α cos−1 x

)

for some constant envelopes c1, c2. Taking θ = −α cos−1 x,

dθ

dx
= α√

1− x2
> 0.

In other words, the solution of the Chebychev differential equation is a constant en-

velope Frequency Modulated (FM) IMF. It is seen that the solution of the Chebychev

differential equation is sparse if (6.1.9) is considered. In contrast, the presentation of

the same solution in the Fourier Transform domain is not sparse at all.

Example 18. (Bessel IMFs) Take the zero order Bessel ODE on (0,∞)

x2d
2u

dx2 + x
du

dx
+ x2u = 0.

It is possible to convert this into

d

dx

(
x
du

dx

)
+ xu = 0.

Using the Prüfer transformation, one gets

θ
′ = x sin2 θ + cos2 θ

x
> 0, ∀x ∈ (0,∞) ,

which clearly shows the IMF behavior of the solution in (0,∞).

The Prüfer transformation is an excellent mathematical transformation that proves

that the solution of certain linear second order ODEs are IMFs. This classic transfor-

mation is certainly a great motivation to use STFR methods to extract IMFs produced

by ODEs.

6.1.2.2. Fundamental IMF Solutions of Linear Second Order ODEs. Previously,

the Prüfer transformation was used to express an IMF solution for a general initial

value problem. Here, we investigate the fundamental IMF solutions of Second Order
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ODEs. The solution of y′′ + q (x) y = 0 in the form of r cos θ is detailed in [40].

Here, we present a formalization of fundamental solutions of such equations. Take

the following Second Order ODE in the form of (6.1.3)

(6.1.10) y
′′ + q (x) y = 0,

where q (x) ∈ C. Having this, the solution exists for any initial value problem.

Furthermore, all solutions of (6.1.10) could show IMF behavior:

Theorem 9. y1 = r cos θ and y2 = r sin θ are two linearly independent solutions of

(6.1.10) if and only if

(6.1.11)


r
′′ − rθ′2 + rq = 0,

r2θ
′ = 1.

Proof. First assume that y1 = r cos θ and y2 = r sin θ are linearly independent

solutions. One can easily put them in (6.1.10) separately to find:

−
(
r
′′ − rθ′2 + rq

)
sin θ +

(
−rθ′′ − 2r′θ′

)
cos θ = 0,(

r
′′ − rθ′2 + rq

)
cos θ +

(
−rθ′′ − 2r′θ′

)
sin θ = 0,

which has the unique solution

r
′′ − rθ′2 + rq = 0,

−rθ′′ − 2r′θ′ = 0.

r cannot be zero since this would make y1 and y2 linearly dependent. Hence, rθ′′ +

2r′θ′ = 0 ⇒
(
r2θ

′
)′

= 0. θ
′ cannot be zero either, since this would make y1 and

y2 linearly dependent. Without loss of generality, one can take r2θ
′ = 1. In the

other direction, put y1 = r cos θ and y2 = r sin θ in y
′′ + q (x) y and check that

based on (6.1.11), the original equation (6.1.10) is satisfied. Finally, one can check

independence by constructing the Wronskian

W (y1, y2) = y1y
′

2 − y
′

1y2 = r2θ
′ = 1 6= 0.
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This argument is saying that all solutions of (6.1.10) can be written as

(6.1.12) y = c1r cos θ + c2r sin θ

for some real constants c1, c2, and r, θ satisfying (6.1.11). �

Remember that the fundamental solution (6.1.12), and the fundamental conditions

(6.1.11) are not necessarily conditions for the existence of IMFs as solutions. They

are proposing solutions represented in r cos θ and r sin θ format. If certain conditions

are satisfied on q (x), then the solutions are IMFs.

We can further analyze the fundamental conditions (6.1.11). Assume that the

fundamental solutions are IMFs. Based on r2θ
′ = 1, one can observe that the envelope

and the instantaneous frequency are not independent from each other. They are a

dependent part of the IMF produced by the linear second order ODE. Equation

(6.1.11) shows that the IF is strictly positive. Another consequence is that as the IF

becomes small, the envelope r increases to compensate, and as the IF increases in

time, the envelope is damped.

It is important to note that when the solution of an initial value problem is needed,

one should use (6.1.11) with caution. Assume that the solution of (6.1.10) is to be

found under the initial conditions

y (0) = A,

y
′ (0) = B.

In (6.1.11), for simplicity and without loss of generality, one can set θ (0) = 0 and

r (0) = 1. However, there is no way to find r′ (0) using the initial conditions given.

In fact, r′ (0) , r
′
0 remains as a free parameter. Using the initial conditions given,

the solution (6.1.12) would become

y = Ar cos θ +
(
B − Ar′0

)
r sin θ.
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The dependency of θ and r in (6.1.11) would bring about the nonlinear second order

ODE
r
′′ − r−3 + rq (x) = 0,

r (0) = 1,

having r
′ (0) as a free parameter. This free parameter is the source of different

representations (manifestations) of the same IMF. This can also be seen in

(6.1.13) θ (x) =
ˆ x dξ

r2 (ξ) .

However, having r′ (0) as a free parameter will not deter the uniqueness of the IMF

solution itself.

There is significant difference between the Prüfer transformation (6.1.5), and

the fundamental solution conditions (6.1.11). The fundamental solution conditions

(6.1.11) provide an observation that the solution of all linear second order ODEs are

necessarily the sum of two linearly independent IMF-like functions. Equation (6.1.11)

does not say that the solution is necessarily an IMF. However, the Prüfer transfor-

mation (6.1.5) is a good method to perceive whether or not the solution is essentially

an IMF.

6.1.2.3. WKB Theory and IMF Solutions. If q (x) � 1 in (6.1.10), WKB theory

can be used to find leading order approximate solution(s) of (6.1.10) (see [3]). To see

this, we consider the following linear second order ODE:

(6.1.14) ẍ+ b (t) ẋ+ c (t)x = 0.

This can be rewritten as:

(6.1.15) v̈ +Q (t) v = 0,

where

v = e
1
2
´ t
0 b(ξ)dξx, Q (t) = c (t)− 1

4b
2 (t)− 1

2 ḃ (t) .
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Assume that Q (t) � 1. Using the WKB method [3], we can get the asymptotic

approximation of v (t),

v (t) ∼ c1 cos
(ˆ t

0

√
Q (ξ)dξ

)
+ c2 sin

(ˆ t

0

√
Q (ξ)dξ

)
.

In terms of the original variables, the solution of (6.1.14) has the form:

x (t) ∼ e−
1
2
´ t
0 b(ξ)dξ

(
c1 cos

(ˆ t

0

√
Q (ξ)dξ

)
+ c2 sin

(ˆ t

0

√
Q (ξ)dξ

))
,

which is an IMF. On the other hand, for those IMFs a (t) cos θ (t) that do not have

intrawave frequency modulation (meaning that both a (t) and θ̇ (t) are smoother than

cos θ (t)), it is easy to see that the coefficients b and c given in (6.1.14) are smooth

functions with respect to t. This seems to suggest that there is a close connection

between oscillatory solutions of a linear second order ODE with smooth coefficients

and IMFs without intrawave frequency modulation. All in all, the WKB method is

solely an approximate asymptotic method and not a method proving IMF solutions.

6.1.2.4. Sturm-Liouville-Type Problems. Most of the time, the Sturm-Liouville

(SL) problem is seen in the theory of Partial Differential equations (PDEs). Hence,

analyzing the SL problem from the IMF-STFR point of view could be a good starting

point for future research in PDE systems. Remember that a (SL) problem is

(6.1.16)

d
dx

(
p (x) du

dx

)
+ (λρ (x)− q (x))u = 0, x ∈ (a, b)

α1u(a) + α2u
′(a) = 0, (α1)2 + (α2)2 > 0

β1u(b) + β2u
′(b) = 0, (β1)2 + (β2)2 > 0

having p (x) ∈ C1, p (x) > 0 on [a, b], ρ (x) > 0 on [a, b], and q, ρ ∈ C on [a, b]. If

(6.1.17) λρ (x)− q (x) > 0,

then the solution of the SL equation is necessarily of the IMF type. Condition (6.1.17)

is satisfied in most of the SL problems if the eigenvalue λ is sufficiently large. Fur-

thermore, this condition is satisfied in certain SL problems even for small eigenvalues.
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For example, the one dimensional Laplace equation, in both cylindrical or Cartesian

coordinates, has the form of (6.1.16). If the Dirichlet boundary conditions are im-

posed, then the condition (6.1.17) is satisfied as q = 0 and λn > 0. In fact, eigenvalues

of symmetric elliptic operators are positive for a Dirichlet boundary condition [19].

6.1.2.5. Oscillatory Solutions of ODEs in Literature. As mentioned in [43], it is

not hard to show that if x (t) = a (t) cos θ (t), then one possible governing differential

equation is

(6.1.18) ẍ+
(
− θ̈
θ̇
− 2 ȧ

a

)
ẋ+

(
θ̇2 + ȧθ̈

aθ̇
+ 2

(
ȧ

a

)2
− ä

a

)
x = 0.

Knowing the coefficients in front of ẋ and x, one can solve for the unknown envelope a

and the phase function θ. However, equation (6.1.18) is not always easy to solve for a

and θ, so a better method is needed for finding possible IMF solutions. Furthermore,

one needs methods to prove that equations of the form u
′′ + a (x)u′ + b (x)u = 0 are

sources of IMFs. Some of the theorems and transformations in Oscillation Theory

that prove the oscillatory nature of linear equation solutions are reviewed here. In

particular, we present theorems from Oscillation Theory literature that show the

possible oscillatory nature of linear second order ODEs. Their results can be checked

by means of the system introduced in (6.1.5).

The first theorem expresses the interval increase in the phase function if the so-

lution is oscillatory. The second explains how it is possible to understand whether

an equation has oscillatory solutions and how one can find the minimum number of

zeros. The third helps to determine whether the solution is oscillatory on a semi-

infinite domain, which is useful when one is trying to use the fundamental solution

conditions (6.1.11).

Theorem. There is at most one value of xn ∈ [a, b] such that θ (xn) = nπ, n ∈ N.

θ (x) will remain strictly above that in (xn, b), and strictly below that in (a, xn) for

(6.1.4) using (6.1.5).
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For the proof of this theorem, see [1] theorem 8.4.3.

Theorem. Let p1, p2, g1 and g2 be piecewise continuous on [a, b], satisfying 0 <

p2 (x) ≤ p1 (x), g1 (x) ≤ g2 (x) ∀x ∈ [a, b]. Let u1 and u2 be solutions to the equation
d
dx

(
pi (x) dui

dx

)
+ gi (x)ui = 0 for i = 1, 2. We know θ1 and θ2 are defined by tan θi =

ui
piu
′
i

. Let θ2 (a) ≥ θ1 (a). Then θ2 (x) ≥ θ1 (x) ∀x ∈ [a, b]. Moreover, if g1 (x) < g2 (x)

∀x ∈ [a, b], then θ2 (x) > θ1 (x) ∀x ∈ [a, b].

For the proof of this theorem, see [13] Theorem 8.1.2. In this theorem, if one

chooses p1 = max
x∈[a,b]

{p2 (x)}, g1 = min
x∈[a,b]

{g2 (x)} and if g1
p1
> 0, then the solution of

(6.1.19) d2u

dx2 + g1

p1
u = 0

is necessarily oscillatory. As a result, the solution of d
dx

(
p2 (x) du

dx

)
+ g2 (x)u = 0 is

indeed oscillatory and has at least the same number of zeros as (6.1.19). The following

theorems express the conditions under which there will be oscillation in a semi-infinite

domain [2, 49]. For an in depth discussion on Oscillation Theory, see [2].

Theorem. 1- In (6.1.4), if
´∞
a

dx
P (x) < ∞ and

´∞
a
|Q (x)| dx < ∞, then the solution

is non-oscillatory on [a,∞).

2- In (6.1.4), if
´∞
a

dx
P (x) =∞ and

´∞
a
Q (x) dx =∞, then the solution is oscilla-

tory on [a,∞).

Theorem. (Kneser’s Theorem) Consider the differential equation

(6.1.20) − u′′ + q (x)u = 0

on (0,∞), then

1- lim inf
x→∞

(x2q (x)) > −1
4 implies that the solution of 6.1.20 is not oscillatory;

2- lim inf
x→∞

(x2q (x)) < −1
4 implies that the solution of 6.1.20 is oscillatory.

More literature on the oscillatory nature of these equations for periodic cases (i.e.

Hill’s equation (6.1.15)) can be found in [40].
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6.1.3. Nonlinear Second order Autonomous Systems. Here we present

IMF solutions of certain nonlinear second order ODEs using second order conservative

ODEs as a starting point. These ODEs, which are prevalent in classical physics have

closed phase space trajectories, so the solution of a conservative system is necessarily

periodic.

Theorem 10. The periodic solution of a conservative nonlinear second order ODE

is necessarily an IMF.

Proof. Consider a conservative system ẍ = F (x) where F (x) = −dU(x)
dx

, U (x) ∈

C (x). The total energy of the system is E = 1
2 ẋ

2 + U (x). Assume E > U (x) for all

values of x in D = [x0, x1], except the end points where E = U (x0) = U (x1). ẋ = 0

only at x0 and x1. Take a = x0+x1
2 , b = −x0+x1

2 . Consequently, x(t)−a
b

is in [−1, 1] .

Simply take
for ẋ < 0 : θ (t) = arccos

(
x(t)−a
b

)
for ẋ > 0 : θ (t) = arccos

(
−x(t)+a

b

)
+ π.

As a result
for ẋ < 0 : θ̇ (t) = −ẋ(t)

b

√
1−(x(t)−a

b )2
,

for ẋ > 0 : θ̇ (t) = ẋ(t)

b

√
1−(x(t)−a

b )2
,

and θ̇ > 0, if x(t)−a
b
6= ±1. Now, if x(t)−a

b
→ −1, then θ̇ (t) →

√
ẍ
b
. Remember that

ẍ > 0 as x(t)−a
b
→ −1. The same justification can be used if x(t)−a

b
→ 1. Hence, take

(6.1.21)
for ẋ ≤ 0 : θ (t) = arccos

(
x(t)−a
b

)
,

for ẋ ≥ 0 : θ (t) = arccos
(
−x(t)+a

b

)
+ π,
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and finally
ẋ < 0 : θ̇ (t) = −ẋ(t)

b

√
1−(x(t)−a

b )2
,

x(t)−a
b

= −1, ẋ = 0 : θ̇ (t) =
√

ẍ
b
,

ẋ > 0 : θ̇ (t) = ẋ(t)

b

√
1−(x(t)−a

b )2
,

x(t)−a
b

= 1, ẋ = 0 : θ̇ (t) =
√

ẍ
−b .

In other words, the solution of ẍ = F (x) can be represented as x (t) = a+ b cos θ (t),

where a, b are constants and θ (t) ∈ C1 (t), θ̇ (t) > 0. The period T of the oscillation,

using θ̇, can be defined as a real positive number such that
´ T

0 θ̇dt = 2π. In other

words, T =
´ T

0 dt =
´ 2π

0
dθ
θ̇
. �

Example 19. (Undamped Duffing Equation) Take the equation ẍ+ x+ x3 = 0.

The energy E of the system is E = ẋ2

2 + x2

2 + x4

4 , the potential energy is U (x) = x2

2 + x4

4 .

Assume that the domain is D = [−A,A]. Due to symmetry, the solution should look

like x (t) = A cos θ (t). Putting this in the energy equation gives

A2 cos2 θ + A2θ̇2 sin2 θ + 1
2A

4 cos4 θ = A2 + A4

2 ,

and simplifying it results in the IF of the IMF-solution

θ̇2 = A2

2
(
1 + cos2 θ

)
+ 1.

The right hand side of this equation is strictly positive; one can take the positive root

to have

θ̇ =
√
A2

2 (1 + cos2 θ) + 1.

This shows that the solution is a FM signal. Further properties of the solution can

be extracted by simplifying the equation using trigonometric identities. The square

of the IF would then be

θ̇2 = 1 + 3
4A

2 + A2

4 cos 2θ,
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showing that the peaks and troughs of the signal coincide with the maximum of the

IF. In other words, the signal is sharp at peaks and troughs. It is an intrawave.

Finally, the period of the system can also be found by

T =
ˆ 2π

0

dθ√
A2

2 (1 + cos2 θ) + 1
.

Using the same methodology, we can observe the presence of IMFs in other types

of nonlinear systems. For example, for systems with limit cycles, the original equation

ẍ = f (x, ẋ) can be rewritten
ẋ = y,

ẏ = f (x, y) .

The intersection of the phase space trajectory with the x-axis happens if and only if

ẋ = 0. If the crossing points are assumed to be x0, x1, with x0 < x1, the value of y

will remain with one single sign for x0 < x < x1. Using the method described in the

proof of Theorem 10, one can find proper maps like (6.1.21). In other words, in a

system ẍ = f (x, ẋ), for a well behaved f that guarantees uniqueness and f (x, y) = 0

if and only if x = y = 0, if there exists a limit cycle (stable or unstable), then the limit

cycle solution can be expressed as x (t) = a + b cos θ (t) where a, b are constants and

θ̇ (t) > 0. This claim can be ratified in a similar way to the conservative case. One

can characterize the IF in a closed integral form. If the system ẍ+h (x, ẋ)+g (x) = 0

has a limit cycle, then the solution is x(t) = a + b cos θ(t). Take the energy of the

system to be E (t) = 1
2 ẋ

2 +
´
g (x) dx. Hence, dE

dt
= −yh (x, y), where ẋ = y. For a

period of the limit cycle one has

E (T )− E (0) =
ˆ T

0
−h (a+ b cos θ (t) ,−bw (t) sin θ (t)) bω (t) sin θ (t) dt = 0.

Using the fact that ω (t) = dθ(t)
dt

, the latter would become
ˆ 2π

0
h (a+ b cos θ,−bw (θ) sin θ) sin θdθ = 0.
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The same methodology can be used to generate IMFs as solutions to other non-

linear ODE systems. Take a system of the form ẋ = f (x), where x ∈ R2, f ∈ R2 is

Lipschitz continuous. If the trajectory of the solution in the phase space is a closed

convex curve for a specific initial condition x0, then there is a solution of the form

xi = ai + bi cos θi (t) with θi (t) strictly increasing for i = 1, 2. ai and bi are con-

stants for i = 1, 2. Consequently, if the phase path of the solution is expressed as

F (x) = Cte, where Cte is constant real number, then the IFs for each coordinate

solution, x1 and x2, are related to each other by

d

dt
F (x) = 0⇒

∑
biθ̇i sin θiFxi = 0.

Furthermore, for a Hamiltonian system with the convex Hamiltonian H (x1, x2), any

solution is of the form xi = ai + bi cos θi (t). Again, the abundance of IMF solutions

make the use of adaptive data analysis methods obligatory when ODE-IMF solutions

are encountered.

For constant envelope IMFs produced by a nonlinear second order ODE, the IF is

not necessary equal to the polar angle time derivative of the phase space trajectory

of the ODE. For example, the polar coordinate phase description of a limit cycle

ψ (t) can be related to the IMF angle θ (t) as follows. Assume that the physical

coordinate is centralized, hence the physical displacement and velocity of the system

ẍ+ f (x, ẋ) = 0 are

x = b cos θ (t) ,

ẋ = y = −bθ̇ sin θ (t) .

These variables can also be represented in the polar coordinate as

x = a (t) cosψ (t) ,

y = a (t) sinψ (t) .
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Simplifying these equations gives

−θ̇ (t) tan θ (t) = tanψ (t) ,

a2 (t) = b2
(
cos2 θ (t) + θ̇2 sin2 θ (t)

)
.

For a pure circular motion, θ̇ = 1, one has − tan θ (t) = tanψ (t) and a2 (t) = b2.

However, in the general case, they specify neither the same angle nor the same enve-

lope.

6.2. Nonlinear Degree Analysis

Using the theory explained thus far, here we propose a new method for analyzing

the degree of nonlinearity of IMFs decomposed from a multiscale signal and explain

an effective optimization method for constructing a second order ODE for each IMF.

Moreover, based on the degree of the nonlinearity of the coefficients associated with

the second order ODE, we define the degree of nonlinearity for each IMF.

Consider a second order ODE of the following type:

(6.2.1) ẍ+ p (x, t) ẋ+ q (x, t) = f (t) ,

where p (x, t), q (x, t) and f (t) are slowly varying with respect to t. For Duffing

equation, for example, one observes that p (x) = 0, q (x) = x+ x3.

Based on the assumption of slow variation, one can freeze p (x, t), q (x, t), and

f (t) locally in time over a local time interval (a few periods). Thus (6.2.1) can be

replaced by the corresponding autonomous ODE over this local time interval. The

function f can be absorbed into q (meaning that we can set f = 0):

(6.2.2) ẍ+ p (x) ẋ+ q (x) = 0.
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6.2.1. A Strong Formulation. To determine the autonomous ODE (6.2.2) lo-

cally, we use polynomials to approximate p (x) and q (x).

(6.2.3) p (x) =
M∑
k=0

pkx
k, q (x) =

M∑
k=0

qkx
k,

Here, M is the order of polynomials which is given a prior i, and pk, qk are unknown

coefficients. One way to get the coefficients pk, qk is to substitute (6.2.3) to (6.2.2):

(6.2.4) ẍ+
M∑
k=0

pk
(
xk
)
ẋ+

M∑
k=0

qkx
k = 0.

Then pk, qk can be obtained by using a least squares method,

(6.2.5) (pk, qk) = arg min
αk,βk

∥∥∥∥∥ẍ+
M∑
k=0

αk
(
xk
)
ẋ+

M∑
k=0

βkx
k

∥∥∥∥∥
2
.

To study the degree of nonlinearity, the highest order terms in p and q are considered.

Further, it is assumed that the coefficients pk and qk are sparse. Since x and ẋ are

strongly correlated, the least squares solution is unstable to noise perturbation. To

stabilize the optimization algorithm, we add an l1 term to regularize the least squares

solution and look for the sparsest representation,

(6.2.6) (pk, qk) = arg min
αk,βk

γ
M∑
k=0

(|αk|+ |βk|) +
∥∥∥∥∥ẍ+

M∑
k=0

αk
(
xk
)
ẋ+

M∑
k=0

βkx
k

∥∥∥∥∥
2

2
,

where γ is a parameter to control the sparsity of the coefficients. In order to capture

the leading order term, γ is chosen to be O (1). In the following examples, γ is chosen

to be 2.

In this method, we must compute ẍ and ẋ. Unfortunately, this amplifies the error

introduced in the approximation of the IMF, x, indicating that another approach is

needed.

6.2.2. A Weak Formulation. Here, we use an l1-based optimization based on

a weak formulation for the second order ODE. Let P (x) be the primitive function of
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p (x), i.e. Ṗ (x) = p (x) ẋ. Then the ODE can be rewritten in a conservation form as

(6.2.7) ẍ+ Ṗ (x) + q (x) = 0.

Assume the span of time of the signal under scrutiny is [0, T ]. For any test function

φ ∈ C2
0 [0, T ] that satisfies φ̇ (0) = φ̇ (T ) = 0, we have the following weak formulation

of the equation by performing integration by parts:

(6.2.8)
〈
x, φ̈

〉
−
〈
P (x) , φ̇

〉
+ 〈q (x) , φ〉 = 0.

If p (x) , q (x) can be approximated by polynomials as in the same way as they are in

(6.2.3), then P (x) and q (x) can be expanded in terms of polynomial basis:

(6.2.9) P (x) =
M∑
k=0

pkx
k+1, q (x) =

M∑
k=0

qkx
k.

Then we get

(6.2.10)
〈
x, φ̈

〉
−

M∑
k=0

pk
〈
xk+1, φ̇

〉
+

M∑
k=0

qk
〈
xk, φ

〉
= 0.

Using this formulation, we can design the following optimization problem to solve for

pk and qk,

(pk, qk) = arg min
αk,βk

γ
M∑
k=0

(|αk|+ |βk|)(6.2.11)

+
N∑
i=1

∣∣∣∣∣〈x, φ̈i〉−
M∑
k=0

αk
〈
xk+1, φ̇i

〉
+

M∑
k=0

βk
〈
xk, φi

〉∣∣∣∣∣
2

.

Here, N is the number of the test functions being used. In our computations, we pick

N = 2M making sure to have enough measurements to determine the coefficients.

The test functions that we use are given below:

φi(t) =


1
2

(
1 + cos

(
π(t−ti)

λ

))
, −λ < t− ti < λ,

0, otherwise,
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where ti’s (i = 1, . . . , N) are the centers of the test functions and the parameter λ

determines their support. Choosing a large λ would enhance stability. On the other

hand, with a large support for φ we cannot get the high frequency information of the

signal. Since the high frequencies are essential for capturing the nonlinearity of the

signal, λ is determined based on the balance between the stability and resolution: we

make λ as large as possible without compromising the resolution. In computations, λ

is chosen to be 1
5 of the local period (or wavelength) of the signal. After determining

λ, we choose ti, i = 1, . . . , N to be uniformly distributed in [λ, T − λ].

The choice of λ depends on the regularity of the signal that we want to study.

If the signal is nearly singular, we should choose a small λ to make sure that the

signal’s information can be well captured by the test functions. If the test functions

φi (t) are chosen to be the classical piecewise linear finite element basis, then the weak

formulation is equivalent to the strong formulation if we approximate ẍ and ẋ by a

second order central difference approximation.

Based on the coefficients recovered from the signal, we can define two indices

associated with each IMF to characterize the nonlinearity of this IMF.

Definition 8. (Degrees of Nonlinearity) The degrees of nonlinearity of an IMF are

defined to be the following two indices

I1 = max {k : pk 6= 0, k = 0, . . . ,M} , I2 = max {k : qk 6= 0, k = 0, . . . ,M} .

This definition shows that the degrees of nonlinearity of the signal correspond to

the highest order of the nonlinear terms. For example, I1 = 0 and I2 = 1 corresponds

to a linear ODE. When I1 > 0 or I2 > 1, the IMF is nonlinear. The IMF becomes

more nonlinear as the indices grow. As well as quantifying the degrees of nonlinearity

of the IMF, then, we can also recover the coefficients associated with the leading

order nonlinear terms. This information is very helpful in quantifying how nonlinear

an IMF is and may have an important implication in engineering and biomedical

applications.
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If the signal is polluted with noise, the recovery of the coefficients will be influ-

enced by these perturbations. This can be alleviated by setting up a small threshold

ν0 to enforce sparsity of the coefficients so that only coefficients larger than ν0 are

considered significant. This leads to the following modified definition of the degrees

of nonlinearity:

(6.2.12)

I1 = max {k : |pk| > ν0, k = 0, . . . ,M} , I2 = max {k : |qk| > ν0, k = 0, . . . ,M} .

In the computations to be presented in the next section, we set ν0 = 0.05.

The method based on the l1 regularized least squares performs very well in identi-

fying those nonlinear terms with large coefficients. On the other hand, the l1 regular-

ization produces a sparse representation of the signal at the expense of the accuracy

of the coefficients. In order to improve the accuracy of coefficients recovery, we first

identify the dominant coefficients,

(6.2.13) Γ1 = {k : |pk| > ν1, k = 0, . . . ,M} ,Γ2 = {k : |qk| > ν1, k = 0, . . . ,M} ,

(in our computations, ν1 is chosen to be 0.05), and then solve a least squares problem

without l1 regularization to obtain more accurate coefficients for these dominant

terms:

(6.2.14)

(pk2 , qk1) = arg min
αk2 ,βk1

N∑
i=1

∣∣∣∣∣∣
〈
x, φ̈i

〉
−

∑
k2∈Γ2

αk2

〈
xk2+1, φ̇i

〉
+

∑
k1∈Γ1

βk1

〈
xk1 , φi

〉∣∣∣∣∣∣
2

.

For an accurate signal with no noise, this procedure does help to get more accurate

coefficients. However, when the signal is polluted with noise, the IMF that we extract

from the signal is not very accurate but the coefficients are very accurate even with

the refinement procedure.

Algorithm 5 is used to implement this approach. In this algorithm, we first parti-

tion the entire physical domain into a number of sub-domains and localize the signal

locally by multiplying a smooth cut-off function. Then we apply the optimizations
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Algorithm 5 Degree of Non-Linearity Algorithm
• Calculate the phase function θ (t) of the signal. Choose K points tj, j =

1, . . . , K, such that the time variation of P and q is well resolved by the local
resolution (tj+1 − tj).
• For j = 1 : K
• Extract the signal around the point tj,

fj (t) = f (t)χ (θ (t)− θ (tj)) ,
where χ (t) is a cutoff function. In our computations, it is chosen to be

χ (t) =
{

1
2

(
1 + cos

(
t
µ

))
, −µπ < t < µπ,

0, otherwise.

µ is a parameter to control the width of the cutoff function. In this disser-
tation, we choose µ = 3, which means that for each point, we localize the
signal within 3 periods to perform the degrees of nonlinearity analysis.
• Extract the IMF cj for fj (t) using an appropriate STFR algorithm.
• Solve the optimization problem (6.2.11) with x = cj to get the coefficients of
the polynomials, Pj (x) and qj (x).
• (optional) Apply the refinement procedure to update the coefficients.
• End
• Calculate the degrees of nonlinearity of the signal according to (6.2.12).

(6.2.11) and (6.2.14) to the localized signal to extract the local degrees of nonlinearity

of the signal; see Algorithm 5.

6.3. Numerical Results

To test its performance, we ran Algorithm 5 on a number of test cases, beginning

with a signal generated from the solution of the Van der Pol equation.

Example 20. Consider the Van der Pol Equation

ẍ+
(
x2 − 1

)
ẋ+ x = 0.

The equation is solved from t = 0 to t = 100 with the initial condition x (0) =

1, ẋ (0) = 0. We extracted coefficients from the original signal and recorded nonlin-

earity at different times (see Figure 6.1). In our computations,M = 10, which gives a

total of 22 coefficients, of which only three are not zero: p1 = −1, p2 = 1
3 and q1 = 1.

The algorithm achieved the exact recovery of all the coefficients when there was no



130

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

Signal (solution of the Van der Pol equation)

20 30 40 50 60 70

−1

0

1

Coefficients of the polynomials

20 30 40 50 60 70
0.5

1

1.5

2

2.5

Degree of the nonlinearity

Figure 6.1. Top: The solution of the Van der Pol equation; Middle:
Coefficients (qk, pk) recovered by our method, star points ∗ represent the
numerical results, black line is the exact one; Bottom: Nonlinearity of
the signal according to the recovered coefficients, star points ∗ represent
the numerical results, black line is the exact one.
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Figure 6.2. Top: The solution of the Van der Pol equation with noise
0.1X (t), whereX (t) is the white noise with standard derivation σ2 = 1;
Middle: Coefficients (qk, pk) recovered by our method, star points ∗
represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star
points ∗ represent the numerical results, black line is the exact one.

noise (see Figure 6.1). When the signal is polluted by noise, the method still gives

reasonably accurate results (see Figure 6.2).

Example 21. Consider the Duffing equation

ẍ+ x+ x3 = 0,
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Figure 6.3. Top: The solution of the Duffing equation; Middle:
Coefficients (qk, pk) recovered by our method, star points ∗ represent the
numerical results, black line is the exact one; Bottom: Nonlinearity of
the signal according to the recovered coefficients, star points ∗ represent
the numerical results, black line is the exact one.
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Figure 6.4. Top: The solution of the Duffing equation with noise
0.1X (t), whereX (t) is the white noise with standard derivation σ2 = 1;
Middle: Coefficients (qk, pk) recovered by our method, star points ∗
represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star
points ∗ represent the numerical results, black line is the exact one.

with initial conditions x (0) = 1 and ẋ (0) = 0. Again, the solution is solved from

t = 0 to t = 100 and coefficients were extracted from the original signal and degrees

of nonlinearity were recorded (see Figure 6.3). We again use M = 10 in our compu-

tations, which for this case results in only two coefficients that are not zero: q1 = 1,

and q3 = 1. When the signal does not have noise, the recovery is very good for both

of the coefficients and for the degrees of nonlinearity (see Figure 6.3). However, when
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the signal is polluted by noise, the results for the Duffing equation are not as good

as those for the Van der Pol equation: the coefficients are not accurate (see Figure

6.4). This is because the Duffing equation is closer to the linear sinusoidal wave with

q3 = 0. Nevertheless, even in this case, our method still gives the correct degrees of

nonlinearity (see Figure 6.4).

Example 22. Since both the Van der Pol and Duffing equations are autonomous,

the coefficients could be extracted globally, as they do not change over the whole

time span. To show the locality of Algorithm 5, we consider an equation that is not

autonomous:

(6.3.1) ẍ+ a (t)
(
x2 − 1

)
ẋ+ (1− a (t))x3 + x = 0,

where

a (t) = 1
2

1− t− 100√
(t− 100)2 + 400

 .
The initial condition is that ẋ (0) = 0, x (0) = 1 and the equation is solved over t ∈

[0, 200]. This equation is essentially of the Van der Pol type when t is small (t < 100),

but as t increases, the equation smoothly changes to the Duffing type equation. When

the signal is not polluted by noise, the algorithm captures the time variation of the

coefficients accurately (see Figure 6.5) and remain reasonably accurate even when

the signal is polluted with noise (see Figure 6.6). The error of the coefficients is

relatively large when t > 100 in the presence of noise. In this region, the equation is

qualitatively of Duffing type, which is more sensitive to noise than the Van der Pol

equation, as seen in Examples 21 and 22.

Example 23. To test the method on a more challenging equation in which the

coefficients have a sharp change instead of a smooth transition we used the equation

(6.3.2) ẍ+ 1
2 (1− sgn (t− 100)) ẋ+ 1

2 (1 + sgn (t− 100))x3 + x = 0,
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Figure 6.5. Top: The solution of the equation given in (6.3.1);
Middle: Coefficients (qk, pk) recovered by our method, star points ∗
represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star
points ∗ represent the numerical results, black line is the exact one.
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Figure 6.6. Top: The solution of the equation given in (6.3.1) with
noise 0.1X (t), where X (t) is the white noise with standard derivation
σ2 = 1; Middle: Coefficients (qk, pk) recovered by our method, star
points ∗ represent the numerical results, black line is the exact one;
Bottom: Nonlinearity of the signal according to the recovered coeffi-
cients, star points ∗ represent the numerical results, black line is the
exact one.

where sgn (·) is the sign function. There is a sharp transition from the Van der Pol

equation to the Duffing equation at point t = 100 in (6.3.2). Not surprisingly, applying

the algorithm to analyze the solution of this equation, generates a large error near

t = 100, but the method still has reasonable accuracy in the region away from the

transition point (see Figure 6.7). While poor accuracy near the transition point means

the algorithm cannot locate the transition point faithfully, the method does identify
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Algorithm 6 ENO STFR
• Calculate the phase function θ (t) of the signal. Choose K points tj, j =

1, . . . , K, such that the time variation of P and q is well resolved by the local
resolution (tj+1 − tj).
• For j = 1 : K

– S1: Extract the signal centered around the point tj and also extract the
signal to the left and to the right of tj,

f cj (t) = f (t)χc (θ (t)− θ (tj)) ,
f lj (t) = f (t)χl (θ (t)− θ (tj)) ,
f rj (t) = f (t)χr (θ (t)− θ (tj)) ,

where χc (t) , χl (t) , χr (t) are cutoff functions

χc (t) =
{

1
2

(
1 + cos

(
t
µ

))
, −µπ < t < µπ,

0, otherwise.

χl (t) =
{

1
2

(
1 + cos

(
t
µ

+ π
))
, −2µπ < t < 0,

0, otherwise.

χr (t) =
{

1
2

(
1 + cos

(
t
µ
− π

))
, 0 < t < 2µπ,

0, otherwise.
As before, we choose µ = 3.

– S2: Extract the IMFs ccj, clj, crj for f cj (t) , f lj (t) , f rj (t) respectively.
– S3: Pick up the IMF c∗j such that the residual

∥∥∥cαj − fαj ∥∥∥2
is minimized

over the choices α = c, l, r, i.e.
c∗j = arg min

α∈{c,l,r}

∥∥∥cαj − fαj ∥∥∥2
.

– S4: Solve the optimization problem (6.2.11) with x = c∗j to get the
coefficients of the polynomials, Pj (x) and qj (x).

– S5: (optional) Apply the refinement procedure to update the coeffi-
cients.

• End
• Calculate the degrees of nonlinearity of the signal according to (6.2.12).

that the nonlinearity of the signal changes from the Van der Pol type to the Duffing

type. Performance remains qualitatively the same, even in the presence of noise (see

Figure 6.8). To improve the accuracy of our method near the transition points, we

combine the idea of the ENO method in computing shock waves in fluid dynamics

[37] with Algorithm 5. This gives rise to Algorithm 6 which accurately extracts

the coefficients and locates of the transition point (see Figure 6.9) and can accurately
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Figure 6.7. Top: The solution of the equation given in (6.3.2);
Middle: Coefficients (qk, pk) recovered by our method, star points ∗
represent the numerical results, black line is the exact one; Bottom:
Nonlinearity of the signal according to the recovered coefficients, star
points ∗ represent the numerical results, black line is the exact one.
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Figure 6.8. Top: The solution of the equation given in (6.3.2) with
noise 0.1X (t), where X (t) is the white noise with standard derivation
σ2 = 1; Middle: Coefficients (qk, pk) recovered by our method, star
points ∗ represent the numerical results, black line is the exact one;
Bottom: Nonlinearity of the signal according to the recovered coeffi-
cients, star points ∗ represent the numerical results, black line is the
exact one.

approximate degrees of nonlinearity and the transition point even in presence of noise

perturbation (see Figure 6.10).

Example 24. Here, we test the method on a signal, f (t), which consists of several

components:

f (t) = s (t) + cos
(16πt

200

)
+ t

100 + 0.1X (t) , t ∈ [0, 200] ,
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Figure 6.9. Top: The solution of the equation given in (6.3.2); Mid-
dle: Coefficients (qk, pk) recovered by our method together with the
trick in ENO method, star points ∗ represent the numerical results,
black line is the exact one; Bottom: Nonlinearity of the signal accord-
ing to the recovered coefficients, star points ∗ represent the numerical
results, black line is the exact one.
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Figure 6.10. Top: The solution of the equation given in (6.3.2) with
noise 0.1X (t), where X (t) is the white noise with standard derivation
σ2 = 1; Middle: Coefficients (qk, pk) recovered by our method together
with the ENO type method, star points ∗ represent the numerical re-
sults, black line is the exact one; Bottom: Nonlinearity of the signal
according to the recovered coefficients, star points ∗ represent the nu-
merical results, black line is the exact one.

where s (t) is the solution of the Van der Pol equation with the initial condition

ẋ (0) = 0, x (0) = 2 and X (t) is the white noise with standard derivation σ2 = 1.

After decomposing the signal to tow IMFs (see Figure 6.11) we analyze each IMF to

obtain its degrees of nonlinearity (see Figures 6.12 and 6.13). Even for this complex

signal, the performance of our method is still reasonably good.
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Figure 6.11. Top: The signal consists of the solution of the Van
der Pol equation and a cosine function and a linear trend and noise
0.1X; Middle: The IMF extracted from the signal corresponding to the
solution of the Van der Pol equation, blue: numerical result; red: exact
solution; Bottom: The IMF extracted from the signal corresponding to
the cosine function, blue: numerical result; red: exact solution.
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Figure 6.12. Top: Coefficients (qk, pk) recovered by our method for
the first IMF in Fig. 6.11, star points ∗ represent the numerical results,
black line is the exact one; Bottom: Nonlinearity of the signal accord-
ing to the recovered coefficients, star points ∗ represent the numerical
results, black line is the exact one.
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Figure 6.13. Top: Coefficients (qk, pk) recovered by our method for
the second IMF in Fig. 6.11, star points ∗ represent the numerical
results, black line is the exact one; Bottom: Nonlinearity of the sig-
nal according to the recovered coefficients, star points ∗ represent the
numerical results, black line is the exact one.
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CHAPTER 7

Bioengineering Applications of an Approximation of Sparse

Time-Frequency Method

Cardiovascular Diseases (CVD) are one of the main causes of death in the United

States every year [39]. With an increasing number of deaths every year, there is a

need to develop new CVD diagnosis methods. Researchers [45] have recently shown

that at a given left ventricle (LV) and vascular condition, there exists an optimum

Heart-Arterial system coupling that minimizes the LV external pulsatile power. Using

the Periodic STFR method (see Figure 7.1), we observed that the IF changes its

trend before and after the closure of heart aortic valve (i.e. dicrotic notch). This

observation was consistent in different aortic rigidities. Since we observed the IF

trend shift in these examples, we proposed a modified version of STFR. We call this

modified version as the Intrinsic Frequency (InF) method. The InF method assumes

that there are two constant dominant frequencies before and after the dicrotic notch.

These frequencies are called Intrinsic Frequencies. Using this modified version of the

STFR method, we can identify the optimum heart rate from the aortic pressure wave

alone (see Figure 7.2).

This preliminary work [44] raised the question of whether this approach could

predict heart performance. Here, we will show that the InF method, can predict

heart performance with good medical accuracy.

7.1. Problem Formulation

Ignoring the effect of breathing, we can assume that the pressure waveform at

the entrance of aorta is almost periodic, an observation that is supported by the fact

that both heart and aorta can be seen as dynamical systems that act at different
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Figure 7.1. Instantaneous frequency of the first IMF. The range
of instantaneous frequency oscillation (gray band) changes after the
dicrotic notch (marked by the red line). a) Instantaneous frequency
(top) of the aortic input pressure (bottom) for an aorta with rigidity
E1 at HR=100 bpm. b) Instantaneous frequency (top) of the aortic
input pressure (bottom) for an aorta with rigidity E1 at HR=70 bpm.
c) Instantaneous frequency (top) of the aortic input pressure (bottom)
for an aorta with rigidity E3 at HR=70 bpm (E3 = 1.5E1) .

characteristic frequencies. Since we know that reflected waves in the cardiovascular

system will distort the trend and introduce subharmonic distortion [45], we need to

be able to extract the trend of the pressure waveform with some adaptive method.

Using STFR terminology, in this chapter we are trying to extract a single Intrinsic

Mode Function (IMF) from the pressure wave signal. Physically and biomedically, we

believe that this IMF conveys the coupling characteristics of the heart-aorta system.

However, the IMF that we are trying to extract might have a sharp edge at the

location of the dicrotic notch (a sudden drop in pressure that occurs at the instant

of aortic valve closure). Hence, in this chapter, the definition of an IMF is slightly

abused. However, we still call it an IMF. Attempting to extract this IMF using

EMD or STFR would fail or produce a blur extraction, primarily because the change

from one frequency regime before the dicrotic notch into another after the closure
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Figure 7.2. Intrinsic frequencies Vs. HR (top graphs) with the
corresponding pulsatile power vs. HR (bottom graphs). ω1 (red) is the
InF for coupled heart+aorta and ω2 (blue) is the InF for the decoupled
aorta. a) Aortic rigidity is E1, the gray band shows that the two IF
curves cross each other at the optimum HR (≈110 bpm). b) Aortic
rigidity is E2, the two InF curves cross each other at the optimum HR
(≈120 bpm). c) Aortic rigidity is E3, two InF curves cross each other
at the optimum HR (≈140 bpm).

of the heart valve is accompanied by an abrupt change in frequency of the whole

cardiovascular system or by a discontinuity in the first time derivative of the pressure

waveform at the dicrotic notch. In the best case, using STFR methods would just

capture a vague picture of the instantaneous frequency response of the system, which

is good solely for qualitative interpretation and an initial guess for the possible InFs.

As a result, we use a modified version of the STFR method that has less mathematical

regularity and focuses on the more basic Intrinsic Frequency (InF) rather than on the

instantaneous frequency.

It is assumed that before and after the dicrotic notch, we have the following simple

waveforms for the general IMF of the aortic pressure wave at time t:

(7.1.1) si = ai cosωit+ bi sinωit+ p̄, i = 1, 2.
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This assumption has shown its credibility as an index to characterize the heart and

cardiovascular diseases [44]. In this formula, i = 1 corresponds to the behavior of

the IMF before the valve closure, and i = 2 to the behavior of the IMF after that.

Here, ai, bi are constants and correspond to the envelopes of the IMF. The constants

ω1, ω2 correspond to the InFs of the IMF. p̄ is the mean pressure during the heart beat

period. Equations (7.1.1) do not clearly show the physics of the problem, however.

As the IMF is composed of two different sinusoids, continuous at the dicrotic notch,

we can write (7.1.1) in a more compact form. Take [0, T ] to be the whole period of

the pressure wave and T0 as the location of the dicrotic notch: 0 < T0 < T . Also,

define the indicator function as

1[x,y) (t) =


1, x ≤ t < y,

0, else.

Now, the main IMF of the pressure waveform can be expressed as

(7.1.2)
S (ai, bi, p̄, ωi; t) = (a1 cosω1t+ b1 sinω1t+ p̄) 1[0,T0) (t) +

(a2 cosω2t+ b2 sinω2t+ p̄) 1[T0,T ) (t) .

If 0 ≤ t < T0, one would get the part of the IMF corresponding to the action of heart

and aorta before the valve closure, i.e. s1 = a1 cosω1t + b1 sinω1t + p̄. On the other

hand, if T0 ≤ t < T , the part of the IMF that reflects the behavior of the aorta after

the valve closure is depicted by s2 = a2 cosω2t + b2 sinω2t + p̄. In general, we are

interested in extracting the IMF (7.1.2) and the corresponding InFs ω1, ω2.

At this stage the goal is to extract the IMF carrying most of the energy and con-

sequently the InFs, ω1, ω2, from the observed aortic pressure waveform f (t). Taking t
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as a continuous variable, one can use least squares minimization to find the unknowns.

(7.1.3)

minimize
ai,bi,ωi,p̄

‖f (t)− S (ai, bi, p̄, ωi; t)‖2
2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

In this optimization problem, ‖g (t)‖2
2 =

´ T
0 |g (t)|2 dt. The first linear condition in

this optimization enforces the continuity of the extracted IMF at the dicrotic notch.

The second one imposes the periodicity. In practice, as the data is sampled on discrete

temporal points, one must solve the discrete version of (7.1.3). Assume that the data

is sampled on time instances 0 = t1 < t2 < . . . < tn = T , then one can convert

problem (7.1.3) into a discrete least squares of the form

(7.1.4)

minimize
ai,bi,ωi,p̄

∑n
j=1 (f (tj)− S (ai, bi, p̄, ωi; tj))2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

Unfortunately, problem (7.1.4) is not convex. In the next subsection we will introduce

a brute-force algorithm to solve it.

7.2. Algorithm

Tackling a non-convex problem like (7.1.4) is not easy. In Algorithm 7, we break

down the problem into a convex part and a global domain search [35]. Optimization

software handles the convex part. Initially, we used Matlab CVX package [22] to

solve the convex part. However, later we implemented a C++ code that was based

on QR decomposition [18]. The domain search part is nothing but the brute-force

part of the algorithm. For this algorithm, the frequency domain is

(7.2.1) Dfr = {(ω1, ω2) |0 < ω1 ≤ C, 0 < ω2 ≤ C} ,
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Algorithm 7 Intrinsic Frequency Algorithm
(1) Discretize Dfr in to a uniform r × r mesh Dfr, r ∈ N,

Dfr =
{(
ωl1, ω

m
2

)
|ω1 = l

r
C, ω2 = m

r
C; l,m ∈ {0, 1, . . . , r}

}
.

(2) For all l,m ∈ {0, 1, . . . , r} solve

(7.2.2)

minimize
ai,bi,p̄

∑n
j=1

(
f (tj)− S

(
ai, bi, p̄, ω

l
1, ω

m
2 ; tj

))2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

and store P
(
ωl1, ω

m
2

)
= ∑n

j=1

(
f (tj)− S

(
a∗i , b

∗
i , p̄
∗, ωl1, ω

m
2 ; tj

))2
for minimiz-

ers a∗i , b∗i , p̄∗.
(3) Find the intrinsic frequencies (InFs)

(ω∗1, ω∗2) = argmin
l,m

(
P
(
ωl1, ω

m
2

))
.

which is characterized by a constant parameter, C, that is set from the physics of the

problem. The basic idea behind the Algorithm 7 is to freeze (ω1, ω2), solve (7.1.4),

and find the minimum of the function

P (ω1, ω2) =
n∑
j=1

(f (tj)− S (a∗i , b∗i , p̄∗, ωi; tj))
2 ,

where a∗i , b∗i , p̄∗ are the values upon which (7.1.4) is minimized for a fixed vector

(ω1, ω2). We collect all possible values of P (ω1, ω2) and find the minimum of them

among (ω1, ω2). The minimizer of P over (ω1, ω2) would then be the InFs that we are

looking for.

The second step of Algorithm 7 is just solving a linearly constrained least squares

algorithm. This brute-force algorithm can also be made parallel since step 2 can be

solved separately for different (l,m) pairs.

7.3. Convergence Analysis

In this section, we analyze the convergence properties of Algorithm 7. In order

to discuss the algorithm’s convergence and accuracy, we need the following lemma [8]

and theorem .
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Lemma 5. The minimum of a function can first be found over a few variables and

then over the remaining ones:

inf
x,y
f (x, y) = inf

x

(
inf f (x, y)

y

)
.

This lemma allows us to first find the minimization (7.1.4) on ai, bi, p̄ and then on

ω1, ω2.

Further, we need to make sure that the second step of the algorithm has a unique

minimizer, which can be provided by this theorem [18]:

Theorem 11. If A ∈ Rm×n, C ∈ Rp×n, x ∈ Rn, b ∈ Rm, d ∈ Rp where p ≤ n,

n ≤ m+ p and

 A

C

 is of full column rank, then the optimization problem

minimize
x

‖Ax− b‖2
2

subject to Cx = d

has a unique solution.

As the algorithm freezes the frequency parameters (ω1, ω2) and then solves a least-

squares problem on other variables, we can form a notation similar to that used in

Theorem 11. Take the matrix A to be

A =



cosω1t1 sinω1t1 0 0 1

cosω1t2 sinω1t2 0 0 1
... ... ... ... ...

cosω1tn0 sinω1tn0 0 0 1

0 0 cosω2tn0+1 sinω2tn0+1 1
... ... ... ... ...

0 0 cosω2tn sinω2tn 1



,
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and the matrix C and vector x to be

C =

 cosω1tn0 sinω1tn0 − cosω2tn0 − sinω2tn0 0

1 0 − cosω2tn − sinω2tn 0

 , x =



a1

b1

a2

b2

p̄


.

Sample points t1, . . . , tn0 correspond to the trend before the dicrotic notch and tn0+1, . . . , tn

to the points after it. Finally, the vector b would be the observed sampled signal,

{b}j = f (tj) , j = 1, 2, . . . , n and d = 0. These matrices and vectors satisfy the con-

ditions of Theorem 11. Hence, the second step of the algorithm always has a unique

solution. This fact, combined with Lemma 5, guarantee that Algorithm 7 always has

at least one unique solution for the minimization problem (7.1.4).

7.3.1. No Noise. Assume there is no noise in the observation and the observed

signal is exactly of type (7.1.2). As a result, the signal can be expressed as f =

Āx̄, C̄x̄ = 0 for some (ω̄1, ω̄2) and x̄. If there is a well resolved Dfr, then for some

l,m, one would obtain
(
ωl1, ω

m
2

)
= (ω̄1, ω̄2). At these specific frozen frequencies, the

solution of the second step of the algorithm is nothing but x̄, based on Theorem 11.

In detail, at this step of the algorithm, one is in fact solving

minimize
x

∥∥∥Āx− Āx̄∥∥∥2

2

subject to C̄x = 0.

These facts combined with the definition of P (ω1, ω2) and Lemma 5 guarantee the

existence of at least one minimizer.

Furthermore, this minimizer is unique. In fact, if there exists another set of x

and (ω1, ω2) as the solution of problem (7.1.4), namely x̄
′ and

(
ω̄
′
1, ω̄

′
2

)
, then the
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two trends, Āx̄ and Ā′x̄′ , arising from these parameters must be equal. For a finely-

sampled observation f , equality of these trends implies the equality of the parameters

x̄
′ = x̄,

(
ω̄
′
1, ω̄

′
2

)
= (ω̄1, ω̄2). In short, we can state the following theorem:

Theorem 12. In the absence of noise, if the observed signal is of the form (7.1.2),

for a well resolved Dfr, Algorithm 7 finds the unique minimizer of

minimize
ai,bi,ωi,p̄

∑n
j=1 (f (tj)− S (ai, bi, p̄, ωi; tj))2

subject to
a1 cosω1T0 + b1 sinω1T0 = a2 cosω2T0 + b2 sinω2T0,

a1 = a2 cosω2T + b2 sinω2T.

7.3.2. Noisy measurements. Assume here, that the IMF (7.1.2) is polluted

with noise that is independent of the IMF itself. In other words, taking the noise

to be ε, f = Āx̄ + ε, C̄x̄ = 0. Here, the algorithm will not extract the exact values

of (ω̄1, ω̄2) and x̄, but it is possible to find an error bound on the distance between

the extracted and the true IMF. If x∗ and (ω∗1, ω∗2) are the extracted values by the

algorithm, one can write

∥∥∥A∗x∗ − Āx̄− ε∥∥∥
2
≤
∥∥∥Ax− Āx̄− ε∥∥∥

2
≤ ‖ε‖2 .

The first inequality comes from the fact that any set of x and (ω1, ω2), where Cx = 0,

is a feasible point; consequently, the second inequality follows if x and (ω1, ω2) are

assigned the values of x̄ and (ω̄1, ω̄2). Now, it is not hard to show by triangle inequality

that ∥∥∥A∗x∗ − Āx̄∥∥∥
2
≤
∥∥∥A∗x∗ − Āx̄− ε∥∥∥

2
+ ‖ε‖2 ≤ 2 ‖ε‖2 .

Using this we can state the following theorem:

Theorem 13. In the presence of noise that is independent from the trend (7.1.2), for

a well resolved Dfr, Algorithm 7 finds the minimizer of (7.1.4) with an error having

at most the same order as the noise.
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How much the solution of the noisy problem differs from the real solution depends

on the noise level. If the noise level ‖ε‖ is sufficiently small, then the distance between

x∗, (ω∗1, ω∗2) and x̄, (ω̄1, ω̄2) is also of O (‖ε‖) [4]. In practice, since the 2-norm of the

trend is large compared to the noise level, the relative error in finding the trend is

extremely low. In mathematical terms∥∥∥A∗x∗ − Āx̄∥∥∥
2∥∥∥Āx̄∥∥∥

2

≤ 2 ‖ε‖2∥∥∥Āx̄∥∥∥
2

.

So, in general, Algorithm 7 can extract the needed IFs with good accuracy, even

in the presence of noise perturbation. In real data, where a lot of reflected waves

are superposed with the heart-aorta wave system, a signal could be a combination of

many IMFs. Usually these waves have higher frequencies compared to the main IMF.

In the next subsection, we answer this question in detail.

7.3.3. Other IMFs. Here, we investigate this scenario in detail. For the sake of

simplicity, we assume that the added IMFs are of high frequency and that time is a

continuous variable and the signal is not sampled on discrete points (it is a continuous

variable). Take the recorded signal to be

(7.3.1) g (t) = S̄ (t) +DM (t) ,

where S̄ (t) is the IMF of form (7.1.2), and DM (t) is a combination of IMFs with

higher frequencies compared to S̄ (t). Without loss of generality, take DM (t) to have

a Fourier series of the form

(7.3.2) DM (t) =
∑
n>M

(
An cos 2πnt

T
+Bn sin 2πnt

T

)
.

Implicitly, we have assumed that the added IMFs are of high-frequency nature. Having

this terminology in mind we can state the following theorem.
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Theorem 14. The optimum curve S∗ (t), which is the solution of the minimization

problem

(7.3.3)

minimize
S(t)

∥∥∥S (t)− S̄ (t)−DM (t)
∥∥∥2

L2

subject to
S (t) is continuous at T0,

S (t) is periodic,

satisfies

(7.3.4)
∥∥∥S∗ (t)− S̄ (t)

∥∥∥
L2
≤

8
∥∥∥D(m)

M (t)
∥∥∥
L1

(m− 1)
√
T (M + 1)m−1 ,

provided that DM (t) ∈ Cm, and m ≥ 2.1

Proof. As S̄ (t) is a feasible point, the minimizer S∗ (t) of (7.3.3) must satisfy

(7.3.5)
∥∥∥S∗ (t)− S̄ (t)−DM (t)

∥∥∥2

L2
≤
∥∥∥S̄ (t)− S̄ (t)−DM (t)

∥∥∥2

L2
= ‖DM (t)‖2

L2 .

Define the Fourier series of S∗ (t)− S̄ (t) as

S∗ (t)− S̄ (t) = 1
2∆a0 +

∞∑
n=1

(
∆an cos 2πnt

T
+ ∆bn sin 2πnt

T

)
.

Hence, we have

S∗ (t)− S̄ (t)−DM (t) = 1
2∆a0 +

M∑
n=1

(
∆an cos 2πnt

T
+ ∆bn sin 2πnt

T

)

+
∞∑

n=M+1

(
(∆an − An) cos 2πnt

T
+ (∆bn −Bn) sin 2πnt

T

)
.

1This bound can be made sharper if DM (t) ∈ Cm and D
(m+1)
M (t) ∈ L2

(0,T ). Here the p-norm is

defined as ‖ϑ (t)‖Lp =
(´ T

0 |ϑ (t)|p dt
) 1

p for p ≥ 1.
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Using Parseval’s identity and (7.3.5) gives

∥∥∥S∗ (t)− S̄ (t)−DM (t)
∥∥∥2

L2
=

∥∥∥S∗ (t)− S̄ (t)
∥∥∥2

L2
+ ‖DM (t)‖2

L2

−2T
∞∑

n=M+1
(∆anAn + ∆bnBn) ≤ ‖DM (t)‖2

L2 .

Simplifying and using triangle inequality results in

(7.3.6)
∥∥∥S∗ (t)− S̄ (t)

∥∥∥2

L2
≤ 2T

∞∑
n=M+1

(|∆an| |An|+ |∆bn| |Bn|) .

Since S∗ (t) − S̄ (t) is continuous, |∆an| , |∆bn| ≤
‖S∗(t)−S̄(t)‖

L1
T

. Using Cauchy-

Schwartz inequality gives |∆an| , |∆bn| ≤
‖S∗(t)−S̄(t)‖

L2√
T

. On the other hand, asDM (t) ∈

Cm, then |An| , |Bn| ≤ 2

∥∥∥D(m)
M (t)

∥∥∥
L1

Tnm
. Using these estimates and bounding the sum by

an integral, (7.3.6) will result in

∥∥∥S∗ (t)− S̄ (t)
∥∥∥
L2
≤

8
∥∥∥D(m)

M (t)
∥∥∥
L1

(m− 1)
√
T (M + 1)m−1 .

�

Remark 2. The bound (7.3.4) shows that as the minimum frequency M of the

IMFs increases, then the optimum curve S∗ (t) and the true curve S̄ (t) get closer.

This bound is in fact a measure of the “Scale Separation Condition” mentioned in

[25, 24, 26]. In simple words, if the IMFs are orthogonal to the original IMF, then the

extracted optimum curve S∗ (t) is almost the true IMF S̄ (t). Hence, the frequencies

found in S∗ (t) are close to true InF values. Interestingly, in deriving this bound, we

have not used the structure of the main IMF. This bound is in general an orthogonality

condition. In practice, we find shorter bounds than (7.3.4). In other words, the

algorithm works much better than the bound error estimate.

7.4. Synthetic Examples

In this section we work on synthetic examples to show the performance of the

proposed Algorithm 7.
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Figure 7.3. Synthetic Data, with no Noise and Well-Resolved Domain

Example 25. Assume that the trend has intrinsic frequencies of ω1 = 9.5 and ω2 =

5.42. The envelope of the first part of the trend is taken to be
√

41, and the envelope

of the second sinusoid is taken in a way that it matches a signal of period 0.898 and a

dicrotic notch at T0 = 0.3293. The average pressure is p̄ = 10. Dfr is defined in a way

that the resolution of the frequency domain, min
l 6=m

(∣∣∣ωl1 − ωm1 ∣∣∣ , ∣∣∣ωl2 − ωm2 ∣∣∣), is 0.08. For

this well resolved domain, the extraction is accurate up to machine error precision:

the curves are indistinguishable (see Figure 7.3). The IFs are found with no error.

Example 26. To test the algorithm for a case in which Dfr is not well-resolved, we

use the signal from Example 25 and define Dfr so that the resolution of the frequency

domain is 0.1. This resulted in a faithful extraction of the curve, with less than 0.4%

relative error2 (see Figure 7.4). The InFs are ω∗1 = 9.4 and ω∗2 = 5.2, which have less

than 5% relative error.

In the next example, we will investigate the effect of noise on the extracted IFs.

Here, Dfr is well-resolved.

2Relative error for the signal is defined as ‖S∗(t)−S̄(t)‖
L2

‖S̄(t)‖
L2
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Figure 7.4. Synthetic Data, with no Noise and not Well-Resolved Domain

Example 27. To test the effect of noise on a signal with well-resolved Dfr we use the

same signal and define Dfr so that the resolution of the frequency domain is 0.027.

The signal is polluted with random Gaussian noise of mean zero and variance one

(see Figure 7.5) and the relative error in extraction is less than 0.7% (see Figure 7.6).

The InFs that were found are ω∗1 = 9.61 and ω∗2 = 5.74, which have relative error of

less than 6%. This example shows the stability of the algorithm.

Example 28. (a) To synthetically examine the effect of adding an IMF to the main

IMF, a simple sine wave of form sin
(

20πt
T

)
was added was added to the same signal

used in previous examples. The extracted InFs are again accurate. In fact, if Dfr has

a resolution of 0.027, the error in extracted InFs is zero up to 3 digits of accuracy.

With a Dfr resolution of 0.25, the relative error is at most 8%. This small example

shows that the algorithm works better than the bound provided by (7.3.4).

(b) To test whether a noisy observation with an added low frequency IMF would

be still a tractable problem for the algorithm, we take the IMF from Example 25

and add sin
(

4πt
T

)
+N (0, 1) (see Figure 7.7). Here, N (0, 1) is the white (Gaussian)
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Figure 7.5. Original Noisy Data
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Figure 7.6. Extracted Curve vs the Original Curve in a Noisy environment

noise with mean zero and variance one. For a Dfr resolution of 0.08, the extracted

InFs are ω∗1 = 9.66 and ω∗2 = 6.14 the maximum relative error in extracted IFs is less

than 14%. If a higher resolution is used, the results are much better. For example,
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Figure 7.7. Synthetic trend plus IMF and Noise
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Figure 7.8. Extracted trend for the IMF-Noise case

for a resolution of 0.027, the extracted InFs are ω∗1 = 9.61 and ω∗2 = 5.79, having

a maximum relative error of just 7% (see Figure 7.8). The curve extraction has a

relative error of 2%.
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Figure 7.9. Recorded Data From iPhone: The data is recorded using
iPhone camera.

7.5. Clinical Data

We have tested the performance of the InF algorithm on both invasive and non-

invasive clinical data. The performance of our method has been beyond expectations.

Data that had been collected from the neck artery of a subject solely using an iPhone

camera (see Figure 7.9) was analyzed using the InF algorithm. Although the data

has been collected from an iPhone, the algorithm faithfully extracted a pertinent IMF

(see Figure 7.10 ).

We employed the InF algorithm on pressure wave signals collected from human

beings (both invasively using a catheter and non-invasively using an iPhone camera)

and dogs (invasively using a catheter). We found that the performance of the heart

(the Ejection Fraction3 (EF)) can be predicted using the normalized values of the

InFs and the normalized value of p̄. In order to be more specific, we need to define

the following variables:
3Ejection Fraction is essentially a measure of the percentage of blood leaving the heart in each
contraction. Ejection Fraction is a good measure of the performance of the heart. A very low
Ejection Fraction corresponds to some cases of Heart Failure. A very traditional way of measuring
the Ejection Fraction is through Echocardiography.
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Figure 7.10. Extracted IMF from the Recorded iPhone Data

• ω1n = ω1
HR

, where ω1 is in bpm and HR is the heart rate in bpm.

• ω2n = ω2
HR

, where ω2 is in bpm and HR is the heart rate in bpm.

• ω1 = ω1T0, where ω1 is in Hz and T0 is in seconds.

• ω2 = ω2 (T − T0), where ω2 is in Hz and (T − T0) is in seconds.

• cR = p̄−min(f(t))
max(f(t))−min(f(t)) .

Irrespective of the data collection method (invasive or non-invasive), the EF could be

predicted as follows:

(1) If ω1n > 1.45, then

(7.5.1) EF = −1.1862 + 0.9661ω1n,

(2) If ω2n > 1.5, then

(7.5.2) EF = −0.16907 + 0.83189ω1n,
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Figure 7.11. EF Comparison: The vertical axis shows the EF found
by 2D echocardiography. The horizontal axis shows the EF calculated
by the InF algorithm. The two dotted green lines show ±15% error
offset from the expected 45 Degree line.

(3) Else

(7.5.3) EF = 1− cR
ω1

ω2
.

The predictions of formulas (7.5.1), (7.5.2), and (7.5.3) are within the range of

EF that is found by echocardiography (see Figure 7.11).

The performance of the InF algorithm clearly shows potential for use in health

care systems. Hopefully by implementing this idea, many lives will be saved in the

near future.
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CHAPTER 8

Future Works: Unsolved Issues of IMF and IF Uniqueness

In this chapter, we will open the door to more fundamental issues regarding the

definition of IMFs, IF and the issue of uniqueness. This chapter is solely an introduc-

tion to some future work in STFR methods. The sections in this chapter should not

be considered as deep research results. However, they can be considered to be future

research directions.

8.1. IMFs, Frequency, and Uniqueness

Here, we try to shed more light on the definitions of IMF, IF and uniqueness. Our

tests showed that when IMFs are extracted from an IS, there are cases in which the

IMF is uniquely extracted but the IF and the envelope are not unique.

8.1.1. Introduction. The idea of the IF was first proposed by Van der Pol in

1930 [51]. Later, Carson and Fry [11] were among the first to generalize the definition

of the IF in the context of FM signals as

s (t) = ei(ω0t+λ
´ t
0 m(t)dt),

and Van der Pol [52] validated this result with his own very similar definition. They

defined the IF as the derivative of the phase function of an FM signal.

There have been attempts to define IF in the context of time-frequency meth-

ods. However, these methods have inherent shortcomings in data analysis, let alone

helping to define IF. As mentioned in [17], for linear time-frequency methods such

as wavelet transforms and windowed Fourier transforms the signal is analyzed by

its inner product with an a priori dictionary of basis functions. The main problem

with these methods, specifically the windowed Fourier transform, is the Heisenberg
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uncertainty principle. Quadratic methods, on the other hand, compare a signal with

a family of templates, which is useful unless a multi-scale signal is present, in which

case interference becomes a problem. The main problem with spectrum analysis in

general is that the resolution1 is low [47]. For “non-stationary” signals, which have

jumps or changes in behavior [17], both linear and quadratic methods fail. Hence, no

definite definition of IF can be specified.

Boashash [6] was among the very first who raised the issue of the definition of

the IF in depth. Boashash defines a “non-stationary” signal as one whose spectral

characteristics, e.g. peaks, vary with time. In the stationary case, the definition of

IF is clear. It can be related to the Fourier Transform. Boashash believes that the IF

is an ambiguous object, stating “Since frequency usually defines the number of cycles

or vibrations undergone during one unit of time by a body in periodic motion, there

is an apparent paradox in associating the words instantaneous and frequency. For

this reason the definition of IF is controversial, application-related, and empirically

assessed.” Citing Shekel [48], Boashash explains that the analytic signal approach

cannot have a unique physical representation, although the complex representation

could be unique. Boashash mentions that the problem of IF definition comes from

the ambiguity in IF, envelope, and oscillation intuition. Boashash finally adopts the

analytic signal approach to construct his theory. However, his approach breaks down

for the case of multicomponent signals.

Daubechies [17] mentions that for an IMF a (t) cos θ (t), the changes in time of

the envelope a (t) and frequency θ′ (t) should be much slower than the change of θ (t)

itself. This means that for [t− δ, t+ δ], where δ ≈ 2π
θ′(t) , the IMF is essentially a

harmonic signal with amplitude a (t) and frequency θ′ (t). In order to define the IF

and an IMF in practice, Daubechies uses Synchrosqueezing Wavelet Transforms. An

in depth analysis of the method can be found in [50]. The wavelet transform Ws of
1i.e. the capability of distinguishing between more or less closely spaced neighboring spectral com-
ponents
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the signal s is defined by

Ws (a, b) =
ˆ
s (t)√
a
ψ

(
t− b
a

)
dt,

where ψ is a chosen wavelet. Later, in the same paper, a candidate for IF is defined

as

ωs (a, b) =
∂
∂b
Ws (a, b)
iWs (a, b) .

They show that this candidate would be a very good approximation of the true

frequency φ′ (t) if the following strict conditions are satisfied for s (t) = A (t) eiφ(t):

A ∈ C1 (R)
⋂
L∞, φ ∈ C2 (R) ,

inf
t∈R
φ′ (t) > 0, sup

t∈R
φ′ (t) <∞,

(8.1.1) |A′ (t)| , |φ′′ (t)| ≤ ε |φ′ (t)| ,∀t ∈ R,

M ′′ := sup
t∈R
|φ′′ (t)| <∞.

8.1.1 is the strictest condition. When considering an IS, other conditions are imposed

on components. Nevertheless, this method does not address uniqueness concerns and

these conditions cannot address intrawave signals. They also do not discuss cases

with mode mixture. In that paper, a toy example is mentioned by which the problem

of uniqueness is explained:

s (t) = 0.25 cos ((Ω− γ) t) + 2.5 cos (Ωt) + 0.25 cos ((Ω + γ) t)

=
(

2 + cos2
(
γ

2 t
))

cos (Ωt) .

The definition of the frequency of an IMF was originally based on the Hilbert

Transform (HT) of the signal [32]. Huang’s definition was based on the number of

extrema and zero crossings. However recently it was modified by a sifting process

[33], and the normalization scheme, which is based on normalizing the extracted IMF
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in an iterative way so that at the final step, the signal is in [−1, 1]. In order to find

the IF, HT or a simple quadrature like
√

1− cos2 ϕ (t) is used.

The problem of non-uniqueness is mentioned in detail in [47] for two-tone signals.

Under some conditions, the EMD method provides the physical or perceived extrac-

tion: “... EMD allows one to address in a fully data-driven way the question whether

a given signal is better represented as a sum of two separate, unmodulated tones,

or rather as a single, modulated waveform, with an answer that turns out to be in

good agreement with intuition.” Unfortunately, the study considers a very simplified

example and is therefore not general.

Hou and Shi [25, 24, 26] use different approaches to define an IMF. Their initial

approach [24] was to define an IMF a (t) cos θ (t) that has a smooth envelope. The

smoothness of the envelope was defined based on the Total Variation of the envelope.

Later [25], they changed their approach to define an IMF a (t) cos θ (t) as a (t) ∈

V (θ (t)) s.t. a (t) > 0, θ′ (t) > 0 where

(8.1.2) V (θ) = span

{
1, cos

(
θ

λ

)
, sin

(
θ

λ

)
| λ > 2

}
.

This definition is the most rigorous of all. Nevertheless, it has the drawback that it is

not in accord with the traditional definition of an IMF defined by Huang [32, 33]. For

example, in f =
(
1 + 0.9 cos t

2

)
cos t, there are three extrema rather than one around

t = 0.5, between two zeros of the function. In other words, the IMF is bumpy.

Wu [54] has suggested that the definition of the IF should be extended to shape

functions. He proposes to have a (t)S (θ (t)), where S is a shape function, which itself

could be a summation of many A (t) cosψ (t)s. He puts the periodicity burden on the

shape function; essentially, the phase function θ (t) is just a one-to-one map from the

t-coordinate to the θ-coordinate. However, this approach has two problems here: the

shape function must be known in advance, (but no method is provided for extracting

it), and if the physical properties of the signal are embedded in ψ (t), taking the whole
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signal as a (t)S (θ (t)) would dilute the physical interpretation. Furthermore, lack of

uniqueness is also a big problem for their method.

Cohen [14] defines the instantaneous frequency of a signal of form f (t) = A (t) eiϕ(t)

as the time derivative of ϕ (t) but does not put any constraint on the envelope or phase

function. This is a very similar definition to that in [11]. Here, IF is an empirical

phenomenon experienced daily as changing colors or pitch. Based on his definitions,

one interesting way of connecting time to frequency is to find the quantity

〈tϕ′ (t)〉 =
ˆ
tϕ′ (t) |f (t)|2 dt.

Cohen emphasizes that the IF concept is not mature enough and tries to introduce

ways by which an intuitive definition of IF can be found. The first way is to have an

analytic signal (see [21] and [53]) using the Hilbert transformation of the signal

z (t) = s (t) + j

π

ˆ
PV

s (t′)
t− t′

dt′.

Here, s (t) is the observed signal. Huang [32] mentions that this way of defining the

instantaneous frequency would be flawed and counter intuitive if a mono component

signal (IMF) is not used. The other way that Cohen defines the IF is based on the

quadrature method. It is essentially not useful:

sq (t) = A (t) eiϕ(t) for s (t) = A (t) cosϕ (t) .

Cohen explains that the “exact mathematical description and understanding of the

concept of changing frequency is far from obvious and it is fair to say that it is not a

settled question.” He himself explains the problems of the analytic signal definition

in his work.

Lin et al. in [38] have introduced a new EMD method that is based on “moving

averages”. Unfortunately, this method does not necessarily extract the same IMFs

that are extracted by the traditional EMD method. This can also be seen as a non-

uniqueness issue. Nevertheless, the method has a strong mathematical background
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(see [28, 38]). They also emphasize that the notion of IF is controversial in nature.

However, they continue to use the analytic signal approach definition to define the

IF.

There are also other definitions of IF that we just enumerate:

(1) Periodic Oscillatory motion: ω = 1
T
, where T is the period of the motion

[14].

(2) Dynamical System: ω (I) = ∂H(I)
∂I

, where H (p,q) is the Hamiltonian of the

system. For a conservative system, we have H = E the energy of the system,

I =
¸

pdq/2π and
∂H
∂qi

= −ṗi,

∂H
∂pi

= q̇i.

This definition is good for low dimensional dynamical systems (see [36]).

(3) Wigner Ville Distribution (WVD) [14]:

V (t, ω) =
ˆ ∞
−∞

x
(
t+ τ

2

)
x
(
t− τ

2

)
e−iωτdτ,

〈ω〉t =
´∞
−∞ ωV (t, ω) dω´∞
−∞ V (t, ω) dω .

Clearly, then the literature mentioned has no consensus on the definition of an IMF

and IF.

8.1.2. A New Look into the Definitions of IMF and IFs. The classical

definition of an IMF is based on the fact that the phase function θ (t) and the envelope

function a (t) are defined and then the IMF is defined as a (t) cos θ (t). This approach

encompass the idea that the envelope belongs to a certain dictionary [25, 24, 26]. The

other approach, mainly depicted by Huang [32], considers an IMF to be an oscillatory

function in which the difference between the number of extrema and zero crossings

could be at most one, meaning that the defined IMF must have an a (t) cos θ (t)

representation.
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Here, we show that both definitions result in the fundamental observation that an

IMF does not have a unique representation. We will start with Huang’s claim, and

prove it. Then we will combine it with Hou’s definition.

Definition 9. An n-zero-Cm IMF is a real function f (t) in Cm, having n first-order

zeros in [t0, tn−1] and (n− 1) extrema. t0 and tn−1 are two of the zeros. m ∈ N and

n ∈ N, n ≥ 3.

8.1.2.1. C0 Phase functions. Between any two zeros of an n-zero-Cm IMF, one

can define a linear phase function θ (t). This linear phase function would help to

construct a representation of the form a (t) sin θ (t). However, as the phase function

has a discontinuous first derivative on zeros of the IMF, the envelope function a (t)

would be undetermined on all ti, i = 0, . . . , n. This kind of representation can be

useful in numerical cases.

8.1.2.2. C1 Phase functions. In order to alleviate the discontinuity problem in

the previous part, we propose the next lemma, by which we can find a smoother

representation for an n-zero-Cm IMF.

Lemma 6. There exists a C1 map θ (t) : [t0 = 0, t2 = 1] → [0, π] such that, θ (0) =

0, θ (1) = π, dθ
dt
> 0 and dθ

dt
|t0=0 = M > 0.

Proof. Take the function,

θ (t) =


πt+ kte

1
tq−1 t ∈ [0, 1)

π t = 1

for k = e (M − π) , 0 < q < 1. The only free parameter so far is q, which would

determine if dθ
dt
> 0. Taking the first derivative of θ (t) gives

dθ

dt
(t) =


π + ke

1
tq−1 − kqtqe

1
tq−1

(tq−1)2 t ∈ [0, 1) ,

π t = 1.
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Now, we need to make sure that q guarantees a positive derivative. Taking the second

derivative of the phase function and equating that to zero to find the location of the

minimum of the first derivative would tell us that the relevant zero would occur at

t =

−
(
q + 2−

√
q (5q + 4)

)
2 (q − 1)


1/q

.

The value of the first derivative of θ (t) at this point is π + f (q) k, where f (q) is a

monotone decreasing function for 0 < q < 1. The bounds of this function are 0 and

− 5
e3
. Hence, for any value of k, one can always find an appropriate value of q ∈ (0, 1)

such that dθ
dt
> 0. �

The next lemma will now pave the way to express smoother representation of an

n-zero-Cm IMF.

Lemma 7. There exists a C1 map θ (t) : [t0 = 0, tn−1 = 1]→ [0, (n− 1)π] such that,

θ (ti) = iπ, for i = 0, . . . , n− 1 , dθ
dt
> 0 .

Proof. For t ∈ [t0 = 0, t1], set θ (t) = π t
t1
. For t ∈ [t1, t2], use Lemma 6 to

construct θ (t) having θ̇ (t1) = π
t1
. In other words, in t ∈ [t1, t2] take

θ (t) =


π + π

(
t−t1
t2−t1

)
+ eπ

(
t2−t1
t1
− 1

) (
t−t1
t2−t1

)
e

1

( t−t1
t2−t1 )q−1

t ∈ [t1, t2) ,

2π t = t2.

In general, for the ith piece, i = 2, . . . , n− 1, take

θ (t) =


(i− 1)π + π

(
t−ti−1
ti−ti−1

)
+ eπ

(
ti−ti−1
ti−1−ti−2

− 1
) (

t−ti−1
ti−ti−1

)
e

1(
t−ti−1
ti−ti−1

)q
−1

t ∈ [ti−1, ti) ,

iπ t = ti.

The way that we have defined the map satisfies θ (t) ∈ C1, where dθ
dt
> 0. �

Lemma 8. If there is a map θ (t) ∈ C1, where dθ
dt
> 0, having fixed points (t0 = 0, 0) ,

(t1, π) , (t2, 2π) , . . . , (tn−1 = 1, (n− 1) π), then an n-zero-C1 IMF f (t) on [t0 = 0, tn−1 = 1]

has a representation of a (t) sin θ (t) form, for (a (t) > 0) ∈ C.



166

Proof. Without loss of generality, assume that between the first two zeros of

f (t), the IMF is positive. Take a (t) = f(t)
sin θ(t) for all t ∈ [0, 1] except the nodes at ti

for i = 0, . . . , n− 1. For those nodes, one should take a (ti) = f ′(ti)
−θ′(ti) , then a (t) ∈ C.

The positivity of a (t) follows from the way it is defined. �

These lemmas show that an n-zero-C1 IMF, whether defined in Hou’s or Huang’s

way, has a representation of a (t) sin θ (t). The following Lemma and Theorem show

that uniqueness does not exist.

Lemma 9. If there exists a strictly increasing map θ (t) on t ∈ [0, 1], having fixed

points 0, π, 2π, . . . , nπ, then there are infinitely many strictly increasing maps having

the same fixed points.

Proof. Since the map t → θ (t) is strictly increasing, then it is also invertible

on the same domain. Take the map χ (θ) = θ + c sin θ. This map has the same fixed

points; if |c| < 1, then χ would be strictly increasing in θ and consequently in t.

t → θ (t) is invertible, and θ → χ (θ) is also invertible, hence t → χ (t) is invertible.

Since there are infinitely many values satisfying |c| < 1, the proof is complete. �

Theorem 15. An n-zero-C1 IMF has infinitely many a (t) sinψ (t) representations.

Proof. Using Lemmas 8 and 7, one can construct one a (t) sin θ (t). Using Lemma

9 on θ (t) ∈ C1, where dθ
dt
> 0, one can find ψ (t) ∈ C1, where dψ

dt
> 0. Again using

Lemma 8 one can find another representation for the same IMF, A (t) sinψ (t). �

8.1.2.3. C∞ Phase functions. In this subsection, we present very smooth phase

functions, which helps to produce an a (t) sin θ (t) representation for an n-zero-Cm

IMF that has a Cm envelope a (t). We first construct piecewise linear phase functions

and then connect them using mollifiers in a way that the resulting phase function is

a C∞ smooth function.

Definition 10. A compact support mollifier is a C∞ smooth function that has a

compact support in R.
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Figure 8.1. C∞ Compact Support Mollifier
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Figure 8.2. C∞ Connector Mollifier

An example of a mollifier is

χ (x) =


e
−1
x x > 0,

0 x ≤ 0.

This function is a C∞ smooth function. One can easily convert this into a compact

support mollifier by introducing the new function

µ (x) =


χ (x)χ (1− x) 0 < x < 1,

0 otherwise.

This function is symmetric (see Figure 8.1). Now, we need a mollifier to connect the

two frequencies:

Definition 11. We define a connector mollifier (see Figure 8.2) as follows:

η (x) =
´ x

0 µ (ξ) dξ´ 1
0 µ (ξ) dξ

.
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Lemma 10. For a connector mollifier defined in Definition 11, we have
ˆ 1

0
η (x) dx = 1

2 .

Proof. We have
´ 1

0 η (x) dx =
´ 1

0

´ x
0 µ(ξ)dξ´ 1
0 µ(ξ)dξdx

= 1´ 1
0 µ(ξ)dξ

´ 1
0

´ x
0
e

1
y−1

e
1
y
dydx

= 1´ 1
0 µ(ξ)dξ

´ 1
0

´ 1
y
e

1
y(y−1)dydx

= 1´ 1
0 µ(ξ)dξ

´ 1
0 (1− y) e

1
y(y−1)dy

=
´ 1
0 (1−y)e

1
y(y−1) dy

´ 1
0 e

1
y(y−1) dy

= 1−
´ 1
0 ye

1
y(y−1) dy

´ 1
0 e

1
y(y−1) dy

= 1− 1
2 = 1

2 .

Remember that
´ 1
0 ye

1
y(y−1) dy

´ 1
0 e

1
y(y−1) dy

= 1
2 comes from the symmetric behavior of e

1
y(y−1)

around y = 0.5. �

The connector mollifier defined in Definition 11 can connect two discrete values a, b

on an interval (ε1, ε2) by

ηε2ε1 (x; a, b) = (b− a) η
(
x− ε1

ε2 − ε1

)
+ a.

We will use this later to construct the C∞ phase function.

Lemma 11. There exists 0 < ε1 < ε2 < 1 and fε1 > 0, such that

(8.1.3)
ˆ ε1

0
ηε10 (x; a, fε1) dx+

ˆ ε2

ε1

ηε2ε1 (x; fε1 , b) dx = bε2,

for any a > 0, b > 0 and a 6= b.

Proof. Case 1 (b > a):

For sufficiently small ε1 (0 < ε1 � 1) one can always find fε1 > 0 satisfying the

inequality

(8.1.4) b+ (b− a) ε1 < fε1 < b+ (b− a) .
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Now set ε2 =
(
b−a
fε1−b

)
ε1. This condition, based on inequality (8.1.4), will satisfy the

condition 0 < ε1 < ε2 < 1 :

i) fε1 < b+ (b− a)⇒fε1 − b < (b− a)⇒1 < (b−a)
fε1−b
⇒ε1 <

(b−a)
fε1−b

ε1⇒ε1 < ε2.

ii) b+ (b− a) ε1 < fε1⇒(b− a) ε1 < fε1 − b⇒
(b−a)
fε1−b

ε1 < 1⇒ε2 < 1.

Using this value of ε2 we will prove that Equation (8.1.3) is satisfied:
´ ε1

0 ηε10 (x; a, fε1) dx+
´ ε2
ε1
ηε2ε1 (x; fε1 , b) dx =

´ ε1
0

(
(fε1 − a) η

(
x
ε1

)
+ a

)
dx

+
´ ε2
ε1

(
(b− fε1) η

(
x−ε1
ε2−ε1

)
+ fε1

)
dx

= ε1
´ 1

0 ((fε1 − a) η (x) + a) dx

+ (ε2 − ε1)
´ 1

0 (b− fε1) η (x) dx

+ (ε2 − ε1)
´ 1

0 fε1dx

Now, using the fact that
´ 1

0 η (x) dx = 1
2 , we have

´ ε1
0 ηε10 (x; a, fε1) dx+

´ ε2
ε1
ηε2ε1 (x; fε1 , b) dx = ε1

a−b
2 + ε2

b+fε1
2

= ε2
((

b−fε1
a−b

)
a−b

2 + b+fε1
2

)
= bε2.

Case 2 (b < a):

For sufficiently small ε1 (0 < ε1 � 1) one can always find fε1 > 0 satisfying the

inequality

(8.1.5) b− (a− b) < fε1 < b− (a− b) ε1.

Now set ε2 =
(
b−a
fε1−b

)
ε1. This condition, based on inequality (8.1.5), will satisfy the

condition 0 < ε1 < ε2 < 1 :

i) fε1 < b− (a− b) ε1⇒(a− b) ε1 < b− fε1⇒
(a−b)
b−fε1

ε1 < 1⇒ε2 < 1.

ii) b− (a− b) < fε1⇒b− fε1 < a− b⇒ (a−b)
b−fε1

ε1 > ε1⇒ε2 > ε1.

Again, using this value of ε2 we will prove that Equation (8.1.3) is satisfied. �

Lemma 11 will help us to match together the piecewise continuous instantaneous

frequencies and consequently make a C∞ phase function. However, before doing so,

we need more prerequisites.



170

Lemma 12. If the function f (θ) is Cm
θ and θ (t) is Cm

t , then f (θ (t)) is Cm
t , for

m ≥ 0.

Proof. For m = 0 the proof is trivial, and for m > 0 one can use the Chain

Rule. �

Lemma 13. If the function f (u) is Cm
u and θ (u) is Cm

u and dθ
du
> 0, then f (θ) is

Cm
θ , for m ≥ 1.

Proof. We show the proof for one step, which can be extended by induction.

Define y = f (u) and x = θ (u). As a result, y = f (θ−1 (x)). Now apply the Chain

Rule:
dy
dx
|x=p = dy

du
|u=θ−1(p)

du
dx
|x=p

= f ′ (θ−1 (p)) du
dx
|x=p

= f ′ (θ−1 (p)) 1
θ′(θ−1(p))

In short, dy
dx

(x) =
(
f ′

θ′

)
(θ−1 (x)) . This procedure can be continued for higher

derivatives as well. As θ′ > 0, the conclusion follows that y = f (θ) is in Cm
θ . �

Lemma 14. There exists a non-unique C∞ map θ (t) : [t0 = 0, tn−1 = 1]→ [0, (n− 1) π]

such that, θ (ti) = iπ, for i = 0, . . . , n− 1 , dθ
dt
> 0 .

Proof. At the first step, fit a piecewise map between the nodes θ (ti) = iπ. This

piecewise map has constant frequencies in (ti, ti+1) namely ωi for i = 0, . . . , n − 2.

In order to make this piecewise constant frequency map into a C∞ map, use Lemma

11: For [t0, t1], ω0 = π
t1−t0 . For [t1, t1 + ε], where t1 + ε < t2, use Lemma 11 with

a = ω0 and b = ω1 = π
t2−t1 ; hence, for [t1 + ε, t2], we set ω1 = π

t2−t1 . Doing this in

[t0 = 0, tn−1 = 1] one can construct a C∞ instantaneous frequencyω (t). Integrating

such a function would produce our desired map θ (t) =
´ t

0 ω (ξ) dξ.

There are three subtle points that we need to address to finalize the proof:

1- When using Lemma 11, we implicitly use a linear map between [ti, ti+1] and

[0, 1]. This map preserves the C∞ properties of ω (t) due to the way we have defined

η (x) in Lemma 11.
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2- The non-uniqueness property of the map comes from the free parameters in

Lemma 11.

3- The way we have defined η (x) and the essential integral in Definition 11 and

Lemma 11 would guarantee π =
´ ti+1
ti

ω (ξ) dξ. �

Theorem 16. If there is a map θ (t) ∈ C∞, where dθ
dt

> 0, having fixed points

(t0 = 0, 0) , (t1, π) , (t2, 2π) , . . . , (tn−1 = 1, (n− 1) π), then an n-zero-Cm IMF f (t) on

[t0 = 0, tn−1 = 1], for m ≥ 2, has a representation of a (t) sin θ (t) form, for a (t) > 0

at least in Cm−2.

Proof. Define a (t) = f(t)
sin(θ(t)) . If we prove that a (θ) = f(θ)

sin θ is in Cm−2
θ , using

Lemmas 12 and 13 we can say that a (t) at least in Cm−2
t . Without loss of generality,

assume that between the first two zeros of f (t), the IMF is positive.

Take a (θ) = f(θ)
sin θ . For all θ ∈ [0, (n− 1) π], a ∈ Cm

θ except the nodes at θi = iπ

for i = 0, . . . , n − 1. At those nodes, we define a(q) (θi) = lim
θ→θi

dq

dθq

(
f(θ)
θ−θi

sin(θ−θi)
θ−θi

)
. The

function sin θ
θ

is in C∞θ . The function f(θ)
θ

will have a representation like

1
θ − θi

m−1∑
j=1

1
j!
djf

dθj
(θi) (θ − θi)j + 1

m!
dmf

dθm
(ξ) (θ − θi)m

 ,

based on Taylor’s Theorem, for some ξ. In fact, lim
θ→θi

dq

dθq

(
f(θ)
θ−θi

sin(θ−θi)
θ−θi

)
exists up to order

q = m − 2 without depending on dmf
dθm

(ξ). This proves that a ∈ Cm−2
θ at least. The

positivity of a follows from the way it is defined. This concludes the proof. �

Corollary 1. An n-zero-Cm IMF, for m ≥ 2 , has infinitely many a (t) sinψ (t)

representations for ψ (t) ∈ C∞ and a (t) ∈ Cm−2.

8.1.3. Best Representations. Since an IMF might have many representations

with different regularities in phase and envelope, we must identify the best represen-

tation.

Assume that there is a representation of an IMF of the form a (t) cos θ (t) for some

θ (t) ∈ C∞ and a (t) ∈ Ck, k ≥ 0. From visual point of view, the best representation
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is the one that has the smoothest envelope compared to the oscillatory part cos θ (t).

This smoothness must be enforced in the θ-space and not the t-space. So, in the

continuous case, the best representation of such an IMF is the solution of the following

optimization problem.

(8.1.6)

minimize
ω(t)

‖a‖Wk,p
θ

subject to
´ ti+1
ti

ω (t) dt = π, i = 0 . . . n− 2,

θ (t) ∈ C∞,

ω (t) = dθ
dt

(t) .

Here, we have abused the notation a bit. In fact, W k,p
θ is the symbol of Sobolev

Spaces [19] with a wider range of functions that have weak derivatives, but here we

use ‖a‖Wk,p
θ

to refer to

‖a‖Wk,p
θ

=
 k∑
j=0

∥∥∥∥∥djadθj (θ)
∥∥∥∥∥
p

Lp
θ

 1
p

.

This problem is not necessarily convex and in fact it is not always a tractable problem.

However, we can have a relaxed discrete version of it to help us chose between two

different representations of the same IMF. We propose that if an IMF has two different

representations, we pick the one that has the following norm as the minimum:

‖a‖W 1,2
θ

=
‖a (θ)‖2

L2
θ

+
∥∥∥∥∥dadθ (θ)

∥∥∥∥∥
2

L2
θ

 1
2

.
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CHAPTER 9

Concluding Remarks

In this thesis, we have further developed the STFR methods initially developed

by Hou and Shi [25, 24, 26]. The main areas of the concentration for this development

have been

• The development the non-periodic STFR method

• Modifying the STFR method to extract intrawave signals, sharp signals, and

rare events

• Analysis of the convergence of the periodic STFR method with a variable

filter length

• Applications of the STFR method in dynamical systems

• Application of the modified version of the STFRmethod, namely the Intrinsic

Frequency (InF) method in cardiovascular health analysis.

Since the periodic STFR method was not able to handle non-periodic signals, we in-

troduced an l1-regularized-l2 sparse optimizer that could handle this problem readily.

Our results show that the method is not only able to handle non-periodic data, but

is also fairly stable to noise and is a good trend detector. When compared with other

STFR methods, the only shortcoming of the Non-Periodic STFR method is the speed

of the algorithm.

The implementation of non-periodic STFR with the adjustment of the parameters

of the algorithm so that it is capable of handling intrawave signals paved the way to

properly analyze such signals. After minor adjustments, many signals which were

hard to analyze using any other adaptive method can now be easily extracted and

analyzed. The EMD method can extract one intrawave IMF in the absence of noise.

However, neither EMD nor EEMD can extract even one intrawave IMF in the presence
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of noise. Even intrawave signals that contain a mode mixture can be easily tackled

by extracting the mode mixed signals simultaneously using the non-periodic STFR

method with adjusted the filter parameter. Not only is the algorithm that we use

to extract the intrawave IMFs stable, it is also robust to noise perturbation. The

EMD/EEMD methods fail to extract the two IMFs properly. In fact all other adaptive

methods fail to extract one IMF with intrawave frequency modulation in the presence

of noise, let alone two IMFs with intrawave mode mixture characteristics.

In this thesis, we also showed the convergence of the periodic STFR method with a

variable filter length. This convergence analysis, based on a contraction and harmonic

analysis, is essentially viable when one is trying to extract an ordinary IMF or an

intrawave IMF. We proved that for any signal, whether intrawave or not, increasing

the filter span reduces the extraction error. We showed that the STFR method will

converge to an IMF that is close to one of the IMF representations, but with an error

associated with the width (span) of the filter.

By applying our method in dynamical systems, we showed that many IMFs are

simply byproducts of the dynamical systems. We presented a method to quantify

the nonlinearity of the IMFs given by the STFR method. The main idea is to estab-

lish a connection between the IMFs and classical second order differential equations.

This observation enables us to discover the second order ODE of a specified IMF.

Furthermore, this approach enables us to define the degree of nonlinearity of an IMF.

The InF method was also used to measure heart performance in humans and dogs,

raising the possibility of using the InF to diagnose cardiovascular diseases based on the

analysis of the aortic pressure wave. We proved the convergence of the InF method,

and hope that this modified version of STFR can be used in real life diagnosis of

cardiovascular diseases.

All in all, in this work, we successfully expanded the realm of the STFR method

both in theory and application.
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