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ABSTRACT 

Cardiovascular diseases (CVDs) have reached an epidemic proportion in the US and worldwide 

with serious consequences in terms of human suffering and economic impact. More than one third 

of American adults are suffering from CVDs. The total direct and indirect costs of CVDs are more 

than $500 billion per year. Therefore, there is an urgent need to develop noninvasive diagnostics 

methods, to design minimally invasive assist devices, and to develop economical and easy-to-use 

monitoring systems for cardiovascular diseases. In order to achieve these goals, it is necessary to 

gain a better understanding of the subsystems that constitute the cardiovascular system. The aorta is 

one of these subsystems whose role in cardiovascular functioning has been underestimated. 

Traditionally, the aorta and its branches have been viewed as resistive conduits connected to an 

active pump (left ventricle of the heart). However, this perception fails to explain many observed 

physiological results. My goal in this thesis is to demonstrate the subtle but important role of the 

aorta as a system, with focus on the wave dynamics in the aorta.  

The operation of a healthy heart is based on an optimized balance between its pumping 

characteristics and the hemodynamics of the aorta and vascular branches. The delicate balance 

between the aorta and heart can be impaired due to aging, smoking, or disease. The heart generates 

pulsatile flow that produces pressure and flow waves as it enters into the compliant aorta. These 

aortic waves propagate and reflect from reflection sites (bifurcations and tapering). They can act 

constructively and assist the blood circulation. However, they may act destructively, promoting 

diseases or initiating sudden cardiac death. These waves also carry information about the diseases of 

the heart, vascular disease, and coupling of heart and aorta. In order to elucidate the role of the aorta 

as a dynamic system, the interplay between the dominant wave dynamic parameters is investigated 

in this study. These parameters are heart rate, aortic compliance (wave speed), and locations of 

reflection sites. Both computational and experimental approaches have been used in this research. In 

some cases, the results are further explained using theoretical models.   

The main findings of this study are as follows: (i) developing a physiologically realistic outflow 

boundary condition for blood flow modeling in a compliant vasculature; (ii) demonstrating that 

pulse pressure as a single index cannot predict the true level of pulsatile workload on the left 

ventricle; (iii) proving that there is an optimum heart rate in which the pulsatile workload of the 

heart is minimized and that the optimum  heart rate shifts to a higher value as aortic rigidity 

increases; (iv) introducing  a simple bio-inspired device for correction and optimization of aortic 



 vii 
wave reflection that reduces the workload on the heart; (v) deriving a non-dimensional number 

that can predict the optimum wave dynamic state in a mammalian cardiovascular system; (vi) 

demonstrating that waves can create a pumping effect in the aorta; (vii) introducing a system 

parameter and a new medical index, Intrinsic Frequency, that can be used for noninvasive diagnosis 

of heart and vascular diseases; and (viii) proposing a new medical hypothesis for sudden cardiac 

death in young athletes. 
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1 
C h a p t e r  1  

INTRODUICTION 

1.1 Motivation 

Cardiovascular diseases (CVDs) are the underlying cause of about one out of every three deaths in 

the United States each year. Thirty-four percent of American adults are suffering from one or more 

types of CVD. In 2010, the total direct and indirect cost of CVDs was approximately $503 billion 
1
. 

Certainly, there is an urgent need to develop new methods and devices for diagnosing and 

monitoring CVDs. In order to meet this need, it is necessary to gain a better understanding of the 

dynamics of the systems that constitute the cardiovascular system. Traditionally, the cardiovascular 

system has been viewed as an active pump connected to a passive vascular network. In this thesis, I 

looked at the aorta and its vascular branches as a system with a dynamic behavior. This new 

perspective enables us to achieve the following: (i) designing new approaches for therapeutics; (ii) 

developing new noninvasive methods for diagnostics; (iii) finding optimization criteria in the 

mammalian cardiovascular system; (iv) explaining paradoxical results in medical literature; and (v) 

proposing solutions for unsolved medical problems.  

1.2 Systems Approach 

The systems approach is a method of studying complex physiological and biological systems where 

global behaviors, properties and dynamics of the system are considered in an integrated context 
2
. In 

this respect, the systems approach contrasts with the reductionist approach where individual 

components and local effects are being studied. The reductionist approach has dominated biology 

and physiology for nearly a century. While this approach has produced a treasure of information, it 

commonly fails when scaling up to macro-physiological systems. Here, I apply a systems approach 

to the cardiovascular system with a focus on the wave dynamics in the aorta. This thesis shows how 

such an approach helps us achieve the aforementioned goals. 

1.3 Basic Cardiovascular Physiology and Anatomy 

The cardiovascular system is composed of a four-chambered pump (the heart) and two networks of 

vessels, systemic vasculature and pulmonary vasculature. The heart provides the required energy to 

propel the blood throughout the vascular trees. The systemic vascular vessels deliver the blood, 



 

 

2 
which contains nutrient and oxygen, to all organs, tissues, and cells in the body, and remove waste 

and carbon dioxide from them. The pulmonary vasculature works with the pulmonary system to 

exchange oxygen and carbon dioxide.  The cardiovascular system also cooperates closely with the 

endocrine system, immune system, renal system, and gastrointestinal system closely 
3
. 

1.3.1 Heart 

The heart is a muscular pump which consists of four chambers and four valves.  It pumps the blood 

through the systemic vascular tree by contraction of the left ventricle through the aortic valve and 

aorta (the largest artery of the body and the focus of this research). Blood returns to the right atrium 

by using veins. After passing through the tricuspid valve, blood is sent to the pulmonary vascular 

bed (lung) by contraction of the right ventricle and opening and closure of the pulmonary valve 

(Figure 1.1). 

 

Figure 1.1:  Human heart. Figure is adapted from Parker 
4
. 

Four important factors have been introduced which quantify the performance and output of the 

heart. These factors are cardiac output (CO), stroke volume (SV), heart rate (HR), and ejection 

fraction (EF).  



 

 

3 
Stroke volume is the volume of blood that goes out in each contraction. It can be calculated by 

subtraction of the end systolic volume (ESV) from the end diastolic volume (EDV). The heart rate 

is the frequency of the heart’s contraction. For humans, it ranges from 40 to 200 beats per minute 

(bpm). Cardiac output (CO) is defined as the volume of the blood sent out per minute. CO can be 

calculated by multiplication of the stroke volume and the heart rate. Ejection fraction is the ratio of 

stroke volume to end-diastolic volume and is an index for estimation of myocardial contractility.   

The relationships between these factors are represented by the following equations 
3
: 

                                                                                                                                                (   ) 

   (  )(  )                                                                                                                                         (   ) 

(   
  

   
  )                                                                                                                           (   ) 

1.3.2 Vascular System 

The vascular system is composed of two parallel circulation paths, Pulmonary and Systemic, each 

with two different kinds of conduits: arteries and veins (Figure 1.2). Pulmonary circulation refers to 

the vessels that transfer poorly oxygenated blood from the right ventricle to the lungs and returns 

the richly oxygenated blood back to the heart. The systemic circulation is a part of the vascular 

system that delivers richly oxygenated blood from the left ventricle to different organs and tissues 

through the systemic arteries and returns it to the right atrium through systemic veins 
3
. Arteries and 

veins are different in both structure and duty. Arteries have relatively thick and muscular walls 

which enable them to tolerated high pressure conditions. On the other hand, veins are noticeably 

thinner and hence more compliant than the arteries. The blood pressure in veins is a lot lower than 

in arteries (especially large arteries); as a result, the blood flow is smoother and slower. Large veins 

have valves that prevent blood flowing back in the opposite direction
3
. 
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Figure 1.2:  Human vascular system. Reds are arteries and blues are veins. Figure is adopted from 

Parker 
4
. 

1.3.3 Aorta 

The main focus of this research is the largest vessel of the systemic circulation or the aorta (see 

Figure 1.3). The initial part of the aorta, after the sinuses of valsalva, is called the ascending aorta. It 

is approximately 3 cm long and fairly straight. At the end of the ascending aorta, it curves 180 

degrees in a three-dimensional pattern, having three branches (right subclavian artery, common 

carotid, and left subclavian). This curved vessel is named the aortic arch. It then goes straight down 
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toward the abdomen passing the diaphragm. At the end of the abdominal aorta, it terminates into 

two iliac arteries. The bifurcation angles of the aorta’s branches are different from one to another. 

The bifurcation angle is shown to be one of the important factors in energy dissipation and wave 

reflection at the bifurcation site 
5
. 

 

Figure 1.3: Human aorta and its main branches. Image from Cedars-Sinai Heart Institute. 

The blood flow in the aorta is pulsatile and operates at the highest level of the body’s blood 

pressure. The aorta is more compliant than other arteries and arterioles. It tapers along its length and 

its wall rigidity increases as it goes away from the heart. The rate of the tapering is slightly variable 
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between animals. Although all arteries taper, the total cross-sectional area of the systemic vascular 

bed increases as it travels away from the heart 
6, 7

. 

1.3.4 Blood 

Blood is a viscoelastic, non-Newtonian, two-phase and shear-thinning fluid. However, in large and 

medium arteries blood acts as a Newtonian, one phase, and incompressible fluid 
6
. The major task 

of blood is to transport oxygen and nutrients to the tissues and remove CO2 and waste from them. In 

addition, blood contributes in homeostasis by distributing water, solutes and heat. The major 

components of blood are Erythrocytes (red blood cells), Leukocytes (white blood cells), and 

platelets 
3
. 

1.4 Impedance Pump and Wave Dynamics in a Compliant Tube 

The wave dynamics in a compliant tube is a complex nonlinear phenomenon that includes wave 

interactions and resonance 
8-12

. Waves in compliant tubes can create a pumping effect as first 

observed by Liebau 
13

. In 1954, Liebau recognized it is possible to flow a fluid against a pressure 

gradient by compressing an elastic tube in a periodic fashion at an asymmetric location.  He 

suggested that elasticity, inertia, and viscosity of the tube are the dominant factors that affect the 

performance of the device. However, he did not explain the role of each parameter. The study of the 

physics of wave propagation in fluid filled elastic tubes goes back to nineteenth century when Lamb 

and Korteweg were working on this phenomenon 
14

. This study was carried on by Womersley, 

Morgan, and Kiely in the 1950’s ,who used linear approximation theory to investigate the effect of 

viscosity on flow behavior and wave propagation in elastic tubes
15, 16

.  

 In its simplest form, an impedance pump (Liebau pump) is composed of a compliant tube 

connected to two rigid tubes at both ends, and a pincher. The pincher hits the compliant tube and 

creates waves. These waves propagate toward both ends, where they reflect upon the impact on the 

rigid boundary (Figure 1.4). The wave propagation and reflection in the elastic tube create wave 

dynamics which may produce pumping effects. The direction and magnitude of the net flow in the 

impedance pump depends on the state of the wave dynamics, which are mainly dominated by three 

factors: (1) material properties of the compliant tube (that defines the wave speed), (2) frequency of 

the excitation (pincher frequency), and (3) locations of reflection sites (distance between pincher 

and rigid tubes) 
8-11, 17-19

.  
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Figure 1.4: Schematic of a simple impedance pump. 

Despite the complicated physics of the impedance pump, it provides a simple message: waves can 

assist circulating fluid flow in a compliant tubing system in a certain direction. The direction and 

the magnitude of the net flow depend on the wave dynamic characteristics which show nonlinear-

type behavior and resonance 
8, 11, 20

. 

1.4 Thesis Outline 

A realistic outflow boundary model for blood flow modeling in compliant vessels is introduced in 

Chapter 2. This boundary model takes into account the important physiological effects of the 

eliminated vasculature. In fact, this boundary condition is a system equivalent to the truncated 

vascular network. The advantages of this outflow boundary condition over other existed boundary 

conditions will be discussed in this chapter. 

It will be shown in Chapter 3 that using pulse pressure (pp) as a single index (reductionist approach) 

can result in an underestimation of the level of left ventricular (LV) workload under abnormal wave 

conditions. I show that due to the destructive interaction of aortic waves, the pulsatile LV workload 

can still be abnormally high when pp seems normal. Therefore, in hypertensive patients, a systems 

approach with full analysis of wave dynamics in the aorta is essential for the prevention and 

management of left ventricular hypertrophy (LVH), heart failure (HF), and sudden cardiac death 

(SCD). 

The concept of optimum heart rate for minimization of left ventricular workload is introduced in 

Chapter 4. It is shown in this chapter that there is an optimum condition for aortic waves that 

minimizes the pulsatile workload on the heart. The results of this chapter suggest that controlling 
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and modifying aortic wave dynamics—as the determinant of LV pulsatile load—can be a 

therapeutic approach for the reversal or prevention of HF. 

In Chapter 5, I use an in-vitro experimental approach to validate the finding of our computational 

study in Chapter 4.  A simple bio-inspired device that works based on the principles of wave 

dynamics is also introduced in Chapter 5. This device is minimally invasive and can potentially be 

used to reduce the LV workload in heart failure patients. 

In Chapter 6, I introduce a non-dimensional number (wave condition number) that can predict the 

optimum wave state in a mammalian cardiovascular system. I show this number is universal among 

all mammals, independent of animal size, maintaining a value of 0.1. Using an in-vitro model of a 

human aorta, I show that the optimum value of the wave condition number is 0.1 for a wide range 

of aortic rigidities. Therefore, this non-dimensional number can be useful as a diagnostic tool in the 

development of new therapeutic strategies. The results of this chapter also suggest that aortic wave 

optimization is one of the design characteristics of the mammalian cardiovascular system.  

The results of Chapter 7 demonstrate that wave reflection in the aorta creates a pumping effect 

similar to an impedance pump.  The pumping effect can generate net flow in both forward and 

backward directions depending on the state of the wave dynamics. The aorta facilitates the 

circulation of the blood when it pumps forward. When the aorta is pumping backward, the heart 

needs to generate more power to overcome the extra load created by the aorta.  

In Chapter 8, the concept of Intrinsic Frequency as a systems parameter is developed. It is shown 

that by using such a parameter we gain a deeper level of understanding of cardiovascular 

physiology. I show that intrinsic frequencies can be used as medical indices. These indices enable 

physicians to diagnose various cardiovascular diseases and to detect the optimum ventricular-

arterial coupling. Using only the pressure waveform, the intrinsic frequency concept can be used to 

quantify the impaired balance between the heart and aorta under various disease conditions. One 

important advantage of this method is that only the shape of the pressure waveform, not the 

magnitude, is required. 

In Chapter 9, a new medical hypothesis for sudden cardiac death (SCD) in young athletes is 

proposed. The hypothesis states that abnormalities in aortic wave dynamics and coronary wave 

dynamics may be responsible for SCD in these athletes. These abnormal waves—pathological 
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waves—can act as a trigger toward cardiac death in the presence of cardiovascular diseases. These 

waves may initiate SCD in the absence of apparent cardiovascular abnormalities. 
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C h a p t e r  2  

A PHYSIOLOGICALLY RELEVANT, SIMPLE OUTFLOW BOUNDARY MODEL FOR 

TRUNCATED VASCULATURE 

 

2.1 Chapter Abstract 

A realistic outflow boundary condition model for pulsatile flow in a compliant vessel is studied by 

taking into account physiological effects: compliance, resistance, and wave reflection of the 

downstream vasculature. The new model extends the computational domain with an elastic tube 

terminated in a rigid contraction. The contraction ratio, the length, and elasticity of the terminal tube 

can be adjusted to represent effects of the truncated vasculature. Using the wave intensity analysis 

method, I apply the model to the test cases of a straight vessel and the aorta and find good 

agreement with the physiological characteristics of blood flow and pressure. The model is suitable 

for cardiac transient (non-periodic) events and easily employed using so-called black box software. 

2.2 Introduction 

Computational modeling of blood flow is an important tool for better understanding of the 

underlying mechanisms of cardiovascular diseases such as atherosclerosis, aneurysms, heart attack, 

congestive heart failure, and aortic valve disorder. It is also an essential tool in the design and 

performance evaluation of cardiovascular devices such as left ventricular assist devices (LVAD), 

artificial heart valves, stents, and grafts.  

The heart generates pulsatile flow that enters the compliant aorta and propagates as flow and 

pressure waves, which reflect due to the tapering of vessels, bifurcations, and variations in arterial 

wall properties. The intensity and pulsatility of pressure waves, often accompanied by dilations of 

This chapter is based on the following published manuscript: N. M. Pahlevan, F. Amlani, H. Gorji, F. 

Hussain, and M. Gharib. A Physiologically Relevant, Simple Outflow Boundary Model for Truncated 

Vasculature. Annals of Biomedical Engineering 39(5): 1470-1481 
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local vessels, decrease as the waves enter smaller vessels and eventually disappear into the 

capillary bed. The history of blood flow simulation dates back to the 1960’s 
21-23

, and significant 

progress has been made from patient-specific image-based modeling to fluid-solid interaction 

modeling.  Realistic outflow boundary conditions are critical in acquiring physiologically relevant 

solutions for pressure and flow waves. The most commonly used outflow conditions have been (i) 

constant pressure, (ii) pure resistance, (iii) three element Windkessel, and (iv) structure tree 

(impedance) boundary models. 

2.2.1 Constant Pressure 

This outflow condition assumes that the pressure at the outflow boundary is constant. It does not 

give accurate results for the pressure wave, and it is difficult to account for the pressure phase shift 

when multiple branches are present
24, 25

. This condition is mostly valid only at the end of a capillary 

bed where the venules begin. 

2.2.2 Pure Resistance 

This outflow condition relates the pressure (p) to the flow (q) by a constant resistance (R),  

                                                                                                                                                              (   ) 

Forcing the flow and pressure waves to be in phase, results in a non-physiological solution. This 

model also eliminates the compliant effect of the truncated vascular network. Thus, this condition is 

mostly valid only at the level of the arterioles and the capillaries 
24, 26, 27

. 

2.2.3 Three Element Windkessel (RCR model) 

This is a lumped model that includes both the compliant and resistive effects of the truncated 

vascular network. The flow and pressure are related through a linear ordinary differential equation 
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(ODE), 

  

  
   

  

  
 

 

   
((     )   )                                                                                              (   ) 

The constants   ,   , and   depend on the specified level of truncation, as detailed by 

Stergiopulos
28

. Although this model admits a phase shift between the pressure and the flow, the 

shift is not significant compared to physiological values 
29

. Furthermore, the Windkessel family 

models (RC, RCR, transient RCR, etc.) do not capture the wave reflections. However, the RCR 

model has been recently modified for non-periodic phenomena in the cardiac cycle
25

. 

2.2.4 Structured Tree (Impedance Boundary Condition) 

This boundary condition was developed by Olufsen
30

 in 1999 for linearized one-dimensional 

(viscous) Navier-Stokes equations and was later modified by Vignon-Clementel et al 
31

 as the 

impedance boundary condition for three-dimensional finite element models of blood flow. Defining 

the impedance  ̂(   ) as the ratio of  ̂(   ) to   ̂(   ), which are pressure p and the flow q in 

the frequency domain respectively; 

 ̂(   )   ̂(   ) ̂(   )                                                                                                                        (   ) 

The impedance boundary condition relates pressure and flow in the time domain as an integral 

equation (a convolution),   

 (   )  
 

 
∫  (     ) (   )  

   

    

                                                                                                  (   ) 

where  (   ) is the inverse Fourier transform of  ̂(   ).  This boundary condition maintains the 

phase shift between pressure and flow and contains the wave propagation effects of the truncated 

vascular bed 
30

. However; the periodicity assumption is not applicable for the simulation of non-

periodic phenomena like missing heart beats or external traumatic intervention 
25

. This boundary 
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condition also assumes the same wave arrival times for all heart rates (HR)—a major drawback 

when the effects of HR on hemodynamics is of interest. 

Boundary conditions must account for the three important effects generated by vascular networks 

on their upstream vessels: compliance, resistance, and wave reflection (whose arrival times are 

clinically important)
6, 29, 32-37

. I present here a new outflow boundary model for two- and three- 

dimensional fluid-solid interaction (FSI) simulation of blood flow in compliant vessels. This model 

can be easily implemented and has none of the drawbacks of the four methods described above. In 

lieu of an integral or differential representation, the new outflow model extends the computational 

domain to represent the compliance, resistance, and wave dynamics of the truncated vascular 

network. This new model can be used for transient and non-periodic events, and can also be 

conveniently implemented by so called black box (commercial) finite element or CFD software 

packages. The extended domain includes a straight elastic tube connected to a rigid tube that has a 

reduced diameter midway down its length (henceforth called a rigid contraction tube.) Three main 

parameters—length, Young’s modulus of the elastic tube, and contraction ratio of the rigid tube—

are selected so that the boundary domain best represents the truncated vascular network’s resistance 

and compliance, as well as the arrival time of the reflected waves. 

2.3 Methods 

The truncated vascular network has the important feature of adding compliance, resistance and 

reflected waves to the upstream vessel. Our outflow boundary model accounts for these additional 

features by using a straight elastic tube connected to a rigid contraction tube. This extends the 

domain at a low computational cost relative to that of the anatomically constructed vessel model.  

The parameters of the elastic tube (Young’s modulus, wall thickness and length) as well as the rigid 

contraction tube (the contraction ratio) are selected to match the desired volume compliance, 
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resistance and wave reflections of the truncated networks. A summary of the procedure is shown 

in the flowchart of Figure 2.1.  

 

Figure 2.1: Summary of the procedures for using the outflow boundary model 

Vessel model (e.g. aorta) 

Pressure p(t) and flow q(t) 
given from clinical data 

Extend the vessel model domain via  
Outflow Boundary Model 

 

Select appropriate elastic tube length (L), 
Young’s modulus (E), rigid tube 

contraction ratio () to match R, C and tarr. 

 

No p(t) and q(t) data 

Solve on the extended domain via any  
FSI computational method 

 

Approx. volume compliance (C) 
and resistance (R) from literature 

 

Approx. reflected wave arrival time 
(tarr) from literature 

Compute volume compliance 
(C) and resistance (R) 

Compute reflected wave arrival 
time (tarr) 
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2.3.1 Computing Volume Compliance and Resistance 

Approximate physiological values of the total and terminal volume compliances and resistances 

have been calculated for the main arterial vessels
23, 28, 38

. However, more precise values are 

necessary for patient specific studies. Stergiopulos et al
39

 evaluated the accuracy and applicability 

of all proposed compliance estimation methods. They have shown that two-area and pulse pressure 

methods—both based on the two element Windkessel model—are more accurate than others. These 

methods can be applied to all locations in the arterial network
40

, but they require data of both 

pressure p(t) and flow q(t). 

2.3.1.1 Two Area Method (Self et al
38

) 

The cardiac cycle is divided into two parts. The first begins with the onset of systole (t0) and ends 

with the peak of the systole (t1), and the second part begins with the peak of the systole and ends 

with the termination of the cycle (t2). Knowing the flow q(t) and the pressure p(t) for the whole 

cycle, one can solve for resistance R and compliance C of the truncated vascular tree by the 

system
38
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  ( (  )   (  ))  
 

 
∫  ( )  

  

  

∫  ( )  
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                                                                           (   ) 

 

2.3.1.2 Pulse pressure method
39

 

Given the pressure and flow at certain points in the arterial network, R is calculated by dividing the 

mean value of the pressure by the mean value of the flow. Then fitting the two-element Windkessel 

model, 
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                                                                                                                                                (   ) 

to the measured pulse pressure and flow rate gives the required compliance C. 

 

2.3.2 Reflected wave arrival time and analysis of wave dynamics  

In order to determine the wave arrival time required for the boundary model, it is imperative that I 

first introduce the wave intensity (WI) analysis method developed by Parker et al 
41

, a method that I 

will also employ to analyze the wave dynamics in the time domain of our computational results. 

2.3.2.1 Wave Intensity (WI) Analysis 

The method is based on the well-known method of characteristics and follows the propagation of 

infinitesimal waves.  The one-dimensional equations of the motion, where z is the direction along 

the axis of the vessel,  

  

  
 

 (  )

  
                                                                                                                                        (   ) 

 

  

  
  

  

  
  

 

 

  

  
                                                                                                                          (   ) 

result from integrating the momentum and continuity equations of an incompressible fluid inside a 

vessel 
42

;     is a volumetric outflow rate per unit length of the vessel (leakage);    is the vector sum 

of all forces excluding pressure per unit mass; U is average velocity over the cross section; p is 

pressure; t is time; and   is density. If we assume area is a function of the local instantaneous 

pressure,    ( (   )  ), then Equations 2.7 and 2.8 can be written in matrix form as 
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where   √
 

   
  ⁄

 is the speed of propagation 
42

. The coefficient matrix of the displacement 

derivative has eigenvalues        and hence the characteristics lines are 
  

  
    . The 

positive sign corresponds to the forward propagating wave and the negative sign, the backward 

wave 
41

. 

Along the characteristics, we can write the time derivative as 
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and apply it to Equation 2.9, transforming the partial differential equation into a system of two 

ODE’s along each characteristics:  
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Assuming an impermeable wall (    ) as well as assuming that the location of interest is away 

from branches and other arterial discontinuities, it is reasonable to assume    is equal to zero 

locally 
41

. Under these assumptions, the Riemann function is constant, so the Riemann invariants in 

terms of P and U can be written as
41
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Solving for dp and dU, their product 
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is defined as the wave intensity in units of power per unit area (e.g. W/m

2
)

41, 43
. It is clear from 

Equation 2.14 that the contribution to the intensity of any forward wave (e.g. compression or 

decompression) is positive, and the contribution from a backward wave is negative. Therefore, if 

    , the forward waves dominate, and if      the backwards (reflected) waves dominate, 

allowing one to easily determine wave propagation at each time. Because there is no assumption of 

linearity and periodicity, this method has a clear advantage over the often-used frequency 

(impedance) analysis, which requires those assumptions. Furthermore, the analysis being in time 

rather than frequency, every point on the    graph directly corresponds to a specific point of the 

cardiac cycle. 

If we also assume the incremental waves are additive, we can decompose the wave intensity into 

purely forward (+) and purely reflected (-) waves as 
44, 45

 

    
 

   
(       )                                                                                                                       (    ) 

    
  

   
(       )                                                                                                                       (    ) 

 

2.3.2.2 Determining Wave Arrival Time (    ) 

Given data of pressure p(t) and flow q(t), one can perform a WI analysis by the procedure outlined 

above. This analysis enables one to decompose the wave intensity into forward and reflected waves 

in the time domain. As will be demonstrated in the wave intensity tests in the results section of this 

paper, one can then easily determine when the reflected waves arrive from the WI graphs. 

2.3.3 Selecting Boundary Model Parameters 

The properties of the elastic tube and rigid contraction tube of the boundary model are selected to 

match the C, R and      determined above. These properties—the Young’s modulus (E) and length 
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(L) of the elastic tube, and the contraction ratio ( ) of the rigid tube—can be derived as functions 

of the determined C, R and     . 

2.3.3.1 Elastic Tube 

Using a thin wall assumption, the wall stress can be written as 
46

 

  
   

 
                                                                                                                                                     (    ) 

where   is the wall stress, r is the tube radius, p is the pressure, and h is the tube thickness. For a 

linear elastic material, stress relates to strain ( ) and Young’s modulus (E) as     . 

From Equation 2.17,  
  

  
 

  

  
 , where       . In the limiting case, as        , we have 
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Substituting Equation 2.18 into the volume compliance   
  

  
 (

  

  
) (

  

  
) yields   (

  

  
) (

  

  
), 

which gives an approximate volume compliance formula for a cylindrical tube of length L and 

radius r as 

    
   

  
                                                                                                                                               (    ) 

To find a second relationship so that E, L can be uniquely determined, we note that the reflected 

wave arrival time is given by the time it takes for a wave to travel to the end of the elastic tube (the 

onset of the rigid tube, i.e. the reflection site), and travel back. That is, 

     
  

 
                                                                                                                                                  (    ) 

where the wave speed (c) can be approximated by 
7
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Solving Equations 2.20 and 2.21 for E, L gives 

   (      )  
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 √     (    )
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   (      )  
       

 

    (    )
                                                                                                          (    ) 

where r, h are the radius and wall thickness (respectively) of the elastic tube of the boundary model 

and must necessarily be the same as the vessel model for the geometry to be continuous. 

2.3.3.2 Rigid Contraction Tube 

Having the rigid contraction tube in the boundary domain provides the required resistance or 

pressure drop. Although blood flow is pulsatile, the resistance is related to the mean or steady part 

of the pressure and flow. Thus the steady formula can be used by setting the contraction ratio 

     ⁄  , where    is the diameter of the narrower (small) part of the rigid tube and    is the 

diameter of the wider part of the rigid tube. This gives the pressure drop for steady flow in the 

contraction tube as 
47
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                                                                                              (    ) 

where  ̇  is the viscous energy loss,   is the density of the fluid, and    is the average velocity over 

the cross section of the small tube (after contraction). By considering the fact that           

 ̅ , where A is the cross sectional area, Equation 2.24 can be rearranged as 

      
                                                                                                                                          (    ) 
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where       ̅     
 ⁄  and      ̇    

 ⁄     ̅     
 ⁄ . Thus the pressure drop is of the 

order    . Noting that      ̅ 
7
, the contraction ratio then becomes a function of our required 

resistance R as 

   ( )  (
  ̅    

  
)

  
 

                                                                                                                   (    ) 

 

2.3.4 Computational Method 

2.3.4.1 Mathematical Model 

In the solid domain, where it is assumed the walls are composed of elastic isotropic material, a 

standard Lagrangian formulation for large deformations / small strain was used 
48

. The dynamic 

motion of the wall is calculated by the Lagrangian form of the balance of momentum equations 

(Equation 2.27). To describe the elastic material for large deformation analysis, linear elastic 

relations generalized to the Total Lagrangian (TL) formulation were used (Equation 2.28)
48-50

. That 

is,   

            ̈                                                                                                                                        (    ) 

                                                                                                                                                        (    ) 

where      is the second Piola-Kirchhoff stress tensor, Fi is the external force, u is the displacement 

vector,    is the wall density,     is the Green-Lagrange strain tensor,               

  (             ) are the components of the constant elasticity tensor,     is the Kronecker delta, 

and λ, μl  are Lamé constants.  
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Note that the second Piola-Kirchhoff and Green-Lagrange strain tensors do not change under 

rigid body motion. Therefore, as long as the straining is small, Equation 2.28 is completely 

equivalent to Hooke’s law for infinitesimal displacement conditions 
48

.  

For the fluid domain, the full incompressible Navier-Stokes (N-S) equations were used. In Eulerian 

form, they are 

 ⃗⃗   ⃗                                                                                                                                                         (    ) 

  (
  ⃗ 

  
  ⃗   ⃗⃗  ⃗ )   ⃗⃗      

  ⃗                                                                                                    (    ) 

where  ⃗  (     ) represents the flow velocity vector,    is the fluid density, p is the static 

pressure,    is the dynamic viscosity of the fluid, and      is the body force. 

Since our fluid domain has moving boundaries, an arbitrary Lagrangian-Eulerian (ALE) 

formulation is used for the analysis of the fluid flow 
50-53

. This formulation can be directly coupled 

with the Lagrangian formulation of the solid domain. In an ALE formulation, the material 

derivative for all the solution variables is given by 
54
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where ∂(.)/∂t is the transient term at the considered mesh position,  ⃗⃗⃗  is the corresponding mesh 

velocity, and  ⃗  is the actual fluid particle velocity. In view of Equation 2.31, Equation 2.30 

becomes 
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Assuming no-slip boundary conditions at the wall, the coupling conditions at the fluid-solid 

interface are 

           ⃗    ⃗̇                                                                                                                                      (    ) 

            ⃗⃗⃗       ⃗⃗⃗                                                                                                                              (    ) 

where  ⃗    and  ⃗̇   are the velocities of the fluid and the solid at the interface, respectively, and    is 

the fluid stress tensor,    the solid stress tensor. 

2.3.4.2 Finite Element Solution 

To solve the equations of solids and fluids numerically, a Finite Element method was applied on the 

boundary condition model attached first to a straight vessel model and, second, to a three-

dimensional axisymmetric model of the aorta.  

At each time step, a direct coupling fluid structure interaction (FSI) method is used to solve the 

solid, fluid and interface equations simultaneously. After discretization of the equations of the fluid 

and solid, the algebraic system has the form
55, 56

 : 

 ( )  [
  (     )

  (     )
]                                                                                                                          (    ) 

where    ,    are the fluid and solid nodal solution variables, respectively, and   ,    are the finite 

element equations of the fluid and solid models, respectively 
55

. 

In the direct coupling method, the equations become linearized as (by using, for example, the 

Newton-Raphson method at iteration k)
50
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 where      and     are the fluid Jacobian matrix and the solid Jacobian matrix, respectively, 

and      and     are the coupling Jacobian matrices. These Jacobian matrices are calculated as 
55
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This linearized system is solved at each (e.g. Newton) iteration k and the subsequent solutions for 

the solid and fluid are updated. Residuals (stress or displacement) are then computed and compared 

against specified tolerances. If the solutions have not yet converged, the procedure iterates to k+1 

and repeats the above linearization procedure. Once the solutions have converged, the method 

proceeds to the next time step. In summary, the general computational steps in the employed direct 

coupling method were (1) to assemble the solid and fluid equations separately into a single fluid and 

single solid model; (2) to assemble the solid matrix, fluid matrix, and the coupling matrices into one 

coupled matrix system; (3) to solve the linearized equation of the coupled system and to update the 

solution; and (4) to compute and check the residuals against the specified tolerance. If the solution 

did not converge, the process was restarted from step (1) 
50, 55, 56

. 

Three-dimensional axisymmetric elements were used for each domain in space, and an implicit 

Euler method was used for the integration in time. The final discretized equations were solved using 

the commercial software package, ADINA (ADINA R&D Inc.)
49, 50

. 

2.4 Results 

2.4.1 Straight Vessel 

I first studied the boundary model applied to a straight vessel with uniform thickness and a circular 

cross section. The length, thickness and internal radius of the straight vessel were Lv=20 cm, h=0.1 

cm, and rin= 1 cm respectively.  The vessel was connected to various cases of the outflow boundary 
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model. The inflow boundary condition assumed to have flat velocity profile varying as a half-sine 

flow wave with a period of T=0.8 sec and a duty cycle of      
 ⁄  (i.e. the inflow is equal to zero 

for 2/3rd of the cycle), 
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where vz(t) is the velocity, t is time, and T is the period of pulsation. 

A zero traction boundary condition for the outer surface of the solid was used. In the fluid domain, a 

constant normal traction, called the end pressure                was applied to the end of the 

rigid boundary tube.  The Young’s modulus of the straight vessel was E=10
6
 dyne/cm

2
. The 

Poisson’s ratios and the densities of both the straight vessel and elastic boundary tube were set to 

be υ=0.45 and ρs=1 gr/cm
3
, respectively. For the fluid, viscosity was μ=0.051 Poise, and density 

was ρf=1.05 gr/cm
3
. All material values were within physiological ranges 

7
. The numerical models 

of both the solid and fluid components were meshed with 4-noded axisymmetric elements. All 

simulations started at rest with no loading condition, and the simulations were carried out to 18 

cycles to ensure that the mean pressure reached a steady state. 

2.4.1.1 Wave Intensity Analysis Test (Straight Vessel with Only Rigid Boundary Tube) 

WI analysis was applied to a case with a known solution. A straight vessel was connected to only a 

rigid boundary tube (Figure 2.2). Point “B” is the end-point of the straight vessel and the beginning 

point of the rigid boundary tube. Since the fluid is incompressible, we expect no wave reflection in 

the rigid tube, i.e. beyond point B. All incoming waves should reflect at B and travel back towards 

point A, where they are reflected a second time as second generation waves. This cycle of 
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reflections between A and B continues until the waves fully decay, with third and fourth 

generation waves, and so on. The time difference Δt between two consecutive wave generations is 

   
   

 
                                                                                                                                                   (    ) 

where c can be approximated by Equation 2.21. From our previously defined parameters of ρf, rin, E, 

h,  , and Lv, Equation 2.39 predicts that for the approximate time difference between two wave 

generations            . 

 
Figure 2.2: Straight vessel terminated by a rigid contraction tube. 

Figure 2.3c shows the total wave intensity, I(t), computed by using Equation 2.14 applied to the p(t) 

(Figure 2.3a) and U(t) (Figure 2.3b) obtained from numerical solutions at point B for one complete 

cycle. As expected, I(t) was never negative during the cycle since there were no backward waves 

propagating beyond B. Each generation of the reflected waves can be easily distinguished with a 

time difference of            , close to our predicted value. 
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Figure 2.3: a) Pressure wave at point B of Figure 2.2. b) Velocity wave at point B. c) The 

corresponding wave intensity is nonnegative at all times indicating the absence of the backward 

waves. The first and second generations combine to create a resonance peak. 

2.4.1.2 Straight Vessel with Full Outflow Boundary Model 

A straight vessel connected to a full outflow boundary model was studied (with both an elastic and 

a rigid contraction tube) as seen in Figure 2.4. The parameters of the outflow boundary model are 

listed in Table 2.1. 
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Figure 2.4: Straight vessel connected to the boundary model. 

Table 2.1 

Parameters of outflow boundary model for straight vessel case 

Symbol Description Value 

E1 Young’s modulus of the elastic boundary tube 

 
      

    
   ⁄   

L Length of the elastic boundary tube 

 

10 cm 

h 

 

Wall thickness of the elastic boundary tube 

 

0.1 cm 

γ Contraction ratio of the rigid boundary tube 

 

0.5 

C Volume compliance of the elastic boundary tube 

 
            

 

    ⁄  

Note: γ is the ratio of the radii of the rigid boundary tube after contraction ( inr ) to that before contraction (rin). 

Zero normal traction was imposed on the outer surface of both the boundary and straight vessel 

elastic walls. In the fluid domain, a constant normal traction of                 was imposed 

at the end of the boundary model. The thicknesses and inner radii of the elastic and rigid (before 

contraction) boundary tubes were the same as those of the straight vessel. 

 The results of the numerical simulation are shown in Figures 2.5a and 2.5b as pressure-velocity 

curves and wave intensities (forward, backward, total), respectively, at the onset of boundary. Wave 

speed was calculated from the left graph using the PU-loop method 
44

, where the slope of the 

pressure-velocity curve at the beginning of the cycle equaled    when reflected waves were absent. 

From the given density of ρf=1.05 gr/cm
3
, the computed slope of 0.25 mmHg.sec/cm yielded a wave 
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speed of             . Equations 2.15 and 2.16 were used to decompose the total wave 

intensity into the red (forward) and blue (reflected) curves in Figure 2.5b. 

 
Figure 2.5: a) Pressure-velocity curves at the onset of the boundary were used to compute the local 

wave speeds by the PU-loop method. b) Wave intensities were calculated at the onset of the 

boundary, where black is the total wave intensity, red is the forward wave intensity, and blue is the 

backward (reflected) wave intensity. 

The contraction of the rigid tube is expected to affect only the mean pressure. It should not affect 

the overall shape of pressure wave, nor should it affect the overall pattern of reflected wave 

intensity qualitatively. The arrival time of the reflected waves should not be affected by the 
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contraction ratio. Indeed, the simulations (Figure 2.6) for three contraction ratios, γ=0.5 (control 

case), 0.45, and 0.6 confirmed this prediction. However, at high contraction ratios (low resistance), 

the pressure wave appeared to be slightly flatter after the systolic period, but the overall shape of the 

pressure wave and reflected wave intensity were not altered in Figure 2.6. 

 
Figure 2.6: a) Pressure waves for γ=0.5 (black), 0.45 (red), and 0.6 (blue). b) Intensity and arrival 

times of those respective reflected waves. 

2.4.2 Aortic Model 

The outflow boundary model on a three-dimensional axisymmetric model of the aorta was studied 

in this section. The geometrical data of the aortic model, such as aortic length, inner diameter, and 
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wall thickness, were within the average physiological range (Caro et al 

6
). The change of stiffness 

along the aorta and tapering of the aorta were considered, but the aortic arc and bifurcations were 

excluded since the model is 3D axisymmetric. The Young’s modulus of the aortic model wall was 

taken from a test case of a 30 year old healthy man studied in Nichols et al 
7
 and the blood was 

assumed to be an incompressible Newtonian fluid. The material properties of the aortic model are 

provided in Table 2.2, and the parameters of the outflow boundary model are provided in Table 2.3. 

A constant normal traction of 10.5 mmHg was imposed at the end of boundary model, and zero 

normal traction was imposed on the outer surface of both the boundary and aortic model elastic 

walls.  

Table 2.2  

Parameters of aortic model 

Parameter                                                               Value 

Young modulus, Aortic sinus 3.5 10
6
    dyne/cm

2 

Young modulus, Ascending aorta 4.2 10
6
    dyne/cm

2
 

Young modulus, Descending aorta 4.67 10
6
  dyne/cm

2
 

Young modulus, Abdominal aorta 5.9 10
6
    dyne/cm

2
 

Poisson ratio 0.45 

Vessel wall density 1.05              gr/cm
3 

Blood viscosity 0.051              Poise 

Blood density  1.05              gr/cm
3
 

  

The validity of the outflow boundary model was tested by specifying only the flow wave at the 

upstream inlet of the aortic model and checking if the resulting numerical pressure wave solution 

was physiologically accurate, both at the inlet and throughout the aorta. Hence, at the inlet, a 

physiological flow wave (Figure 2.7), from Matthys 
57

, with a flat velocity profile was imposed and 

it was scaled to give a cardiac output (CO) and heart rate (HR) of 4.6 L/min and 120 bpm, 

respectively.  
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Table 2.3 

Parameters of outflow boundary model for aortic model 

Symbol Description Value 

rin The inner radius of the elastic boundary tube 

 

0.631 cm 

L Total length of the elastic boundary tube 

 

10.5 cm 

h Wall thickness of the elastic boundary tube 

 

0.065 cm 

γ Contraction ratio of the rigid boundary tube 

 

0.76 

Ct Total volume compliance of the boundary model 

 
            

 

    ⁄  

   

 
Figure 2.7: Inflow wave 

A total of 17,416 three-node elements were used for the fluid domain, and a total of 2,420 nine-

node elements were used in the solid domain. The simulations were run with a time step of 0.00125 

sec until the average pressure solution reached a steady state condition (Figure 2.8). The spatial 

element size in the radial direction ranged from 0.63mm-1.47mm, and the element size in the axial 

direction ranged from 0.66mm-1mm. Further simulations with different time steps and mesh sizes 

confirmed that these results were independent of spatial and temporal discretizations. For the same 

spatial discretization, the pressure wave solutions for time steps of 0.000625 sec and 0.00125 sec 

revealed a maximum relative error at the inlet of less than 1%. Similarly, for the same time step, 

doubling the number of spatial elements revealed a maximum relative error of less than 1.4%.  
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To confirm the physiological accuracy of the numerical pressure wave solution given only a flow 

wave at the inlet, four well-known characteristics of pressure waves in a human aorta were 

considered (as seen in the clinical results 
7
 of Figure 2.9 a): (i) the existence of a dicrotic notch; (ii) 

the increase and the (iii) narrowing of the highest pressure peak as it travels down the aorta; and (iv) 

the shifting of the second-highest pressure peak to the end of the cycle. Indeed, all four 

characteristics were clearly captured by our numerical simulations (Figure 2.9 b), indicating the 

value of our boundary model in acquiring physiological solutions within the aorta. 

 
Figure 2.8: The mean pressure at the aortic input reaches a steady state for HR=120 bpm. 
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Figure 2.9: a) Pressure wave at different locations along the aorta (from Nicholes et al 

7
) where the 

clinical dictoric notch can be seen.  Also evident is the pressure peaking and pressure steeping 

phenomena as the pressure wave travels down the aorta. b) Pressure wave solution results from our 

aortic model, where z is the axial distance from the aortic input. The curve for z=0 corresponds to 

the numerical pressure wave solution at the aortic input. The curves for z=12, 20 and 38 cm (which 

approximately correspond to the aortic arc, the descending aorta and renal bifurcation, respectively) 

are all within the FSI domain. The characteristic dictoric notch in the obtained pressure wave 

solution is clearly evident at the aortic input. The pressure peak increase and narrowing, as well as 

the shifting of the second-highest peak, are also clearly evident.  All results are from a 120 bpm 

heart rate during one cardiac cycle. 

Two other important physical features of flow in the aorta can be seen in Figure 2.10 that 

demonstrates the decrease in average pressure per cycle, even as the peak of the pulsation 

increases—consistent with physical results. Additionally, our model correctly captures the expected 

phase shift between pressure and flow, seen in Figure 2.11, where the flow wave leads the pressure 

wave. 
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Figure 2.10: Pulsation increases while the average value per cycle decreases due to viscous losses. 

 
Figure 2.11: Flow wave leading the pressure wave; for better visualization, the respective 

normalized (dimensionless) pulsatile values of each as  ̂      and  ̂      were plotted, where 

 ̂      (       )    (       )  . 

2.5 Conclusions 

A new outflow boundary model for modeling two- and three-dimensional fluid-solid interactions of 

blood flow in cardiovascular systems is introduced. The new technique involves extending the 

computational domain by an elastic tube connected to a rigid contraction tube (a contracted radius 

midway down its length). The user-defined geometrical and material properties of these boundary 

tubes allow us to retain the desired resistance, compliance and appropriate wave reflections of a 
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truncated vascular network. This boundary condition can handle the transient (non-periodic) 

phenomena where the impedance boundary condition cannot 
31

 —events such as heartbeat skipping 

and external trauma. 

To test the condition, I first re-introduced a common method of wave intensity (WI) analysis, 

decomposing the wave into both forward and backward components. I computationally tested this 

method by modeling a known solution of wave reflection in a straight vessel connected to only to 

the rigid contraction tube, achieving realistic results. I then connected the straight vessel to the 

outflow boundary model. The contraction ratio was specified to match the required resistance of the 

eliminated vasculature, and it was further shown that this ratio did not affect the shape of the wave 

intensity at the onset of the outflow boundary. 

The outflow boundary model to a 3D axisymmetric model of the aorta was applied. The solution 

was shown to be consistent with clinical results, correctly capturing the dictrotic notch, the 

increasing and narrowing of the pressure peak, and the shifting of the second-highest peak. 

Furthermore, we saw that though the pressure peak increased, the average pressure decreased while 

traveling down the aorta, a physically realistic characteristic. Finally, it was demonstrated that this 

outflow condition produces the correct physiological phase shift between pressure and flow. 

This boundary model has several advantages. It can account for both the resistance and volume 

compliance of a truncated vascular network, and it can be adjusted to have correct physiological 

wave arrival times. Furthermore, it is an excellent choice for researchers who are using black box 

software, as it can be easily employed in packages where it is often difficult or sometimes 

impossible to implement custom boundary conditions. It is important to note, however, that the 

outflow boundary model can only be used with fluid-solid interaction (FSI) modeling. 
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Our outflow boundary model may seem to be similar to Windkessel (RCR). However, it has been 

shown by Olufsen
30

 that the Windkessel model is neither able to capture wave propagation 

phenomena in the parts of the vasculature where it applies, nor able to capture the phase lag 

between the pressure and flow 
30

.  

Results have been shown for single outlets, but multiple outlets can be easily incorporated into our 

model by applying our outflow boundary model to each individual outlet. In cases such as in 

coronary arteries, where the resistance is variable during the cardiac cycle, our outflow model can 

be implemented by modifying the wall of the rigid contraction tube to a moving wall condition. For 

pulmonary arteries, modifications are necessary since these vessels have different wave dynamics 

due to lower wave reflections and variable resistance (dependent on arterial pressure)
7
. 
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C h a p t e r  3  

LOW PULSE PRESSURE WITH HIGH PULSATILE EXTERNAL LEFT VENTRICULAR 

POWER: INFLUENCE OF AORTIC WAVES 

 

3.1 Chapter Abstract 

Elevated pulse pressure (pp) is considered to be a risk factor for adverse cardiovascular events since 

it is directly related to an elevated myocardial workload.  Information about both pressure and flow 

wave must be provided to assess hemodynamic complexity and true level of external left ventricular 

power (ELVP).   pp value as a single feature of aortic waves cannot identify true level of ELVP.  

However, it is generally presumed that ELVP (and consequently LV workload) is positively 

correlated with pp. This study examined this positive correlation. The aim of this chapter is to test 

the hypothesis that aortic wave dynamics can create destructive hemodynamic conditions that 

increase the ELVP even though pp appears to be normal. To test this hypothesis, a computational 

model of the aorta with physiological properties was used. A Finite Element Method with fluid-

structure interaction was employed to solve the equations of the solid and fluid. The aortic wall was 

assumed to be elastic and isotropic. The blood was assumed to be an incompressible Newtonian 

fluid. Simulations were performed for various heart rates (HR) and different aortic compliances 

while keeping the shape of the inlet flow and peripheral resistance constant. As expected, in most of 

the cases studied here, higher pp was associated with higher LV power demand. However, for a 

given cardiac output, mean pressure, and location of total reflection site, cases have been found 

where the above-mentioned trend does not hold. The results suggest that using pp as a single index 

can result in an underestimation of the LV power demand under certain conditions related to the 

altered wave dynamics. Hence, in hypertensive patients, a full analysis of aortic wave dynamics (a 

This chapter is based on the following published manuscript: N. M. Pahlevan and M. Gharib. Low pulse 

pressure with high pulsatile external left ventricular power: Influence of aortic waves. Journal of 

Biomechanics 44(11): 2083-2089 
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systems approach) is essential for the prevention and management of left ventricular hypertrophy 

(LVH) and congestive heart failure. 

3.2 Introduction 

The workload on the left ventricle (LV) is composed of steady and pulsatile components. The 

pulsatile load is the result of the complex dynamics of wave propagation and reflection in the 

compliant arterial vasculature. The dynamics depends on both the heart’s pumping characteristics 

(stroke volume, heart rate, ejection fraction) and the arterial system’s wave characteristics 

(wavelength, wave speed, and reflection sites)
7, 12, 58

.  

Pulse pressure (pp) is the difference between the peak and the foot of the pressure wave, and it has 

been known to be an indirect measure of pulsatile load on the LV. Clinical investigations have 

confirmed that an abnormal pulsatile load plays an important role in the pathogenesis of left 

ventricular hypertrophy (LVH) and progression of LVH to congestive heart failure (CHF)
37, 59-64

. 

Although the LV pulsatile load accounts only for approximately 6-12% of the total load in young 

healthy adults 
65

; this percentage can increase significantly in subjects with vascular disease, 

hypertension, or vascular aging 
66

.  

Wave dynamics in a compliant tube depends on three parameters: 1) fundamental frequency of the 

propagating waves 2) wave speed (which depends on material properties of the tube), and 3) 

reflection sites 
8, 9, 67

. Therefore, for a given inlet flow wave generated by the heart, wave dynamics 

in the aorta (compliant tube) is controlled by the heart rate (fundamental frequency), aortic rigidity 

(which influences the wave speed), and location of the reflection sites.  

The aim of this study was to test the hypothesis that aortic wave dynamics can create destructive 

hemodynamic conditions that increase the external LV power (ELVP) even though the pp appears 
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to be normal. A computational approach was chosen to investigate our hypothesis since it 

enabled us to have better control over the various parameters that define wave dynamics and 

pulsatile ELVP. Some of these parameters are defined by the heart, such as cardiac output (CO), 

heart rate, and ejection fraction. Other parameters, such as wave speed, compliance, terminal 

compliance, peripheral resistance, and the location of the total reflection site are defined by the 

aorta and the arterial system. The focus was only on the parameters that characterize the wave 

dynamics and all the other parameters were fixed. Heart rate, aortic rigidity, and the location of the 

total reflection site are the characteristic parameters of aortic wave dynamics. These parameters are 

interrelated and define the state of wave dynamics in the aorta. By varying these parameters, one 

can obtain any desired pressure wave—referred to in this thesis as wave state (WS)—of the system. 

For example, the same WS can be generated at different heart rates by adjusting aortic rigidity and 

the location of the total reflection. Fifty six cases of WS were simulated through variations of the 

aortic rigidity (Young’s modulus of the wall) and HR, both within physiological range. 

3.3 Methods 

3.3.1 Physical Model 

A three-dimensional axisymmetric model of the aorta was used (Figure 3.1). The geometrical data 

of the aortic model, such as aortic length, inner diameter, and wall thickness, were within the 

average physiological range 
6
. The change of stiffness along the aorta and tapering of the aorta were 

considered, but the aortic arc and bifurcations were excluded. The aortic wall was assumed to be 

elastic and isotropic. These material assumptions are applicable when modeling large central 

arteries, especially the aorta, but are not suitable for radial arteries or arterioles since these vessels 

are more anisotropic and viscoelastic
7
. It was also shown by Saito et al 

68
 that viscoelasticity of the 

vessel wall has insignificant effect on the development of the pressure and velocity waveform in 
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large arteries, so the vessel’s wall can be considered purely elastic. An objection to these wall 

assumptions might be the nonlinear dependency of the vessel’s wall elasticity on the mean arterial 

pressure; however, for the normal mean pressure (less than 125 mmHg) the relation is linear
7
. 

 
Figure 3.1: Aortic Model 

The material properties of the wall were taken from Nichols et al
7
. The blood was assumed to be an 

incompressible Newtonian fluid. The physical parameters of the aortic model are provided in Table 

3.1. Young’s modulus values given in this table were referred to as aortic rigidity E, and all other 

cases of aortic rigidity were a specific factor of these values. 

3.3.2 Mathematical Model 

An arbitrary Lagrangian-Eulerian (ALE) formulation is used for the analysis of the fluid flow with 

moving boundaries. This formulation can be directly coupled with the Lagrangian formulation of 

the solid domain. In an ALE formulation for an incompressible fluid, the Navier-Stokes equations 

take the form shown in Equation 3.1
50-52

. With a no-slip boundary condition at the wall, the 

Rin=14.7 mm 

Rout = 6.31 mm 

Thickness in =1.63 mm 
Thickness out =0.65 mm 

Aortic model length = 465 mm 

Inflow 
Outflow Boundary Model 

Aortic model 
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coupling equations at the solid-fluid interface are 1) displacement compatibility (Equation 3.2) 

and 2) traction equilibrium (Equation 3.3) at the wall. 

{

 ⃗⃗   ⃗     

  (
  ⃗ 

  
 ( ⃗   ⃗⃗⃗ )  ⃗⃗  ⃗ )   ⃗⃗      

  ⃗          
                                                                            (   ) 

 ⃗    ⃗̇                                                                                                                                                            (   ) 

  ⃗⃗⃗       ⃗⃗⃗                                                                                                                                                     (   ) 

In these equations  ⃗ (     )  is the flow velocity vector, p is the static pressure, μf is the dynamic 

viscosity of the fluid,     is the body force,  ⃗⃗⃗  is the mesh velocity,   ⃗   and  ⃗̇    are velocity of fluid 

and solid at the interface respectively,    is fluid stress tensor, and    is solid stress tensor. 

For the solid domain, the wall was considered to be an elastic and isotropic material. The large 

deformation but small strain theory was used. Constitutive relation for a linear elastic isotropic 

material and a balance of momentum equation in Lagrangian form were used to calculate the 

dynamic motion of the elastic wall (Equations 3.4 and 3.5)
48, 49

;  

            ̈                                                                                                                                          (   ) 

                                                                                                                                                (   ) 

Here,     is the wall stress tensor, F is the external force, u is the displacement vector,     is the 

vessel wall density, and λ, μl are Lamé constants. The Lamé constants are related to   (Poisson’s 

ratio) and E (Young’s modulus)      (   )(    ) and      (   ).   
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At the inlet, a physiological flow wave (Figure 3.2), from Matthys

57
 , with a flat velocity profile 

was imposed and it was scaled to give a cardiac output (CO) of 4.6 L/min for any given heart rate. 

Table 3.1 

Physical parameters* 

Parameter Symbol Value 

Young’s modulus of the sinus of Valsalva  Esin 5105.3   Pa 

Young’s modulus of the ascending aorta Easc 5102.4   Pa 

Young’s modulus of the descending aorta Edes 5107.4   Pa 

Young’s modulus of the upper part of the abdominal aorta Eupab 5103.5   Pa 

Young’s modulus of the lower part of the abdominal aorta Elowab 5106.8   Pa 

Blood density    1050 kg/m
3
 

Blood viscosity    0.0051 kg/m.sec 

Aortic wall density    1050 kg/m
3
 

Aortic wall Poisson’s ratio    0.45 

Wall thickness of the sinus of Valsalva hsin 1.6 mm 

Wall thickness of the ascending aorta hasc 1.4 mm 

Wall thickness of the descending aorta hdes 1 mm 

Wall thickness of the upper part of the abdominal aorta hupab 0.9 mm 

Wall thickness of the lower part of the abdominal aorta hlowab 0.8 mm 

Since the physical parameters vary in each aortic wall section, the average values within the sections have 

been given. Young’s modulus values in this table are for the case of minimum rigidity in this study (E1). The 

sinus of Valsalva and the ascending aorta are the regions (0<z<2 mm) and (2<z<10 mm) respectively, where z 

is the distance from the aortic input. 

 
Figure 3.2: Input flow wave (cardiac output = 4.6 L/min) 

The outflow boundary is the extension tube boundary condition (See Chapter 2 for details)
69

. This 

outflow boundary model involves extending the computational domain by an elastic tube connected 
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to a rigid contraction tube (a contracted radius midway down its length). The user-defined 

geometrical and material properties of these boundary tubes (Table 3.2) allow us to retain the 

desired resistance, compliance and wave reflections of the truncated vascular network. 

Table 3.2 

Outflow boundary parameters 

Description Value 

The inner radius of the elastic boundary tube 6.31 mm 

Total length of the elastic boundary tube 105 mm 

Total length of the rigid boundary tube 283 mm 

Wall thickness of the elastic boundary tube 0.65 mm 

Total volume compliance of the boundary model             
 

  ⁄  

Contraction ratio of the rigid boundary tube*  0.76 

The contraction ratio is defined as the ratio of the radii of the rigid boundary tube after contraction to that 

before contraction. 

3.3.3 Computational Model 

The finite element method with the direct two-way coupling method of fluid-structure interaction 

(FSI) was employed to solve the equations of solid and fluid at each time step. The time integration 

scheme was the implicit Euler method with a time step of 0.00125s. A total number of 17,416 three-

node 3D axisymmetric elements were used for the fluid domain, and a total of 2420 nine-node 3D 

axisymmetric elements were used in the solid domain. Further simulations with different time steps 

and mesh sizes showed that the results were independent of spatial and temporal discretizations. 

The commercial package ADINA, version 8.6 (ADINA R&D, Inc., MA) was used to run the 

simulations
49, 50

. 

3.3.4 Wave Analysis Method 

To analyze the obtained solution, the wave intensity (WI) method was used, developed by Parker et 

al 
41

, as a time domain analysis of wave propagation in the arterial system.  It is based on the well-
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known method of characteristics which follows the propagation of individual wave fronts 

characterized by incremental changes in pressure dp and velocity dU 
41

, 

                                                                                                                                                         (   ) 

The wave intensity has a unit of power per area and it is an index of energy per unit area carried by 

the wave
70

. WI can be decomposed into forward (+) and reflected (-) waves as
44, 45

  

    
 

   
(        )                                                                                                                        (   ) 

    
  

   
(        )                                                                                                                        (   ) 

The PU-loop method was used to compute the wave speed (c)
44

. This method uses the slope of the 

pressure-velocity curve at the beginning of the cycle when reflected waves are absent. At the 

beginning of the cycle: dp = dp+  and  dU = dU+ ; therefore, dp+ = ρcdU+  and the slope of the 

PU-loop curve gives ρc. The value for ρc was then substituted into Equations 3.7 and 3.8 for dI+ 

and dI- calculations 
44

. The PU-loop method, like any other method of wave speed calculation, may 

contain errors. However, it has been shown that even 20% error in calculation of the wave speed 

does not significantly changes the pattern of the reflected wave intensity
44

 (see Appendix A for 

more details). 

3.3.5 Power Calculation 

The total power ( ̅      ) was calculated as the average of the product of the pressure (p(t)) and flow 

(q(t)) over a cardiac cycle. The steady power ( ̅ ) is the product of mean pressure (     ) and mean 

flow (     ), and the pulsatile ELVP ( ̅     ) is the difference between the total power and steady 

power, 
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3.4 Results 

To test the hypothesis, fifty-six different cases of aortic wave dynamic states were generated by 

varying the HR and aortic rigidity. The heart rates ranged from 70.5 bpm to 187.5 bpm. The rigidity 

levels used were multiplicative factors of E1(x) (Table 3.1) as E2=1.25E1, E3=1.5E1, E4=1.75E1, 

E5=2E1, E6=2.5E1, and E7=3E1. In all simulations, cardiac output, peripheral resistance, terminal 

compliance, and the shape of the inflow wave were kept constant. Results were normalized in time 

with the period of the cardiac cycle. 

3.4.1 Pressure Wave Solution 

To study the validity of our computational model, four well-known features of pressure waves in a 

human aorta were considered 
7, 46

: (i) the pulse pressure amplification; (ii) the narrowing of the 

pressure waves as they travel down the aorta; (iii) the existence of a dicrotic notch; and (iv) the 

shifting of the second-highest pressure peak to the end of the cycle. Indeed, all four features were 

clearly captured by our computational model as shown in Figure 3.3. This figure also demonstrates 

an important physical feature of blood flow in the aorta: the mean pressure is slightly decreased due 

to viscous losses. 
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Figure 3.3: Simulated results from the aorta model showing the (i) pulse pressure amplification, (ii) 

pressure narrowing, (iii) shifting of the second-highest peak, and (iv) the existence of the dicrotic 

notch. The average per cycle (black straight line) decreases due to losses. Data is for a 100 bpm 

heart rate and an aortic rigidity of E1 taken during one cycle. Z is the distance from aortic input. 

3.4.2 Normal Cases: When Higher Pulsatile ELVP Is Associated with Higher Pulse Pressure 

Figure 3.4a shows the three cases of aortic wave states named WSa, WSb, and WSc.  In these cases, 

higher pp is associated with higher pulsatile ELVP ( ̅     ) : 

                   ̅     (   )   ̅     (   )   ̅     (   )                                   (    )  

Using Equation 3.8, the reflected (backward) wave intensity (RWI) was calculated for the three 

cases of WS above. The corresponding RWI graph is shown in Figure 3.4b. All wave states 

demonstrate three distinct peaks of decreasing amplitude for RWI (The peaks correspond to the 

first, second and third generation of the reflected waves and the decreasing amplitude is due to the 

attenuation of the waves as they travel through) where, clearly, higher power is associated with the 

higher peaks. The amplitude of the first peak of RWI is also correlated with pp. 

Z=0 cm Z=12 cm Z=36 cm 
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Figure 3.4: a) Pressure waves at the aortic input during a complete cardiac cycle. The time was 

normalized with the cardiac period (T). In these cases, higher pulse pressure is associated with 

higher pulsatile ELVP ( ̅     ). The pulsatile ELVP for WSa, WSb, and WSc are 55.84, 66.28, and 

77.38mW respectively. The pulse pressures are ppa=54.64 (mmHg),  ppb=66.24 (mmHg),  and 

ppc=73.75 (mmHg). b) Wave intensity of reflected waves at the aortic input during a complete 

cardiac cycle. Three distinct peaks of decreasing amplitude (corresponding to the first, second and 

third generational reflected waves, respectively) are observed for all cases. The time was 

normalized with the cardiac period (T). The length of the incremental time interval for calculating 

dI- was dt = 0.00625 s. 

3.4.3 Abnormal Cases: When Higher Pulsatile ELVP Is Not Associated with Higher Pulse Pressure 

Figure 3.5 shows pressure waves and RWI for an example aortic wave state with abnormally 

elevated pulsatile ELVP. For comparison, a normal wave state (WS1) is also shown against the 

abnormal case (WS2), where WS1, and WS2 have pulse pressures          (    ),     

     (    ) and respective pulsatile LV powers of  ̅     (   )        (  ) , and 

 ̅     (   )        (  ) . Although WS2 has a pp that is 14.8 mmHg (28.1%) lower than 

WS1, it retains a higher (16.3%) pulsatile ELVP. The wave intensity graph of the WS1 is just as the 

normal cases demonstrated above (three distinct peaks of decreasing amplitude.) In contrast, the 

a) b) 

Three distinct peaks of 

decreasing amplitude 
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second and third RWI peaks of WS2 were replaced with a single peak of greater magnitude than 

the first peak. Similar to normal cases shown before, the wave state (WS1) has a first peak RWI 

with higher amplitude. 

 
Figure 3.5: Pressure waves (left) and their reflected wave intensity (right) at the aortic input during 

a complete cardiac cycle for waves states 1 and 2 (WS1 and WS2). The length of the incremental 

time interval for calculating dI- was dt = 0.00625 s. The time was normalized with the cardiac 

period (T). The case WS2 (solid line) has 14.8 mmHg lower pp compared to WS1 (dash line), but 

pulsatile ELVP ( ̅     ) of WS2 is abnormally 16.3% higher compared to WS1. Both pressure 

waves have approximately the same mean. (See Table 3.3 for values). Notice how the second and 

third peaks of WS2 are replaced with single bigger amplitude peak. Also, WS2 has a lower pp and 

lower first RWI peak amplitude. 

Table 3.3  

pp, 
pulseP , and pmean of the cases given in Figures 3.5-7 

Wave State Pulse Pressure Pulsatile LV Power Mean Pressure 

WS1 

WS2 

WS3 

WS4 

WS5 

WS6 

52.6 (mmHg) 

37.8 (mmHg) 

37.1 (mmHg) 

23.0 (mmHg) 

89.5 (mmHg) 

34.4 (mmHg) 

66.28 (mW) 

77.15 (mW) 

49.23 (mW) 

64.38 (mW) 

105.60 (mW) 

109.30 (mW) 

95.8 (mmHg) 

96.3 (mmHg) 

94.4 (mmHg) 

94.6 (mmHg) 

97.9 (mmHg) 

96.7 (mmHg) 

 

a) b) 

Three distinct peaks of 

decreasing amplitude 

Second and third peaks were 

replaced with a single peak of greater 

magnitude than the first peak 
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Further examples of abnormally elevated pulsatile ELVP are shown in Figures 3.6 and 3.7, with 

the pressure and power values summarized in Table 3.3. Again, each of these abnormal cases, WS4 

and WS6, are shown against normal cases, WS3 and WS5, respectively. In particular, note in Figure 

3.7 that WS6 has an apparently normal pp of 34.4 mmHg, but due to destructive wave interaction 

within the aorta, the pulsatile ELVP that it applies on the left ventricle is remarkably similar to a 

significantly higher pp of 89.5 mmHg (WS5). As before, there is a positive correlation between the 

amplitude of the first peak of RWI and pp in all of the cases shown here. Although the results of 

each WS do not depend on specific choice of HR and aortic rigidity as explained earlier, these value 

are provided in Table 3.4. 

 
Figure 3.6: Pressure waves (left) and their reflected wave intensity (right) at the aortic input during 

a complete cardiac cycle for wave states WS3 and WS4. The time was normalized with the cardiac 

period (T). The length of the incremental time interval for calculating dI- was dt = 0.00625 s. The 

case WS4 (solid line) has 14.1 mmHg lower pp compared to WS3 (dash line), but pulsatile ELVP 

( ̅     ) of WS4 is 30.8% higher compared to WS3. Both pressure waves have approximately the 

same mean. (See Table 3.3 for values). Notice again how the second and third peaks of WS4 

replaced with single bigger amplitude peak. Also, WS4 has a lower pp and lower first RWI peak 

amplitude. 

a) b) 

Three distinct peaks of 

decreasing amplitude 
Second and third peaks were 

replaced with a single peak of greater 

magnitude than the first peak 
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Figure 3.7: Pressure waves (left) and their reflected wave intensity (right) at the aortic input during 

a complete cardiac cycle for wave states WS5 and WS6. The time was normalized with the cardiac 

period (T). The length of the incremental time interval for calculating dI- was dt = 0.00625 s. pp6 

(red) of WS6 seems to be normal (=34.4 mmHg), but its pulsatile ELVP ( ̅     ) is slightly higher 

(3.5%) than pp5 (=89.5 mmHg) of WS5. Both pressure waves have approximately the same mean 

(See Table 3.3 for values). Notice that the second and third peaks of WS6 are replaced with single 

bigger amplitude peak. Also, WS6 has a lower pp and lower first RWI peak amplitude. 

Table 3.4   

Rigidity and HR of the wave states (WS) in Figures 3.4-7 

Wave State Rigidity HR (bmp) 

WSa E1 70 

WSb E3 100 

WSc E5 120 

WS1 E2 100 

WS2 E3 150 

WS3 E1 100 

WS4 E1 150 

WS5 E3 75 

WS6 E3 187 

 

3.5 Discussion 

These results demonstrate for the first time that even with a low pp—at a specific mean pressure— 

the external left ventricular power (ELVP) can be high. We showed that complex wave dynamic 
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phenomena in the aorta can create destructive hemodynamic conditions that can increase the 

external left ventricular power.  Though pp has long been thought to be a surrogate of LV pulsatile 

load, our findings demonstrate that these adverse wave conditions cannot be diagnosed by 

monitoring the pulse pressure alone. It is generally accepted that pp value as a single feature of 

aortic waves cannot identify the hemodynamic complexity and true level of external left ventricular 

power (ELVP). Therefore, information about both pressure and flow wave must be provided to 

assess ELVP and hemodynamic complexity, as waves depend on parameters such as HR, stroke 

volume, duty cycle, reflection sites, arterial stiffness, and peripheral resistance. 

Pulse pressure (pp) is still a significant feature of the pressure wave that reflects the complex 

interaction between the heart pumping condition and the wave characteristics of the arterial 

network. Increased LV workload has been proposed as a plausible mechanism underlying the 

association between increased pp and the development of LVH and CHF
37, 60, 63, 66, 71, 72

. Hence, high 

pp and an abnormal pulsatile load have become a potential target for therapeutic intervention
66

.  

Indeed, in wave dynamics under normal conditions, a higher pulse pressure corresponds to a higher 

pulsatile ELVP. Wave states under these normal conditions show a similar shape in the reflected 

wave intensity graph, namely three distinct peaks of decreasing amplitude over time (see Figure 

3.4). Each of the first, second and third peaks correspond to the first, second and third generation, 

respectively, of reflected waves. The decreasing amplitude is due to the attenuation of the waves as 

they travel through.  

However, due to certain wave interactions, there exist abnormal conditions where a higher pulsatile 

ELVP does not follow from a higher pulse pressure. In these cases, the second and third peaks, 

which have low amplitude, are replaced with a single peak of higher amplitude. The appearance of 

this single peak might be the result of a resonant condition between the second and third generation 
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of reflected waves. We showed in Figures 3.5-7 examples of abnormally elevated loads from 

different levels of pulse pressures and aortic rigidities. In Figure 3.5, although WS1 has a pulse 

pressure of 14.8 mmHg (28.1%) higher than WS2, it has a 10.87 mW (16.3%) lower pulsatile 

ELVP. Figures 3.6 and 3.7 show further varying examples of destructive wave dynamics that cause 

abnormal elevations of pulsatile ELVP. A particularly interesting example is shown in Figure 3.7 

where, although WS6 has a normal pulse pressure (34.4 mmHg), its pulsatile ELVP is very similar 

to a case of dangerously high pulse pressure (WS5, 89.5 mmHg).   

In all cases (either normal or abnormal)—as shown in Figures 3.4-7—the pp was positively 

correlated with the amplitude of the first peak of the RWI. It can be conjectured that the first peak of 

RWI is the main contributor to the elevation of pp. A plausible explanation is that the first high 

energy reflected wave—represented by the first peak—always needs to be overcome by the inflow 

waves, hence elevating the pulse pressure. Therefore, in cases WS1-WS6 when the first peak of RWI 

is smaller, the corresponding pp is lower. In contrast, in abnormal wave states, there is a second 

peak with amplitude larger than the first. This second larger peak is the result of the destructive 

interaction of reflected waves in the aorta that elevate the pulsatile ELVP, but it does not have a 

significant influence on pp. 

It must be mentioned again that the purpose of changing HR and Young’s modulus is to generate 

different WS. Since HR, rigidity (Young’s modulus), and location of the reflection site are 

interrelated, every WS can be generated by fixing one and changing the other two. This also means 

that the same WS can be generated at two different HR by two different rigidities and locations of 

reflection sites.  

The advantage of the computational approach used in this study is to allow control and flexibility 

over determining parameters—defined by the heart, aorta and arterial system—to achieve particular 
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wave states and pulsatile ELVPs.  However, it would be interesting to conduct a clinical study to 

reconfirm these findings.  

The computational model used here is limited by the exclusion of aortic branches and the aortic 

arch. However, the influence of the branches is accounted for by considering the fact that they 

produce summated reflected waves from the upper body and lower body sites or, in some cases, a 

single reflection site 
73

. These summated reflected waves are included in the outflow boundary 

condition of the model, but only from a lower body site. This is due to the fact that majority of wave 

reflection comes from the lower part of the body, and the peak of the aortic pulse is also created 

mostly by reflected waves from the lower body
7
. Therefore, exclusion of the wave reflection from 

upper body doesn’t affect the overall finding of this study.   

The exclusion of the aortic arch is justified by the fact that, although the flow pattern is significantly 

influenced by the arch, there is no significant effect on the pressure wave (which is the focus of this 

study). In fact, the pressure wave shows little or no detectible change when transmitted from the 

aortic input through the arch and into the upper descending thoracic aorta
7
.  

3.6 Conclusion 

Our computational study suggests that using pp as a single index can result in an underestimation of 

the level of LV workload under abnormal wave conditions.  Pulse pressure (pp) only provides 

limited information about the pressure wave in the aorta.  It is generally assumed that pp is 

positively correlated with external LV power—and as result to LV workload.  In order to identify 

the true level of workload on LV, information about both pressure and flow waves is required. 

These two waves are 1) a function of heart pumping characteristics (HR, stroke volume, and duty 

cycle) and 2) a function of properties and the arterial network (reflection sites, stiffness, and 

peripheral resistance). Therefore, in hypertensive patients, a full analysis of wave dynamics in the 
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aorta is essential for the prevention and management of LVH and CHF. It was shown that due to 

the destructive interaction of aortic waves, the pulsatile ELVP can still be abnormally high when 

pulse pressure seems normal. 

Additional studies are needed to specifically evaluate the aortic wave dynamic effects on the 

pathogenesis of HF and the development of novel therapies. Further clinical studies are also needed 

to see whether the abnormal RWI pattern (the resonance of the second and third peaks) can be used 

as a predictor of LVH in young adults and cardiovascular complications in the elderly. 
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C h a p t e r  4  

AORTIC WAVE DYNAMICS AND ITS INFLUENCE ON LEFT VENTRICULAR 

WORKLOAD 

 

4.1 Chapter Abstract 

The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters 

into the compliant aorta in the form of pressure and flow waves. It was hypothesized that there 

exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test 

this hypothesis, a computational model was used to explore the effects of heart rate (HR) and aortic 

rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the 

pressure play an important role in LV power requirement elevation, at higher rigidities the effect of 

pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that 

minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher 

values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic 

waves that minimizes the LV pulsatile load and consequently the total LV workload. 

4.2 Introduction 

Congestive heart failure (CHF) has reached an epidemic proportion in the US and worldwide with 

serious consequences in terms of human suffering and economic impact. In the US alone, there are 

60,000 patients dying each year with CHF as the underlying cause. Approximately 5,800,000 

Americans have been diagnosed with this condition and this number is increasing every year
1
. In 

the absence of myocardial infarction, hypertension is a primary risk factor of CHF 
74

 mainly due to 

This chapter is based on the following published manuscript: N. M. Pahlevan and M. Gharib. Aortic 

Wave Dynamics and Its Influence on Left Ventricular Workload. PLoS ONE 6(8): e23106 
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the chronic elevation of the left ventricular (LV) workload and the development of left 

ventricular hypertrophy (LVH)
59, 61, 75

.  

Pulsatile flow generated by the heart enters the compliant aorta as pressure and flow waves. These 

waves propagate and reflect throughout arterial vasculature, thus playing a dominant role in the 

hemodynamics of the arterial system. The hemodynamic load on the heart has two parts: steady and 

pulsatile. The steady load is the result of the resistance from the arterial network to the mean part of 

the flow. The pulsatile load depends on the interaction between the heart’s pumping characteristics 

(stroke volume, heart rate, and ejection fraction) and arterial wave dynamics. Significant efforts 

have been made in the past to elucidate the role of wave reflections in heart failure 
34, 37, 59

. Clinical 

studies have confirmed that abnormal pulsatile loads play an important role in the pathogenesis of 

left ventricular hypertrophy (LVH) and CHF
61, 63, 66

. O’Rourke
65

 suggested four important factors 

that control the level of the pulsatile load applied to the heart: 1) rigidity of the aorta and other large 

vessels, 2) interaction between the left ventricular and the terminal of the vasculature in the upper 

and lower parts of the body, 3) wave reflection, and 4) balance between the heart rate and the body 

length. He showed in an animal (dog) study that the ratio of the pulsatile load over the total load 

decreased as the heart rate increased, and that the ratio increased as the aortic distensibility 

decreased. However, previous studies did not investigate the interplay between aortic rigidity and 

heart rate (HR)
65

. 

The wave dynamics in a compliant tube is controlled by the fundamental frequency of the 

propagating waves, the material properties of the tube, and wave reflections
8, 9

. Similarly, aortic 

wave dynamics depend on heart rate, aortic compliance, and the locations of reflection sites. I 

hypothesized that there exists a specific heart rate at which LV pulsatile load becomes a minimum 

for a given physiological condition. 
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To test the hypothesis, a computational approach was implemented in order to be able to examine 

a large spectrum of wave states. This approach enabled us to study aortic rigidity and HR while 

having a better control on parameters such as the aortic input flow wave (ventricular ejection wave), 

terminal compliance, peripheral resistance (PR), cardiac output (CO), and the locations of reflection 

sites.  

The goal in this chapter is to investigate the effects of different states of aortic wave dynamics on 

the LV power requirement (LVPR). Various states of aortic wave dynamics are produced by 

changing the heart rate and aortic wall rigidity (aortic compliance) while fixing other determinant 

factors of wave dynamics and power requirements. 

4.3 Methods 

4.3.1 Physical Model 

A three-dimensional axisymmetric model of the aorta was used (Figure 4.1). The geometrical data 

of the aortic model, such as aortic length, inner diameter, and wall thickness, were within the 

average physiological range
6
. The aortic wall was assumed to be elastic and isotropic. These wall 

material assumptions are applicable when modeling large central arteries, especially the aorta, but 

may not be suitable for radial arteries or arterioles since these vessels are more anisotropic and 

viscoelastic
7
. A further concern about this wall assumption might be the nonlinear dependency of 

the vessel’s wall elasticity on the mean arterial pressure; however, for the normal mean pressure 

(less than 125 mmHg), the relation is linear 
7
. The material properties of the wall were taken from 

Nichols et al
7
. The tapering and the change of wall stiffness along the aorta were considered, though 

the aortic arc and bifurcation were excluded since the model is 3D axisymmetric. The blood was 

assumed to be an incompressible Newtonian fluid, and the different levels of aortic rigidity 

considered were multiplicative factors of a minimum rigidity level E1(x) (x is the distance from the 
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heart) of a healthy 30-year-old man taken from Nichols et al

7
. The physical parameters of the 

aortic model are summarized in Table 4.1. 

 

Figure 4.1. Computational model of the aorta. 

Table 4.1.  

Physical parameters* 

Parameters Symbol Value 

Blood density 
f  1050 kg/m

3 

Blood viscosity   0.0051 kg/m.sec 

Aortic wall density 
s  1050 kg/m

3
 

Young’s modulus of the sinus of Valsalva  Esin 5105.3   Pa 

Young’s modulus of the ascending aorta Easc 5102.4   Pa 

Young’s modulus of the descending aorta Edes 5107.4   Pa 

Young’s modulus of the upper part of the abdominal aorta Eupab 5103.5   Pa 

Young’s modulus of the lower part of the abdominal aorta Elowab 5106.8   Pa 

Aortic wall Poisson’s ratio   0.45 

Wall thickness of the sinus of Valsalva hsin 1.6 mm 

Wall thickness of the ascending aorta hasc 1.4 mm 

Wall thickness of the descending aorta hdes 1 mm 

Wall thickness of the upper part of the abdominal aorta hupab 0.9 mm 

Wall thickness of the lower part of the abdominal aorta hlowab 0.8 mm 

*Since the physical parameters vary in each aortic section, the average values within the sections 

have been given. The Young’s modulus values in this Table are for the case of minimum rigidity 

(E1) 

At the inlet, a physiological flow wave (Figure 4.2), from Matthys
76

, with a flat velocity profile was 

imposed and it was scaled to give a cardiac output (CO) of 4.6 L/min for any given heart rate. 
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Figure 4.2. Inflow wave 

4.3.2 Mathematical Model 

4.3.2.1 Solid Model 

Large deformation with small strain theory was assumed for the formulation of elastic wall 

motion.[17] It is assumed that the walls are composed of elastic isotropic material. Dynamic motion 

of the aortic wall was formulated by a constitutive relation for linear elastic isotropic materials and 

balance of momentum equations in Lagrangian form as
48, 49

  

            ̈                                                                                                                                          (   ) 

                                                                                                                                                (   ) 

Here,     is the wall stress tensor, F is the external force, u is the displacement vector,     is the 

vessel wall density, and λ, μl are Lamé constants. 

4.3.2.2 Fluid Model 

To solve for pressure and flow fields in the fluid domain, the full Navier-Stokes (N-S) equations 

was used. In Eulerian form, they are 
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 ⃗⃗   ⃗                                                                                                                                                           (   ) 

  (
  ⃗ 

  
  ⃗   ⃗⃗  ⃗ )   ⃗⃗      

  ⃗                                                                                                    (   ) 

where  ⃗  (     ) represents the flow velocity vector,    is the fluid density, p is the static 

pressure,    is the dynamic viscosity of the fluid, and      is the body force. 

Since our fluid domain has moving boundaries, an arbitrary Lagrangian-Eulerian (ALE) 

formulation is used for the analysis of the fluid flow
50-53

. This formulation can be directly coupled 

with the Lagrangian formulation of the solid domain. In an ALE formulation, the total time 

derivative (D/Dt) for all the solution variables is given by 
54

 

 ( )
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 ( ⃗   ⃗⃗⃗ )  ⃗⃗ ( )                                                                                                                 (   ) 

where  ( )    is the transient term at the mesh position,  ⃗⃗⃗  is the mesh velocity, and  ⃗  is the actual 

fluid particle velocity. Applying  Equation 4.5 in Equation 4.4 gives 
54
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  ⃗                                                                                        (   ) 

4.3.2.3 Coupling Conditions 

With no-slip boundary conditions at the wall, the coupling equations at the solid-fluid interface are 

 ⃗    ⃗̇   (Velocity condition), (   )         

  ⃗⃗⃗       ⃗⃗⃗     (Traction equilibrium), (   ) 
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where  ⃗   and  ⃗̇    are the respective velocities of the fluid and solid at the interface,    is fluid 

stress tensor,    is solid stress tensor, and  ⃗   is the unit vector in the normal direction. 

4.3.2.4 Boundary Conditions 

A novel extension tube boundary model was used for the outflow boundary condition at the 

terminal of the abdominal aorta. This boundary model extends the computational domain with a 

straight elastic tube connected to a contracted rigid tube (see Chapter 2 for details)
77

. Parameters 

such as the ratio of the radii of the rigid tube together with the length and elasticity of the elastic 

boundary tube are selected to represent the effects of a truncated vascular network (resistance, 

compliance, and wave reflection)
77

. 

The parameters of the outflow boundary condition model are given in Table 4.2, where the 

contraction ratio is the ratio of the radius of the rigid boundary tube beyond the contraction to the 

original radius before the contraction. The parameters of outflow boundary condition were kept the 

same for all simulations. 

Table 4.2.  

Outflow boundary parameters 

Description value 

The inner radius of the elastic boundary tube 6.31 mm 

Total length of the elastic boundary tube 105 mm 

Wall thickness of the elastic boundary tube 0.65 mm 

Contraction ratio of the rigid boundary tube  0.76 

Total volume compliance of the boundary model           
Pa

m3

 

 

4.3.3 Numerical Method 

A finite-element scheme was applied to solve the equations of the solid and fluid models 

incrementally in time using the commercial package ADINA 8.6 (ADINA R&D, Inc., MA). A 
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direct two-way coupling fluid-structure interaction (FSI) method (simultaneous solution method) 

was used to couple the fluid and solid domains at the interface. In this method, the discretized fluid, 

solid, and coupling equations are all combined in one matrix
50

. In summary, the general 

computational steps in the employed direct coupling method were (i) to assemble the solid and fluid 

equations separately into a single fluid and single solid model; (ii) to assemble the solid matrix, 

fluid matrix, and the coupling matrices into one coupled matrix system; (iii) to solve the linearized 

equation of the coupled system and to update the solution; and (iv) to compute and check the 

residuals against the specified tolerance. If the solution did not converge, the process was restarted 

from step (i)
50, 77

. 

An implicit Euler backward method with Newton-Raphson iteration was used for the time 

integration with a time step of 0.00125s. A total of 2420 nine-node axisymmetric elements were 

used to mesh the solid domain, and a total of 17,416 three-node axisymmetric elements were used 

for the fluid domain. Further simulations with different time steps and mesh sizes confirmed that 

these results were independent of spatial and temporal discretizations. All simulations started from 

rest until the mean of the aortic input pressure reached a steady state as shown in Figure 4.3. 

 
Figure 4.3. The mean pressure at the aortic input reaches a steady state for HR = 70.5 bpm 
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4.3.4 Power Calculation 

The total power ( ̅      ) was calculated as the average of the product of the pressure (p(t)) and flow 

(q(t)) over a cardiac cycle. The steady power ( ̅  ) was the product of mean pressure (pmean) and 

mean flow (qmean), and the pulsatile power ( ̅      ) is the difference of the total power and steady 

power. 

 ̅      
 

 
∫  ( ) ( )  

 

 

                                                                                                                          (   ) 

 ̅                                                                                                                                                 (    ) 

 ̅       ̅       ̅                                                                                                                                 (    ) 

4.4 Results 

The simulations were run for seven different levels of aortic rigidities, ranging from a 30-year old 

healthy individual (E1(x)) to a 70-year old sick individual suffering from aortic stiffening (E7(x)) 

(values taken from Nichols et al)
7
. Here, Ei(x) indicates that Young’s modulus changes along the 

aorta, where x is the axial distance from aortic input. The different levels used were multiplicative 

factors of E1(x) (Table 4.1) as E2=1.25E1, E3=1.5E1, E4=1.75E1, E5=2E1, E6=2.5E1, and E7=3E1. 

Each case of the aortic rigidity was run for eight heart rates (70.5, 75, 89.5, 100, 120, 136.4, 150, 

and 187.5 beats per minute (bpm)). In all simulations, CO, PR, the terminal compliance, and the 

shape of the inflow wave were kept constant. 

4.4.1 Pressure Wave Solution 

To verify the model, the results were compared with well-known features of aortic pressure waves 
7, 

46
: (i) the pulse pressure amplification; (ii) the narrowing of the pressure waves as they travel down 
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the aorta; (iii) the existence of a dicrotic notch; and (iv) the shifting of the second-highest 

pressure peak to the end of the cycle. Figure 4.4 shows that our computational model captured all 

four characteristics of the pressure wave. The model additionally captured another important 

physical feature of the blood flow—that the mean pressure decreased down the aorta (see Figure 

4.4). 

 
Figure 4.4. Simulated results from our aortic model showing pulse pressure amplification, pressure 

narrowing, shifting of the second-highest peak, and the existence of the dicrotic notch. The average 

per cycle decreases due to viscous losses, consistent with realistic results. Data is for a 100 bpm 

heart rate and aortic rigidity of E1 taken during one cycle after reaching steady state. 

4.4.2 Effects of Aortic Compliance on Left Ventricular Power Requirement 

Figure 4.5 shows average values per cycle for the total LV power requirement—external LV power 

( ̅      ) —and the steady power ( ̅  ) versus aortic rigidity for an HR of 75 bpm. It shows that both   

 ̅      and  ̅  , as well as the pulsatile power ( ̅       ̅       ̅ ), increased at higher rigidities. 

This is in agreement with clinical findings
78

. 
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Figure 4.5. The blue line is average per cycle of the total external left ventricular power ( ̅     ) and 

the red line is the external steady power ( ̅ ) at different levels of aortic rigidities. The value of 

E=E1 corresponds to the level of aortic rigidity given in Table 4.1. The difference between the two 

curves shown by the double arrow is pulsatile power ( ̅     ). The results are for HR = 75 bpm. 

4.4.3 Effect of Heart Rate on Left Ventricular Power Requirement 

Figure 4.6 shows  ̅      as a function of HR for three levels of aortic rigidity. As mentioned before, 

the cardiac output (average flow per cardiac cycle) is kept the same for all cases.  As the HR 

increases, the  ̅      decreases until the HR reaches an optimum point where  ̅       is minimized 

(and as a result  ̅      is minimized). The  ̅      increases with HR beyond this optimum point. 

This phenomenon is present for all three cases. Interestingly, the optimum point shifted towards 

higher HR as aortic rigidity increased. In fact, as Figure 4.7 demonstrates, these phenomena still 

exist at very high rigidities, two- or three-fold greater than those of Figure 4.6. 
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Figure 4.6. Average value per cycle of pulsatile power  ̅      versus HR for three different levels of 

aortic rigidities. E1 (black) corresponds to the values given in Table 4.1, E2 = 1.25E1 (blue), and E3 

= 1.5E1 (red). Green circles are the heart rates corresponding to the minimum  ̅      value at each 

level of aortic rigidity. 

 

Figure 4.7.  ̅      versus HR for extreme values of aortic rigidity. E5=2E1 (black), E6 = 2.5E1 

(blue), and E7=3E1 (red), where E1 corresponds to the values given in Table 4.1. Green circles are 

the heart rates corresponding to the minimum  ̅      value at each level of aortic rigidity. 
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4.5 Discussion 

The main findings of this chapter are as follows: (i) an increase in aortic rigidity leads to an increase 

in both the steady and pulsatile loads on LV; (ii) at higher aortic rigidities, the effect of pulsatile 

load becomes more dominant; (iii) at a given heart pumping condition (cardiac output and inlet flow 

wave), there is an optimum heart rate that minimizes the pulsatile LV power; and (iv) the optimum 

HR shifts to higher values as aortic rigidity increases.    

Pulsatile load on the LV is the result of complex wave dynamics in the arterial network. As the 

largest and most compliant vessel extending from the heart, the aorta dominates the wave dynamics 

that the LV experiences. Although pulsatile load on the LV only accounts for a small portion of the 

total energy of the heart 
58, 79

, its adverse effect on the LV has been well accepted. Indeed, clinical 

studies have confirmed that abnormal pulsatile load plays an important role in the development of 

LVH and progression of LVH to CHF 
37, 61, 63, 66

. Hence, aortic wave dynamics—as the determinant 

of LV pulsatile load—plays an important role in pathogenesis of LVH and CHF.  

First, the effect of aortic wave dynamics on LV power requirements was investigated by changing 

aortic rigidity at a fixed HR(=75 bpm) while keeping constant all the other aortic wave dynamic 

determinants such as CO, shape of inflow wave, peripheral resistance, terminal compliance, and the 

locations of the reflection sites. Both steady power and pulsatile power increase at higher rigidities. 

The increase in pulsatile load is due to both reduced compliance and wave dynamics.  

Second, for a fixed cardiac output (CO=4.6 L/min), the effect of aortic wave dynamics on the 

pulsatile LV power requirement across a physiological range of heart rates was studied. The results 

reveal that there is an optimum HR (within physiological range) at which pulsatile LV power 

requirement becomes a minimum, thereby confirming a prediction by O’Rourke 
80

. 
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The pulsatile power continues to decrease with increasing HR until it reaches its minimum point. 

Beyond the minimum point, the aortic waves start acting destructively, and as a result, the pulsatile 

power starts elevating with the HR (see Figures 4.6 and 4.7). The same pattern has been shown in 

an animal study performed by O’Rourke 
65

. He studied the effect of HR on the ratio of the pulsatile 

to total LV power. In Figure 1 of his paper, he showed the pulsatile/total percentage versus HR for 3 

dogs (dog 7, 9, and 32) where dog 32 showed the same pattern as in Figure 4.5 and it had an 

optimum HR of around 120 bpm; however, he did not explain the existence of this minimum point 

in the paper. Notice that “pulsatile” load versus HR was sketched in Figure 4.6 and 4.7. However, 

as Figure 4.8 shows, the shape of the graphs in Figures 4.6 and 4.7 will be preserved if one sketches 

the percentage of pulsatile load over total power versus HR. 

 

Figure 4.8. a) Percentage of   ̅       ̅       versus HR for the cases given in Figure 6; E1 (black) 

corresponds to the values given in Table 4.1, E2=1.25E1 (blue), and E3=1.5E1 (red). b) Percentage 

of  ̅       ̅      versus HR for the cases given in Figure 4.7. 

4.5.1 Clinical example: Smoking, Aortic Stiffness, and Heart rate 

It has been shown in clinical studies that both aortic rigidity and HR are higher in habitual smokers 

compared to nonsmokers 
66, 81-83

. It has also been shown that even smoking a single cigarette leads 

to a transient increase in pulse wave velocity (aortic rigidity), whether habitual or not 
66, 84

. Hence in 

all cases the HR—even for habitual smokers whose HR level is generally higher—will increase 
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during and immediately after smoking even one cigarette 

85, 86
. It was shown that the optimum 

wave condition leads to a minimum pulsatile load at a specific HR. Hence, our results suggest a 

possible explanation for HR elevation in smoking. As aortic rigidity increases—such as from short-

term or long-term smoking—the optimum wave condition shifts to a higher HR and therefore the 

heart increases the HR to reach the new optimum. 

Some may argue that increasing HR as a compensatory mechanism for decreasing LV pulsatile load 

can have a metabolic disadvantage for the heart in terms of increased myocardial oxygen 

consumption and impaired ventricular-arterial coupling. However, it has been shown in previous 

studies that under normal conditions and in the absence of heart diseases (e,g. dilated 

cardiomyopathy), increased HR may even result in enhanced LV systolic and diastolic 

performance
87, 88

. Furthermore, under normal conditions, the LV-arterial coupling remains optimal 

after a moderate increase in HR 
89

. 

4.5.2 Model Limitation 

In this study, it was assumed that the heart acts as a flow source and hence specified the flow wave 

at the inlet. Although in general the heart is neither a flow nor a pressure source, the behavior of a 

normal heart is closer to a flow source 
90

. In fact, in the case of a hypertrophied left ventricle (LVH 

condition), the heart acts completely as a flow source 
90

. For a given metabolic condition, the body 

requires a certain flow rate and therefore it is reasonable to consider the heart as a flow source in 

this study.  

Additionally, the aortic curve (arch) and the aortic branches were not included in our computational 

model (see Figure 4.1). However, the influences of branches in terms of wave reflection were 

included in the outflow boundary condition of the model (by assuming that the branches produce 
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summated reflected waves). Exclusion of the arch can be justified by considering the fact that the 

curve has an insignificant effect on pressure waves
7
. 

4.6 Conclusion 

The results of this computational study show that at a given heart’s pumping condition, there is an 

optimum condition for aortic waves that minimizes the pulsatile load (and consequently total 

workload) on the heart. In addition, based on clinical observations, these results suggest that the 

heart may use this fact as a temporary compensatory mechanism to reduce myocardial workload. 

Therefore, controlling and modifying aortic wave dynamics—as the determinant of LV pulsatile 

load—can be a therapeutic approach for the reversal of LVH and the prevention of HF. 
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C h a p t e r  5  

A BIO-INSPIRED APPROACH FOR THE REDUCTION OF LEFT VENTRICULAR 

WORKLOAD 

5.1 Chapter Abstract 

Previous studies have demonstrated the existence of optimization criteria in the design and 

development of mammalians cardiovascular systems. Similarities in mammalian arterial wave 

reflection suggest there are certain design criteria for the optimization of arterial wave dynamics 

which stem from the existence of natural reflection sites such as renal and iliac branches. Inspired 

by these natural optimization criteria, the feasibility of optimizing the aortic waves by modifying 

wave reflection sites was investigated. A hydraulic model that has physical and dynamical 

properties similar to a human aorta and left ventricle was used for a series of in-vitro experiments. 

The results indicate that placing an artificial reflection site (a ring) at a specific location along the 

aorta may create a constructive wave dynamic that could reduce LV pulsatile workload.  This 

simple bio-inspired approach may have important implications for the future of treatment strategies 

for diseased aorta. 

5.2 Introduction 

Congestive Heart Failure (CHF) is a condition in which the heart fails to circulate enough blood in 

the vascular networks. CHF has reached an epidemic level where the number of patients suffering 

from this condition in the U.S. alone is more than five million and growing
1
. Clinical investigations 

have confirmed that pulsatile load plays an important role in the pathogenesis of left ventricular 

hypertrophy (LVH) and the progression of LVH to CHF 
34, 37, 90

. The pulsatile load is the result of 

the complex dynamics of wave propagation and reflection in compliant arterial vasculature 
7, 12, 91

.  
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Significant efforts have been made to understand the wave dynamics of the arterial system and to 

clarify its role in heart failure and other cardiovascular diseases 
34, 37, 90, 92-94

.  

The pulsatile load on the left ventricle is controlled by the wave dynamics of arterial vasculature 
7, 

12
. Wave dynamics in a compliant tube is mainly dominated by three parameters: (1) fundamental 

frequency (or wavelength) of the waves; (2) wave speed (which is defined by material properties of 

the tube); and (3) the location of reflection sites 
8, 9, 18

. Similarly, wave dynamics in the aorta and 

arterial network is determined by heart rate (HR), pulse wave velocity (PWV), and reflection sites. 

The interplay among these three parameters defines a wave dynamics condition where the pulsatile 

workload on the heart is minimized. Using a simplified computation model of the aorta it was 

shown the interplay among these wave dynamic parameters results in an optimum HR in which the 

pulsatile workload is minimized (see Chapter 4)
95

. There were several limitations involved with this 

computational study; therefore, it is necessary to confirm the finding using a physiologically 

relevant experimental model. The goal in this chapter is to introduce a bio-inspired approach to 

reduce the pulsatile workload. In this chapter, I also present validation of the finding of the previous 

computational study (the optimum HR concept in Chapter 4) using an in-vitro experimental 

approach.  

Previous studies have demonstrated the existence of optimization criteria in design and 

development of mammalian cardiovascular systems 
58, 79, 96-99

. Arterial wave dynamic parameters 

such as the reflection coefficient 
100

, normalized input impedance 
101

, and pulse wave velocity 
58, 98

, 

as well as the product of the propagation constant and the aortic length 
100

 are all invariant of 

mammalian size. These similarities in mammalian arterial wave reflection suggest there are certain 

design criteria for the optimization of arterial wave dynamics. Quick et al 
102

 showed that wave 

reflections are optimized in animals under normal physiological conditions. They also showed that 
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either reducing or increasing wave reflections results in an elevation of LV pulsatile workload 

102
. 

Their study suggests that the mammalian arterial system is designed to optimize the wave 

reflections rather than minimize them. Inspired by this natural optimization criterion, I will 

investigate in this chapter if it is possible to optimize the aortic waves by simply modifying 

reflection sites in order to reduce the pulsatile workload on the heart. 

5.3 Materials and Methods 

5.3.1 Equipment and Materials 

An experimental hydraulic model called the aortic simulator was used in this study (Figure 5.1).  

The aortic simulator is a hydraulic model that has physical and dynamical properties similar to a 

human aorta and left ventricle which can be used for the in-vitro hemodynamic studies.  

 

Figure 5.1: Schematic of the aortic simulator. Schematics of the outlet units are shown in the 

dashed-red box. The numbers at the outlets correspond to the value given in Table 5.1. 
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The left ventricle was simulated by a piston-in-cylinder pump (ViVitro Labs Inc. SuperPump 

System: Model SPS3891) that generates the pulsatile flow (using a programmed waveform 

generator WG5891) and sends it into a compliant aorta. The artificial aortas were built based on a 1-

1 scale of a human aorta mold and it includes major branches of the aorta, aortic arch, and aortic 

tapering (Figure 5.1). Different compliant models of the artificial aorta were made from clear 

natural latex (Chemionics Corp.) and silicone (39 Shore A Hardness RTV Silicone). I made aortas 

with different compliances by changing the number of applications of dipping (for latex aortas) or 

coating (for silicone aortas). Different compliances resulted in different wave speeds (PWV). The 

foot-to-foot method 
103

 was applied to compute the PWV of each aorta (Table 5.1). 

Table 5.1  

Aortic pulse wave velocity (PWV)  

Aorta No. material PWV (m/s) 

1  Silicone 6.7 

2 Latex 8.6 

3 Latex 9.5 

4 Silicone 11.4 

5 Latex 13 

6 Latex 13.5 

7 Latex 15 

 

A unit was designed for the end of each outlet that mimics the resistance and compliance of the 

eliminated vasculature. This unit includes one syringe, one clamp, and one port for catheter 

insertion (Figure 5.1). The syringe is half-filled with air which provides the required compliance of 

the eliminated vascular network (Table 5.2). The purpose of the clamp was to increase the terminal 

resistance. The aortic simulator also includes two compliance chambers, with hydraulic resistance 

in between, which were installed at the end of the aortic loop. These chambers enabled us to control 

the total volume compliance (the values are provides in Table 5.2). The reservoir tank is the last 

component of the aortic simulator. It connects the second chambers to the inlet of the pump (Figure 

5.1). 
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Table 5.2  

Volume compliance 

Outlet location
 

air volume (mL) 

Location 1 and 2 
 

6 

Location 3 and 6 12 

Location 4 and 5 15 

Location 7 and 8 15 

Location 9 and 10 24 

Cylindrical Chamber 1 1402 

Cylindrical Chamber 2 1402 

 

5.3.2 Measurements and Procedures  

The pressure data was measured at the aortic input and outlet of the compliant aorta (outlet 9 in 

Figure 5.1) using Swan-Ganz catheters (Swan-Ganz 116F4 pediatric double lumen monitoring 

catheter at the inlet and Swan-Ganz 116F5 pediatric double lumen monitoring catheter at the outlet, 

Edwards Life Sciences) and Utah Medical Disposable pressure transducers (DPT-400). The signals 

were collected using the Tri-pack pressure measuring systems (TP8891, Vivitro Labs Inc.). The Tri-

pack system consists of three bridge amplifiers. An H16XL Transonic flow sensor (Transonic 

Systems Inc.) in combination with a T110 Transonic Bypass flow meter was used to measure the 

volume flow rate at the inlet. The pressure and flow measurements have been done simultaneously. 

The pressure and flow data were collected for 4 seconds and each experiment was repeated at least 

five times. 

Experiments were completed at various heart rates (ranging from 60 bpm to 200 bpm) with seven 

different aortas (see Table 5.1). In all experiments, water was used as the circulating fluid and any 

visible air bubbles were removed prior to the experiments. The pump was operating under 40% 

systole (waveform C, waveform generator WG5891) in all experiments. Three experimental setups 

were used in this study. These setups are as follows: 
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Setup 1: This setup is the same as the one shown in Figure 5.1. This setup included two 

compliance chambers and the resistance between the two.  

Setup 2 (low volume compliance and low resistance setup): In this setup, the first chamber was 

shortcut to the tank (green dashed-line in Figure 5.1). Since the second chamber and the resistance 

between chambers were removed in this setup, the aortic simulator had lower total volume 

compliance and lower resistance compared to setup 1 (the mean pressure in setup 1 and setup 2 

were 104.5±3.5 mmHg and 84±2 mmHg respectively). 

Setup 3: This is the setup for the reflection site experiment. It is similar to setup 1. In this setup, an 

extra reflection site (a ring) was placed at different locations along the aorta (see Figure 5.2). This 

extra reflection site was used to alter the aortic wave reflection. The pressure and flow data were 

collected for 4 seconds and each experiment was repeated nine times. 

 

Figure 5.2: The aortic simulator for setup 3. An extra reflection site (a ring) was considered at 

different locations along the aorta marked by numbers 1-4. They are located at approximately 15, 

25, 35 and 45 cm from the aortic input. 
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5.3.3 Power calculation  

The pulsatile power was calculated using Equation 5.1: 

 ̅      
 

 
∫  ( ) ( )  
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Here, T is the period of the cardiac cycle, p(t) is the pressure, and q(t) is the flow. 

5.4 Results 

5.4.1 Effect of Heart Rate and Aortic Rigidity on Left Ventricular Pulsatile Workload 

Sample measured flow and pressure waveforms from setup 1 and setup 2 are provided in Figure 

5.3a and 5.3b respectively.  Figure 5.4 demonstrates the effect of aortic rigidity and heart rate (HR) 

on input pulsatile power. Figure 5.4a shows the results of setup 2 that have lower total volume 

compliance and resistance compared to setup 1 (Figure 5.4b). These figures show that there is an 

optimum HR at each level of aortic rigidity in which pulsatile external power (pulsatile workload) is 

minimized. The optimum HR has a higher value in more rigid aortas (Figure 5.4a and 4.5b). These 

results are in agreement with the results of the computational study in Chapter 4 
95

. 
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Figure 5.3: a) A sample of an aortic input flow wave (top) and a sample of the aortic input pressure 

wave (bottom) at HR= 80 bpm and CO=5 L/min for setup 1. b) A sample of an aortic input flow 

wave (top) and a sample of the aortic input pressure wave (bottom) at HR= 72 bpm and CO=5 

L/min for setup 2. 
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Figure 5.4: Pulsatile power versus heart rate (HR). a) Results of setup 2 (low resistance and low 

total volume compliance condition) for three different aortic rigidities; CO=5 L/min for all data 

points. b) Results of setup 1 for three different aortic rigidities; CO=5 L/min for all data points. 

There is an optimum HR in which pulsatile power is minimized. As the aortic rigidity increases, the 

optimum HR shifts to a higher value. Pulse wave velocity (PWV) is the wave speed and it is an 

index for aortic rigidity. Each power data point is the result of the respective experiment repeated 

five times. 
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5.4.2 Effect of Total Volume Compliance and Resistance on Optimum HR 

Figure 5.5a and 5.5b show the effect of total volume compliance and peripheral resistance on the 

optimum value of HR for two aortas with different rigidities (PWV = 9.5 m/s and PWV=13 m/s). 

Although changing total resistance and total compliance alters mean and pulse pressure (as can be 

seen in Figure 5.3), the optimum wave condition (that results in optimum HR) does not depend on 

total volume compliance and total resistance as demonstrated in Figure 5.5. Due to the limitations of 

our pump, the experiments were performed at particular discrete heart rates. As a result, the exact 

optimum HR sometimes could not be identified. 

 

Figure 5.5: Effect of total volume compliance and peripheral resistance on optimum HR. a) 

Pulsatile power versus HR for the aorta with PWV = 9.5 m/s.  b) Pulsatile power versus HR for the 

aorta with PWV=13 m/s. Changing total resistance and total compliance affect mean, pulse 

pressure, and pulsatile power; however, they do not alter the optimum HR (optimum wave 

condition). Each power data point is the result of the respective experiment repeated five times. 

5.4.3 Bio-Inspired Approach: Optimizing the Location for Reflection Sites 

As shown in previous sections, a specific combination of the three wave parameters (HR, PWV, 

and location of reflection site) creates a condition in which the LV pulsatile power is minimized. In 

this section, I tested the hypothesis that the reflection sites can be modified to improve the effect of 
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wave reflection. Figure 5.6 demonstrates that placing an extra reflection site (a ring) at a 

particular location along the aorta could reduce the LV pulsatile power (workload). This has been 

shown for two different HRs in Figure 5.6a and 5.6b where it is clear that the pulsatile power can 

increase (destructive wave dynamics) or decrease (constructive wave dynamics) based on the 

location of the new reflection site. 

 

Figure 5.6: The effect of an extra reflection site created by a ring on input pulsatile power. a) 

Results are for aorta No.3 (see Table 5.1) with PWV=9.5 and HR=60 bpm. b) Results are for aorta 

No. 3 with PWV=9.5 and HR= 72 bpm. The control case is the aorta without an extra reflection site 

and the red line is the pulsatile power of the aorta without any rings (i.e. sans extra reflection sites). 

The pulsatile power can increase or decrease compared to the control case (control is the aorta 

without the ring), the nature of which depends on the location of the ring. Each data point is the 

result of the respective experiment repeated nine times. 
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5.5 Discussion 

5.5.1 Optimum Heart Rate for Left Ventricle Pulsatile Workload 

Using an experimental approach, it was shown in Figure 5.4a and 5.4b that there is an optimum HR 

at each stage of aortic rigidity in which the LV external pulsatile power (LV pulsatile workload) is 

minimized. This optimum HR shifts to higher values as aortic rigidity increases. It can be concluded 

that the interplay between HR and wave speed (which depends on the wall rigidity) changes the 

optimum point. These findings confirm earlier results that were obtained from the computational 

study in Chapter 4 
95

.  

The wave dynamics in a compliant tube is mainly dominated by the frequency of excitation (HR), 

the wave speed, and the reflection sites as shown in previous studies 
8, 9, 18

. Similarly, aortic wave 

dynamics is controlled by the heart rate (HR), the pulse wave velocity (PWV), and the locations of 

the reflection sites. The optimum aortic wave condition depends on these interrelated parameters. 

Figure 5.5a and 5.5b show that parameters such as total volume compliance and total resistance do 

not affect the optimum HR value. In fact, the value of the optimum HR only depends on wave 

dynamic parameters such as PWV (wave speed) as demonstrated in Figure 5.4a and 5.4b. As 

expected, the pulsatile power-HR curves shift up when total compliance decreases (Figure 5.5a and 

5.5b). 

5.5.2 A Bio-Inspired Approach: Correction and Optimization of Aortic Waves 

Traditionally, there was a misconception that wave reflections have only negative effects and that 

reducing the wave reflections is always beneficial. However, Zamir 
104

 proposed that wave 

reflections can in fact be beneficial and can even assist blood flow rather than impeding it. Not long 

after, Quick et al 
102

 showed that either increasing or decreasing wave reflection results in the 



 

 

84 
elevation of pulsatile workload. Based on this observation, they have concluded that arterial wave 

dynamic is optimum under normal physiological conditions. This inspired me to investigate if it is 

possible to reduce LV pulsatile workload through the correction and optimization of aortic wave 

dynamics. Under healthy condition, this workload accounts only for 6-12% of the total LV 

workload 
65

. However, the pulsatile workload significantly increases under vascular disease 

conditions 
66

. 

Optimization of wave reflections as a therapeutic approach was first suggested by O'Rourke 
80

. It 

was shown in this chapter that the introduction of properly positioned extra reflection sites in the 

aorta can result in a constructive wave dynamic state and a subsequent reduction of LV pulsatile 

workload. To test this idea, a ring (rigid reflection site) was placed at various locations along the 

aorta to alter the dynamics of wave reflection. Decreasing the pulsatile load in a heart failure patient 

is critically important 
34, 37

.  HF is usually accompanied by increased arterial stiffness. It is clinically 

impractical to increase the HR in order to reach a new optimum HR. Therefore our proposed 

“reflection site modification” method can potentially be used for reduction of the LV pulsatile 

workload for HF patients.  

Figure 5.6a and 5.6b show that alteration of the wave reflection site can result in either an increase 

(a destructive effect) or decrease (a constructive effect) of the pulsatile power. The constructive and 

destructive effects of waves depend on the location of the ring (reflection site) since different 

locations cause different wave interactions. In other words, the phase of the global reflection 

coefficient varies with the location of the extra reflection site. To understand this phenomenon, 

consider that the pulsatile power can be written as a summation of the pressure and flow harmonics 

as 
58
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where    and    are the harmonic and phase of the pressure wave, respectively, and n  and n  are 

the harmonic and phase of the flow, respectively. 

The reflection coefficient (R) is defined as the ratio of the harmonics of the reflected pressure (  
 ) 

to the harmonics of the forward pressure (  
 
) in the frequency domain as 
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It can also be written in terms of the impedances as 
105
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where      is the input impedance,    is the characteristic impedance, and “   ” is the phase of 

the input impedance (   ) of the system. Therefore, )cos(   can be computed as 
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where,   is the symbol denoting the real part of a complex function. Solving Equation 5.4 for     

gives 
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when combined with Equation 5.4 and  5.5, it gives 
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In the case of an aorta where viscoelastic properties are negligible, the characteristic impedance is 

real (it has a negligible imaginary part 
102

). Hence, in this condition, Equation 5.7 can be simplified 

as 
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Using the impedance definition, the ratio of flow and pressure are related as 

|  |  |  ||  
  |                                                                                                                                          (   ) 

Finally, substituting Equation 5.8 and Equation 5.9 into Equation 5.2, noting the relations 
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where, for simplicity, only one harmonic of the series representation for pulsatile power has been 

shown. To find the condition where an increase in reflection will result in a decrease of the input 

pulsatile power, the function (     )   [
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 , was considered (for 

simplicity, RRn   and  R

n  ). The region where 
  

 | |
   corresponds to the range of | | and   

where pulsatile power is decreasing while wave reflection is increasing. This region depends on 

both the magnitude of the wave reflection (| |) and its phase ( ), and is described as 
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Obviously for any value of | |, this condition is satisfied if 
 

 
   

  

 
 since        and 

| |   . This means that increasing the wave reflection causes a decrease in pulsatile power when 

the phase falls in the second or third quadrant. In the first and fourth quadrants (where     
 

 
 

and 
  

 
      respectively), increasing the wave reflection can increase or decrease (depending 
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on the magnitude and phase) the input pulsatile power. This is illustrated in Figure 5.7, the grey 

area denoting the range of | | and   where pulsatile power decreases by the act of increasing the 

wave reflection. Similar analyses have been done by Quick et al 
102

. However, our contour for the 

boundary between the two regions has a teardrop shape, whereas the one presented by Quick et al is 

circular 
102

. 

 

Figure 5.7: The grey area is the region where increasing wave reflection is beneficial. In this region, 

increasing wave reflection results in a decrease of the input pulsatile power (| |    ̅      ). In 

the white region, increasing wave reflection is disadvantageous and results in an elevation of the 

pulsatile power (| |    ̅      ). 

The above analysis can be used to explain the observed phenomena in Figure 5.6a and 5.6b. In my 

experiments, when the ring was located at Position 1 (15 cm from the input, see Figure 5.2) the 

operation point of the system was in a state similar to the white area (Figure 5.7); hence, increasing 

the wave reflection increased the pulsatile power. At Position 2 (25 cm from the input), the system 
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is found to be in the boundary between the two regions of Figure 5.7 where the pulsatile power 

does not change significantly with the increased reflection. For Positions 3 and 4, the system lies in 

the operational region similar to the gray area where increasing wave reflection results in a decrease 

of pulsatile power. Under this beneficial wave condition, an extra reflection site reduces the input 

pulsatile power as shown in Figure 5.6a and 5.6b. 

5.5.3 Limitation 

The major limitation of this study is related to the fact that an in-vitro model of the systemic arterial 

system was considered. In fact, the dynamics of the LV-arterial system in a true physiological 

situation may be slightly different from our in-vitro experimental model. This means that the 

optimum HR and optimum ring location in our model may not be exactly the same as the in-vivo 

situation. Another limitation of this study is related to oversimplification of microvasculature in our 

model; however, this simplification does not change the main finding of this study since 

microvasculature does not influence the aortic wave dynamics. The microvascular network only 

contributes as a discrete reflection site and as a resistance to blood flow, and both of these effects 

are properly modeled in our in-vitro experimental setup. In addition, water as a circulatory fluid was 

used in this study, but this does not affect the results since the fluid viscosity plays a negligible role 

in the dynamics of aortic waves
7, 12

. 

5.6 Conclusion 

Using an in-vitro experimental approach I have validated my finding in the computational study of 

Chapter 4. It has been found in this chapter that there is an optimum heart rate at which the pulsatile 

workload on the left ventricle is minimized. The optimum heart rate shifts to a higher value as the 

aortic rigidity increases. 
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A simple bio-inspired concept, based on the principles of wave dynamics, was also introduced to 

improve the LV workload in heart failure patients. A device based on this concept could be in the 

form of a ring or a band wrapped around the aorta to act as an extra reflection site that alters wave 

reflection. This device can be designed to be minimally invasive due to its lack of complexity. 

However, the effectiveness of such a device is yet to be determined and is the subject of future 

work. 
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C h a p t e r  6  

A WAVE DYNAMICS CRITERION FOR OPTIMIZATION OF MAMMALIAN 

CARDIOVASCULAR SYSTEM 

6.1 Chapter Abstract 

The cardiovascular system in mammals follows various optimization criteria covering the heart, the 

vascular network, and the coupling of the two. Through a simple dimensional analysis I arrived at a 

non-dimensional number (wave condition number) that can predict the optimum wave state in 

which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian 

cardiovascular system. This number is also universal among all mammals, independent of animal 

size, maintaining a value of 0.1. By utilizing a unique in-vitro model of human aorta, I tested my 

hypothesis against a wide range of aortic rigidity.  It was concluded that the optimum value of the 

wave condition number remains approximately 0.1 for a wide range of aorta rigidities that I could 

simulate in our in-vitro system. 

6.2 Introduction 

The cardiovascular system in mammals benefits from various optimization criteria covering the 

heart, the vascular network, and the coupling of the two 
58, 79, 96-99

. The heart’s pumping 

characteristics and vascular network properties of mammals are either scaled with allometric 

parameters or some invariants of the animal size 
79, 100, 106-108

.  Parameters such as the pulse wave 

velocity 
58, 98

, reflection coefficient 
100

, the product of the propagation constant and the aortic length 

100
, mean blood velocity in the ascending aorta 

107
, the product of heart rate and arterial decay time 

101
, as well as the normalized input impedance 

101
 are all invariant of mammalian size. These 
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functional and other geometric similarities indicate that there are optimization principles for the 

heart operations and arterial system functions, as well as for the subsequent coupling of the two.  

Many previous studies have attempted to identify these optimization criteria 
58, 79, 96-99

. Among these 

studies, Taylor reported that the nonuniform distensibility of the arterial system in mammals results 

in reduction of cardiac work 
97

. Milnor looked at the aortic input impedance of mammals of 

different sizes, and proposed that the heart rate (HR) is fast enough to avoid the high impedance at 

low frequencies and slow enough to allow normal relaxation and recovery of the heart 
98

. Elzinga 

and Westerhof proposed that the heart and arterial systems should have a minimum size, and that 

the range of the resting HR is selected only to maintain the required diastolic pressure
79

. They used 

in-vivo experimental approaches to show that the left ventricle operates close to the optimum power 

point and the optimum efficiency. Although their hypothesis can explain the existence of a higher 

HR in a small animal, it falls short of explaining the slow HR found in a large animal (for details 

see Elzinga and Westerhof 
79

). The above-mentioned shortcomings indicate that there might be 

other missing optimization criteria in the selection of the optimum HR. 

It is a well-known fact that the pulsatile load on left ventricle (LV) is determined by the dynamics of 

wave propagation and reflection in compliant arterial vasculature 
7, 12

. Wave dynamics in a 

compliant tube is mainly controlled by three parameters: (1) fundamental frequency of the 

propagating waves; (2) material properties of the tube (which define the wave speed); and (3) 

reflection sites 
8, 9, 18

. Therefore, it is reasonable to assume that the adult cardiovascular system is 

designed in such a way as to take advantage of this complex wave dynamics. The main objective of 

this chapter is to develop a better understanding of wave dynamics and its role in the 

aforementioned optimization process.  
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I have hypothesized that the interplay between the heart rate (HR), the location of the total 

reflection site, and the pulse wave velocity (PWV—the clinical term for wave speed) can create an 

optimum wave condition in which pulsatile workload (or power) is minimized. It is shown in this 

chapter that the optimization of this condition is a design criterion in the natural selection of the 

heart rate in mammals.   

6.2.1 Wave condition number 

I start the analysis by idealizing the aorta as a simple elastic tube. Although it is a complex 

phenomenon, wave dynamics in a compliant tube is dominated by the fundamental frequency of the 

excitation, the wave speed, and the locations of the reflection sites 
8, 9, 18

. Therefore, it is reasonable 

to assume that wave dynamics in the aorta is controlled by the heart rate (HR), the pulse wave 

velocity (PWV) and an effective length (Leff). There are numerous reflections sites in the vascular 

network, but they create a cumulative reflected wave. From the perspective of the heart, the 

summated waves appear to be reflected from a single reflection site called the total (effective) 

reflection site. The distance of the total reflection site from the aortic input is called the effective 

length (Leff) 
109

. The value of Leff is close to the length of the aorta under normal physiological 

conditions 
109

.  In this chapter, I propose a non-dimensional number called the wave condition 

number denoted by the symbol “α”. This dimensionless number is a function of HR, PWV, and Leff 

and can be derived as follows: 

   (  ) (   ) (    )
   (               )                                                                                (   ) 

The dimensions for each component are         ,           , and         , where L is 

the dimension of length and T is the dimension of time. In terms of dimensions, Equation 6.1 can be 

rewritten as: 
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                                                                                                                                              (   ) 

To balance dimensions, one requires that 

{
    
    

                                                                                                                                                       (   ) 

The choice of b is arbitrary, so, without loss of generality, we can set b=-1; hence, a=1 and c=1. 

The constant k can also be absorbed into α and hence eliminated explicitly from Equation 6.1. 

Therefore α is related to the wave dynamic parameters as 

  
(  )(    )

(   )
                                                                                                                                        (   ) 

6.3 Materials and Methods 

6.3.1 Equipment and Materials 

An in-vitro experimental approach was employed to test the hypotheses. Experiments were 

performed using a hydraulic circuit called an aortic simulator (Figure. 6.1). This hydraulic circuit 

has physical and dynamical properties similar to a human heart and aorta and is suitable for the in-

vitro hemodynamic study of the vascular system. The major components of the aortic simulator 

include a positive displacement piston pump connected to an artificial aorta. Details of all the other 

aortic simulator components are provided below.   

A piston-in-cylinder pump (ViVitro Labs Inc. SuperPump System: Model SPS3891) was used to 

generate the pulsatile flow and simulate the left ventricle (using a programmed waveform generator 

WG5891). The artificial model included the aortic arch and main branches of the aorta (see Figure 

6.1) and was built on a 1-1 scale of the human aorta. These aortas were made out of clear natural 

latex (Chemionics Corp.) by dipping method, and silicone (39 Shore A Hardness RTV Silicone) by 
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coating method. By changing the number of applications of dipping or coating, I made aortas 

with different rigidities.  Thus I was able to test different compliant models of the artificial aorta 

that were then used in order to get different wave speeds (PWV). The PWV of each aorta is 

provided in Table 6.1, computed by the foot-to-foot method 
103

. 

 

Figure 6.1: Schematic representation of the aortic simulator. There is a unit at each outlet that gives 

the compliance and resistance of the eliminated vasculature. Schematics of these units are shown in 

the dashed-red box. The numbers at the outlets correspond to the value given in Table 6.1. 

 

Table 6.1  

Pulse wave velocity (PWV) of aortas  

No. material PWV (m/s) 

1  Silicone 6.7 

2 Latex 8.6 

3 Latex 9.5 

4 Silicone 11.4 

5 Latex 13 

6 Latex 13.5 

7 Latex 15 
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A unit was attached to the end of each outlet in order to simulate the resistance and compliance of 

the eliminated arterial network. This unit has three parts: one syringe, one clamp, and one port for 

catheter insertion (see Figure 6.1). The syringe is half-filled with air to simulate the required 

compliance of the eliminated vasculature (Table 6.2). In my experiments, the resistance from 

connecting tubes was high enough to give the physiological mean pressure; however, a clamp could 

also have been used to increase the terminal resistance. Two half-filled cylindrical chambers were 

installed at the end of the aortic loop which enabled me to control the total volume compliance 

(Table 6.2). The two chambers were connected to each other with a hydraulic resistance in between. 

The last component of our hydraulic loop was a reservoir tank connected to the inlet of the pump. 

Figure 6.1 shows the schematics of the aortic simulator as well as a sample artificial aorta used in 

this study. 

Table 6.2  

Air volume compliance  

aortic outlet location
* 

air volume (mL) 

Location 1 and 2  6 

Location 3 and 6 12 

Location 4 and 5 15 

Location 7 and 8 15 

Location 9 and 10 24 

Cylindrical Chamber 1 1402 

Cylindrical Chamber 2 1402 

(
*
See Figure 6.1 for aortic output locations) 

The pressure data was measured at the aortic input (Swan-Ganz 116F4 pediatric double lumen 

monitoring catheter, Edwards Life Sciences) and measured at the outlet of the compliant aorta at the 

iliac artery location (Swan-Ganz 116F5 pediatric double lumen monitoring catheter, Edwards Life 

Sciences) using Utah Medical Disposable pressure transducers (DPT-400). Tri-pack pressure 

measuring systems TP8891 (Vivitro Labs Inc.) consisting of three bridge amplifiers were used to 

collect the signals. Volume flow rates were measured at the inlet using a T110 Transonic Bypass 
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flow meter and a H16XL Transonic flow sensor (Transonic Systems Inc.). The pressure and flow 

data were collected simultaneously. 

6.3.2 Procedures 

In the aortic simulator, water was used as the circulating fluid. (Note that since the focus of this 

study is wave dynamics, the effect of fluid viscosity is negligible.) Any visible air bubbles were 

removed. In all experiments, the pump was operating under 40% systole (waveform C, waveform 

generator WG5891). Three sets of experiments were completed at various heart rates (ranging from 

60 bpm to 200 bpm) with different aortas. These experimental sets are as follows: 

Set 1: The experimental setup as shown in Figure 6.1 This setup included both cylindrical chambers 

and the resistance between the two. The pressure and flow data was collected for 4 seconds and 

each experiment was repeated at least five times. 

Set 2: In this setup, the first chamber was directly connected to the tank and therefore carried a 

compliance that was lower than Set 1. The resistance was also lower than Set 1 due to the removal 

of the hydraulic resistance and the shortcutting of the circuit (mean pressure was 84±2 mmHg for 

Set 2 and 104.5±3.5 mmHg for Set 1). By the shortcutting of the first chamber to the tank, I reduced 

total volume compliance while still maintaining a constant aortic PWV for each individual aorta. 

The data was collected for 4 seconds and each experiment was repeated at least five times. 

6.3.3 Power Calculation 

The pulsatile power is the result of the wave dynamics in a compliant vessel, which can be 

calculated using  
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Here, T is the period of the cardiac cycle, p(t) is the pressure, and  q(t) is the flow. Note that in 

Equation 6.5, the first term is the total power and the second term is the steady power. 

6.4 Results 

6.4.1 Wave Condition Number and Mammalian Size 

The arterial wave dynamics and pressure wave characteristics are similar in all mammals 
58, 101, 107

   

and, therefore, optimum wave reflection should also be similar in all mammals. This means that the 

optimum wave condition number is the same in all mammals. Although mammals have different 

HR and they exist at different length scales, the PWV is almost the same across all mammals 
98, 110

. 

Hence, the value of wave condition number (α) was investigated by looking into published data 

with mammals at different sizes where PWV is constant but Leff and HR are not. Since the Leff is 

approximately the same as the aortic length (± 10% in healthy humans) 
109

,  the available aortic 

lengths (LAorta) of mammals were used for the calculation of α. Figure 6.2 demonstrates the value of 

α at different LAorta. The HR and LAorta values of Figure 6.2 are given in Table 6.3 (values are taken 

from 
98, 106, 107, 110

). This figure demonstrates that α is around 0.1 across a wide range of mammalian 

size. 

6.4.2 Wave Condition Number and Pulsatile Power 

In the previous section, it was shown that the wave condition number is universal among all 

mammals independent of animal size, maintaining an approximate value of 0.1. In this section, 

through an in-vitro simulation of the human aorta (see Materials and Methods section), it will be 

shown that the wave condition number of 0.1 signifies an optimum condition where a certain 
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combination of HR and PWV minimizes the input pulsatile power. Figures 6.3a and 6.3b show 

samples of a flow wave and a pressure wave in the inlet respectively.  

 

Figure 6.2: Wave condition numbers for mammals with different aortic lengths. The value is 0.1 

(with absolute deviation of 0.01) across a large range of aortic lengths. Details of the animal cases 

used are provided in Table 6.3. 

 

Table 6.3  

Mammalian data of Figure 6.2 

physical parameters HR (bpm) LAorta (cm) α 

Mouse 835
* 

5
†
 0.116

 

Rat 346
‡
 11.5

‡
 0.110 

European Rabbit  205
§
 20

¶
 0.113 

Dog  
 
83

†
 41

†
 0.094 

Human 
 
76

‡
 44

‡
 0.093 

Goat 79
 †
 56

†
 0.122 

Wild Boar (Sus Scrofa) 60
§
 70

¶
 0.117 

Lion (Panthera Leo) 60
§
 82

¶
 0.091 

Bactrian Camel 27
§
 138

¶
 0.103 

Indian Elephant 23.5
*
 183

¶
 0.119 

(*Data are taken from Adolph 
106

. †Data are taken from Holt et al 
107

. ‡Data are taken from Milnor 
98

. §Data are taken from Altman et al 
110

. ¶Data were calculated from Holt et al allometric equation 

LAorta=16.12 BW
0.32

 where BW is body weight 
107

. Wave speed (PWV) was 6 m/sec for α 

calculation 
98

.) 
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Figure 6.3: a) A sample of an aortic input flow wave at HR= 72 bpm and CO=5 L/min. b) A sample 

of the aortic input pressure wave at HR= 72 bpm and CO=5 L/min. 

The wave condition number (  
       

   
) was calculated at each PWV (m/s) and HR (Hz). In our 

experimental setup, the effective length Leff (= 0.56 m) is the distance from the aortic input to the 

end of the compliant aorta where it is connected to the rigid tubes (see Figure 6.1). Graphs of 

pulsatile power versus the wave condition number (α) are shown in Figure 6.4a and 4b for seven 

and five different aortas, respectively. These aortas have different rigidities and hence different 

PWVs. Figure 6.4 shows that the optimum wave condition number has a value around 0.1 for all 

cases independent of aortic rigidity and experimental setup. Figure 4a and 4b belong to the setups 
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with higher total volume compliance and lower total volume compliance, respectively (see 

Materials and Methods section for details). Due to the limitations of the pump, the experiments 

were performed at particular discrete heart rates and, therefore, the exact αopt sometimes could not 

be identified. Besides this, a few values seemed to deviate (however slightly) from the exact value 

of αopt = 0.1. These experiments were performed under two different setups where total volume 

compliance and total resistances varied (see Materials and Methods section). Although changing 

total resistance and total compliance alters mean and pulse pressure, the optimum value of the wave 

condition number remained at αopt ≈ 0.1 in all experiments. 
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Figure 6.4: Pulsatile power versus wave condition number “α” at different PWVs. a) Results of the 

aortic hydraulic model in setup with higher total volume compliance (Set 1). b) Results of the aortic 

hydraulic model in setup with lower total volume compliance (Set 2). The yellow band shows the 

range of optimum wave condition numbers. It is clear that αopt values scatter around 0.1 for all 

cases. Note that since the experiments were performed at specific discrete heart rates allowed by our 

pump, the exact αopt could not be identified and some values seem to deviate (however slightly) 

from the exact value of α = 0.1. Each data point is the result of the respective experiment repeated 

five times. 
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6.5 Discussion 

I have demonstrated the existence of a non-dimensional number (wave condition number) that can 

predict the optimum wave state in which the left ventricular (LV) pulsatile power (workload) is 

minimized in a mammalian cardiovascular system. I have also shown the following: (i) the 

optimum value of the wave condition number is around 0.1, and it is universal among all mammals 

independent of their size (their aortic length); (ii) the optimum value of the wave condition number 

remains the same (0.1) at various levels of aortic rigidity. 

6.5.1 Natural Selection of Optimum Heart Rate in Mammals: Wave Optimization Perspective 

Arterial wave dynamics are similar in mammals due to functional and geometric similarities in 

mammalian cardiovascular systems as demonstrated in previous studies 
98, 100, 101, 106-108, 111

. It was 

shown in Figure 6.2 that the wave condition number equals 0.1 in mammals of all sizes ranging 

from a mouse to an elephant. Larger species will have a larger effective length (aortic length). 

However, since the pulse wave velocity (PWV) is the same in all mammals regardless of size, the 

HR must decrease to retain the optimum wave condition. Allometric equations         HR, and 

PWV as functions of animal body weight W also indicate that the optimum wave condition number 

is invariant of the mammalian size:                                   and PWV=6 m/sec 

(invariant of animal size)                . 

Here,        is in centimeters (cm), W is the animal body weight in kilograms (kg), and HR is the 

heart rate in hertz (Hz). The allometric equation of        is taken from Holt et al 
107

 and allometric 

equation for HR is taken from Adolph 
106

. It is necessary to emphasize that retaining the optimum 

wave condition is only one of several design parameters that optimize the mammalian 

cardiovascular system.  However, there are a very few mammals, such as the guinea pig, whose 
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arterial wave dynamics are different from all other mammals 

112
, and hence might have a slight 

deviation from 0.1 in the wave condition number. 

Existence of such an optimum state can also be attributed to the possibility of the aorta acting as a 

passive pump. It has been shown that compliant tubes at certain excitation frequencies, tube 

compliances, and reflection sites can act as pumps and the process is known as a Liebau effect 
8, 9, 13, 

91
. This will be investigated in the next chapter (Chapter 7). 

As described in this chapter, a specific combination of the HR, PWV, and      creates optimum 

wave dynamics (optimum in the sense that pulsatile power is minimized) where          

       

   
. In the case of mammals of different sizes where the PWV is the same, a larger animal 

requires a decrease in HR in order to maintain the optimum condition of     
         

   
f. In the 

case of smoking, where      does not change but aortic rigidity does (higher PWV), the HR 

increases  (see Chapter 4) to retain the optimum value of      
        

    
. Inspired by this finding, a 

therapeutic approach can be envisioned to reduce the LV pulsatile load by correcting and 

optimizing wave dynamics as first proposed by O’Rourke 
80

. The majority of HF patients show 

increased arterial stiffness (    )
7, 66

. For these patients, our results suggest that their natural HR 

should be elevated based on the stiffness of their aorta. Since it is rarely practical to increase the HR 

in HF patients, one solution would be to modify wave reflection sites (e.g. increasing     ). 

6.6 Conclusion 

The results of this chapter suggest that aortic wave optimization is one of the design characteristics 

of the mammalian cardiovascular system. This is in agreement with the earlier result shown by 

Quick et al 
102

. The wave optimization was considered with respect to the pulsatile workload. 

However, perfusion of coronary arteries is also an important aspect of aortic wave optimization 
92, 
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104, 113, 114

, making this an important subject of future studies. A non-dimensional number dubbed 

the wave condition number (α) was introduced and was shown to have the value of αopt= 0.1 at the 

optimum wave state. This relationship was demonstrated to be universal among all mammals (from 

mice to elephants). However, this is not the only factor that defines HR in mammals; there are 

certainly other factors, as shown in previous studies 
79, 96-98, 115

. Amazingly, mammalian 

cardiovascular systems have evolved in such a way as to satisfy them all. I have thus propose using 

the wave condition number as a scaled cardiovascular risk index. This index could be useful as a 

new diagnostic tool in the development of new therapeutic strategies. 
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C h a p t e r  7  

WAVE PUMPING EFFECT IN THE HUMAN AORTA 

7.1 Chapter Abstract 

An impedance pump—also known as Liebau pump—is a simple valveless pump that operates 

based on the principles of wave propagation and reflection. It has been shown in embryonic 

zebrafish that a similar mechanism is responsible for the pumping action in the embryonic heart 

during the early stages before valve formation. Recent studies suggest that the cardiovascular 

system is designed to take advantage of wave propagation and reflection phenomena in the arterial 

network. In this chapter I report the results of an in-vitro study that examines the hypothesis that the 

adult human aorta acts as a passive pump based on Liebau effect. A hydraulic model with different 

compliant models of an artificial aorta was used for a series of in-vitro experiments. The results 

indicate that wave propagation and reflection can result in a pumping mechanism in a compliant 

aorta. 

7.2 Introduction 

At the early stages of vertebrate embryonic life, the heart is a simple valveless tubular vessel that 

creates a pumping action and sends the blood into the embryo’s body. In a zebrafish embryo model, 

Forouhar et al. have shown that this tubular valveless pump works like an impedance pump 
20

. An 

impedance pump—also known as Liebau pump—is a simple valveless pump that works based on 

wave propagation and reflections. Liebau was the first one who suggested the potential existence of 

a wave pumping mechanism (now known as an impedance pump) in the human aorta 
13, 17

.  

In its simplest form, an impedance pump requires a compliant tube element bounded by two stiffer 

tube elements (reflection sites) at its two ends and a wave generator (e.g. a pincher). The generated 
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waves propagate toward the reflection sites. If there is any asymmetric wave condition (i.e. 

distance to reflection site or wave speed) the wave interaction process will generate a net flow from 

one end to the other 
8, 9, 13

. The net flow and its direction depend on various parameters such as the 

frequency of pincher excitation (fundamental frequency of waves), the pincher location (distance to 

the reflection sites), the tube compliance (wave speed), and pincher stroke (wave amplitude)
8-11, 13, 

19
.  

The impedance pump mechanism—which will be referred to as the wave pumping mechanism in 

this chapter—is responsible for blood circulation in the early embryonic stage before the formation 

of valves. In the embryonic heart tube, the role of the pincher is played by a band of active 

contractile cells near the heart tube’s entrance 
20

. Ultimately, the formation of the mature heart and 

aorta is the result of the embryonic heart tube’s morphing and segmentation during development.  

Once the mature cardiovascular system is formed, the heart generates waves which propagate in the 

compliant aorta and which could give rise to a pumping effect similar to an impedance pump. This 

effect may play a subtle but important role in vertebrate circulatory system. Figure 7.1 shows the 

schematic of an impedance pump, an embryonic heart tube, and mature heart-aorta system.  The 

goal in this chapter is to investigate if the aorta could act as a conduit for wave reflection and 

propagation, and the resulting wave pumping effect, therefore, offering the heart a supplementary 

pumping mechanism that will help to reduce its load.  

The aorta assists blood circulation if it generates net flow in forward direction (aorta forward 

pumping condition). In this case, the measured cardiac output (CO) is the sum of the flow generated 

by the heart (  ) and the net flow generated by the wave pumping effect (  ) in the aorta. However, 

from a system point of view, what the heart actually feels is quite different. The heart sees the aorta 

and the vascular network as a resistance composed of passive and dynamic impedance against the 
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flow of blood. Hence, under the aorta forward pumping condition, the heart feels reduced 

impedance (resistance) which results in reduced pulsatile workload of the heart. Similar to an 

impedance pump, a backward pumping effect may reduce the net flow. Under the backward 

pumping condition the heart feels elevated impedance due to generated reverse net flow, so the left 

ventricular power requirement increases. The measured CO in this condition is the difference 

between the reverse flow generated by positive displacement of the heart and the net flow created 

by wave pumping in the aorta (        ). The outcome is different under the heart failure 

(HF) condition, but the mechanism is still the same. In HF, CO decreases since the failed heart 

cannot generate enough power to overcome the reverse pumping in the aorta. If the aorta generates 

net flow in the forward direction, the heart feels reduced impedance and CO increases. Figure 7.2 

shows a schematic of the above-mentioned phenomena. 

 

Figure 7.1: A schematic of an impedance pump where a pincher generates the waves 
9
, an 

embryonic heart tube where active cells function as a biological pincher 
20

, and a heart-aorta system 

where waves are generated by the heart. 
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Figure 7.2: A schematic of the impedance pumping phenomenon. The aorta may pump in a forward 

or backward direction depending on the wave dynamics inside the aorta. a) The aorta is pumping in 

the forward direction. b) The aorta is pumping in the reverse direction. The heart sees these 

pumping effects as reduced or increased impedance (Z) which shows up as reduced or increased 

pulsatile power ( ̅     ) respectively. Under the heart failure (HF) condition, the aorta forward 

pumping effect (   ) facilitates the blood circulation by increasing the cardiac output (CO). On the 

other hand, the aorta backward pumping effect (   ) results in reduced CO since the failed heart 

cannot overcome the extra load. 

The hypothesis is that wave dynamics can in fact create a pumping effect in the aorta similar to an 

impedance pump such as that found in an embryonic zebrafish heart. The difference between an 

aortic pump and a classical impedance pump is that there is no external pincher; instead, the waves 

are being created by the heart. The main goal in this chapter is to show how wave reflection in the 

aorta can create net flow in forward direction (toward the capillaries) or backward direction (toward 

the heart). The direction of the net flow and its magnitude depends on the wave dynamic 

characteristics. I used an in-vitro heart-aorta model to test this hypothesis since it would be 

extremely difficult if not possible to show this effect in-vivo. 
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As shown in Figure 7.2, the aorta pumping effect can be mistaken for increased or reduced 

impedance. In order to show that aortic waves create a pumping effect, I designed an experimental 

setup in which the net flow generated by positive displacement of the heart (    ) was removed, 

but waves were preserved. In this experiment, the time averaged (per cycle) measured flow (  ) is 

caused by the passive pumping created by waves in the aorta (see Figure 7.3). 

 

Figure 7.3: Schematic representation of an ideal setup for testing the hypothesis. If the net flow 

generated by the heart is eliminated (    ), the measured flow will be the net flow generated by 

the wave pumping effect in the aorta (measured flow =  ).      and      correspond to the 

aorta forward pumping and aorta backward pumping conditions respectively. 

7.3 Methods 

To test the hypothesis, an in-vitro experimental approach was considered. The schematic of the 

experimental setup is shown in Figure 7.4. The setup includes a piston pump connected to a T-

junction. An artificial aorta is connected to one side of the T-junction from one end and to rigid 

tubing from the other end which connects to a reservoir tank. The other side of the T-junction is 

connected to a rigid tube that is directly connected to the tank.  

In order to reveal the contribution of the wave pumping effect the one-way valves have been 

removed from the piston pump to simulate a heart with zero net flow and enable the generation of 

waves in the compliant aorta. A small net flow however was unavoidable due to the asymmetric 

resistance of the flow loop on either side of the pump. 
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Therefore, in this experimental setup, there are two pumping mechanisms: 1-asymmetric 

pumping (asymmetric resistance pumping) and 2-wave pumping (impedance pump). Therefore, it is 

necessary to have control experiments (Setups 2 and 3) to show that the observed pumping is not 

caused entirely by asymmetric pumping but by waves as well. The asymmetric pumping can 

happen in both rigid and compliant tubes, and it does not need a medium for wave propagation. The 

basic mechanism for this pumping mechanism is the asymmetric pressure or kinetic energy loss at 

both sides of the T-junction. (Further details about this pumping mechanism can be found in the 

literature 
116, 117

). The focus in this study is on the wave pumping mechanism that works based on 

the wave dynamics phenomena in compliant tubes. 

 

Figure 7.4: Schematic of the experimental setup. The setup includes a valveless piston pump, a T-

junction, an artificial aorta, an open surface reservoir (tank), an ultrasonic flow-meter sensor, and 

rigid tubing. 
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7.3.1 Equipment and Materials 

The piston pump is a piston-in-cylinder pump (ViVitro Labs Inc. SuperPump System: Model 

SPS3891) that generates the pulsatile flow using a programmed waveform generator (Vivitro 

WG5891). The artificial aortas were built on a 1-1 scale of the human aorta. These aortas were 

made out of clear natural latex (Chemionics Corp.) by dipping process. Different compliances were 

obtained by using the same mold and changing the number of dips in the dipping process. The rigid 

tubes were Masterkleer PVC tubes with an inner diameter of ¾” and a thickness of ¼”. Due to the 

flow sensor requirement, a rigid Tygon tube (R-3603 ) with an inner diameter of ¾” and a thickness 

of 1/8” was placed at small section right before the aortic inlet where the flow sensor was 

positioned. A T110 Transonic bypass flow meter and a H16XL Transonic flow sensor (Transonic 

System Inc.) were used for volume flow rates measurement at the inlet (see Figure 7.4). 

7.3.2 Procedures 

In these experiments, water was used as the circulating fluid. Any visible air bubbles were removed. 

In all experiments presented in this chapter, the pump was operating under 30% systole (duty 

cycle=30%) (waveform A, waveform generator WG5891). Three experimental setups were 

considered, which are as follows:  

Setup 1: This experimental setup is shown in Figure 7.2. The aorta model length is 56 cm and the 

total length of the aortic side is 203 cm. The total length of the rigid side (the side that directly 

connects the pump to the tank) is 124.5 cm. Aortas with different compliances were used in this 

setup. The aortic volume compliances were measured by adding incremental volumes of fluid and 

measuring the incremental change in pressure (see Table 7.1).  
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Table 7.1  

artificial aortas’ compliances 

aorta No.
 

volume compliance (mL/mmHg) 

1 0.7337 

2 0.4354 

3 0.4124 

4 0.3151 

 

Setup 2: The experimental setup is similar to Setup 1, but the compliant aorta model was replaced 

with a rigid tube of the same length. The rigid tube was Masterkleer PVC tubes with an inner 

diameter of ¾” (≈19 mm) and a thickness of ¼” (note that the inner diameter of the aortic model is 

25mm at the inlet that tapers down to 17 at the end).   

Setup 3: The experimental setup is similar to Setup 2, but the length of the rigid tube of the rigid 

side was reduced from 124.5 cm to 62 cm.     

For each setup, the experiments were performed at various piston frequencies (heart rates) ranging 

from 60 bpm to 200 bpm. The flow data was collected for 4 seconds and each experiment was 

repeated at least five times. 

The Setup 1 and 2 experiments were performed under two different stroke rates, St1=5 L/min and 

St2=6.5 L/min (for setup 3, only St1 was performed). The stroke rate is the average total volume 

displaced by the piston per cycle which is equivalent to cardiac output when valves are present. 

Note that a higher stroke rate corresponds to a higher wave amplitude or higher amount of energy 

carried by the waves (see Appendix C). Stroke rates were measured by placing two one-way valves 

at both sides of the T-junction (see Figure 7.4) and measuring the volume flow rate (The volume 

flow rate is equal to the piston stroke rate when valves are present). 
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7.4 Results 

7.4.1 Valveless Piston Pumping in Rigid Tubes: Asymmetric Pumping 

With this experimental setup (Setup 1), there are two distinct pumping mechanisms, asymmetric 

pumping and wave pumping. The asymmetric pumping can occur in any rigid and compliant tubes 

with periodic excitation if asymmetric pressure or energy loss exists. Different tubing or junction 

characteristics can create these asymmetric losses 
116-118

.  

Figure 7.5a shows the results from experimental Setup 2. The asymmetric pumping is the only 

effective pumping mechanism in this setup. Both the magnitude and direction of the net flow 

depend on the piston frequency. This figure shows that the net flow remains the same at all 

frequencies when the stroke rate increases from St1=5 L/min to St2=6.5 L/min. It is obvious that the 

stroke rate does not have any effect on the asymmetric pumping of our system. The results of 

experimental Setup 3 are shown in Figure 7.5b. As the asymmetry changes, here by reducing the 

tube length of the rigid side, the overall pattern of the “net flow-frequency” curve remains the same. 

However, the pumping effect increases (magnitude of the net flow increases) as the asymmetry 

increases. The flow reversing phenomena (negative net flow) in our asymmetric pumping setups 

(Setup 2 and 3) are in agreement with  previous analytical 
116

 and experimental 
117, 118

 results. 

7.4.2 Impedance Pumping Effect in Compliant Aorta: Wave Pumping 

In experimental Setup 1 with the compliant aorta, both the asymmetric and wave pumping 

mechanism exist. The total pumping is the summation of these two. Figure 7.6a shows the net total 

flow at different piston frequencies ranged from 60 to 200 bpm for the compliant aorta No.4 (see 

Table 7.1) with a stroke rate of St2=6.5 L/min. As shown in this figure, the range of net flow in the 

compliant aorta (approximately from -0.48 to 1.61) is almost twice the range of the net flow in the 
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rigid tube (approximately from -0.39 to 0.47) due to the presence of an additional pumping 

mechanism. Figure 7.6b demonstrates the net flow created by the wave pumping mechanism. The 

curve was computed by subtracting the two curves of Figure 7.6a. Although the asymmetric 

pumping produced in the rigid tube is not the same as the one created in the compliant aorta, Figure 

7.6b shows the significance of the pumping created by the waves. 

 

Figure 7.5: Net mean (time averaged) flow at various piston frequencies. a) Results belonging to the 

experimental setup 2 where St1=5 L/min and St2=6.5 L/min. The two mean flow-frequency graphs 

are almost identical indicating that the stroke rate has a negligible effect on the asymmetric 

pumping in our system. b) Comparing the results of setup 2 and 3, the overall pattern is preserved, 

but the net flow rises as asymmetry increases due to the increased rigid tube’s length ratio. 
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Figure 7.6: There are two pumping mechanisms in the compliant aorta that create the net flow, 

asymmetric pumping, and wave pumping. a) Net mean flow at various piston frequencies for Setup 

1 with compliant aorta No.4 (Table 7.1) compared with the net flow of the rigid tube (Setup 2). b) 

Net mean flow of the wave pumping mechanism at various piston frequencies. The graph was 

created by subtracting the two curves shown in Figure 7.6a. The results are calculated for the stroke 

rate of St2=6.5 L/min. 

7.4.3 Effect of Stroke Rate (Wave Energy) 

The net flow changed as the stroke rates changed. This is shown in Figure 7.7a for aorta No. 3 with 

stroke rates of St1=5 L/min and St2=6.5 L/min at various frequencies ranging from 60 to 200 bpm. 

At some frequencies, 80 bpm in this case, changing the stroke rate also changes the direction of the 

flow. This phenomenon was further investigated by repeating the experiment at five different stroke 

rates ranging from 4.32 to 7.15 L/min. The results are provided in Figure 7.7b. In this condition, the 

asymmetric pumping creates a net flow in the opposite direction of the net flow created by the wave 

pumping mechanism. The total net flow is negative when the wave pumping is not strong enough to 

overcome the asymmetric pumping at lower stroke rates (red region of Figure 7.7b). Under higher 
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stroke rates, when waves are carrying a higher amount of energy, the wave pumping effect 

dominates, so the total net flow becomes positive (green region of Figure 7.7b). 

 

Figure 7.7: Effect of stroke rate (wave amplitude). a) Total net mean flow versus piston frequencies 

at two stroke rates (St1=5 L/min and St2=6.5 L/min). The net mean flow changes by changing the 

stroke rate. This indicates the existence of the wave pumping effect since the net flow generated by 

asymmetric pumping does not change with stroke rate as demonstrated in Figure 7.5a. b) Net mean 

flow at different stroke rates for aorta No.3 (see Table 7.1) and piston frequency of 80 bpm. As 

shown, the net flow direction gets reversed by changing the stroke rate in the compliant aorta. In 

this condition, the asymmetry and the waves are creating a pumping effect in the reverse direction. 

The red area corresponds to the region where wave energy is not enough to overcome asymmetric 

pumping. The white region is where the two pumping effects cancel each other. The green region is 

where waves carry enough energy for wave pumping to overcome asymmetric pumping. 
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7.4.4 Effect of Compliance (Wave Speed) 

The effect of tube compliance on the magnitude and direction of total net flow is shown in Figure 

7.7a and 7.7b. The compliance aorta’s net flow includes both wave pumping and asymmetric 

pumping. The rigid case only contains the asymmetric pumping. Figure 7.8a and 7.8b show the net 

flow for stroke rates of St2=6.5 L/min and St2=5 L/min respectively. Waves are carrying higher 

amounts of energy at a higher stroke rate; therefore, the net flow has bigger amplitude at higher 

stroke rates. This can be observed in Figures 7.8a  and 7.8b by comparing the range of the net flow 

amplitudes. Note that different compliances correspond to different wave speeds. In a similar 

manner to the behavior of a standard impedance pump, both direction and magnitude of the net 

mean flow show strong dependence on the tube compliance (the wave speed). 

 

Figure 7.8: Effect of tube compliance (wave speed). The total net mean flow versus piston 

frequencies for aortas with different compliances (Setup 1) compared to the rigid case (Setup 2). In 

a similar manner to the behavior of an impedance pump, the magnitude and direction of the net flow 

change as the tube compliance (wave speed) changes. a) Data are for a stroke rate of St2=6.5 L/min 

b) Data are for a stroke rate of St1=5 L/min. 

7.5 Discussion 

The impedance pump (Liebau pump) has been shown to be the effective pumping mechanism in 

early embryonic life 
20

. In addition, Zamir 
104

 has shown in right coronary arteries that wave 
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reflection can facilitate blood circulation rather than opposing it. This has been recently 

confirmed in clinical studies 
92, 113

. In this chapter, the possible role of wave reflection in creating a 

pumping effect in the human aorta was investigated. An in-vitro model was used to test the 

hypothesis. 

7.5.1 Valveless Piston Pumping in Rigid Tubes: Asymmetric Pumping 

Asymmetric pumping can occur in any rigid or compliant tube with periodic excitation if there is 

any asymmetric resistance and/or energy loss. The wave pumping mechanism, however, happens 

exclusively in elastic tubes.  

The main purpose of Setup 2 and 3 was solely for characterizing the asymmetric pumping of the 

system and for comparing their results with the results of Setup 1 where both pumping mechanisms 

are simultaneously active. Asymmetric pumping mechanisms have been studied analytically 
116

, 

computationally 
117, 118

, and experimentally 
117, 118

 by other investigators and were not the subject of 

the current study. 

The results of experimental Setup 2 were demonstrated in Figure 7.5a. This figure showed that the 

net flow in asymmetric pumping can be created in both directions depending on the piston 

frequency. The flow reversing phenomena in asymmetric pumping has also been shown by Propst, 

analytically 
116

 and by Takagi et al., experimentally 
117, 118

. Using an analytical approach, Propst 

showed that the pumping direction can be reversed at certain frequencies if the tube friction is 

sufficiently small 
116

. The most important message of this figure is that the stroke rate does not have 

any effect on the asymmetric pumping of my system.  

The results of Setup 2 and 3 were compared in Figure 7.5b. It demonstrated the effect of the tubes’ 

length ratio on the asymmetric pumping. Both graphs have similar patterns in which the maximum 
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net flow in the positive and negative directions happens at the same piston frequencies. The 

magnitude of the net flow was increased at all frequencies (except when the net flow was close to 

zero) as the length ratio was increased (hereby reducing the length of the rigid side). The physical 

explanation is as follows: The loss at each side is proportional to the amplitude of the velocity 
116

, 

and the velocity amplitude is inversely proportional to the tube’s length 
116

. Therefore, as the length 

ratio increases, the loss difference increases which results in enhancement of the pumping effect 

(see Propst 
116

 and Takagi et al 
117

 for more details). 

7.5.2 Impedance Pumping Effect in the Compliant Aorta: Wave Pumping 

It was demonstrated in Figure 7.6 that the maximum generated total net flow in the compliant aorta 

(Setup 1) is approximately 3.4 times larger than the one in the rigid tube (Setup 2). Obviously, there 

must be another pumping mechanism rather than an asymmetric pressure-energy loss mechanism 

causing the significant elevation of the net flow. The extra assistance in flow generation comes from 

the wave pumping mechanism. In an impedance pump (a wave pumping mechanism), the net flow 

depends on various system characteristics such as the frequency of pincher excitation, the pincher 

location (distance to the reflection sites), the tube compliance (wave speed), and pincher stroke 
8-10, 

13, 19, 20
. Similarly, the net flow generated by the wave pumping mechanism in the aortic system 

depends on the piston frequency, the aortic length, the tube’s compliance and the piston stroke rate. 

The asymmetric pumping also depends on the piston frequency and the tube length, so the 

dependence of the net flow on the piston frequency and aortic length does not help us prove the 

existence of the wave pumping mechanism. Therefore, the focus in my experiments was on 

investigating the effect of the stroke rate (wave energy) and the tube’s compliance (wave speed). 
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7.5.3 Effect of the Stroke Rate (Wave Energy) 

Figure 7.7a has shown that the stroke rate significantly influences the net total flow. For example, at 

the frequency of 72 bpm, a 30% increase in the stroke rate results in the net flow increase from 0.23 

L/min to 1.13. Previously, it was shown in Figure 7.5 that the asymmetric pumping is independent 

of the stroke rate at all frequencies (ranged from 60 to 200 pbm) in my experimental model. Since 

the asymmetric pumping is not affected by the piston stroke rate, the dependence of total net flow 

on the piston stroke rate proves the existence of the wave pumping mechanism in the compliant 

aorta. 

The coexistence of the two pumping mechanisms (asymmetric and wave) in my system is clearly 

represented in Figure 7.7b. This figure depicts a case where the asymmetric pumping and wave 

pumping mechanisms are creating net flow in the opposite directions. At a sufficiently low stroke 

rate (St <5.73 L/min), the asymmetric pumping is dominated, so the net flow assumes a negative 

sign (red region of Figure 7.7b).  The net flow generated by the wave pumping mechanism is 

proportional to the power (or energy) carried by the waves. The power carried by the waves in the 

system (compliant tube + piston pump) is proportional to 

 ̅         
 

 
                                                                                                                                              (   )

Here,  ̅ is the time averaged power (energy rate), St is the amplitude of the piston stroke rate, fp is 

the frequency of the piston wave, and c is the wave speed.  Also, h is a function of the tube’s 

material properties, fluid density, fluid viscosity, and tube diameter (see Appendix C for 

derivations). Hence, for a fixed given experimental setup, aortic model and piston frequency, the net 

flow generated by the wave pumping mechanism is directly proportional to the square of the stroke 

rate ( ̅     ). As shown in Figure 7.5, the net flow generated by the asymmetry remains constant 

when the stroke rate increases. On the other hand, the net flow of the wave pumping increases 
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parabolically with the stroke rate. Therefore, by further increasing the stroke rate (St >5.73 

L/min), the wave pumping overcomes the asymmetric pumping and net flow becomes positive 

(green region of Figure 7.7b). Note that the parabolic shape of the “net flow-stroke rate” curve is in 

agreement with the above analytical prediction. 

7.5.4 Effect of the Compliance (Wave Speed) 

Any small changes in the wave characteristics may significantly affect the wave dynamic in an 

elastic tube due to nonlinearity of the dynamics and resonance effect of the wave interactions 
8, 9, 18, 

102, 119
. Wave speed (tube’s compliance) is one of the most influential wave dynamic characteristics 

that can significantly change the system’s outcome.  

Figure 7.8a and b demonstrate the dependence of the outcome (net flow) on the tube compliance 

(wave speed). These figures show that both direction and magnitude of the net flow can change as 

tube compliance changes. At some piston frequencies (e.g. 72 and 80 bpm) different tube 

compliances can produce net flow in the opposite direction. The strong dependency of the net flow 

on the tube compliance proves that the asymmetric pumping is not the only pumping mechanism in 

our system; there is another dominant pumping mechanism which is ruled by waves. It was also 

shown in Figure 7.8a and b that the amplitude and direction of the net flow is significantly 

influenced by piston frequency and stroke rates which further supports the existence of the wave 

pumping mechanism in the aortic model. 

7.5.5 Limitations 

The most important limitation of this study is related to the in-vitro modeling of the aorta-heart 

system. Due to the forward net flow generated by the heart and existence of the aortic valve, the 

dynamics of the heart-aorta system in a true physiological situation is different from my in-vitro 
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experimental model. This means that the model’s optimum frequency, in which the maximum 

net flow (produced by aortic waves) occurs, and its net flow magnitude may not be the same as the 

ones in a true physiological situation. However, this limitation does not affect the proposed 

hypothesis since the goal in this study was to prove the existence of the wave pumping mechanism 

in the aorta. Another limitation of this study is related to neglecting microcirculatory resistance in 

my in-vitro experiment. However, this simplification does not change the main finding of this study 

since capillary resistance does not influence the wave dynamics (the capillary resistance only affects 

the mean value of the pressure wave). 

The experimental setup (Setup 1) also contains limitations since both asymmetric pumping and the 

under study wave pumping mechanism are active simultaneously. However, control setups (Setups 

2 and 3) were employed to distinguish the features of the wave pumping from the asymmetric 

pumping. 

7.6 Conclusion 

The result of this chapter indicates that wave reflection in the aorta creates a pumping effect similar 

to that of an impedance pump.  The pumping effect can generate net flow in both forward and 

backward directions depending on the state of the wave dynamics. The aorta facilitates the 

circulation of the blood when it acts as pump. Under the aorta-pump condition, the pulsatile power 

is reduced which results in workload reduction of the heart. When the aorta is pumping backward, 

the heart needs to generate more power to overcome the extra load created by the aorta.  

The aorta generates a small pumping effect compared to the heart. However, this small pumping 

effect may play an important role in disease conditions such as heart failure and in extreme 

conditions, heavy exercise. The results reported here provide a better understanding of aortic wave 

dynamics and can potentially help us to design methods to optimize wave dynamics. These could 
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include both pharmacologic agents and interventional devices. For example, methods can be 

created in which the wave reflection sites are modified through surgical implants in order to 

minimize LV pulsatile load. Reduction of pulsatile load through such techniques may significantly 

improve LV function in patients with HF. 

 

 

 

 

 

 



 

 

124 
C h a p t e r  8  

CARDIOVASCULAR INTRINSIC FREQUENCY AS A MEDICAL DIAGNOSTIC INDEX 

8.1 Chapter Abstract 

During the systolic phase of the cardiac cycle when the aortic valve stays open, the left ventricle of 

the heart and the aorta act as a coupled dynamical system. The heart and aorta act as a decoupled 

system when the aortic valve is closed. Therefore, the range of characteristic frequencies of the 

heart-aorta system is different before and after valve closure. The dominant frequencies of these 

ranges were referred to as Intrinsic Frequencies. It will be shown that when the two intrinsic 

frequencies are equal, the left ventricle pulsatile workload is minimized. Intrinsic frequencies from 

clinical pressure data indicate that the total frequency variation increases with age or cardiovascular 

diseases. Using clinical data, the clinical significance of intrinsic frequencies will also be 

demonstrated. In this respect intrinsic frequency can be considered as a new medical index for 

cardiovascular disease diagnosis. To obtain intrinsic frequency, only a single waveform, without 

calibration, is required. 

8.2 Introduction 

Cardiovascular diseases (CVD) are the underlying cause of over 831,000 deaths in United States 

each year 
1
.  Approximately 5,800,000 patients have been diagnosed with heart failure (HF) in the 

US and this number is growing every year 
1
. Clearly, with the advent of telemedicine, there is a 

need to develop new methods for early diagnosis and monitoring CVDs such as CHF. Such 

methods have the potential to reduce the death rate and the high medical costs associated with 

repeated hospitalization. The goal in this chapter is to describe a new method for pressure wave 

analysis and to introduce a new index for detection of CVDs and evaluation of their severity. 
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It is perhaps most convenient to think of CHF in terms of the cardio-circulatory or 

hemodynamic model of heart failure.  In this model, heart failure is considered to arise either from 

deficiencies in heart’s pumping capacity or elevation of peripheral vascular resistance or both. 

Obviously, such model is an oversimplification of the pathogenesis of clinical heart failure which 

involves a complex interplay between neurohormonal and hemodynamic mechanisms leading to 

salt and water retention, and reduced cardiac output 
120

.  

The mechanical load on the left ventricle (LV) is composed of steady and pulsatile components
7
. 

The steady load is due to the total arterial resistance. The pulsatile load is a dynamic type and it is 

the result of a complex dynamic interaction between the LV and the arterial system. To better 

understand this complex dynamic process, one should acknowledge that heart is a pulsatile pump 

which sends pressure and flow waves into the compliant aorta and arterial network. These waves 

reflect from various reflection sites in the arterial system and partially reflect and interact with the 

incoming waves. The wave dynamics created by these interacting waves dominates the 

hemodynamics of the aorta and its branches. These waves also carry information about the diseases 

of the heart, vascular disease, and coupling of heart and arterial network 
66, 94, 119, 121

. This fact was 

known and used by ancient Chinese and Hindu physicians who over centuries had developed the art 

of reading cardiovascular health from the heart pulse 
122, 123

. Modern efforts in offering a 

quantitative version of this ancient art has seen a mixed success since these efforts treated the heart 

and vascular system as a “black box” system and paid less attention to the physical nature and 

genesis of the vascular wave dynamics.  As a result, extracting reliable information from waves 

about health or disease conditions has remained as a great challenge to modern medicine.  

Recent methods for analyzing arterial pulse waveform include methods based on frequency domain 

(Fourier analysis) 
7, 124

, and a second group which are based on time domain information such as 
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wave intensity analysis (WIA)

41
 . Simultaneous acquisition of pressure and flow waves at a 

given location is required for these techniques to render results. Efforts to achieve similar objectives 

based on pressure or flow alone have not been successful in providing conclusive results 
7
. Here I 

introduce a novel method of wave analysis that provides the potential for providing valuable clinical 

information based on a single pressure or vessel wall displacement waveform.   

This approach is based on a deeper understanding of the delicate coupling and balance between 

heart pumping characteristics and arterial wave dynamics in a healthy cardiovascular system. This 

optimum coupling and balance can be impaired due to increased arterial stiffness, aging, smoking, 

or disease conditions such hypertension and heart failure 
7
. Significant efforts have been made in the 

past to elucidate the complex interaction between the left ventricular and wave dynamics of the 

large central arteries such as the aorta 
7, 63, 121, 125, 126

. It is well accepted that the dynamics of the LV, 

arterial wave dynamics, and the interaction between the two determine the pressure wave 
7, 94, 121

.  

This means the pressure wave contains information about these dynamic systems and their optimum 

coupling. 

It was shown in Chapter 4 that, at a given left ventricle and vascular condition, there exists an 

optimum HR that minimizes the LV external pulsatile power. In this chapter, it will be 

demonstrated that a modified version of the Sparse Time-Frequency Representation (STFR) method 

can be used to identify this optimum heart rate from the pressure wave alone. The Sparse Time-

Frequency Representation (STFR) method is inspired by the Empirical Mode Decomposition 

method (EMD) 
127

. It provides a more systematic way to define instantaneous frequency. Like the 

EMD method, this approach is well suited to analyze nonlinear non-stationary data, and is less 

sensitive to noise perturbation. Additionally, this method preserves some intrinsic physical 

properties of the signal 
128, 129

. The application of the EMD method in biological problems has been 
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introduced by Huang et al 

130, 131
. In this chapter, I show the potential of this concept to diagnose 

heart and vascular diseases as well as its potential to quantify the optimum coupling between the 

heart and aorta. 

The left ventricle of the heart and aorta create a coupled dynamic system before the closure of the 

aortic valve. The onset of aortic valve closure is marked by the dicrotic notch on the aortic input 

pressure wave. This coupled dynamic system has a dominant frequency which is not necessarily 

constant over the cycle and not always equal to the heart rate. However, there is no argument over 

the idea that this dominant frequency is influenced by the dynamic of both the heart and the aorta. 

After the valve closure, they get decoupled from each other. This means that the dominant 

frequency is dictated only by the wave dynamics inside the aorta and its branches. The dominant 

frequency of the coupled system (heart+aorta) is not necessarily the same as the dominant 

frequency of the decoupled system (aorta). Furthermore, these dominant frequencies are not 

necessarily constant in time (they are instantaneous frequencies). I refer to these dominant 

frequencies as Intrinsic Frequencies (ω1 and ω2). The Intrinsic Frequency (IF) is basically the 

dominant frequency of the heart+aorta system during the specified interval of the cardiac cycle. The 

main objective in this chapter is to introduce the concept of Intrinsic Frequency (IF) as a new 

medical index for identification of the optimum heart rate and for diagnosis of cardiovascular 

diseases. 

8.3 Methods 

8.3.1 Computational Aorta 

A three-dimensional axisymmetric model of the aorta was considered. The computational model 

was physiologically relevant. The methods as well as the physical parameters of the model were the 

same as Chapter 4 where full details of the computational model were provided.  
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Information about the physical model, mathematical model, inflow boundary condition, and 

outflow boundary condition are the same as those given in Chapter 4. 

The simulations were performed for different levels of aortic rigidities labeled E1 through E7, where 

E1 is the aortic rigidity of a 30-year old healthy individual 
7
.  All the other Ei are multiplicative 

factor of E1 as: E2=1.25E1, E3=1.5E1, E4=1.75 E1, E5=2E1, E6=2.5E1, and E7=3E1. The numerical 

values of Ei are the same as Chapter 4. At each Ei, simulations were completed for eight heart rates 

(70.5, 75, 89.5, 100, 120, 136.4, 150, and 187.5 beats per minute (bpm)). All other model 

parameters such as cardiac output (CO), terminal resistance, terminal compliance, and the shape of 

inflow wave were kept constant in all simulations. 

8.3.2 Sparse Time-Frequency Representation (STFR) 

8.3.2.1 Brief Introduction to STFR 

In the past decade, there has been an increasing interest in developing new adaptive data analysis 

methods that can handle non-linear and non-stationary data effectively 
132

. Inspired by the Empirical 

Decomposition Method (EMD)
127

, a new method of Sparse Time-Frequency Representation 

(STFR) was introduced 
128

. An essential feature of this approach is that it uses a basis (dictionary) 

that is adapted to the data itself. By using this data-driven multiscale basis, one can find a sparse 

representation of a highly complex multiscale signal by solving a nonlinear optimization problem 

128, 129
 . Each component of this sparse time frequency decomposition gives an Intrinsic Mode 

Function (IMF) which can be characterized by a slowly varying envelope and an instantaneous 

frequency. Under certain scale separation assumptions, it can be shown that the STFR 

decomposition can accurately recover the original signal uniquely up to an approximation error 
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determined by the degree of scale separation. As shown by Hou and Shi 

129
, the STFR 

decomposition can recover some of the hidden physical information from the data. 

8.3.2.2 Adaptive method of STFR 

The notion of Intrinsic Mode Function (IMF) was first introduced by Huang et al 
127

.  A more 

mathematical definition of IMF is defined by Hou and Shi 
128

 as follows:  

A signal f(t) is called an Intrinsic Mode Function (IMF) if there exists an envelope, a(t) > 0, and a 

phase function ,θ(t), satisfying two properties: (i) a(t) is smoother (more slowly varying) than 

cosθ(t), and  (ii) θ(t) is strictly increasing in time. 

 ( )   ( )    ( ( ))                                                                                                                       (   ) 

A real signal s(t) is called an Intrinsic Signal (IS) if it can be decomposed into a finite sum of IMFs: 

 ( )  ∑  ( )      ( )

 

   

                                                                                                                        (   ) 

The essential idea behind the STFR is to find the sparsest representation of a multiscale data within 

the largest possible dictionary of IMFs. This huge dictionary consists of elements (or bases) that are 

not defined a priori. The use of an infinitely dimensional highly redundant data-driven basis is what 

makes the STFR truly adaptive. Based on an approximation, the STFR method can be reduced to an 

L2 minimization problem 
129

. The description of the L2-STFR algorithm is provided in appendix D. 

8.3.2.3 Modified  STFR  for Heart-Aorta System: Intrinsic Frequency Algorithm 

In this proposed method, it is assumed that the instantaneous frequency of the coupled heart-aorta 

and decoupled aorta are piecewise constant in time. This enables us to extract the Intrinsic 

Frequencies directly from the pressure waves. Intrinsic frequency is the frequency that carries the 

maximum power in Equation 8.2.  To extract the intrinsic frequency, a simple but effective norm-2 
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(L2) minimization method is proposed. The envelopes of the IMF are also assumed to be 

piecewise constant in time to distinguish between the two systems. Hence, the L2 minimization 

problem, for the extraction of the trend and frequency content of the input aortic pressure wave, is 

proposed as follows: 

           

‖ ( )   (    )   ( )   (    )   ( )   ‖ 
                                                                     (   ) 

             

     (    )       (    )       (    )       (    )                                       (   ) 

        (   )       (   )                                                                                           (   ) 

  ( )       (   )       (   )                                                                                        (   ) 

and 

  ( )       (   )       (   )                                                                                       (   ) 

Here,  

 (   )  {
           
               

                                                                                                       (   )  

This problem is now reduced to solving for a1, a2, c, b1, b2,   , and   . Equation 8.4 and 8.5 are 

linear constraints that ensure the continuity of the trend at the time T0 (dicrotic notch) and the 

periodicity of the trend, respectively. This minimization states that the aortic input pressure wave 

can be approximated by incomplete sinusoids with different frequencies (  ,   ), which I refer to 

as Intrinsic Frequencies (IF).    is the IF for the heart-aorta system (before aortic valve closure = 

before dicrotic notch), and    is the IF for the decoupled aorta (after aortic valve closure = after 

dicrotic notch).  
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The original minimization problem is not convex. Thus there may be several local minima. To 

find the global minimum, a brute-force algorithm over all possible values of frequencies is used to 

ensure that the corresponding minimizer frequencies (  ,   )m are in fact the unique global 

minimizer frequencies of the original minimization problem. The details about the brute-force 

algorithm are provided in Appendix E. 

8.3.3 Clinical Method 

The retrospective patient data after de-identification were used. The invasive blind clinical data 

were obtained from patients having clinically indicated procedures in the cardiac Cath Lab at Keck 

Medical Center, University of Southern California. Data generated were part of routine procedural 

processes. There was no modification of the clinical procedure to generate the needed clinical data. 

8.4 Results 

Three sets of results are provided in this section. First, the adaptive STFR method was applied on 

the pressure wave to extract the instantaneous frequency (  ̇( )  
   

  
) of the first intrinsic mode 

function (IMF). Second, for each aortic rigidity case, the intrinsic frequency (  and   )-HR curve 

was sketched and compared with the corresponding pulsatile power-HR graph. Third, 

  and   were extracted from sample clinical data of different human subjects to show the 

potential of the intrinsic frequency method for CVD diagnosis. 

8.4.1 Instantaneous Frequency of the Pressure Waves 

The adoptive STFR method 
129

 was applied to sample aortic input pressure waves. The 

instantaneous frequency, (  ̇( )), of the first intrinsic mode function (IMF) was extracted from the 

pressure wave (Figure 8.1). 
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Figure 8.1: Instantaneous frequency of the first IMF. The range of instantaneous frequency 

oscillation (grey band) changes after the dicrotic notch (marked by the red line). a) Instantaneous 

frequency (top) of the aortic input pressure (bottom) for an aorta with rigidity E1 at HR=100 bpm. 

b) Instantaneous frequency (top) of the aortic input pressure (bottom) for an aorta with rigidity E1 at 

HR=70 bpm. c) Instantaneous frequency (top) of the aortic input pressure (bottom) for an aorta with 

rigidity E3 at HR=70 bpm (E3 = 1.5E1). E1 is the aortic rigidity of a 30-year old healthy individual 
7
. 

The numerical values of Ei are the same as those in Chapter 4. 

The instantaneous frequency oscillates around a dominant frequency (marked by a gray band) at the 

beginning of the cardiac cycle and then drops to a different range of frequencies and oscillates 

around a different dominant frequency (Figure 8.1). The frequency range transition occurred around 

the time during the cardiac cycle (marked by a red line) that coincides with the dicrotic notch. These 

findings indicate that there are two different dominant frequencies before and after the dicrotic 

notch. I call the above-mentioned dominant frequencies Intrinsic Frequencies. Based on the 

observation from instantaneous frequency graphs (Figure 8.1), the modified version of STFR for the 

heart-aorta system to calculate the Intrinsic Frequencies is proposed (see method section).  In this 
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proposed method, it is assumed that the instantaneous frequency of the coupled heart-aorta and 

decoupled aorta are piecewise constant in time. This enables us to extract the Intrinsic Frequencies 

directly from the pressure waves. 

8.4.2 Optimum Heart Rate Prediction 

The two intrinsic frequency (IF) graphs,   and   , cross each other at the optimum HR at which 

the LV pulsatile power requirement is minimized (Figure 8.2).  In other words, the LV pulsatile 

power reaches its minimum when the two intrinsic frequencies become equal. This is shown in 

Figure 8.2 for three levels of aortic rigidity (E1, E2=1.25 E1 ,and E3= 1.5 E1 ). 

 
Figure 8.2: Intrinsic frequencies (top) and pulsatile power (bottom) vs. HR. ω1 (red) is the IF for 

coupled heart+aorta and ω2 (blue) is the IF for the decoupled aorta. a) Aortic rigidity is E1, the grey 

band shows that the two IF curves cross each other at the optimum HR (≈110 bpm). b) Aortic 

rigidity is E2, the two IF curves cross each other at the optimum HR (≈120 bpm). c) Aortic rigidity 

is E3, two IF curves cross each other at the optimum HR (≈140 bpm). 

Pulsatile power Ppulse was calculated using Equation 8.9: 
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where p(t) is the pressure, q(t) is the flow, pmean is the mean pressure, qmean is the mean flow, and T is 

the period of cardiac cycle. 

It is demonstrated in Figure 8.3 that this phenomenon (matching intrinsic frequencies at optimum 

HR) still exists at high aortic rigidities, two- or three-fold greater than those of Figure 8.2. 

 

Figure 8.3: Intrinsic frequencies (IFs) and pulsatile power at high values of aortic rigidities. ω1 (red) 

is the IF for the coupled heart+aorta and ω2 (blue) is the IF for the decoupled aorta. The grey band 

shows that the two IF curves cross each other at their corresponding optimum HR. a), b) and c) are 

for aortic rigidities of E5 (= 2E1), E6 (= 2.5E1), and E7 (=3E1), respectively. 

Another important observation in Figures 8.2 and 8.3 is that at the optimum HR where intrinsic 

frequencies are equal, the values of intrinsic frequencies are also close to the value of the HR. For 
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example, in aortic rigidity E2, the optimum HR occurs around 120 bpm where ω1=125 bpm and 

ω2=120 bpm. The same can be seen for all other aortic rigidity cases. 

8.4.3 Total Frequency Variation: An Index for Cardiovascular Health and Disease Diagnosis 

The total frequency variation (∆ω) can be used as an index for quantifying the efficient coupling 

between heart and arterial system. Figure 8.4 shows ∆ω variation with age for healthy and diseased 

cardiovascular conditions. It suggests that ∆ω is near zero for younger subjects when the heart-

arterial system is operating close to the optimum condition. Also, it suggests that ∆ω increases by 

aging and CVD due to the ventricular-arterial system shift from its optimum coupling. 

 

Figure 8.4: Total frequency variation (∆ω= ω1-ω2) vs age for healthy and CVD condition. The 

intrinsic frequencies, ω1 and ω2, are close to each other in younger subjects; therefore ∆ω is zero (or 

close to zero). Linear fit shows that ∆ω increases with age in healthy subjects. ∆ω increases in CVD 

since the ventricular-arterial system shifts away from its optimum coupling. All CVD patients show 

∆ω >60 bpm.  Published data computed from the waveforms taken from Nichols et al 
7
. HF is heart 

failure and VD is vascular diseases. 
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8.4.4 First Intrinsic Frequency (ω1): A Medical Index for Heart Diseases 

The dynamics of the heart-arterial system is dominated by the dynamics of the heart before aortic 

valve closure. Therefore, ω1 is more affected by diseases that impair the pumping dynamics of the 

heart such as heart failure (HF) with LV systolic dysfunction. ω1 elevates in HF conditions, and 

remains relatively constant under healthy conditions as age advances (Figure 8.5). It is shown that 

all subjects with HF in our sample data have ω1>120 bpm. However, normal healthy subjects have 

ω1<112 bpm. 

 
Figure 8.5: ω1 at different ages and under healthy and HF conditions. All subjects with HF show 

ω1>120 bpm (above the red line). Normal subjects show ω1<112 bpm (below the black line). 

Published data computed from the waveforms taken from Nichols et al 
7
. 

8.4.5 Second Intrinsic Frequency (ω2): A Medical Index for Vascular Diseases 

Aorta and arterial networks dominate the dynamics of the heart-arterial system after aortic valve 

closure. Hence, ω2 is more affected by vascular diseases (VD) such as arterial rigidity and 

hypertension. Figure 8.6 shows variation of ω2 with age and for healthy and disease conditions. It 

suggests that ω2 decreases with age, indicative of arterial rigidity increase with age 
66

. This figure 
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also demonstrates that ω2 drops significantly (below 36 bpm) with certain vascular diseases 

such as hypertension and peripheral vascular diseases. 

 
Figure 8.6: ω2 at different ages and under healthy and VD condition. All VD patients show ω2<36 

bpm (below the red line). Linear fit shows that ω2 decreases with age. Published data computed 

from the waveforms taken from Nichols et al 
7
. 

8.5 Discussion 

The main findings of this chapter are as follows: First, the intrinsic frequency concept was 

introduced for arterial wave analysis. Second, it was shown that at the optimum condition the 

intrinsic frequencies are equal. Third, the potential use of the intrinsic frequency method was 

demonstrated for diagnosis of cardiovascular diseases such as arterial stiffening (aging) and heart 

failure (HF).  

It is well accepted that arterial waveform analysis provides clinically valuable information about 

cardiovascular diseases 
7, 66

. In this manuscript, a new method for arterial wave analysis was 

introduced. This approach is based on a newly developed Sparse Time-Frequency Representation 

(STFR) method 
128

. The main advantage of this method is that only one arterial waveform, namely 
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pressure wave, is required to perform the analysis, in contrast to well-known and widely used 

impedance and wave intensity methods where both pressure and flow waves are required 
7, 41

.  

A healthy heart operates based on an optimum interaction between wave dynamics of the arterial 

system and pumping function of the left ventricle (LV). The optimum LV and arterial network 

coupling can be impaired due to disease conditions (e.g. heart failure and type-2 diabetes) or non-

disease conditions (e.g. aging and smoking) 
7, 66

. The heart and aorta as a coupled dynamic system 

have an intrinsic frequency. (Note that in this thesis I use the phrase “heart-aorta system” as an 

equivalent of “ventricular-arterial system”.) As a dynamic system, the aorta by itself has a different 

intrinsic frequency. These two frequencies are not necessarily the same and they may not be 

constant in time during a cardiac cycle. The STFR method was applied to extract the instantaneous 

frequency of the coupled heart-aorta system and the decoupled aorta from the pressure wave (Figure 

8.1). As shown in Figure 8.1, the instantaneous frequency oscillates around different dominant 

frequencies before and after the dicrotic notch. (The dicrotic notch occurs when aortic valve closes.)  

These dominant frequencies are the intrinsic frequencies of the system within the considered 

interval. Here, one interval starts from the beginning of the cardiac cycle and ends at the time of the 

aortic valve closure. The other interval starts from aortic valve closure time and finishes at the end 

of the cardiac cycle. The shift in instantaneous frequency range before and after the dicrotic notch 

was significant in some cases (Figure 8.1b and 8.1c) and it was insignificant in a few others (Figure 

8.1a). 

The instantaneous frequency was assumed to be piecewise constant in time with the step that occurs 

at a certain time T0. This piecewise constant frequency was called the Intrinsic Frequency (IF). The 

choice of T0 depends on the physics of the system. In the heart-aorta system, the heart and the aorta 

are coupled with each other when the aortic valve is open. During this time interval, the pressure 
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wave depends on the inflow wave, which is determined by the left ventricle of the heart, and on 

the characteristics of the aorta and arterial network (e.g. anatomy, physical properties of the vessel 

and wave reflection). After the closure of the aortic valve, the aorta gets decoupled from the heart 

and the pressure wave is mostly determined by the characteristics of the aorta and vascular network. 

Therefore, the pressure wave contains information about the heart, aorta (arterial network), and the 

coupling between the two. Based on the above explanation, the correct choice of time T0 is when the 

aortic valve closes, which is marked by the dicrotic notch in the pressure wave.  

To extract the IF directly from the waves (here pressure waves), a modified STFR problem was 

developed using a norm-2 (L2) minimization method. A brute-force algorithm was applied to solve 

this problem. This algorithm considers all possible values of frequencies to ensure that the 

corresponding minimizer frequencies are in fact the unique minimizers of the problem. The 

piecewise constant frequency before the dicrotic notch is the IF of the heart-aorta system and the 

one after the dicrotic notch is the IF of the aortic system (see Equations 8.3, 8.6, and 8.7). 

8.5.1 Intrinsic Frequency Matching and Optimum Heart Rate 

It has been recently shown that there is an optimum HR at which LV pulsatile power is minimized, 

and this optimum HR shifts to a higher value as the aortic rigidity increases (see Chapter 4 for 

details). In order to calculate the pulsatile power, both flow and pressure waves are required. In 

addition, identifying the optimum HR requires having pressure and flow waves of the same subject 

at different heart rates. This modified STFR method and intrinsic frequency index can identify this 

optimum HR using only the pressure wave (Figures 8.2 and 8.3). As it was shown, the two IF 

curves cross each other at the optimum HR (Figures 8.2 and 8.3). This means that at the optimum 

HR, the intrinsic frequencies of the heart-aorta system before and after decoupling are equal. 
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Matching IFs at the optimum HR have been demonstrated for six different levels of aortic 

rigidity in Figures 8.2 and 8.3. 

8.5.2 Intrinsic Frequency as a Cardiovascular Disease Index 

The potential clinical application of the intrinsic frequency index was demonstrated in Figures 8.4, 

8.5, and 8.6. The intrinsic frequencies are close to each other in young subjects when there is an 

optimum balance between heart pumping characteristics and wave dynamics of the aorta and its 

branches (Figure 8.4). This finding suggests that the total frequency variation (∆ω) can be 

considered as a marker of optimum left ventricular-arterial coupling. It is also shown that ∆ω 

increases as the age advances (in agreement with the results of Figures 8.2 and 8.3). For example, in 

the case of aortic rigidity E1 with the optimum HR of 110 bpm, the total frequency variation (∆ω) is 

zero; with aging (when aortic rigidity increases) ∆ω increases to 31bpm for E3 (= 1.5E1) and to 55 

bpm for E6 (= 3E1). Additionally, it is illustrated that ∆ω increases (over the predicted increase due 

to aging) for the cases that show heart or vascular diseases (Figure 8.4). 

The potential application of the intrinsic frequency concept in heart disease monitoring and 

diagnosis can be elucidated by the information depicted in Figure 8.5. It is shown that ω1 is higher 

than 120 bpm in patients with LV systolic dysfunction (in this case HF). This indicates that ω1 can 

potentially be used to detect impaired LV systolic function. This finding may also indicate that a 

high value of ω1 is associated with low ejection fraction (EF). Future work will aim at confirmation 

of the above observations using more diverse clinical data sets at various stages of heart failure.  

Figure 8.6 demonstrates that the changes in the dynamics of the aorta and arterial network due to 

aging or vascular diseases will be reflected in the value of ω2. This figure shows that ω2 decreases 

with aging. Therefore, ω2 can be used as a marker of vascular aging. Additionally, it is illustrated 
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that ω2 drops below 36 bpm, independent of age, under vascular disease conditions. Hence, ω2 

can be potentially be used for diagnosis of vascular diseases and evaluation of their severity. 

8.6 Conclusion 

A new index, intrinsic frequency, and a quantitative method based on instantaneous frequency 

theory have been introduced. This index enables physicians to diagnose various cardiovascular 

diseases and to detect the optimum ventricular-arterial coupling. Using only the pressure waveform, 

the intrinsic frequency concept can be used to quantify the impaired balance between the heart and 

aorta under various disease conditions. One important advantage of this method is that only the 

shape of pressure waveform, not the magnitude, is required to extract the intrinsic frequencies. In 

this study, the intrinsic frequencies of cardiovascular system were extracted from clinical data under 

resting conditions. Further investigations will be needed to analyze the intrinsic frequency indices 

under non-resting conditions such as exercise. These indices may also potentially hold value in the 

design and evaluation of cardiovascular devices. Future studies are planned to verify the predictive 

value of this concept in the detection of cardiovascular disease states. 
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C h a p t e r  9  

PATHOLOGICAL WAVE DYNAMICS: A POSTULATE FOR SUDDEN CARDIAC DEATH 

IN ATHLETES 

9.1 Chapter Abstract 

Sudden death (SD) in young athletes is a shocking and disturbing event with significant societal 

impact. Previous studies have demonstrated that sudden cardiac death (SCD) is the leading medical 

cause of SD in athletes. Various structural and pathological cardiovascular abnormalities have 

identified as the underlying causes of SCD in young athletes. However, there have been reported 

cases of SCD in athletes with no structural or pathological cardiovascular disorders. The proposed 

hypothesis in this chapter is that abnormalities in aortic wave dynamics and coronary wave 

dynamics may be responsible for SCD in these athletes. These abnormal waves—pathological 

waves—can act as a trigger toward cardiac death in the presence of cardiovascular diseases. These 

waves may initiate SCD in the absence of apparent cardiovascular abnormalities. In summary, when 

the aortic and coronary wave dynamics are abnormal, the myocardial oxygen demand can exceed 

the oxygen delivery during exercise, hence creating acute ischemia which leads to death. It is 

explained in this article how increased oxygen demand may be the result of pathological aortic 

waves while reduced oxygen delivery is mainly due to pathological coronary waves. Additionally, 

this pathological wave hypothesis is able to provide a plausible explanation for commotio cordis. 

9.2 Introduction 

Sudden death is always a disturbing event regardless of the cause or the age. The societal impact of 

the sudden death of an athlete significantly increases when it happens during a live broadcast game 

or in an international competition. SCD is an unusual event and its actual frequency in athletes is 
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unknown. In fact, the risk of SCD has been underestimated due to inappropriate data collection 

methods 
133

. Recent statistical studies of NCAA compiled lists of athlete deaths have demonstrated 

that sudden cardiac death (SCD) (16%) is the second leading cause of all sudden deaths in young 

athletes after accidents (51%), occurring at a higher frequency than athlete deaths by suicide (9%), 

cancer (7%), homicide (6%), and drug overdose (2%)
133

 . This suggests that SCD is the leading 

medical cause of sudden death in young athletes and demonstrates the need to further investigate the 

underlying causes of SCD in athletes and young adults. 

Various structural and pathological cardiovascular abnormalities have been identified as the 

underlying causes of SCD in young athletes 
134

. These abnormalities include, but are not limited to, 

hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), coronary artery diseases 

(CAD), left ventricle hypertrophies (LVH), valvular disease, myocarditis, aneurysms, aortic 

diseases, congenital heart diseases, rhythm and conduction disorders, cardiopulmonary diseases, etc. 

Among all of these identified causes, cardiomyopathies are the number one cause of SCD in 

athletes younger than 35 years old, and CAD is by far the leading cause of SCD in athletes older 

than 35 
135

.  

There have also been reported cases of SCD with no structural or pathological cardiovascular 

disorders. The subjects appeared to be normal during autopsy and their cause of SCD remained 

unknown 
136, 137

. The reported incidence of SCD in athletes with no cardiovascular abnormality 

varies in different studies. However, in general, these account for approximately 21% of total SCD 

cases 
136, 137

, and occur more frequently in athletes younger than 21 years old 
136

. Given that nearly 

one out of five SCD cases happen in the absence of cardiovascular abnormalities, it is reasonable to 

assume that these cases account for roughly 3.4% of all sudden deaths in athletes.  
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In this chapter, I briefly explain the concept of wave dynamics in cardiovascular systems, and 

propose abnormal wave dynamics as a form of dynamic pathology that can lead to SCD in athletes. 

I then investigate different scenarios where abnormalities in aortic and/or coronary waves can cause 

SCD through acute myocardial ischemia. 

9.3 Background 

9.3.1 Dynamic Pathology: The Neglected Element 

The term dynamic pathology was first introduced by Zamir 
114

, referring to a pathological condition 

in which the dynamic of the system diverges from its normal condition. The structural and 

functional pathology may coexist with the dynamic pathology. However, the absence of structural 

and functional abnormalities does not preclude the presence of dynamic pathology.  SCD does not 

always occur in all athletes with functional or structural abnormalities, and can occur in apparently 

healthy young athletes, suggesting that there is a form of special abnormality that does not leave any 

footprint. I refer to this special abnormality as a form of dynamic pathology. In other words, if a 

sudden cardiac death is caused solely by a form of dynamic pathology, the subject will appear 

normal during autopsy. A simple and well-known example of the dynamic pathology is arrhythmia. 

The dynamic of the heart pumping condition changes during arrhythmia. This alters the optimum 

coupling between the heart and the aorta. The disturbed heart-aorta coupling affects the arterial 

network dynamics which results in altered cardiac output 
114

.  

Dynamic pathology can contribute to SCD in young athletes through three different forms: (1) 

acting acutely as the main cause; (2) acting as the trigger (a trigger is the final component that is 

necessary for the initiation of the corresponding medical complication); or (3) acting chronically to 

develop a so-called idiopathic condition (e.g. idiopathic-LVH). If dynamic pathology acts as the 

main cause of death, the underlying cause remains unknown during autopsy since this form of 
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pathology cannot be identified after the event. Since dynamic pathology can coexist with a 

structural or functional pathology, it can instigate some fatal event. This could explain why SCD 

does not occur in all athletes with certain structural abnormality. 

9.3.2 Wave Dynamics in Compliant Aorta as a Tube 

Aorta is a compliant tube that acts as a conduit for propagation and reflection of the waves. The 

wave dynamics in a compliant tube is a complex nonlinear phenomenon that includes wave 

interactions and resonance 
8, 10, 12

. Waves in compliant tubes can create a pumping effect as observed 

in impedance pumps (Liebau pump) 
8, 10, 11, 13, 20

. In its simplest form, an impedance pump is 

composed of a compliant tube connected to two rigid tubes at both ends and a pincher. The pincher 

hits the compliant tube and creates waves. These waves propagate toward both ends where they 

reflect upon the impact on the rigid boundary. The wave propagation and reflection in the elastic 

tube create wave dynamics which may produce pumping effects. The direction and magnitude of 

the net flow in the impedance pump depends on the state of the wave dynamics which are mainly 

dominated by three factors: (1) material properties of the compliant tube (defined the wave speed), 

(2) frequency of the excitation (pincher’s frequency), and (3) locations of reflection sites (distance 

between pincher and rigid tubes) 
50, 100, 104, 106, 107

.  

Despite the complicated physics of the impedance pump, it provides a simple message: waves can 

assist circulating fluid in a compliant tubing system in a certain direction. Note that assisting the 

flow in one direction means impeding the flow in the opposite direction. The direction and the 

magnitude of the net flow depend on the wave dynamic characteristics that show nonlinear-type 

behavior and resonance 
8, 10, 11

. 
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9.3.3 Wave Dynamics in Cardiovascular System 

The heart creates pulsatile flow. The pulsatile flow generates waves when it enters the compliant 

aorta. These waves propagate as forward and reflected pressure, flow, and wall displacement waves 

in the arterial network. The mere existence of these waves establishes unique “wave dynamics” in 

the arterial system. Previous studies have shown that the cardiovascular system in mammals is 

designed to optimize the effects of arterial wave dynamics to benefit arterial circulation 
58, 98, 102

. 

These studies have provided valuable information about the constructive interaction, destructive 

interaction, and resonance behavior of the arterial waves. 

The pulsatile workload on the heart is the result of the abovementioned complex wave interactions 

in the aorta and the arterial network. It has been shown that reducing the heart pulsatile load through 

optimization of the arterial wave reflection is one of the apparent design criteria in the mammalian 

cardiovascular system 
58, 98

. The aortic (arterial) wave dynamics can reduce the workload on the 

heart by assisting blood circulation in a forward direction (from heart to the organs) or increase the 

workload by impeding it (in other words, pushing the blood in the opposite direction). In fact, aortic 

waves can potentially make the aorta act as a passive pump similar to an impedance pump as shown 

in Chapter 7. Figure 9.1 depicts this phenomenon.  

Another important effect of arterial wave dynamics is the perfusion of coronary arteries. Zamir 
104

  

showed that the effect of wave dynamics in coronary perfusion is far more significant than what 

was previously assumed. Subsequent clinical studies have confirmed Zamir’s finding by showing 

that the coronary blood flow is completely dominated by the wave dynamics in the coronary arteries 

92, 138
. It has been shown in clinical studies that coronary wave dynamics are the result of the 
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interaction of two different wave dynamics: one is created by aortic waves that enter coronary 

vasculature; the other one is generated at the coronary microcirculation (myocardium) level by the 

contraction and relaxation of the heart (see Figure 9.2) 
92

. Note that the coronary flow is affected by 

both the timing and magnitude of these waves. Any abnormality in each of these waves and their 

timings can adversely affect coronary blood flow. For example, Davies et al 
92

 have shown that in 

LVH patients the reduction of waves generating at the myocardial end is responsible for the 

impairment of coronary perfusion. 

 

Figure 9.1: Effect of aortic waves on the heart workload. a) Aortic waves act destructively and push 

the flow in the opposite direction. This impedes the blood flow and increases the workload on the 

heart. b) Aortic waves act constructively and push the flow in a forward direction hence decreasing 

the workload on the heart. 
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Figure 9.2: Coronary blood flow and coronary wave dynamics. The coronary wave dynamics are 

composed of four different waves. At the aortic side, compression waves (W1) and suction waves 

(W3) are created during the cardiac cycle. These waves are determined by the dynamics inside the 

aorta. At the myocardial end, both compression waves (W4) and suction waves (W2) are also being 

created by contraction and relaxation of the heart. q2 is the blood flow from the aortic side toward 

the coronary microcirculation, and q1 is the blood flow in the reverse direction from coronary 

microcirculation toward the aorta. Since the favored direction of the coronary blood flow is from 

aorta to myocardium, W1 (aortic compression) and W2 (myocardial suction) are assisting and W3 

(aortic suction) and W4 (myocardial compression) are impeding the blood flow toward the 

myocardium. 

9.3.4 Pathological Waves 

Despite the complicated physics of waves in the aorta and coronary vessels, the message is rather 

simple: (1) aortic waves affect the workload on the heart; (2) waves generated at the myocardial end 

of coronary vasculature and aortic waves create coronary wave dynamics which determine the 
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coronary blood flow (myocardial perfusion); (3) these waves can act constructively or 

destructively. Under normal conditions, these waves act constructively where they minimize the 

heart workload and maximize coronary perfusion. Under abnormal conditions, the waves act 

destructively which results in the elevation of the heart workload and/or reduction of the coronary 

blood flow. This abnormal wave condition is a form of dynamic pathology. Here, they are referred 

to as pathological waves. Similar to other forms of dynamic pathology, pathological waves can be 

the result of a structural pathology or they can be generated by a destructive dynamic interplay 

among heart, aorta and coronary arteries. The previously mentioned LVH and coronary wave 

dynamics case is an example of dynamic pathology (abnormal coronary waves) that is caused by a 

structural pathology (hypertrophied left ventricle).  

There are certain structural abnormalities for which an underlying cause cannot be identified; these 

abnormalities are called idiopathic. Chronically, pathological waves may also be responsible for 

creating these so-called idiopathic structural pathologies such as idiopathic-LVH. For example, 

chronic pathological aortic waves can cause idiopathic-LVH by increasing the pulsatile workload 

on the heart. Using wave intensity analysis, it was shown in Chapter 3 that the left ventricle 

pulsatile workload can be abnormally high due to the resonance of reflected waves even though 

both pulse pressure and mean pressure are within a normal range.  

Aortic (arterial) and coronary wave dynamics play important roles in both rest and exercise. 

However, their effects on the heart workload and coronary blood flow are far more significant 

during exercise since heart rate, ejection fraction, heart contractility, stroke volume, blood pressure, 

and aortic rigidity are all increasing. 
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9.4 Hypothesis 

I propose that abnormalities in the dynamics of aortic and coronary waves are responsible for 

sudden cardiac death in athletes. These pathological waves can act as a trigger toward cardiac death 

when a structural abnormality is present. They are also capable of initiating sudden cardiac death 

when there are no apparent cardiovascular structural abnormalities. 

9.5 Discussion 

The very basic mechanism that pathological waves can generate during exercise is as follows:  

Abnormal aortic waves’ interactions first increase the workload on the heart. This then increases the 

myocardial oxygen demand. At the same time the aortic wave interplay may adversely affect 

coronary waves as well. (Note that abnormality in aortic wave dynamics is not a necessary 

condition for pathological coronary waves.) The pathological coronary waves decrease the 

myocardial oxygen delivery. If the oxygen demand exceeds the oxygen delivery, acute ischemia 

will occur that may initiate a fatal ventricular arrhythmia (VA) or ventricular fibrillation (VF) 

(Figure 9.3). 

9.5.1 Increased Workload due to Pathological Aortic Waves 

The mammalian cardiovascular system is designed to minimize the workload on the heart through 

different mechanisms 
58, 79, 97, 98, 102

. One of these mechanisms is the reduction of the heart workload 

(the pulsatile part of it) by optimizing the aortic (arterial) wave reflection 
98, 102

. It was already 

shown in Chapter 4 (computationally) and Chapter 5 (experimentally) that there is an optimum 

heart rate at each level of aortic rigidity that minimizes this pulsatile workload . This optimum shifts 

to a higher value as rigidity increases. This phenomenon is schematically shown in Figure 9.4.  
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Figure 9.3: Overall mechanism of pathological waves in sudden cardiac death. 

 

Figure 9.4: Schematic diagram of pulsatile workload vs. heart rate at different levels of aortic 

rigidity (see Chapters 4 and 5 for details). 
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During exercise, aortic rigidity (as a consequence of pressure elevation and diameter extension 

7
 

) and heart rate (HR) are both increasing. Under normal (optimized) conditions, the heart beats at its 

shifted optimum HR during exercise as well. In other words, pulsatile workload on the heart is 

minimized during exercise under healthy optimal condition as depicted in Figure 9.5. Although an 

optimal condition at rest dictates a suboptimal state during extreme conditions (e.g. exercise or 

fight)
99

, this suboptimal situation has its own optimum operating point. Note that during exercise, 

cardiac output and ejection fraction are both increasing. The elevated cardiac output and increased 

ejection fraction during exercise may slightly shift the pulsatile workload-HR graph up/down or 

right/left compared to the one presented in Figure 9.5.  

 

Figure 9.5: Pulsatile workload vs. heart rate curve under resting and exercise condition. Changes in 

stoke volume and ejection fraction during exercise may shift the exercise curve up-down or right-

left. The heart beats at its new shifted optimum HR during exercise when aortic waves are healthy 

(normal). 
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Pathological wave condition can occur due to abnormalities in the dynamics of the heart (e.g. 

HR), dynamics of the aorta and its branches (e.g. HR, arterial rigidity, and reflection site), and/or 

the dynamic coupling between the heart and the aortic system. Pathological aortic waves may have 

an underlying structural pathology, or similarly to the other forms of dynamic pathologies, they may 

occur in the absence of any structural pathology (Figure 9.6).  

 

Figure 9.6: Underlying causes of pathological aortic waves. 

Due to the resonance behavior of aortic waves, any small change may produce significant impact 

(positive or negative) on the outcome. During exercise and under the pathological wave condition, 

the resonance behavior of waves can significantly increase the pulsatile workload.  Figure 9.7 

shows the constructive and destructive effect of wave resonance on the heart pulsatile workload.   

Under the pathological aortic wave condition, the optimum HR diverges from exercise HR which 

increases heart workload (Figure 9.8). The situation is exacerbated if a destructive resonance 

accompanies the pathological wave condition (Figure 9.8). 
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Figure 9.7: Demonstration of the effect of resonance on pulsatile workload during exercise. Black 

solid curve is the pulsatile workload-heart rate graph without resonance. Green dashed curve is an 

example of a constructive (beneficial) resonance where pulsatile workload drops due to constructive 

wave dynamics. Red dotted curve is an example of a destructive (pathological) resonance where 

pulsatile workload jumps due to destructive wave dynamics. 

9.5.2 Reduced Coronary Blood Flow due to Pathological Coronary Waves 

Coronary blood flow is the result of the complex interactions of four different waves (Figure 9.2)
92

. 

Two of these waves propagate from the aortic side (forward waves), and the other two are generated 

at the myocardial end (backward waves). During the exercise, the cardiovascular system operates 

close to its limit; hence, the optimal interactions of these waves become crucial for the myocardial 

perfusion. The blood is pushed toward coronary microcirculation (q2) by forward compression wave 

(W1) and backward suction wave (W2). It is opposed—or pushed in the reverse direction (q1) — by 

forward suction wave (W3) and backward compression wave (W4) (see Figure 9.2). 



 

 

155 

 

Figure 9.8: Black dotted curve is an example of pulsatile workload on the heart with a pathological 

wave condition during exercise showing that when the exercise HR is shifted away from the 

optimum HR the workload on the heart is increased. Red solid curve is an example of pathological 

wave condition accompanied by a destructive resonance. In this case the pulsatile workload at the 

exercise HR is increased further. 

Any cardiovascular abnormality can enhance the opposing coronary waves (W3 and W4) or weaken 

the assisting coronary waves (W1 and W2) resulting in coronary blood flow reduction (pathological 

coronary waves). In the absence of cardiovascular diseases, the pathological coronary waves can 

occur if a constructive resonance occurs for the opposing wave or/and a destructive resonance forms 

for the assisting waves. These resonances can simply happen if the timing of the waves is not right. 

Figure 9.9 schematically demonstrates the effect of pathological coronary waves on coronary blood 

flow. 
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Figure 9.9: Formation of pathological coronary waves and consequent reduction of the coronary 

blood flow. q1, q2, W1, W2, W3, and W4 are the same as described in Figure 9.2. 

9.5.3 Pathological Wave Dynamics and Sudden Cardiac Death 

The cardiovascular system operates close to its limit during the exercise. The presence of any 

structural abnormalities may lower the threshold for the onset of acute ischemia and/or ventricular 

fibrillation. Therefore, formation of pathological waves significantly increases the chance of SCD in 

athletes with structural cardiovascular diseases. However, both pathological aortic waves and 

pathological coronary waves can be created without any structural abnormalities. This is probably 

the case when SCD happens for athletes with no cardiovascular diseases (21% of SCD equal to 

3.4% of all sudden death in athletes)
133

.   

Aside from their own negative effect on cardiovascular functioning, each cardiovascular disease can 

alter the dynamics of the heart-aorta-coronary system and create pathological waves. In this 

situation, pathological waves are acting as a trigger helping the preexisting poor conditions to 

initiate SCD during exercise. As stated in the introduction section, various cardiovascular diseases 
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have been observed and reported as underlying causes of SCD in athletes. Some of them have 

been observed frequently, such as cardiomyopathies and coronary diseases, and some have been 

rarely reported, such as right ventricular dysplasia 
135

.  

In hypertrophic heart diseases such as HCM and LVH, the coronary blood flow (CBF) is impaired 

due to abnormalities of both W2 and W4 waves (see Figure 9.2) that are generated at the myocardial 

end of the coronary arteries. The reduced CBF results in acute ischemia of the diseased heart, 

initiating sudden cardiac death during exercise. Under DCM conditions, the mechanism is slightly 

different as only the W2 wave contributes toward reduction of CBF. However, due to the 

abnormality of the left ventricular flow wave, there is a possibility of the formation of pathological 

aortic waves which can enhance LV workload. The aortic compression waves (W2) get impaired in 

coronary arterial origin anomaly diseases. This situation further decreases the already reduced CBF 

and initiates SCD. Similarly, abnormal coronary wave interaction caused by atherosclerotic 

coronary artery diseases decreases CBF promoting acute ischemia and death during exercise. The 

plausible mechanism of SCD in athletes with aortic stenosis (AS) is as follows: The myocardial 

workload is abnormally high in AS athletes. AS also causes formation of pathological aortic waves. 

These abnormal waves adversely affect coronary waves and consequently reduce CBF. The 

combination of the elevated myocardial workload and reduced CBF initiate SCD in athletes with 

AS disease. Figure 9.10 graphically demonstrates the heart diseases and possible formation of 

pathological waves that are acting as the final component for the initiation of SCD. Figure 9.11 

shows how waves can cause SCD in the absence of any cardiovascular diseases. It must be 

mentioned that increasing workload and reducing coronary blood flow is not the only mechanism 

through which pathological waves can trigger or cause SCD. Pathological waves can cause 

aneurysm rupture or aortic rupture (e.g. in Marfan syndrome) by creating resonance in radial wall 

dilation waves that propagate on the vessel wall. 
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Figure 9.10: Cardiovascular diseases and pathological waves. CBF: coronary blood flow; HCM: 

hypertrophic cardiomyopathy; DCM: dilated cardiomyopathy; LVW: Left ventricular workload; 

LVH: Left ventricle hypertrophy; CAOA: coronary arterial origin anomalies; CA: coronary arteries; 

AS: aortic stenosis. See Figure 9.2 for explanation of q1, q2, W1, W2, W3, and W4. 
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Figure 9.11: Pathological waves as the main cause of SCD in athletes in the absence of structural 

pathologies. See Figure 9.2 for explanation of q1, q2, W1, W2, W3, and W4. 

9.5.4 Commotio Cordis, Pathological Waves, and Sudden Cardiac Death 

Commotio cordis is defined as sudden death due to non-penetrating impact on the chest without any 

structural injuries. Commotio cordis is a rare event and the percentage of commotio cordis survivors 

is extremely low 
139

. The true mechanism(s) of death in commotio cordis is not known, but several 

hypotheses have been proposed such as the disturbing of the electrical rhythm of the heart which 

initiate the fatal VF and trauma-induced coronary vasospasm that causes acute ischemia initiating 

VF 
139

.  

This pathological wave hypothesis is able to provide a plausible explanation for Commotio Cordis. 

When the projectile impact hits the chest wall where it overlays the heart, it creates a vibrational 

wave propagating toward coronary arteries and the ascending aorta. As the vibrational waves reach 

the wall of the aorta and coronary arteries, they act as pinchers displacing the vessel wall. Similar to 

an impedance pump, these pinchers are creating additional waves propagating in the aorta and 

coronary arteries. If the new wave dynamics interact destructively with the existing wave dynamics 

(before the impact), a sudden jump in heart workload and a sudden reduction in coronary blood 

flow occur. Under this condition severe acute ischemia happens, which may initiate the deadly VF. 

The fact that commotio cordis only occurs in children and young adults who have a more pliable 

chest wall 
139

 supports this hypothesis. Figure 9.12 shows a schematic of this phenomenon. 
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Figure 9.12: The plausible mechanism of SCD in Commotio Cordis through formation of 

pathological wave dynamics. CBF: coronary blood flow; MWL: myocardial workload. 

9.6 Hypothesis Summary 

Pathology in the wave dynamics could be the missing element in understanding the cause of sudden 

cardiac death during exercise. In summary, when the interaction of hemodynamic waves (pressure 

wave, flow wave, and wall displacement wave) is abnormal during exercise, the myocardial oxygen 

demand can exceed the oxygen delivery, hence creating acute ischemia which leads to VF and 

death. 

It was explained how increased oxygen demand may be the result of pathological aortic waves 

while reduced oxygen delivery is mainly due to pathological coronary waves. Preexisting 

cardiovascular diseases such as HCM, LVH, and CAD can worsen the oxygen demand/delivery 

balance and/or reduce the threshold for the initiation of the SCD. Abnormal wave interactions can 

create resonance in the wall displacement wave at the origin of the vessel which can cause rupture 

in athletes with aneurysms and Marfan syndrome, a scenario that has not been discussed here. 

9.6.1 Clinical Perspective 

It has been shown that the mammalian cardiovascular system is designed to operate in an optimal 

condition 
58, 79, 97, 98, 102

. Although most of the past studies have considered the resting condition, a 

suboptimal condition during intense activity (e.g. fight or exercise) has its own optimum operating 

point. Preserving an optimal condition across all mammals with different cardiac output, heart rate, 

and body length strongly support this theory.  
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For that reason, it is logical to assume that the existence of a non-optimal condition at rest 

indicates a non-optimal condition during exercise. The existence of pathological waves in a resting 

condition, although they are not deadly, implies the existence of pathological waves during exercise 

when they become dangerous. Therefore, screening athletes during rest to detect abnormal wave 

dynamics could be a starting point in preventing sudden cardiac death during exercise. 

9.6.2 Future Studies 

The first step would be to detect the signatures of all abnormal wave conditions as it has been done 

by Davies et al 
92

  and Pahlevan et al 
119

(also see Chapter 3). This would enable physicians to screen 

athletes and select those who suffer from pathological wave during rest. These athletes are probably 

in high risk of having this dynamic pathology during exercise as well. Therefore, recording athletes’ 

waveforms at rest could help prevent future incidence. Designing animal studies to investigate the 

pathological waves and sudden cardiac death hypothesis is a necessary step toward the prevention 

of SCD in athletes. In addition, multiscale computational modeling of the heart and coronary 

arteries could help detect the pathological wave signatures and move toward solving this problem. 
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A p p e n d i x  A  

IMPACT OF WAVE SPEED ESTIMATION ON REFLECTED WAVE INTENSITY 

COMPUTATION 

A.1 Wave Speed and Reflected Wave Intensity (RWI) 

There is no question that wave speed calculated from the PU-loop method, Foot-to-Foot method, or 

any other analytical formulation is not exact. However, this does not influence the pattern of wave 

intensity significantly. Figure A1 shows samples of RWI calculated with a wave speed computed 

from PU-loop method (blue), wave speed containing +6% error (red), and wave speed containing 

6% error (black). This figure shows that the RWI pattern is well preserved.  

 

Figure A1: Effect of wave speed error on reflected wave intensity pattern 

It has been also shown by Khir et al 
44

 that even a 20% error in the calculation of the wave speed 

does not significantly change the pattern of the reflected wave intensity.  
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A p p e n d i x  B  

EFFECT OF AORTIC RIGIDITY AND HEART RATE ON REFLECTED WAVE 

INTENSITY 

B.1 Aortic Rigidity and Reflected Wave Intensity (RWI) 

Figure B1 demonstrates that the WI of the reflected (backward) waves increases at higher rigidities, 

and that the first peak of the wave intensity shifts towards the beginning of the cardiac cycle. This 

shift was expected since reflected waves arrive earlier due to higher wave speed at higher rigidities 

7, 12
. This figure shows that at higher rigidities the reflected waves come back earlier with higher 

intensity amplitudes. The higher amplitude of RWI indicates that the reflected waves are carrying 

more energy. 

 

 

Figure B1: Wave intensity of reflected waves at the aortic input during a complete cardiac cycle. 

The length of the incremental time interval for calculating dI- was taken to be dt = 0.00625 sec. 

Different colors in the legend correspond to the different levels of aortic rigidities. The value of E1-

E7 corresponds to the values given in Chapter 3. The results are for HR = 75 bpm. 
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B.2 Heart Rate and Reflected Wave Intensity (RWI) 

As HR increased, the backward WI decreased and the peak of the WI shifted to a later point in the 

cycle. This shift was a natural consequence of the normalization to the period of the cardiac cycle. 

Since the location of the reflection sites and the wave speeds were the same, the shortened length of 

the period for higher HR delayed the arrival time of the backward waves within the time-

normalized cycle. With a fixed cardiac output, the amplitude of the reflected WI decreases as the 

HR increases since stroke volume decreases. Therefore, reflected waves contain higher energy and 

show higher amplitude in their WI at lower HR (Figure B2). 

 

Figure B2: a) Wave intensity of reflected waves at the aortic input during a complete cardiac cycle. 

Three distinct peaks are observed for both cases. The time was normalized with the cardiac period 

(T). Blue is for HR=89.5 bpm and red is for HR=120 bpm. Both curves correspond to the same 

aortic rigidity (E2). The length of the incremental time interval for calculating dI- was taken to be dt 

= 0.00625 s. b) Aortic input pressure for HR=120 bpm for aortic rigidity of E2 . c) Aortic input 

pressure for HR=89.5 bpm for aortic rigidity of E2. The value of E2 corresponds to the values given 

in Chapter 3. 

a) 

b) c) 
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Figure B3a shows the reflected wave intensities of HR=100 and HR=150 bpm for the case of 

aortic rigidity of E1. Figures B3b, 3c show the aortic input pressure of HR=100 and HR=150 bpm 

respectively. Because of the destructive interactions of reflected waves under these conditions (see 

Chapter 3 for more details), in contrast to the previous case, higher HR was found to be associated 

with higher pulsatile power ( )150()100(  HRPHRP pulsepulse ) although due to higher stroke 

volume waves are carrying more energy.  

 

Figure B3: Wave intensity of reflected waves at the aortic input during a complete cardiac cycle. 

The time was normalized with the cardiac period (T). Blue is for HR=100 bpm and red is for 

HR=150 bpm. Both curves correspond to the same aortic rigidity (E1). There are three peaks for 

HR=150, but only two for HR=150. The length of the incremental time interval for calculating dI- 

was taken to be dt = 0.00625 s. b) Aortic input pressure for HR=150 bpm for aortic rigidity of E1. c) 

Aortic input pressure for HR=100 bpm for aortic rigidity of E1. The value of E1 corresponds to the 

values given in Chapter 3. 

 

a) 

b) c) 
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A p p e n d i x  C  

WAVE ENERGY AS A FUNCTION OF PISTON PUMP STROKE RATE 

C.1 Derivation of a Single Harmonic 

A single harmonic flow wave in an elastic tube can be written in the form of 
12

 

        (   (  
 

 
))                                                                                                                      (  ) 

Here, f is the frequency of the wave, c is the wave speed (which depends on material properties and 

frequency), and    is the wave amplitude in the absence of wave reflections. h depends on the 

system and is a function of the tube’s material properties, fluid density, fluid viscosity, and tube 

diameter. In the case of an elastic tube and a piston pump, f  becomes the frequency of the piston (fp) 

and    will be the amplitude of the piston stroke rate (St). Hence, Equation (C1) takes the form of 
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For any wave with a mechanical nature, the energy rate (power) is proportional to the product of the 

spatial derivative and time derivative of the wave 
140

. Using Equation (C2) the time-averaged power 

carried by the piston generated flow wave is proportional to  
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where, T is the period of one cycle and  ̅ is the average power over a cycle. At a fixed piston 

frequency for the same compliant aorta and circulating fluid (h and c remain constant), it can be 

concluded from Equation C3 that the energy carried by the wave is proportional to the square of the 

stroke rate ( ̅     ). 
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A p p e n d i x  D  

SPARSE TIME-FREQUENCY REPRESENTATION 

D.1 Introduction 

Signals and data are the most direct ways to get information about the real world. Most of the data 

that we deal with in studying the natural phenomena are nonlinear and non-stationary in nature. As 

a result, it is of great importance to develop a truly adaptive signal analysis method that can be 

applied to extract hidden physical information from these nonlinear and non-stationary data. Many 

traditional data analysis methods are designed to process data. Fourier analysis and wavelet analysis 

are two of the most commonly used methods for this purpose. An important feature of these 

traditional data analysis methods is that a pre-determined basis and well-established discrete fast 

transforms are used (Fast Fourier Transform and Fast Wavelet Transform) to perform data analysis. 

Thus these methods can be implemented very efficiently. On the other hand, since these methods 

are pre-determined, they are not very effective in dealing with nonlinear and non-stationary data. In 

the past decade, there has been an increasing interest in developing new adaptive data analysis 

methods that can handle non-linear and non-stationary data effectively 
132

. Inspired by the Empirical 

Decomposition Method (EMD)
127

, a new adaptive method of Sparse Time-Frequency 

Representation (STFR) was introduced 
128, 129

. 

D.2 Adoptive Sparse Time-Frequency Representation  (STFR) Method  

The adaptive STFR method consists of two major steps. The first step is to construct a highly 

redundant dictionary of all IMFs, D. The second step is to find the sparsest decomposition by 

solving a nonlinear optimization problem: 
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  ( )      ( )    (       )                     (  ) 

This problem is an L0 minimization problem. Solving this problem is extremely difficult. It is a non-

linear and non-convex optimization problem 
128, 129

. To overcome this difficulty, a nonlinear 

matching pursuit method is proposed to approximate the original L0 minimization problem. Based 

on an approximation, the STFR method can be reduced to a L2 minimization problem 
129

. A brief 

description of this algorithm is provided below: 

                                   ‖ ( )   ( )     ( )‖ 
                                                                              (  ) 

                                      ( )     ( )                                                                                          (  ) 

In this formulation, the dictionary D is defined as 

  { ( )     ( )    
  

  
  ̇( )     ( )  ̇( )   ( ) }                                                     (  ) 

Where,  ( ) is a linear space consisting of functions smoother than     ( ): 

 ( )      {     (
  

   
)     (

  

   
)           }                                                                    (  ) 

More detail about the dictionary, D, can be found in Hou et al 
129

. 

At any step of the algorithm, an IMF is extracted. The residual is treated as a new signal and the L2 

minimization is again applied to the residual. By this nonlinear matching pursuit method, one can 

extract the different scales of a multiscale, non-stationary and nonlinear signal 
129

. 
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A p p e n d i x  E  

BRUTE-FORCE ALGORITHM FOR CARDIOVASCULAR INTRINSIC FREQUENCY 

E.1 Brute-force Algorithm 

In order to solve the modified STRF problem, a brute-force algorithm was used. First, the domain D 

was taken as 

  {(     )                     }                                                                                       (  )  

In domain D, the frequencies   ,    are bounded above by some constant C. This is a valid 

assumption since the aortic pressure wave signal has a certain level of smoothness, and the signal is 

not rough; therefore, certain frequencies cannot be accepted physically and mathematically as the 

solution of the problem.  

Next, we discretize D for pairs of (     ). For each point (     ) in the discretized domain, the 

modified STFR problem is solved and the solution is stored as P(     ). Note that the minimum of 

the modified STFR problem for the whole domain D corresponds to the minimum of P(     ) 

over (     ); this is a simple search problem. The corresponding minimum frequencies are 

denoted as (     )m. The original minimization problem is not convex. Thus we may have several 

local minima. However, the brute-force algorithm looks over all possible values of frequencies and 

ensures that the corresponding minimizer frequencies (     )m are in fact the unique global 

minimizer. Figure E1 shows all value of P(     ) for a sample pressure wave. The global 

minimizer is shown by a black triangle. 
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Figure E1: Brute-force algorithm applied on sample pressure waves in order to calculate the 

intrinsic frequencies (     ). The black triangle is the global minimizer that gives cardiovascular 

intrinsic frequencies.  

  



 

 

171 
BIBLIOGRAPHY 

1. WRITING GROUP MEMBERS, Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, 

Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, 

Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, 

Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, 

Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, 

Wylie-Rosett J, Committee obotAHAS, Stroke Statistics Subcommittee. Heart disease and 

stroke statistics--2010 update: A report from the American Heart Association. Circulation. 

2010;121:e46-215 

2. Petrasek D. Systems biology: The case for a systems science approach to diabetes. Journal 

of Diabetes Science and Technology (Online). 2008;2:131 

3. Berne R, Levy M, Koeppen B, Tanton B. Textbook of physiology. Philadephia: Mosby. 

2004 

4. Parker S, Winston R. The human body book. Dorling Kindersley; 2007. 

5. Pedley TJ. Fluid Mechanics of Large Blood Vessels. Cambridge University Press 1995 

6. Caro CG, Pedley JG, Schroter RC, Seed WA. The Mechanics of the Circulation. Oxford: 

Oxford University Press; 1978. 

7. Nichols WW, O’Rourke MF. Mcdonald’s blood flow in arteries: Theoretical, Experimental 

and Clinical Principles. London: Arnold; 1998. 

8. Avrahami I, Gharib M. Computational studies of resonance wave pumping in compliant 

tubes. Journal of Fluid Mechanics. 2008;608:139-160 

9. Hickerson A, Rinderknecht D, Gharib M. Experimental study of the behavior of a valveless 

impedance pump. Experiments in Fluids. 2005;38:534-540 

10. Hickerson AI, Gharib M. On the resonance of a pliant tube as a mechanism for valveless 

pumping. Journal of Fluid Mechanics. 2006;555:141-148 

11. Meier JA. A novel experimental study of a valveless impedance pump for applications at 

lab-on-chip, microfluidic, and biomedical device size scales. 2011; Thesis Ph.D, California 

Institute of Technology, California, US. 

12. Zamir M. The physics of pulsatile flow. New York: Springer-Verlag; 2000. 

13. Liebau G. On a valveless pump principle (ger). Naturwissenschaften. 1954:327 

14. Korteweg D. Ueber die fortpflanzungsgeschwindigkeit des schalles in elastischen röhren. 

Annalen der Physik. 1878;5:525-542 

15. Morgan GW, Kiely JP. Wave propagation in a viscous liquid contained in a flexible tube. 

The Journal of the Acoustical Society of America. 1954;26:323-328 

16. Womersley JR. Oscillatory flow in arteries: The constrained elastic tube as a model of 

arterial flow and pulse transmission. Physics in Medicine and Biology. 1957;2:178 

17. Liebau G. Über periphere blutförderung. Phenomen der pulsierenden Strömung im 

Blutkreislauf aus technologischer, physiologischer und klinischer Sicht. Mannheim, Wien, 

Zürich: Bibliographisches Institut. 1970:67-78 

18. Loumes L, Avrahami I, Gharib M. Resonant pumping in a multilayer impedance pump. 

Physics of Fluids. 2008;20:023103 

19. Ottesen JT. Valveless pumping in a fluid-filled closed elastic tube-system: One-

dimensional theory with experimental validation. Journal of Mathematical Biology. 

2003;46:309-332 



 

 

172 
20. Forouhar AS, Liebling M, Hickerson A, Nasiraei-Moghaddam A, Tsai H-J, Hove JR, 

Fraser SE, Dickinson ME, Gharib M. The embryonic vertebrate heart tube is a dynamic 

suction pump. Science. 2006;312:751-753 

21. De Pater L, van den Berg J. An electrical analogue of the entire human circulatory system. 

Medical and Biological Engineering and Computing. 1964;2:161-166 

22. Noordergraaf A, Verdouw PD, Boom HBK. The use of an analog computer in a circulation 

model. Progress in Cardiovascular Diseases. 1963;5:419-439 

23. Westerhof N, Bosman F, De Vries CJ, Noordergraaf A. Analog studies of the human 

systemic arterial tree. Journal of Biomechanics. 1969;2:121-134, IN121, 135-136, IN123, 

137-138, IN125, 139-143 

24. Grinberg L, Karniadakis G. Outflow boundary conditions for arterial networks with 

multiple outlets. Annals of Biomedical Engineering. 2008;36:1496-1514 

25. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA. Outflow boundary conditions 

for 3d simulations of non-periodic blood flow and pressure fields in deformable arteries. 

Computer Methods in Biomechanics and Biomedical Engineering. 2010;13:625-640 

26. Sherwin SJ, Franke V, Peiró J, Parker K. One-dimensional modelling of a vascular network 

in space-time variables. Journal of Engineering Mathematics. 2003;47:217-250 

27. Taylor CA, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK. Predictive 

medicine: Computational techniques in therapeutic decision-making. Computer Aided 

Surgery. 1999;4:231-247 

28. Stergiopulos N, Young DF, Rogge TR. Computer simulation of arterial flow with 

applications to arterial and aortic stenoses. Journal of Biomechanics. 1992;25:1477-1488 

29. O'Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection increase 

with age and isolated systolic hypertension. Hypertension. 2005;45:652-658 

30. Olufsen MS. Structured tree outflow condition for blood flow in larger systemic arteries. 

Am J Physiol Heart Circ Physiol. 1999;276:H257-268 

31. Vignon-Clementel IE, Alberto Figueroa C, Jansen KE, Taylor CA. Outflow boundary 

conditions for three-dimensional finite element modeling of blood flow and pressure in 

arteries. Computer Methods in Applied Mechanics and Engineering. 2006;195:3776-3796 

32. Avolio A. Ageing and wave reflection. Journal of Hypertension. 1992;10:S83-S86 

33. Franklin SS, Weber MA. Measuring hypertensive cardiovascular risk: The vascular 

overload concept. American Heart Journal. 1994;128:793-803 

34. Laskey W, Kussmaul W. Arterial wave reflection in heart failure. Circulation. 

1987;75:711-722 

35. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos 

A. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in 

hypertensive patients. Hypertension. 2001;37:1236-1241 

36. London GM, Blacher J, Pannier B, Guerin AP, Marchais SJ, Safar ME. Arterial wave 

reflections and survival in end-stage renal failure. Hypertension. 2001;38:434-438 

37. Mitchell GF, Tardif J-C, Arnold JMO, Marchiori G, O'Brien TX, Dunlap ME, Pfeffer MA. 

Pulsatile hemodynamics in congestive heart failure. Hypertension. 2001;38:1433-1439 

38. Self DA, Ewert DL, Swope RD, Crisman RP, Latham RD. Beat-to-beat determination of 

peripheral resistance and arterial compliance during +Gz centrifugation. Aviat Space 

Environ Med. 1994;65:396-403 

39. Stergiopulos N, Meister JJ, Westerhof N. Simple and accurate way for estimating total and 

segmental arterial compliance: The pulse pressure method. Annals of Biomedical 

Engineering. 1994;22:392-397 

40. Stergiopulos N, Meister JJ, Westerhof N. Evaluation of methods for estimation of total 

arterial compliance. Am J Physiol Heart Circ Physiol. 1995;268:H1540-1548 



 

 

173 
41. Parker KH, Jones CJH. Forward and backward running waves in the arteries: Analysis 

using the method of characteristics. Journal of Biomechanical Engineering. 1990;112:322-

326 

42. Anliker M, Rockwell RL, Ogden E. Nonlinear analysis of flow pulses and shock waves in 

arteries. Zeitschrift für Angewandte Mathematik und Physik (ZAMP). 1971;22:217-246 

43. Parker KH, Jones CJH, Dawson JR, Gibson DG. What stops the flow of blood from the 

heart? Heart and Vessels. 1988;4:241-245 

44. Khir AW, O'Brien A, Gibbs JSR, Parker KH. Determination of wave speed and wave 

separation in the arteries. Journal of biomechanics. 2001;34:1145-1155 

45. Koh TW, Pepper JR, DeSouza AC, Parker KH. Analysis of wave reflections in the arterial 

system using wave intensity: A novel method for predicting the timing and amplitude of 

reflected waves. Heart and Vessels. 1998;13:103-113 

46. Fung YC. Biomechanics of the circulation. New York, NY: Springer-Verlag; 1997. 

47. Whitaker S. Introduction to fluid mechanics. Krieger Pub Co.; 1992. 

48. Bathe KJ. Finite element procedures. Prentice-Hall; 2006. 

49. ADINA R&D I. Theory and modeling guide, volume i: ADINA solids & structures. 

Watertown, MA; 2009. 

50. ADINA R&D I. Theory and modeling guide, volume iii: ADINA CFD & FSI. Watertown, 

MA; 2009. 

51. Bathe KJ, Zhang H, Wang MH. Finite element analysis of incompressible and 

compressible fluid flows with free surfaces and structural interactions. Computers & 

Structures. 1995;56:193-213 

52. Bathe KJ, Zhang H, Zhang X. Some advances in the analysis of fluid flows. Computers & 

Structures. 1997;64:909-930 

53. Bathe M, Kamm RD. A fluid-structure interaction finite element analysis of pulsatile blood 

flow through a compliant stenotic artery. Journal of Biomechanical Engineering. 

1999;121:361-369 

54. Bathe K-J, Hou Z, Ji S. Finite element analysis of fluid flows fully coupled with structural 

interactions. Computers & Structures. 1999;72:1-16 

55. Bathe K-J, Zhang H. Finite element developments for general fluid flows with structural 

interactions. International Journal for Numerical Methods in Engineering. 2004;60:213-

232 

56. Zhang H, Bathe K-J. Direct and iterative computing of fluid flows fully coupled with 

structures. Computational Fluid and Solid Mechanics. 2001:1440-1443 

57. Matthys KS, Alastruey J, Peiro J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin 

SJ. Pulse wave propagation in a model human arterial network : Assessment of 1-d 

numerical simulations against in vitro measurements. Journal of Biomechanics. 

2007;40:3476-3486 

58. Milnor WR. Haemodynamics. Baltimore, Md: Williams & Wilkins Co; 1989. 

59. Curtis SL, Zambanini A, Mayet J, McG Thom SA, Foale R, Parker KH, Hughes AD. 

Reduced systolic wave generation and increased peripheral wave reflection in chronic heart 

failure. Am J Physiol Heart Circ Physiol. 2007;293:H557-562 

60. Hashimoto J, Nichols WW, O'Rourke MF, Imai Y. Association between wasted pressure 

effort and left ventricular hypertrophy in hypertension: Influence of arterial wave reflection. 

Am J Hypertens. 2008;21:329-333 

61. Mitchell GF, Hwang S-J, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, 

Levy D, Benjamin EJ. Arterial stiffness and cardiovascular events: The Framingham Heart 

Study. Circulation. 2010;121:505-511 



 

 

174 
62. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy 

D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and 

women: The Framingham Heart Study. Hypertension. 2004;43:1239-1245 

63. Ooi H, Chung W, Biolo A. Arterial stiffness and vascular load in heart failure. Congestive 

Heart Failure. 2008;14:31-36 

64. Williams B, Lacy PS. Central haemodynamics and clinical outcomes: Going beyond 

brachial blood pressure? European Heart Journal. 2010;31:1819-1822 

65. O'Rourke MF. Steady and pulsatile energy losses in the systemic circulation under normal 

conditions and in simulated arterial disease. Cardiovascular Research. 1967;1:313-326 

66. Safar M, O'Rourke MF. Arterial stiffness in hypertension. Elsevier; 2006. 

67. Rinderknecht D, Hickerson AI, Gharib M. A valveless micro impedance pump driven by 

electromagnetic actuation. Journal of Micromechanics and Microengineering. 

2005;15:861-866 

68. Saito GE, Vander Werff TJ. The importance of viscoelasticity in arterial blood flow 

models. Journal of biomechanics. 1975;8:237-245 

69. Pahlevan N, Amlani F, Hossein Gorji M, Hussain F, Gharib M. A physiologically relevant, 

simple outflow boundary model for truncated vasculature. Annals of Biomedical 

Engineering. 2011;39:1470-1481 

70. Manisty CH, Zambanini A, Parker KH, Davies JE, Francis DP, Mayet J, McG Thom SA, 

Hughes AD, on behalf of the Anglo-Scandinavian Cardiac Outcome Trial Investigators. 

Differences in the magnitude of wave reflection account for differential effects of 

amlodipine- versus atenolol-based regimens on central blood pressure: An Anglo-

Scandinavian Cardiac Outcome Trial Substudy. Hypertension. 2009;54:724-730 

71. Chae CU, Pfeffer MA, Glynn RJ, Mitchell GF, Taylor JO, Hennekens CH. Increased pulse 

pressure and risk of heart failure in the elderly. JAMA. 1999;281:634-643 

72. Franklin SS, Lopez VA, Wong ND, Mitchell GF, Larson MG, Vasan RS, Levy D. Single 

versus combined blood pressure components and risk for cardiovascular disease: The 

Framingham Heart Study. Circulation. 2009;119:243-250 

73. Burattini R, Knowlen G, Campbell K. Two arterial effective reflecting sites may appear as 

one to the heart. Circ Res. 1991;68:85-99 

74. Lloyd-Jones DM, Larson MG, Leip EP, Beiser A, D'Agostino RB, Kannel WB, Murabito 

JM, Vasan RS, Benjamin EJ, Levy D. Lifetime risk for developing congestive heart failure: 

The Framingham Heart Study. Circulation. 2002;106:3068-3072 

75. Moser M, Hebert P. Prevention of disease progression, left ventricular hypertrophy and 

congestive heart failure in hypertension treatment trials. J Am Coll Cardiol. 1996;27:1214-

1218 

76. Matthys KS, Alastruey J, Peiro J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin 

SJ. Pulse wave propagation in a model human arterial network : Assessment of 1-d 

numerical simulations against in vitro measurements. Journal of Biomechanics. 2007;40:11 

77. Pahlevan NM, Amlani F, Gorji H, Hussain F, Gharib M. A physiologically relevant, simple 

outflow boundary model for truncated vasculature. Annals of Biomedical Engineering. 

2011;39:1470-1481 

78. Kelly R, Tunin R, Kass D. Effect of reduced aortic compliance on cardiac efficiency and 

contractile function of in situ canine left ventricle. Circ Res. 1992;71:490-502 

79. Elzinga G, Westerhof N. Matching between ventricle and arterial load. An evolutionary 

process. Circ Res. 1991;68:1495-1500 

80. O'Rourke MF. Toward optimization of wave reflection: Therapeutic goal for tomorrow? 

Clinical and Experimental Pharmacology and Physiology. 1996;23:s11-s15 



 

 

175 
81. Levenson J, Simon A, Cambien F, Beretti C. Cigarette smoking and hypertension. 

Factors independently associated with blood hyperviscosity and arterial rigidity. 

Arterioscler Thromb Vasc Biol. 1987;7:572-577 

82. Levent E, Ozyürek AR, Ülger Z. Evaluation of aortic stiffness in tobacco-smoking 

adolescents. Journal of Adolescent Health. 2004;34:339-343 

83. Stefanadis C, Tsiamis E, Vlachopoulos C, Stratos C, Toutouzas K, Pitsavos C, Marakas S, 

Boudoulas H, Toutouzas P. Unfavorable effect of smoking on the elastic properties of the 

human aorta. Circulation. 1997;95:31-38 

84. Giannattasio C, Mangoni AA, Stella ML, Carugo S, Grassi G, Mancia G. Acute effects of 

smoking on radial artery compliance in humans. Journal of Hypertension. 1994;12:691-696 

85. Kool MJF, Hoeks APG, Struijker Boudier HAJ, Reneman RS, Van Bortel LMAB. Short 

and long-term effects of smoking on arterial wall properties in habitual smokers. Journal of 

the American College of Cardiology. 1993;22:1881-1886 

86. Mahmud A, Feely J. Effect of smoking on arterial stiffness and pulse pressure 

amplification. Hypertension. 2003;41:183-187 

87. Feldman MD, Alderman JD, Aroesty JM, Royal HD, Ferguson JJ, Owen RM, Grossman 

W, McKay RG. Depression of systolic and diastolic myocardial reserve during atrial pacing 

tachycardia in patients with dilated cardiomyopathy. The Journal of Clinical Investigation. 

1988;82 

88. Laniado S, Yellin E, Yoran C, Strom J, Hori M, Gabbay S, Terdiman R, Frater R. 

Physiologic mechanisms in aortic insufficiency. I. The effect of changing heart rate on flow 

dynamics. Ii. Determinants of austin flint murmur. Circulation. 1982;66:226-235 

89. Ohte N, Cheng C-P, Little WC. Tachycardia exacerbates abnormal left ventricular–arterial 

coupling in heart failure. Heart and Vessels. 2003;18:136-141 

90. Westerhof N, O'Rourke MF. Haemodynamic basis for the development of left ventricular 

failure in systolic hypertension and for its logical therapy. Journal of Hypertension. 

1995;13:943-952 

91. Jung E, Peskin CS. Two-dimensional simulations of valveless pumping using the immersed 

boundary method. SIAM Journal on Scientific Computing. 2002; 23:19-45 

92. Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, 

Malik IS, Hughes AD, Parker KH, Mayet J. Evidence of a dominant backward-propagating 

"suction" wave responsible for diastolic coronary filling in humans, attenuated in left 

ventricular hypertrophy. Circulation. 2006;113:1768-1778 

93. Ishikawa J, Matsui Y, Russo C, Hyodo E, Arai K, DiTulio MR, Homma S, Kario K. 

Increased aortic wave reflection and longitudinal regional diastolic dysfunction in patients 

with left ventricular hypertrophy. Artery Research. 2012;6:97-102 

94. Manisty C, Mayet J, Tapp RJ, Parker KH, Sever P, Poulter NH, Thom SAM, Hughes AD. 

Wave reflection predicts cardiovascular events in hypertensive individuals independent of 

blood pressure and other cardiovascular risk factors: An ASCOT (anglo-Scandinavian 

Cardiac Outcome Trial) substudy. Journal of the American College of Cardiology. 

2010;56:24-30 

95. Pahlevan NM, Gharib M. Aortic wave dynamics and its influence on left ventricular 

workload. PLoS ONE. 2011;6:e23106 

96. Attinger EO. Pulsatile blood flow. 1964 

97. Knight GEW, Wolstenholme J. Circulatory and respiratory mass transport. Ciba 

Foundation; 1971. 

98. Milnor WR. Aortic wavelength as a determinant of the relation between heart rate and body 

size in mammals. Am J Physiol Regul Integr Comp Physiol. 1979;237:R3-6 



 

 

176 
99. O'Rourke M, Yaginuma T, Avolio A. Physiological and pathophysiological 

implications of ventricular/vascular coupling. Annals of Biomedical Engineering. 

1984;12:119-134 

100. Li JK, Noordergraaf A. Similar pressure pulse propagation and reflection characteristics in 

aortas of mammals. American Journal of Physiology - Regulatory, Integrative and 

Comparative Physiology. 1991;261:R519-R521 

101. Westerhof N, Elzinga G. Normalized input impedance and arterial decay time over heart 

period are independent of animal size. American Journal of Physiology - Regulatory, 

Integrative and Comparative Physiology. 1991;261:R126-R133 

102. Quick CM, Berger DS, Noordergraaf A. Constructive and destructive addition of forward 

and reflected arterial pulse waves. American Journal of Physiology - Heart and Circulatory 

Physiology. 2001;280:H1519-H1527 

103. Westerhof N, Stergiopulos N, Noble MIM. Snapshots of hemodynamics: An aid for clinical 

research and graduate education. Springer; 2005. 

104. Zamir M. Mechanics of blood supply to the heart: Wave reflection effects in a right 

coronary artery. Proceedings of the Royal Society of London. Series B: Biological Sciences. 

1998;265:439-444 

105. Li JK-J. Dynamics of the vascular system. World Scientific Pub Co Inc; 2004. 

106. Adolph EF. Quantitative relations in the physiological constitutions of mammals. Science. 

1949;109:579-585 

107. Holt JP, Rhode EA, Holt WW, Kines H. Geometric similarity of aorta, venae cavae, and 

certain of their branches in mammals. American Journal of Physiology - Regulatory, 

Integrative and Comparative Physiology. 1981;241:R100-R104 

108. Li JK-J. Comparative cardiovascular dynamics of mammals. CRC Press; 1995. 

109. Segers P, Rietzschel ER, Buyzere MLD, Bacquer DD, Bortel LMV, Backer GD, Gillebert 

TC, Verdonck PR. Assessment of pressure wave reflection: Getting the timing right! 

Physiological Measurement. 2007;28:1045 

110. Altman PL, Dittmer DS. Respiration and Circulation. 1971 

111. Noordergraaf A, Li JKJ, Campbell KB. Mammalian hemodynamics : A new similarity 

principle. Journal of Theoretical Biology. 1979;79:485-489 

112. Avolio A, O'rourke M, Mang K, Bason P, Gow B. A comparative study of pulsatile arterial 

hemodynamics in rabbits and guinea pigs. American Journal of Physiology -- Legacy 

Content. 1976;230:868-875 

113. Davies JE, Parker KH, Francis DP, Hughes AD, Mayet J. What is the role of the aorta in 

directing coronary blood flow? Heart. 2008;94:1545-1547 

114. Zamir M. The physics of coronary blood flow. Springer; 2005. 

115. Flores J, Corvera Poiré E, del Río JA, López de Haro M. A plausible explanation for heart 

rates in mammals. Journal of Theoretical Biology. 2010;265:599-603 

116. Propst G. Pumping effects in models of periodically forced flow configurations. Physica D: 

Nonlinear Phenomena. 2006;217:193-201 

117. Takagi S, Saijo T. Study of a piston pump without valves : 1st report, on a pipe-capacity-

system with a t-junction. Bulletin of JSME. 1983;26 1366-1372  

118. Takagi S, Takahashi K. Study of a piston pump without valves : 2nd report, pumping effect 

and resonance in a pipe-capacity-system with a t-junction. Bulletin of JSME. 1985;28:831-

836  

119. Pahlevan NM, Gharib M. Low pulse pressure with high pulsatile external left ventricular 

power: Influence of aortic waves. Journal of biomechanics. 2011;44:2083-2089 

120. Mann DL, Bristow MR. Mechanisms and models in heart failure: The biomechanical 

model and beyond. Circulation. 2005;111:2837-2849 



 

 

177 
121. Denardo SJ, Nandyala R, Freeman GL, Pierce GL, Nichols WW. Pulse wave analysis 

of the aortic pressure waveform in severe left ventricular systolic dysfunction. Circulation: 

Heart Failure. 2009 

122. Bedford DE. The ancient art of feeling the pulse. British Heart Journal. 1951;13:423 

123. Fields A. The pulse in ancient chinese medicine. California Medicine. 1947;66:304 

124. Avolio AP, Butlin M, Walsh A. Arterial blood pressure measurement and pulse wave 

analysis—their role in enhancing cardiovascular assessment. Physiological Measurement. 

2010;31:R1 

125. Garcia D, Barenbrug PJC, Pibarot P, Dekker ALAJ, van der Veen FH, Maessen JG, 

Dumesnil JG, Durand L-G. A ventricular-vascular coupling model in presence of aortic 

stenosis. American Journal of Physiology - Heart and Circulatory Physiology. 

2005;288:H1874-H1884 

126. Wang Y-YL, Sze W-K, Bau J-G, Wang S-H, Jan M-Y, Hsu T-L, Wang W-K. The 

ventricular-arterial coupling system can be analyzed by the eigenwave modes of the whole 

arterial system. Applied Physics Letters. 2008;92:153901-153903 

127. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH. 

The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-

stationary time series analysis. Proceedings of the Royal Society of London. Series A: 

Mathematical, Physical and Engineering Sciences. 1998;454:903-995 

128. Hou TY, Shi Z. Adaptive data analysis via sparse time-frequency representation. Advances 

in Adaptive Data Analysis. 2011;3:1-28 

129. Hou TY, Shi Z. Data-driven time–frequency analysis. Applied and Computational 

Harmonic Analysis. 2012 

130. Huang W, Shen Z, Huang NE, Fung YC. Engineering analysis of biological variables: An 

example of blood pressure over 1 day. Proceedings of the National Academy of Sciences. 

1998;95:4816-4821 

131. Huang W, Shen Z, Huang NE, Fung YC. Use of intrinsic modes in biology: Examples of 

indicial response of pulmonary blood pressure to ± step hypoxia. Proceedings of the 

National Academy of Sciences. 1998;95:12766-12771 

132. Daubechies I. The wavelet transform, time-frequency localization and signal analysis. 

Information Theory, IEEE Transactions on. 1990;36:961-1005 

133. Harmon KG, Asif IM, Klossner D, Drezner JA. Incidence of sudden cardiac death in 

national collegiate athletic association athletes / clinical perspective. Circulation. 

2011;123:1594-1600 

134. Katcher MS, Salem DN, Wang PJ, EstesIII NAM. Mechanisms of sudden cardiac death in 

the athlete. In: EstesIII NAM, Salem DN, Wang PJ, eds. Sudden Cardiac Death in the 

Athlete. Futura Publishing Company; 1998:3-24. 

135. Myerburg RJ, Mitrani R, Interian A, Castellanos A. Identification of risk of cardiac arrest 

and sudden cardiac death in athletes. In: EstesIII NAM, Salem DN, Wang PJ, eds. Sudden 

Cardiac Death in the Athlete. Futura Publishing Company; 1998:25-55. 

136. Virmani R, Burke AP, Farb A. Sudden cardiac death. Cardiovascular Pathology. 

2001;10:211-218 

137. Virmani R, Burke AP, Farb A, Kark JA. Causes of sudden death in young and middle-aged 

competitive athletes. Cardiology Clinics. 1997;15:439-466 

138. Davies JE, Francis DP, Hadjiloizou N, Whinnett ZI, Manisty CH, Aguado-Sierra J, Malik 

IS, Parker KH, Hughes AD, Mayet J. Augmentation of coronary blood flow in systole by 

reflected waves in the proximal aorta. In: Dössel O, Schlegel WC, eds. Ifmbe proceedings, 

world congress on medical physics and biomedical engineering. Springer Berlin 

Heidelberg; 2010:61-64. 



 

 

178 
139. Link MS, Maron BJ, EstesIII NAM. Commotio cordis. In: EstesIII NAM, Salem DN, 

Wang PJ, eds. Sudden Cardiac Death in the Athlete. Futura Publishing Company; 

1998:515-528. 

140. Lindsay RB. Mechanical Radiation. McGraw-Hill; 1960. 

 

 


