
Spatial prediction of demersal fish diversity in the Baltic Sea:
comparison of machine learning and
regression-based techniques

Szymon Smoli�nski* and Krzysztof Radtke
Department of Fisheries Resources, National Marine Fisheries Research Institute, Kołłą taja 1, Gdynia 81-332, Poland
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Marine spatial planning (MSP) is considered a valuable tool in the ecosystem-based management of marine areas. Predictive modelling may
be applied in the MSP framework to obtain spatially explicit information about biodiversity patterns. The growing number of statistical
approaches used for this purpose implies the urgent need for comparisons between different predictive techniques. In this study, we eval-
uated the performance of selected machine learning and regression-based methods that were applied for modelling fish community indices.
We hypothesized that habitat features can influence fish assemblage and investigated the effect of environmental gradients on demersal fish
diversity (species richness and Shannon–Weaver Index). We used fish data from the Baltic International Trawl Surveys (2001–2014) and maps
of six potential predictors: bottom salinity, depth, seabed slope, growth season bottom temperature, seabed sediments and annual mean bot-
tom current velocity. We compared the performance of six alternative modelling approaches: generalized linear models, generalized additive
models, multivariate adaptive regression splines, support vector machines, boosted regression trees and random forests. We applied repeated
10-fold cross-validation, using accuracy as the measure of model quality. Finally, we selected random forest as the best performing algorithm
and implemented it for the spatial prediction of fish diversity from the Baltic Proper to the Kattegat. To obtain information on the data reli-
ability and confidence of the developed models, which are essential for MSP, we estimated the uncertainty of predictions with standard devi-
ation of predictions obtained from all the trees in the ensemble random forest method. We showed how state-of-the-art predictive
techniques, based on easily available data and simple Geographic Information System tools, can be used to obtain reliable spatial information
about fish diversity. Our comparative work highlighted the potential of machine learning method to reduce prediction error in modelling of
demersal fish diversity in the framework of MSP.

Keywords: Baltic Sea, demersal fish diversity, ecological modelling, ecosystem-based management, machine learning, marine spatial planning,
random forest.

Introduction
Marine spatial planning (MSP) is considered a valuable tool in

ecosystem-based management of marine areas (Caldow et al.,

2015). Different biological, physical, and socioeconomic criteria

can be combined in this management approach (Young et al.,

2007). In the pursuit of ecological goals, MSP has the potential to

minimize the disadvantages of single-species management and to

reduce problems arising from discrepancies between ecological

and jurisdictional boundaries (Crowder and Norse, 2008).

Despite the benefits of MSP, management authorities encounter

considerable technical challenges due to limited and inconsistent

information about the environment (Foley et al., 2010). Spatially

continuous environmental data, such as the full-coverage maps,

are required for proper decision-making. During the last decade,

much effort was devoted to collecting data from a wide range of

scientific fields, and many organizations have been involved in

common databases (Caldow et al., 2015). These joint efforts have

provided valuable possibilities for the large-scale mapping of
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biological communities and habitats, which can be helpful for

decision-makers at least during the initial phase of management

plan development (Joy and Death, 2004).

In recent years an increasing amount of studies presenting an

integrative approach to biodiversity conservation has been

observed (Stuart-Smith et al., 2013; D’Agata et al., 2014). In this

approach, different aspects of diversity within species assemblages

can be quantified (taxonomic, phylogenetic and functional diver-

sity). However, taxonomic type of diversity, expressed, e.g. by

species richness, is the most commonly used component of diver-

sity and may be considered as a surrogate for other components

(Devictor et al., 2010). The role of ecologists is to provide, using

their best scientific knowledge, quantitative and spatially explicit

information about biodiversity patterns (Pittman et al., 2007).

However, even in intensively studied areas, the spatial distribu-

tion of species cannot be fully monitored due to technical limita-

tions and economic reasons (Leathwick et al., 2006a). A reliable

and cost-effective technique used to fill in these inevitable gaps in

the biological information is predictive modelling (Guisan and

Zimmermann, 2000; Elith et al., 2006). The aim of this approach

is firstly to relate by the model the biological survey data from

sampled sites to environmental predictors and secondly to pro-

vide a map of investigated measure across whole region of interest

(covering also unsampled areas) based on prediction of developed

model (Ferrier and Guisan, 2006).

Predictive modelling has been widely used for mapping species

richness, diversity, biomass or the abundance of different groups

of organisms, in both terrestrial and aquatic ecosystems (e.g. Joy

and Death, 2004; Bucas et al., 2013; Lopatin et al., 2016). The

statistical approaches used for the purpose include more trad-

itional regression-based techniques, such generalized linear mod-

els, generalized additive models, and multivariate adaptive

regression splines, as well as novel machine learning (ML) algo-

rithms, such as support vector machines, boosted regression trees

and random forests. Previous experience has shown that ML

techniques can be much more flexible than conventional para-

metric models due to their ability to handle non-linear relation-

ships and complex interactions, which often occur in ecological

data (Guisan and Zimmermann, 2000). Notwithstanding, a re-

view of the literature showed a relatively low number of ML ap-

plications in ecology compared with other scientific fields (Olden

et al., 2008). Several studies have highlighted the urgent need for

comparisons of the performance of different ML predictive tech-

niques in ecology (Aertsen et al., 2011; Olaya-Mar�ın et al., 2013).

The ecology of fish seems to be a promising but little exploited

field for the application of ML. This group of organisms is con-

sidered an effective indicator of aquatic ecosystem quality due to

its sensitivity to anthropogenic disturbances (HELCOM, 2012;

Smoli�nski and Całkiewicz, 2015). Fish species richness and diver-

sity are often used as a primary measures of ecological shifts and

as a basis for planning protected areas (Knudby et al., 2010b;

Olaya-Mar�ın et al., 2013). Knowledge of the relationships be-

tween fish assemblages and environmental factors is important

for effective conservation, and the application of novel statistical

techniques can improve our understanding of these ecological

processes (Olden et al., 2008). A number of predictive analyses on

freshwater fish communities, employing ML approaches, can be

found in the literature (Olaya-Mar�ın et al., 2013). Most available

predictive applications of ML in marine fish ecology refer mainly

to coral reef-associated assemblages in shallow waters (Pittman

et al., 2007; Moore et al., 2009; Knudby et al., 2010a; Pittman and

Brown, 2011). Such works on demersal fish in other ecosystem

types are very scarce (Leathwick et al., 2006a; Monk et al., 2010;

Compton et al., 2012; Bergström et al., 2013; Bucas et al., 2013).

The aim of this study was to evaluate the performance of con-

ventional regression-based techniques and machine learning used

for the predictive modelling of demersal fish diversity. It was

assumed that habitat-driven attributes can determine fish assem-

blage diversity (Knudby et al., 2010a, b; Leathwick et al., 2006b;

Pittman et al., 2007). Thus, based on openly available data, we

investigated the relationship between demersal fish (species rich-

ness and Shannon–Weaver Index) and the environment of the

Baltic Sea. The best-performing algorithm was implemented for

the spatial prediction of fish diversity from the Baltic Proper to

the Kattegat, accounting for the uncertainty of the estimation.

We showed how state-of-the-art predictive techniques and simple

Geographic Information System (GIS) tools may be applied to

obtain reliable spatial information about demersal fish

community.

Material and methods
Study area
The Baltic Sea, located in Northern Europe, is a semi-enclosed

sea and one of the largest brackish-water basins in the world

(415 200 km2). The study area was located in the south of the

Baltic Sea, covering a few distinct sub-basins south of latitude

59�N: Kattegat, Great Belt, The Sound, Kiel Bay, Bay of

Mecklenburg, Arkona Basin, Bornholm Basin, Western Gotland

Basin, Gdansk Basin, Eastern Gotland Basin, northern Baltic

Proper (Figure 1) (HELCOM, 2015). The shallow Danish straits

are the only connection with the Atlantic Ocean, where inflows of

saline oceanic waters occur. Consequently, a high salinity gradient

can be observed within the study area (from �5 in the northern

Baltic Proper up to 27 in the western Danish straits). The Baltic

Sea is considered an area of low biodiversity compared with the

open oceans and most freshwater environments (HELCOM,

2009).

Fish data
We used data collected during the Baltic International Trawl

Survey (BITS) programme in the 1st and 4th quarter of the years

2001–2014. To minimize the effect of variation in gear, we

included in the analysis surveys conducted with two standard

bottom trawls: TV3 930 meshes (TVL) and TV3 520 meshes

(TVS) (ICES, 2011). Fish data were collected by different scien-

tific institutions located around the Baltic and combined by the

International Council for the Exploration of the Sea (ICES) in the

Database of Trawl Surveys (DATRAS), which is freely available

through the ICES website. In the analysis, we included only hauls

where all species in the catch were recorded. We merged two

datasets: the exchange data, containing detailed haul information,

and the data on catch per unit effort (CPUE) per species and

length group for each haul, comprising an indirect measure of the

fish abundance of every species in different length classes.

The scope of investigation was the alpha-diversity (Foley et al.,

2010) of the demersal fish community, so we determined the allo-

cation of all fish species to different ecological groups according

to the information available on the FishBase.org website (Froese

and Pauly, 2015) and excluded all pelagic fish. Herring (Clupea

harengus), defined on FishBase.org as benthopelagic, was also

excluded from the analysis because its Baltic population is
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considered pelagic (Cardinale, 2000). In total, 88 species occurred

in the dataset. The species diversity of the fish community was

quantified using two indices: species richness and Shannon–

Weaver (which combines species richness and evenness). We

defined the species richness for each haul simply as the number of

species in the catch. We calculated Shannon–Weaver Index of di-

versity based on the log (xþ 1) transformation of the relative

abundance of each species in the catch. Preliminary analysis

showed that haul duration was a significant factor for observed

species richness (increasing trend), so we included in the analysis

only trawls with a standard duration of 30 min (5715 hauls in

total) (Figure 1). Among the haul descriptors, we considered only

the season of the survey (1st or 4th quarter) and the trawling gear

type (TVL and TVS) as potential predictors of demersal fish di-

versity (Table 1).

Environmental data
We hypothesized that different features of marine habitats can in-

fluence the demersal fish community. We used maps of selected

modelled physical features derived by the Baltic Interreg project

BALANCE (Al-Hamdani and Reker, 2007) and a depth relief map

(Seifert et al., 2001) available from the HELCOM Baltic Sea data

and map service (HELCOM, 2015) to provide environmental in-

formation for modelling demersal fish diversity and species rich-

ness. The selection of variables was based on the literature, expert

knowledge and data availability. The list of predictors considered

in the analysis is presented in Table 1. The GIS raster layers used

in the study were resampled with bilinear interpolation or the

nearest neighbour method to the cell size of 100 m and the same

resolution was used for prediction. The range of GIS layers cov-

ered the whole Baltic Sea, but we intentionally reduced the

Figure 1. Fish sampling site locations. The shape of the points indicates the gear type used for trawling, lines show borders between
HELCOM sub-basins: 1—Kattegat, 2—Great Belt, 3—The Sound, 4—Kiel Bay, 5—Bay of Mecklenburg, 6—Arkona Basin, 7—Bornholm Basin,
8—Western Gotland Basin, 9—Gdansk Basin, 10—Eastern Gotland Basin, and 11—northern Baltic Proper.

Table 1. List of predictors used for analysis of demersal fish diversity.

Predictors Data type Range Data source

Haul data
Quarter Factor, 2 levels (ICES, 2011)
Trawling gear type Factor, 2 levels (ICES, 2011)

Modelled environmental data (GIS layers)
Bottom salinity Factor, 5 levels (Al-Hamdani and Reker, 2007; HELCOM, 2015)
Depth Continuous 9.4–218.1 m (Seifert et al., 2001; HELCOM, 2015)
Seabed slope Continuous 0–6.8% (Al-Hamdani and Reker, 2007; HELCOM, 2015)
Growth season bottom temperature Continuous 3.9–16.8 �C (Al-Hamdani and Reker, 2007; HELCOM, 2015)
Seabed sediments Factor, 5 levels (Al-Hamdani and Reker, 2007; HELCOM, 2015)
Annual mean bottom current velocity Continuous 0–0.13 m s�1 (Al-Hamdani and Reker, 2007; HELCOM, 2015)
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geographical scope of the analysis and set the northern edge to

latitude 59�N, with regard to the distribution of fish sampling

sites. Because no trawls were conducted in the regions of water

bottom salinity specified originally in the model as Oligohaline I

(salinity<5), we combined all areas with salinity<7.5 (originally

classes Oligohaline I and Oligohaline II) into the first class (I) in

our dataset. The maps used in the study are shown in the

Supplementary Data for this article.

Data analysis
We performed all data exploration, development of different

models, GIS analysis and predictive mapping using the R scien-

tific computing language (R Development Core Team, 2011). We

employed the Classification and Regression Training package

caret (Kuhn, 2008) with the range of add-on packages for model

building, tuning and accuracy assessment. Six alternative predict-

ive techniques, listed in the following sections, were evaluated in

this study. The caret package allowed us to train different algo-

rithms in a consistent environment and to conduct direct com-

parisons of model performance. Moreover, internal tuning made

it possible to optimize the model parameters, especially of the

machine learning. We used 10-fold cross-validation resampling

method to assess each model’s accuracy (Hastie et al., 2009). We

additionally implemented a bootstrap approach by repetition of

the whole cross-validation process 100 times with independent

resampling of subsets, achieving a total of 1000 permutations for

a single model. The results from the folds in each repetition were

combined to select the model with the best parameters and to

compare different algorithms. As the measure of model perform-

ance, we used the root-mean-squared error (RMSE) of the pre-

diction estimated for each repetition. Because we conducted

parallel tests for all modelling techniques, using the same test and

training sets, detecting pairwise differences in the performances

of alternative predictive techniques was a paired-sample problem

(Knudby et al., 2010a, b). Therefore, we applied pairwise com-

parisons using paired t-tests with the p value adjusted by the

method of Benjamini and Hochberg (1995) to control the false

discovery rate (FDR), the expected proportion of false discoveries

amongst the rejected hypotheses. We evaluated the performance

of the finally selected model by calculating RMSE of predictions

for the whole study area and for each sub-basin.

Regression-based techniques
Herein, both generalized linear models (GLMs) (McCullagh and

Nelder, 1989) and generalized additive models (GAMs) (Hastie

and Tibshirani, 1990) were used for the predictive modelling of

demersal fish community indices, using an appropriate family of

distributions. Species richness data were treated using the Poisson

distribution, while the Shannon–Weaver Index, due to its normal

distribution, was analysed using a model based on the Gaussian

law. We fitted separate models for both indices and all predictors,

using, respectively, the basic glm function of R (R Development

Core Team, 2011) and the gam function of the mgcv package

(Wood, 2001). All variables were included in the analysis, since

the generalized variance-inflation factors (GVIF) showed accept-

able level (GVIF< 5) of predictors’ collinearity. We used multiple

smoothing parameter estimation by Generalized Cross Validation

(GCV) with default gamma and 9 degrees of freedom allowed as

maximum for the continuous predictors in GAMs. Additionally,

Akaike’s Information Criterion (AIC) was used by the stepAIC

procedure of the MASS package (Venables and Ripley, 2002) for

the stepwise feature selection of the GLMs.

We also applied multivariate adaptive regression splines

(MARS) (Friedman, 1991) with implemented bagging procedure.

We used the bagEarth function of caret based on the earth pack-

age (Milborrow, 2015). After preliminary tuning of the model, we

set maximum number of terms in the pruned model to 14 and

the maximum degree of interaction to 2.

Machine learning
In this study, support vector machines (SVM) (Cortes and

Vapnik, 1995) based on the radial basis function (RBF) kernel

was used. In the caret environment, the parameter r was esti-

mated using the sigest function of the kernlab package

(Karatzoglou et al., 2015), and the parameter C was tuned when

running the algorithm.

To develop the boosted regression trees (BRT) (Elith et al.,

2008) we used the gbm package (Ridgeway, 2007). The values of

the two BRT parameters were chosen from defined ranges in caret

using a cross-validation method: the interaction depth (here 1, 3

or 9) and the number of trees (here 50–1500 in step of 50). We

set the two remaining parameters manually as follows: minimum

number of observations in the trees terminal nodes¼ 20 and

shrinkage¼ 0.1.

The random forest (RF) (Breiman, 2001) model was developed

using the randomForest package (Liaw and Wiener, 2002). We

used cross-validation to check the performance of RF with one to

eight variables randomly sampled as candidates at each split dur-

ing the model building. The importance of variables was eval-

uated by the total decrease in node impurities from splitting on

the variable, measured by the residual sum of squares and aver-

aged over all trees.

Predictive mapping
Finally, we re-fit the best model with the whole dataset and opti-

mal parameter values defined in the cross-validation process. We

used this model further for predictive mapping of the demersal

fish diversity indices, based on the GIS-layers of environmental

data and fixed values of two haul factors (4th quarter and TVL

gear type). In MSP activities, confidence in the predictions is cru-

cial, and an appropriate presentation of uncertainty is important

for decision-makers to understand data reliability (Caldow et al.,

2015). We obtained information about prediction uncertainty for

each cell of produced map. In the case of linear models, bootstrap

techniques can be used, while ensemble approaches such as

boosted regression trees and random forests allow direct meas-

urement of the standard deviation of predictions obtained from

all the trees used for the final prediction (mean value of these

trees). The coefficient of variation was calculated to provide a

visualization of spatial regions with higher uncertainty levels. For

that purpose, we used the ModelMap package, which makes it

possible to read large GIS data in sections and maintain a reason-

able usage of computer memory (Freeman et al., 2010). This ap-

proach gave quantitative information on prediction validity,

which was reduced into four qualitative categories (ranked ac-

cording to the quartiles of the coefficient distribution) to enhance

interpretability and map clarity.
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Results
Fish assemblage indices
The species richness of the demersal fish communities in the ana-

lysed dataset ranged from 1 to 26 per haul (mean 5.8, standard

deviation 4.2), and the Shannon–Weaver Index ranged from 0 to

3.03 (mean 1.39, standard deviation 0.66). We noticed a signifi-

cant relationship between these two indices of the fish assem-

blages. For this reason, the comparison of all tested predictive

methods gave the same model rankings for the Shannon–Weaver

Index and species richness, with similar relative performance of

particular techniques. Therefore, we decided to show only the re-

sults of the Shannon–Weaver Index modelling (see Species

Richness Results in Supplementary Data).

Model performance evaluation
The predictive performance of the models is shown in Figure 2.

The results of the repeated cross-validation indicate differences in

the performance of the tested modelling approaches. ML meth-

ods, especially tree-based ensemble models, outperform

regression-based techniques in terms of prediction accuracy. The

differences in prediction errors obtained for each model by cross-

validation were significant (the t-test adjusted p value for all mod-

els pairs was<0.001). The lowest RMSE was found for random

forest, while the highest errors were observed for GLM. All tested

models showed similar stability of the measured errors (the

RMSE standard deviation ranged from 0.013 to 0.014).

Random forest
Random forest, as the algorithm with the best performance

among the tested methods, was selected to predict the diversity of

demersal fish. The results of the tuning process for the random

forest parameter mtry showed that the optimal number of pre-

dictors randomly selected during the growing of each tree is 5.

The addition of more variables does not increase the accuracy.

The constructed random forest included 500 trees and explained

77.05% of the variance in the data. The model’s predictive preci-

sion seemed to be better for the higher values of Shannon–

Weaver Index, but slight underestimation was observed in the

upper ranges. Conversely, the predicted values obtained from

random forest were overestimated for observations when only

one species was recorded and the Shannon–Weaver Index

equalled zero. RMSE of predictions calculated for each sub-basin

of the study area ranged from 0.08 in the Kattegat (n¼ 507) to

0.31 in the northern Baltic Proper (n¼ 58) (Table 2).

The salinity class was the most important predictor of demer-

sal fish diversity (relative importance 42%), followed by depth

(23%) and mean bottom temperature during the growth season

(14%). The gear type and season of survey showed low levels of

relative importance, 7% and 3%, respectively (Figure 3a). Partial

dependence plots indicate that the Shannon–Weaver Index of the

demersal fish community increases with salinity (Figure 3b).

Furthermore, non-linear relationships can be observed between

predictors expressed in a continuous scale (depth, bottom tem-

perature, bottom current velocity, seabed slope) and response

variables (Figure 3c–f). The local maximum of the Shannon–

Weaver Index occurred in localities with �40 m depth and the

highest observed bottom water temperatures. The partial depend-

ence plots also show that fish diversity increases with increasing

annual mean current velocity, up to �0.06 m s�1, and remains

stable for the higher values.

Predictive mapping
The modelled spatial distribution of the Shannon–Weaver Index

highlighted a strong gradient of demersal fish diversity within the

studied area, connected with high natural salinity differences in

the Baltic Sea (Figure 4a). In geographic terms, the highest pre-

dicted Shannon–Weaver Index is observed in the Danish Straits

and decreases with increasing distance from the Straits. The pat-

tern of fish diversity distribution is also strongly influenced by

the bathymetry. The lowest predicted Shannon–Weaver Index

occurred in the deepest waters of the Baltic, and higher values are

predicted along the coastline.

The prediction map is supported by the information on the

uncertainty level obtained from the results of all 500 trees com-

bined in the random forest model. The coefficient of variation

was calculated for each cell in the map and ranked with

Figure 2. Root-mean-square error (RMSE) as predictive
performance measure of the six selected modelling techniques for
the Shannon–Weaver Index of the demersal fish community. Cross-
validation (10-folds) with 100 repetitions was used for testing. Lines,
boxes, and whiskers are medians, interquartile range (IQR), and
1.5� IQR of the estimated RMSE, respectively.

Table 2. Number of observations (n) and root mean square error
(RMSE) of Shannon–Weaver random forest predictions calculated
for sub-basins in the study area.

Sub-basin name n RMSE

Arkona Basin 975 0.10
Bay of Mecklenburg 202 0.16
Bornholm Basin 1541 0.16
Eastern Gotland Basin 1518 0.17
Gdansk Basin 140 0.17
Great Belt 358 0.13
Kattegat 507 0.08
Kiel Bay 169 0.16
Northern Baltic Proper 58 0.31
The Sound 72 0.11
Western Gotland Basin 175 0.18
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thresholds of classes calculated according to the quartiles of the

coefficient distribution (Table 3). The final uncertainty map is

presented in Figure 4b and shows that the prediction precision in

the studied area varies due to unequal coverage of the collected

samples and model abilities. The highest values of Shannon–

Weaver Index were predicted with relatively low variation, which

agrees with the results obtained during model evaluation. An un-

acceptable level of model precision (coefficient of variation

>59%) occurred in the regions with low predicted diversity, espe-

cially the deeper areas, while in shallow waters much lower vari-

ance was observed.

Discussion
Predictive modelling has been widely used for mapping species

richness in aquatic ecosystems by applying traditional regression-

based techniques (GLM, GAM, MARS), but the application of

machine learning in marine fish ecology is, to our knowledge, still

surprisingly scarce. In particular, in the Baltic Sea area, compre-

hensive works on species modelling were conducted using max-

imal entropy (MAXENT), GAM and RF models to evaluate

eutrophication management scenarios provided by the Baltic Sea

Action Plan (Bergström et al., 2013). The quoted studies, how-

ever, aimed to aggregate the forecasts of the applied methods ra-

ther than to compare them. The results showed that the

combined models can be successfully used to predict perch (Perca

fluviatilis) and pikeperch (Sander lucioperca) recruitment areas

with respect to the changes in water transparency projected by eu-

trophication scenarios. The general findings of Bergström et al.

(2013), indicating valuable properties of combined predictive

techniques, outline further possible directions for the works pre-

sented herein. The ensemble approach can be used to minimize

model-specific errors in predictions of species distribution.

Furthermore because the extent of predictive maps produced

in our study was arbitrarily reduced with respect to sample cover-

age, more effort should be applied to testing the transferability of

the developed models and their abilities to enlarge the mapped

area. For example, the next step could be to test the models in

areas further north in the Baltic Sea, outside the sampling cover-

age. The model applicability might differ considerably if the ex-

tension of the predicted area encompassed Baltic Sea bays, e.g.

the Bothnian Bay, which constitutes a large part of the sea with a

distinct environmental character (HELCOM, 2009). As shown by

Figure 3. Relative importance of predictors expressed as % contribution in the model (a). Partial dependence plots for random forest
regression of Shannon–Weaver Index and eight predictor variables (b–i). Partial dependence plots show the dependence of the response vari-
able after marginalizing the effects of the other predictors. Variables are ordered by decreasing importance.
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Sundblad et al. (2009), both differences in the observed range of

the predictor variables in studied localities and the direct–indirect

nature of the variables’ effects should be considered in such

investigations.

We identified the salinity class as the most powerful predictor

of demersal fish diversity (relative importance 42%), followed by

depth (19%) and mean bottom temperature during the growth

season (16%). The remaining predictors were of low importance

(<10%). Similar findings were presented by Leathwick et al.

(2006a). They concluded that the high level of predictability was

caused by the strong relationship between demersal fish species

richness and the environment, with particular emphasis on depth

and temperature. Depth of the oceanic region described in the

paper by Leathwick et al. (2006a) varied from 5 to 1700 m.

Remarkably diverse depth drives demersal fish species richness

variability. Analogously, depth, coarse-scale topographic com-

plexity measured by depth range or rugosity were the most im-

portant factors determining the diversity of coral reef-related fish

Figure 4. Map of predicted Shannon–Weaver Index of demersal fish community for the 4th quarter and TVL gear type using random forest
model (a). Map of prediction uncertainty categorized with four levels, as specified in Table 3 (b).

Table 3 Thresholds for coefficient of variation used for assignment
uncertainty levels of Shannon–Weaver Index prediction.

Coefficient of variation [%] Rank of uncertainty

<28 1
28–41 2
42–59 3
>59 4
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communities, although the depths did not exceed 8 m (Knudby

et al., 2010a, b). The results of the two quoted studies highlight

depth as the strongest predictor, while in our study it was salinity,

which results from the strong salinity gradient observed in the

Baltic Sea, in contrast to the other discussed areas. It should be

noted, that the depth effect in our study area may be masked by

salinity, which varies considerably (approximately between 5 and

27) in comparison with stable salinity observed in the oceans sur-

rounding New Zealand (differences <1) (Leathwick et al., 2006a).

Our results were in line with studies conducted by Snickars et al.

(2014), who demonstrated high importance of salinity as pre-

dictor of fish distribution in the Baltic Sea.

Partial dependence analysis indicated a general increase in the

Shannon–Weaver Index of the demersal fish community with

increasing salinity, while for depth and bottom temperature, local

maxima of the Shannon–Weaver Index were observed at the

depth of �40 m and at the highest temperatures. Higher tem-

perature and seasonal heat of water masses may lead to changes

in stratification and the characteristic of food webs, e.g. by

prompting biological production and increasing fish diversity

(Mackenzie et al., 2007). It is important especially in the case of

the shallow waters of the Baltic and the Kattegat, warming up

rapidly during the summer. The lowest diversity found in the

deeps is caused by oxygen deficiency and anoxia, which affect fish

distribution directly and indirectly by limiting prey availability

(Mackenzie et al., 2007). We may conclude that the environmen-

tal relationships of the Baltic Sea demersal fish diversity envisaged

by the random forest method were mostly consistent with the

available literature, showing high importance of hydrographical

features as the predictors of fish distribution (Snickars et al.,

2014). However, Snickars et al. (2014) reviewed studies on

species–environment relationships focusing on benthic organisms

in the coastal areas of the Baltic Sea, finding hydrography (salinity

and Secchi’s depth) and biotic features to be the most widely

used predictors of benthic fish. Their conclusions implied our

suggestion to consider other potential environmental parameters

in further model development: e.g. no information on water

transparency or biotic traits was included in the predictive mod-

elling presented herein. Water transparency in shallow waters is

related to productivity and thus may affect both juveniles and

adult fish by food supply (e.g. higher invertebrates density)

(Snickars et al., 2015). Besides the above-mentioned indirect ef-

fect, also direct impact is observed, as water transparency may af-

fect the prey capture rate, predator avoidance or habitat choice of

fish (Sundblad et al., 2009).

From the methodological perspective, Lopatin et al. (2016)

concluded that GLMs fitted for vascular plant species richness de-

livered better results in terms of precision and bias than RF, as

GLMs can handle count data with better performance. However,

in our case study, ML methods, especially tree-based ensemble

models, surpassed regression-based techniques in terms of predic-

tion accuracy. Similarly, results of studies by Bucas et al. (2013)

pointed out RF as the most accurate method, when comparing

with GAM and MAXENT. In general, the differences in predic-

tion errors obtained for each model by cross-validation were stat-

istically significant. The RF method revealed the lowest RMSE

value among the models considered. In addition, a high level of

agreement (R2¼0.95, p< 0.001) was demonstrated between the

observed and predicted values of the Shannon–Weaver index for

the RF model. The comparison of RMSE for RF models with dif-

ferent numbers of randomly selected variables (parameter mtry)

with RMSE of other algorithms showed that the inappropriate

tuning of model parameters can change the final decision on

modelling method selection. For example, the use of mtry¼ 3 in

RF building negatively influences the model performance and re-

sults in slightly worse accuracy than for the BRT method. The

predictive precision of properly tuned RF seems to be better for

higher values of the Shannon–Weaver Index. This feature of the

fitted model is considered to be desirable, as the areas of higher

biodiversity are of the greatest interest in a spatial management

context (Roberts et al., 2002). Differences in RF precision were

also evident on sub-basins level. It was revealed by the lowest pre-

diction error obtained for the Kattegat, where predicted fish di-

versity was the highest. In contrary, RMSE obtained for the

northern Baltic Proper exceeded RMSE achieved for all the other

sub-basins. It may result both from low number of observations

(n¼ 58) and low diversity in the northern Baltic Proper. The ro-

bustness of the model and the statistical properties of the random

forest indicated its selection for the prediction of demersal fish di-

versity in our investigation.

Any results of modelling should be interpreted with caution,

taking into account the uneven distribution of sample coverage,

which may have consequences in terms of prediction uncertainty

(Young and Carr, 2015). The BITS are designed to obtain repre-

sentative abundance indices of the most important bottom com-

mercial species (cod and flounder). However, the data collected

during the surveys give good opportunity to use them also for

biodiversity modelling, as all species in the catch are recorded.

The BITS haul allocation is random, but the coverage is con-

strained to trawlable areas (ICES, 2003). Consequently, some

areas, e.g. with complex hard-bottom are permanently

unsampled. Fish communities occurring on the areas of heterogo-

nous seabed, which are underrepresented in the DATRAS, are

commonly more diverse than soft-bottom assemblages. This

implies that developed models may not be capable of handling

variability of fish diversity in the small scale, governed mainly by

local biotic factors (Florin et al., 2009). Also deeps and shallow

waters are not fully monitored (the distance between sampled lo-

cations may in some areas reach dozens of km). However, in the

case of Baltic Sea deeps, it is assumed, that fish fauna is absent in

oxygen depleted bottom zones (ICES, 2011). On the contrary,

fish are usually more diverse in shallow waters, than in the open

sea demersal zones (HELCOM, 2012), but the depths up to 10 m

are not sampled during BITS, due to dimensions of the standard

trawls and research vessels. In addition, the data used in the study

are constrained to quarter 1 and 4. Consequently some fish mi-

grations (e.g. spawning or feeding) are not incorporated in the

presented model. The shortcomings of the data mentioned

earlier, imply that time and spatial fish diversity patterns incorpo-

rated in the models are incomplete in the context of the whole

year and in some Baltic Sea areas, but still may act as a useful sur-

rogate for predicting fish diversity (Pittman et al., 2007).

The environmental data used in the study were represented in

the high spatial resolution, providing spatially detailed informa-

tion about the distribution of selected physical features in the

Baltic Sea (Al-Hamdani and Reker, 2007). Our approach was

relatively simplistic, because we used static environmental vari-

ables that did not represent changes over several years, in which

fish data were collected. For example, evident shifts in the distri-

bution of anoxic and hypoxic waters have been observed during

recent decades in the Baltic Sea, which might affect spatial pat-

terns of fish diversity (Mackenzie et al., 2007; Hansson and
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Andersson, 2013). Moreover, some of the modelled environmen-

tal data do not take into account seasonal variability. The fish

data from BITS survey were collecting during cold 1st and 4th

quarter, while the information about modelled bottom tempera-

ture of water referred to the warm growth season. Furthermore,

salinity as one of the most important factors affecting fish diver-

sity was expressed in our study as discrete variable with five

classes. The application of more detailed, continuous variable

may improve accuracy of model. Besides the limitations, the use

of these basic environmental data in the modelling of fish–habitat

relationships allows to conduct prediction over broad spatial scale

and obtain rapid and cost-effective information about the fauna

distribution (Pittman et al., 2007).

Our study showed the feasibility of applying novel statistical

approaches to the spatial prediction of fish assemblage diversity.

Based on the presented results, we share the opinion expressed in

Bolker et al. (2013) that ecologists should be able to implement

models both within and outside traditional statistical frameworks

that seem suitable for their specific scientific investigations. This

ability is particularly important now, as the dynamic develop-

ment of natural resource management and conservation moves

towards more spatial and ecosystem-based approaches (Crowder

and Norse, 2008), which often require more flexible methods of

biological data analysis (Elith et al., 2008). The application of ma-

chine learning, such as random forests, may be valuable for ob-

taining knowledge on biotic and abiotic factors affecting species

distribution and precise, quantitative information on spatial vari-

ation in species diversity, which are essential for management ac-

tions (Young and Carr, 2015). Our comparative work highlighted

the potential of machine learning method to reduce prediction

error in modelling of demersal fish diversity. More accurate mod-

els of marine fauna–environment relationships should improve

predictive maps of species distribution used in MSP and in conse-

quence provide more reliable qualitative basis for management of

marine areas or strategies for biodiversity conservation.
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