

Article

Subscriber access provided by GEOMAR Kiel

A portable and autonomous mass spectrometric system for on-site environmental gas analysis

Matthias S. Brennwald, Mark Schmidt, Julian Oser, and Rolf Kipfer

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/acs.est.6b03669 • Publication Date (Web): 19 Nov 2016 Downloaded from http://pubs.acs.org on November 29, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

A portable and autonomous mass spectrometric system for on-site environmental gas analysis

Matthias S. Brennwald,*,1 Mark Schmidt,2 Julian Oser,1 and Rolf Kipfer1,3

1 Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dep. Water Resources and Drinking Water, Dübendorf, Switzerland

2 GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany 3 Institute for Geochemistry and Petrology, ETH Zurich, Switzerland

E-mail: matthias.brennwald@eawag.ch

Revison of ES&T manuscript ES-2016-03669r

November 7, 2016

Corresponding author phone: +41 58 765 53 05

TOC Art

1

Abstract

We developed a portable mass spectrometric system ("miniRuedi") for quantificaton of 2 the partial pressures of He, Ne (in dry gas), Ar, Kr, N₂, O₂, CO₂ and CH₄ in gaseous and з aqueous matrices in environmental systems with an analytical uncertainty of 1-3%. The 4 miniRuedi does not require any purification or other preparation of the sampled gases and 5 therefore allows maintenance-free and autonomous operation. The apparatus is most suit-6 able for on-site gas analysis during field work and at remote locations due to its small size 7 $(60 \text{ cm} \times 40 \text{ cm} \times 14 \text{ cm})$, low weight (13 kg), and low power consumption (50 W). The gases 8 are continuously sampled and transferred through a capillary pressure reduction system into g a vacuum chamber, where they are analysed using a quadrupole mass spectrometer with a 10 time resolution of ≤ 1 min. The low gas consumption rate (< 0.1 ml/min) minimises interfer-11 ence with the natural mass balance of gases in environmental systems, and allows the unbi-12 ased quantification of dissolved-gas concentrations in water by gas/water equilibration using 13 membrane contractors (gas-equilibrium membrane-inlet mass spectrometry, GE-MIMS). The 14 performance of the miniRuedi is demonstrated in laboratory and field tests, and its utility is 15 illustrated in field applications related to soil-gas formation, lake/atmosphere gas exchange, 16 and seafloor gas emanations. 17

INTRODUCTION

The abundances of gas species in environmental systems are controlled by numerous physical, 19 chemical and biological processes and conditions. Gases are therefore highly useful proxies to 20 study the dynamics of environmental processes and can be of great utility to study the interplay 21 of these processes. In particular, chemically inert gases (noble gases; He, Ne, Ar, Kr, Xe) were 22 successfully used to study and quantify physical transport and mixing of fluids as well as the 23 exchange between gas and water¹⁻²⁷ or biofluids.^{28,29} Such quantitative information on the physical 24 processes controlling the dynamics of gases in environmental systems is required to quantify and 25 interpret the turnover and the fate of biogeochemically active species (e.g., O_2 , CO_2 , CH_4 , N_xO_x) 26 in terms of chemical and biological processes 5,21,30-35 27

The dynamics of gases and the associated processes in environmental systems are often not accessible from "snapshot data" obtained from single samples reflecting the conditions of a system at a unique point in time. In order to capture the complete evolution of the gas species of interest, data series with sufficiently high temporal and spatial resolution are required. Careful optimisation of the sampling strategy in terms of sampling frequency and locations is therefore of utmost importance, but is often very challenging due to the lack of prior knowledge of the gas dynamics within a given system.

The currently applied methods for environmental gas analyses are usually targeted at a single gas species or limited set of gases, and are often based on expensive and highly specialised instruments and techniques for sampling and subsequent laboratory based quantification.³⁶⁻⁴² Acquiring data sets comprising a sufficiently complete suite of both inert and active gas species at the required spatial and temporal resolutions therefore poses numerous practical limitations related to field-work logistics, access to specialised laboratories and data turnaround time that often prevent acquisition of suitable data sets.

The way forward to overcome these technical and logistical limitations is to simultaneously analyse a sufficiently complete suite of inert and biogeochemically active gas species at the required temporal and spatial resolution directly in the field. On-site and real-time availability of

such data avoids the limitations involved with sampling, transport and analysis and would thus 45 considerably improve the quality and utility of the recorded data during fieldwork. For this pur-46 pose, membrane-inlet mass-spectrometric (MIMS) systems^{43,44} were developed with the aim to 47 reduce their complexity and size.^{42,45–48} However, these MIMS are targeted at limited sets of gas 48 species dissolved in water samples only, and are not suitable for unattended long-term operation 49 in the field, because their gas inlet system is designed for manual sample inlet or requires frequent 50 maintenance of gas-purifying devices. In addition, these instruments rely on a gas-permeable mem-51 brane to separate the water sample at atmospheric pressure from the vacuum in the MS. The rates 52 by which the gas species diffuse from the bulk water across the membrane and into the vacuum 53 of the MS depend on temperature, water flow along the membrane surface, membrane ageing and 54 fouling, etc. It is notoriously difficult to achieve tight control over these operational parameters and 55 cumbersome to handle water standards with well-known dissolved gas concentrations during field-56 work. Reliable and accurate calibration and application of such MIMS instruments is therefore 57 challenging. 58

The recently developed gas-equilibrium MIMS (GE-MIMS) method⁴⁹⁻⁵¹ avoids some of the 59 limitations of previous MIMS designs by establishing a solubility equilibrium between the sampled 60 water and a gas phase separated by a gas-permeable membrane. The advantage of the GE-MIMS 61 method is that the gas/water partitioning is hardly affected by the poorly constrained dynamics of 62 the gas-transfer across the membrane, because the partitioning operates at solubility equilibrium. 63 Reliable on-site calibration of such a gas/water equilibration system is therefore straight-forward, 64 and ambient air can be conveniently used as a standard gas for calibration of the partial pressures 65 of the noble gases, N_2 , and O_2 . 66

For GE-MIMS analysis, a small fraction of the equilibrated gas phase is continuously transferred through a pressure reducing system into the MS vacuum, where the gases are analysed. Recent GE-MIMS instruments for analysis of O₂/Ar ratios⁵⁰ or Ne/Ar, Ne/Kr, and Ne/Xe ratios⁵¹ in seawater used very low gas transfer rates ($\leq 0.02 \text{ cm}_{\text{STP}}^3$ /min, STP: standard temperature and pressure, T = 0 °C, P = 1013.25 mbar) to avoid deviation from the gas/water equilibrium in the

membrane contactor. In contrast, a modified atmospheric-pressure gas analyser targeted for GE-72 MIMS analysis of absolute He, Ar, Kr, N₂, O₂, CO₂, and CH₄ concentrations ("Ruedi")⁴⁹ operates 73 at a much higher gas removal rate from the membrane contactor $(2 \text{ cm}_{\text{STP}}^3/\text{min})$. However, this 74 gas depletion biases the partial pressures relative to the assumed gas/water equilibrium in the mem-75 brane contactor. While both approaches have illustrated the great potential of continuous analysis 76 of selected gas species, 30,32,34,35,52,53 the remaining analytical limitations of these instruments (lim-77 ited sets of gas species, lack of absolute partial pressure analysis) and their bulkiness and high 78 power consumption (several hundred watts) prevented widespread use in diverse environmental 79 research applications in the field. 80

Here we present a simple, compact, and portable mass spectrometric system with low sample 81 gas consumption ("miniRuedi"). The miniRuedi expands considerably beyond the capabilities of 82 currently available instruments and methods for environmental gas analysis. The system allows 83 quasi-continuous and on-site analysis of the partial pressures of a wide range of environmental 84 gas species at environmental concentrations (He, Ne (in dry gas), Ar, Kr, N₂, O₂, CO₂ and CH₄) 85 and is most suitable for absolute analysis of dissolved gas concentrations in aqueous matrices 86 using the GE-MIMS method. The system does not rely on any gas purification or sample prepa-87 ration units, which makes it robust and maintenance-free and thus enables autonomous long-term 88 operation in the field. The miniRuedi is built using off-the-shelf parts only. The instrument is 89 portable $(60 \text{ cm} \times 40 \text{ cm} \times 14 \text{ cm}, 13 \text{ kg})$ and consumes only 50 W electrical power, which al-90 lows straight-forward deployment and operation at remote locations using batteries, solar panels 91 or other off-grid electricity sources. Most importantly, the instrument consumes very little sample 92 gas (0.06 cm³_{STP}/min), which is required for unbiased GE-MIMS measurements of absolute partial 93 pressures, and greatly reduces the interference of on-line gas analysis with the natural dynamics 94 and mass balance of the gases in an environmental system. 95

The utility of the miniRuedi for environmental research is demonstrated in three field-application examples related to soil-gas formation, lake/atmosphere gas exchange, and seafloor gas emanations. Page 7 of 32

•• Experimental Section

The setup of the miniRuedi system is illustrated in Figure 1. A parts list is given in Table 1. 100 The computer controlled valve (S) is used to select the gas inflow from different gas sources at 10 approximately atmospheric pressure. The capillary (C) controls the gas flow from the gas inlet 102 into the vacuum system. The continuous gas flow from the capillary into the quadrupole mass 103 spectrometer (QMS) is balanced by the turbomolecular pump (TP), which produces a high vacuum 104 in the QMS. The gas species in the QMS are ionised in the open, cylindrically symmetrical ion 105 source by electron impact ionisation (in this work, the ionisation energy was always set to $70 \, \text{eV}$ 106 unless noted otherwise). The resulting ion beam then passes a quadrupole mass filter set to a 107 specific m/z ratio (m: ion mass number, z: ion charge number), and the ion beam strength at 108 this m/z value is quantified using either a Faraday cup (F) or a secondary electron multiplier (M) 109 detector. 110

Gas inlet system

The sample gas pressure is reduced from approximately atmospheric pressure to the high vacuum 112 in the QMS using a 10 m long capillary with an inner diameter of $0.1 \,\mathrm{mm}$. The rugged 1/16" 113 stainless-steel capillary tubing prevents the leakage of He and other mobile gases through the 114 tubing walls. We empirically determined the gas flow though this capillary to $0.06 \, \text{cm}_{\text{STP}}^3/\text{min}$. 115 This gas flow results in a total gas pressure of approximately 2×10^{-8} bar in the MS vacuum 116 chamber, which yields maximum overall sensitivity of the MS while not exceeding the linear 117 operation range of the MS. The observed travel time of the gas from the capillary inlet to the QMS 118 is approximately 80 s. An instantaneous step-like concentration change at the capillary inlet is 119 smeared out over approximately 10s (50% rise time) once it reaches the QMS, resulting in an 120 analytical time resolution of ≤ 1 min. 12

Compared to MS systems with a typical two-stage pressure reduction using a capillary followed by a pinhole/bypass system, the miniRuedi gas consumption is lower by several orders of

magnitudes. The system is therefore most suitable for applications where low gas consumption is 124 beneficial, such as the GE-MIMS technique. With a typical total gas concentration in air-saturated 125 water of approximately $25 \text{ cm}_{\text{STP}}^3/\text{L}$, a water flow rate of $\gtrsim 0.1 \text{ L/min}$ through the membrane con-126 tactor would provide more than $100 \times$ the gas amount consumed by the miniRuedi. This illustrates 127 how the miniRuedi allows unbiased GE-MIMS analysis at low water flow rates. Furthermore, pin-128 hole/bypass stages or similar flow bifurcations may introduce uncontrollable fractionation of gas 129 species in vacuum systems. Such artefacts are avoided in the miniRuedi by the absence of such a 130 secondary pressure reduction stage. 131

¹³² Data processing and calibration

The peak heights in the m/z spectrum are recorded in a user-defined sequence of the relevant m/z values using the F and M detectors, and repeated readings are averaged over a time interval suitable for a given application. The means $(s_{m/z})$ of the peak heights recorded during each interval at each m/z ratio are used as the raw measurement results of each measurement step. The $s_{m/z}$ values obtained from sample or standard-gas analyses are corrected for the instrument blank by subtracting the $s_{m/z}$ values obtained with the inlet valve V closed.

The blank-corrected $s_{m/z}$ values are calibrated in terms of the partial pressures of the different 139 gas species in the sampled gas by peak height comparison relative to a reference gas with well 140 known partial pressures of the species of interest. The mixing ratios of the different gas species in 141 the gas are unaffected by the gas passage through the capillary, because the viscous flow regime 142 prevailing throughout most of the capillary prevents fractionation of the gas species. For a given 143 total gas pressure at the capillary inlet, the peak height at a given m/z value is therefore linearly 144 related to the partial pressure of the respective gas species in the sampled gas. Note, however, that 145 the capillary gas flow approaches the molecular flow regime at the outlet to the QMS vacuum. The 146 rate of the total gas flow through capillary is therefore not a perfectly linear function of the total gas 147 pressure at the capillary inlet.⁵⁴ We found this nonlinearity to be negligible for the quantification 148 of the partial pressures (bias < 1%) if the pressure difference between the sample gas and the 149

Environmental Science & Technology

reference gas at the capillary inlet is ≤ 50 mbar. For larger pressure differences, accurate partial pressures are obtained by normalising their sum to correspond to the true sample gas pressure at the capillary inlet.

In many environmental applications, ambient air can be used as a well-defined and convenient gas standard for noble gases, N_2 and O_2 . A dedicated standard-gas mixture is only required for species with unknown or variable atmospheric partial pressures, or if the sampled partial pressures are vastly different from those in air, for example in systems with high abundances of CO_2 , CH_4 or (non-atmospheric) He.

In order to account for drifts in the instrument sensitivity resulting from changes in the flow resistance of the gas inlet or the sensitivity of the mass spectrometer, the standard gas is analysed periodically in between sample gas analyses. The $s_{m/z}$ values obtained in a given sample-gas analysis step are then calibrated using the $s_{m/z}$ values of the standard-gas analysis steps interpolated to the analysis time of the sample gas step. Finally, the standard error of the sample gas analyses is estimated from the standard deviation of replicate analysis results obtained from standard gases.

164 Results and Discussion

Laboratory tests

To test the linearity of the $s_{m/z}$ values in response to variations in the partial pressures of the 166 gas species at the capillary inlet, we prepared a gas mixture with mixing ratios of approximately 167 7.0% He, 0.24% CH₄, 16% O₂, 72% N₂, 1.8% Ar, and 3.1% CO₂. This test gas was kept in a 168 gas sampling bag (Linde, Plastigas) and was incrementally diluted with 99.999% pure N₂. The 169 dilution factor was determined by quantifying the CO₂ and CH₄ mixing ratios of the dilution using 170 a cavity ring-down spectroscopy analyser (Picarro G2201-i). Figure 2 shows the peak heights 171 obtained from analyses of each test gas dilution step, whereby the total pressure of the gas mixture 172 and its dilutions in the sample bag was always kept at ambient pressure (960 hPa). This dilution 173 test confirms that the F and M peak heights at a given m/z value are linear functions of the partial 174

¹⁷⁵ pressure of the respective gas species at the capillary inlet.

To assess the drift of the F and M sensitivity over time, the instrument was set to continuously 176 analyse an air sample during 70 h in a laboratory with stable ambient temperature. Figure 3 shows 177 the Allan deviations⁵⁵ of the resulting F and M signals. The Allan deviations reflect the errors of 178 the means of the F and M signals as a function of the averaging time. Both the F and M Allan 179 deviations exhibit a minimum at an averaging time of approximately 1 h. For shorter averaging 180 times, the uncertainties of the F and M signal means are dominated by random noise, whereas 181 for longer averaging times the uncertainties of the means are dominated by instrument drift. To 182 minimise the effects of drift on the measurement results, peak-height readings should therefore 183 not be averaged for longer than 1 h, and drift calibrations should be run at least hourly. However, 184 changes in ambient temperature will affect the sensitivity of the instrument, mainly because the 185 flow resistance of the capillary decreases with increasing temperature. Averaging time and drift 186 calibration intervals therefore need to be adapted to changes in the ambient conditions. In addition, 187 the choice of the averaging time and the drift calibration intervals will also need to be adapted to 188 the time resolution of the measurement results required to assess the gas dynamics of the system 189 being studied. 190

The Allan deviation corresponds to the resolving power of the measurement and hence indicates the analytical precisions and the limits of detection⁵⁵ that can be achieved with the F and M detectors at any given m/z value. The minima of the relative Allan deviations for He (M, m/z = 4), Ne (M, m/z = 20), N₂ (F, m/z = 28), O₂ (F, m/z = 32), Ar (M, m/z = 36; F, m/z = 40), and Kr (M, m/z = 84) all correspond to 0.3–0.6% of the respective partial pressure in the atmosphere. The typical limits of detection are therefore estimated to approximately 1% of the partial pressure of the respective gases in the atmosphere.

The absence of any gas purification stage requires special attention to avoid matrix effects related to ions of different gas species that contribute to the same signal at a given m/z ratio, e.g., due to multiple ionisation of gas species or isobaric gas molecules.⁵⁶ Multiple ionisation can be reduced substantially by reducing the electron impact energy in the ioniser unit in the QMS.⁵⁷

In particular, the interferences occurring at m/z = 16 (${}^{12}CH_4^+$ and ${}^{16}O_2^{2+}$ ions) and at m/z = 20202 $(^{20}\text{Ne}^+\text{ and }^{40}\text{Ar}^{2+}\text{ ions})$ may be of special relevance for the targeted applications of the miniRuedi. 203 Figure 4-A shows the F peak heights obtained from analysis of pure Ar at $m/z = 40 ({}^{40}\text{Ar}^+)$ and 204 $m/z = 20 ({}^{40}\text{Ar}^{2+})$ as a function of the electron energy. For electron energies below 50 eV, the 205 ${}^{40}\text{Ar}^{2+}/{}^{40}\text{Ar}^{+}$ ratio is less than 3 \cdot 10⁻⁵, which is approximately two orders of magnitude lower 206 than the ${}^{20}\text{Ne}/{}^{40}\text{Ar}$ ratio in air (1.77 \cdot 10 $^{-3}$). Using electron energies of 50 eV or less will therefore 20 reduce the ⁴⁰Ar²⁺ interference to a level where it can easily be compensated or even neglected for 208 ²⁰Ne analysis in air-like gases (Figure 4-B). However, we observed that $^{20}(H_2O)$ molecules may 209 contribute up to ~50 % to the m/z = 20 signal in moist air-like gas matrices (such as in GE-MIMS 210 analyses). ²⁰Ne quantification is therefore recommended in dry gases only and requires careful 211 compensation of the residual $^{20}(H_2O)$ contribution, which may be estimated from the the m/z = 18212 signal and by assuming a typical ${}^{20}(H_2O)/{}^{18}(H_2O)$ ratio. Apart from these interferences, we did not 213 observe any significant interferences that would affect the gas analysis on the m/z values shown in 214 Figure 2. Nevertheless, it is important to note that such interferences may become relevant in gas 215 matrices that are very different from the air-like gas assessed in this work. 216

To test the miniRuedi performance as a GE-MIMS with miniature membrane contactors at low 217 water flow, we compared GE-MIMS measurements using miniature membrane contactors (Liqui-218 Cel G591, 11 cm³ external volume) with measurements using the large membrane contactor as used 219 with our original GE-MIMS⁴⁹ (Liqui-Cel G542, 260 cm³ external volume). The miniature contac-220 tors were operated either as a single unit or as a parallel combination of two units. Groundwater 221 was pumped through the membrane contactors, and tee branches were used to split the water flow 222 among the membrane contactors for parallel operation of the miniature and the large contactors. 223 The flow rates were 0.4 L/min through each miniature contactor and 2 L/min through the large 224 contactor. 10 measurements were made with each miniature contactor setup (single or two parallel 225 contactors). Each miniature-contactor measurement was bracketed with a measurement using the 226 large contactor. Figure 5 shows that using a single miniature contactor may result in a small bias 227 of the gas partial pressures relative to those observed in the large contactor. For the tested gas 228

species shown in Figure 5, the bias is largest for CO₂ (approximately 8%), but much smaller for the remaining gases (He, Ar, Kr, N₂). However, using two miniature contactors removes the bias for all gases. The low gas consumption of the miniRuedi therefore obviates the compensation for gas depletion in the membrane contactor and allows absolute GE-MIMS measurements with much smaller membrane contactors and water flows than the previous GE-MIMS instrument⁴⁹, which requires a water flow of $\geq 2 \text{ L/min}$.

²³⁵ Field test (accuracy and precision)

To quantify the accuracy and precision of the miniRuedi with the GE-MIMS method, we carried 236 out a series of 42 GE-MIMS measurements (using a Liqui-Cel G542 contactor) of the 4 He, N₂, 40 Ar 237 and ⁸⁴Kr concentrations in a small creek (Chriesbach, Switzerland). The concentrations of these 238 inert atmospheric gases in the creek are in equilibrium with their atmospheric partial pressure and 239 therefore serve as a well defined reference for comparison with the measured concentrations. In 240 addition, 29 air replicates were analysed to determine the precision of the miniRuedi measurements 241 without the GE-MIMS contactor. Air standards for drift calibration were carried out in between the 242 sample analyses. For each measurement, the peak heights at $m_z = 4, 28, 40$ and 84 were integrated 243 for 10 min. 244

The residuals $r_i = (C_{m,i} - C_{e,i})/C_{e,i}$ of the measured concentrations in the water $(C_{m,i}, i = C_{m,i})/C_{e,i}$ 245 1...42) relative to the atmospheric equilibrium concentrations $(C_{e,i})$ were computed from the sol-246 ubility of the respective gas at the water temperature that prevailed at the time of the corresponding 247 measurement (13.4 °C to 15.7 °C). The means of the r_i (μ in Table 2) indicate that the accuracy 248 of the miniRuedi analysis with the GE-MIMS method was 0.9% or better for all gases. The stan-249 dard deviations of the $r_i(\sigma)$ indicate that the overall precision of the miniRuedi analysis with the 250 GE-MIMS method ranged from 1.2 % to 3.3 %. The standard deviations of the air replicates anal-251 ysed without the GE-MIMS contactor (σ_{air}) are only marginally smaller. The loss of precision 252 associated with the addition the GE-MIMS contactor to the miniRuedi is therefore small. 253

Page 13 of 32

Application examples

In the three application examples below, we demonstrate the utility of the miniRuedi for the analysis of the gas dynamics in different environmental systems and field settings. The examples were chosen to cover both gaseous and aqueous matrices and to span a wide range of processes and rates controlling the natural gas dynamics.

259 Soil gas formation

Figure 6 shows the concentrations of Ar, N₂, O₂, CO₂, and CH₄ determined with the miniRuedi 260 in the soil gas of a bioreactor landfill located in north-eastern Switzerland. The landfill is being 261 prepared for active aerobisation by technical means in order to foster aerobic decomposition of the 262 mostly organic wastes to CO₂ in favour of anaerobic decomposition to the more potent greenhouse 263 gas CH_4 . To this end, the landfill has been sealed at the top. The ongoing production of landfill 264 gases therefore results in a steady gas outflow from the 5 observation wells, where the gases were 265 sampled in gas-tight 500 mL stainless-steel flasks. We connected the flasks to the miniRuedi gas 266 inlet to determine the concentrations of the various gas species in these samples. The concen-267 trations of Ar, N₂, and O₂ were calibrated using ambient air, whereas gas mixtures of 10% CO₂ 268 in N2 and 10% CH4 in N2 were used for CO2 and CH4 calibration. As expected, the observed O2 269 concentrations are low in all 5 observation wells (0.5-2%). The concentrations of the remaining 270 gases indicate a binary mixture of landfill gas (CO₂, CH₄) and oxygen-depleted air (N₂, Ar). The 271 Ar concentration yields a direct quantification of the relative proportions of these two endmembers 272 and hence allows quantification of the air-derived O₂ that has been transformed within the landfill. 273 In addition, the N₂/Ar ratio is elevated in one well by approximately 30% relative to the atmo-274 spheric ratio, which points to N₂ production by denitrification. Such combined analyses of inert 275 and active gas species are therefore highly beneficial to quantify the turnover of O₂ and other gases 276 and thus allows assessing the efficiency of landfill aerobisation. 277

278 Lake/atmosphere gas exchange

Figure 7 shows the partial pressures of Ar, N₂, O₂, CO₂, and CH₄ in a floating chamber deployed 279 on the water surface of Lake Soppensee (central Switzerland). Such floating chambers are used to 280 isolate a section of the water surface (0.126 m^2) from the atmosphere in order to study CO₂ and CH₄ 281 fluxes across the water surface using a CO_2 / CH_4 analyser.⁵⁸ The mass balance of the gas species 282 in the chamber is controlled by the gas exchange across the isolated section of the water surface. 283 We connected the gas inlet of the miniRuedi to the floating chamber and recorded the change in the 284 partial pressures in the headspace after deployment on the lake during 12 min. The volume of the 285 gas transferred into the miniRuedi gas inlet during this period corresponds to less than 0.05% of 286 the floating chamber volume (19.1 L). The effect of the gas consumption of the miniRuedi on the 287 mass balance of the gas species in the floating chamber is therefore negligible. After deployment 288 of the floating chamber, the CH₄ and CO₂ partial pressures showed a marked increase relative 289 to the atmospheric background, because the surface water of the hypertrophic lake was strongly 290 supersaturated with these gases. In contrast, the surface water was undersaturated in O₂ relative 291 to the atmospheric equilibrium (30% saturation) due to aerobic respiration and possibly also CH₄ 292 oxidation, rapid cooling of the surface water, and mixing with O_2 -depleted deep water. Despite 293 the large atmospheric O₂ background of the initial air trapped in the floating chamber, the decrease 294 of the O₂ partial pressure due to O₂ transfer to the water is small, but quantifiable. In contrast, 295 the Ar and N₂ concentrations in the water were closer to saturation (both at 75% saturation), and 296 no systematic changes in the Ar and N₂ partial pressures in the float chamber are observed. The 297 miniRuedi thus allows expanding the float chamber method for quantification of CO₂ and CH₄ 298 fluxes to Ar, N₂, O₂, and possibly also other gas species. In particular, the gas consumed for 299 miniRuedi analysis does not interfere with the mass balance of the gas species in the floating 300 chamber. The miniRuedi might thus provide new insights into the rates and physical processes 301 controlling gas/water exchange, such as enhanced air/water exchange mediated by microbubbles 302 present in the water body.⁵⁸ 303

Seafloor gas emanation

Figure 8 shows the concentrations of He, CO₂, and CH₄ observed in deep-water samples taken 305 in the Gulf of California (Mexico). These gases are associated with hydrothermal fluids released 306 from black smokers or other fluid vents at the seafloor.⁵⁹ At each sampling location, replicate deep-307 water samples were collected in 10L Niskin samplers. Immediately after retrieval of the Niskin 308 samplers, one replicate was screened for the dissolved-gas concentrations with the miniRuedi using 309 the GE-MIMS method. To allow GE-MIMS analysis with such a limited amount of water, two 310 parallel miniature membrane contactors (Liqui-Cel G591) were used with a total water flow of 311 0.5 L/min from the Niskin samplers. The small gas volume of the miniature membrane contactors 312 facilitates fast gas/water equilibration within approximately 3 min after starting the water flow. 313 Therefore, more than 15 min were left for GE-MIMS analysis of the water flowing from the Niskin 314 samplers. The dissolved-gas concentrations obtained from the GE-MIMS screening were used 315 to optimise the the selection of subsamples from the remaining Niskin samplers for after-cruise 316 laboratory-based analyses of ${}^{3}\text{He}/{}^{4}\text{He}$ and $\delta^{13}\text{C}$ of the fluids emitted from the black smokers.⁵⁹ The 317 new possibility for rapid on-board GE-MIMS screening of relatively small sample volumes (10L) 318 proved to be highly beneficial for identifying target samples for post-cruise analyses in specialised 319 labs. In addition, data turnaround time was reduced and the quality of the ${}^{3}\text{He}/{}^{4}\text{He}$ and $\delta^{13}\text{C}$ data 320 set used for detailed characterisation of the hydrothermal fluids was optimised. 32

322 Assessment

Our laboratory tests and field applications demonstrate the performance and flexibility of the miniRuedi for on-site gas analysis in a wide range of environmental systems and applications. The miniRuedi provides real-time partial pressure measurements of He, Ne (in dry gas), Ar, Kr, N₂, O₂, CO₂ and CH₄ both in gaseous and aqueous matrices. The low gas consumption opens up new possibilities for unbiased GE-MIMS quantification of dissolved gas concentrations at low water flow, gas analysis in flux chambers, and other systems with low gas throughput where sample gas consumption must be minimised to avoid interference with the natural gas dynamics. In con-

trast to earlier systems aimed at environmental gas analysis, the miniRuedi is highly suitable for 330 on-site gas analysis in various environmental systems and at remote locations due to its portability, 331 low power requirements, and maintenance-free operation. The on-site data availability and the 332 high temporal resolution of time-series data are crucial benefits over conventional methods based 333 on expensive and often laborious laboratory analyses of single samples. The miniRuedi therefore 334 opens new opportunities for the combined analysis of inert (He, Ne, Ar, Kr, N₂) and reactive gases 335 (O₂, CO₂, CH₄, etc.), which provides the basis for quantitative studies of environmental processes 336 and their interplay in terms of physical, chemical, and biological mechanisms. 337

338 Acknowledgement

We thank Philipp Weber for support with the lab tests and Anja Bretzler for editing assistance. Further, we thank the four anonymous reviewers for their constructive comments.

References

- (1) Cook, P., Herczeg, A., Eds. *Environmental Tracers in Subsurface Hydrology*; Kluwer Academic Publishers: Boston, Dordrecht, London, 2000.
- (2) Kipfer, R.; Aeschbach-Hertig, W.; Peeters, F.; Stute, M. In *Noble gases in geochemistry and cosmochemistry*; Porcelli, D., Ballentine, C., Wieler, R., Eds.; Rev. Mineral. Geochem.; Mineralogical Society of America, Geochemical Society, 2002; Vol. 47; pp 615–700.
- (3) Aeschbach-Hertig, W.; Solomon, D. In *The Noble Gases as Geochemical Tracers*; Burnard, P., Ed.; Advances in Isotope Geochemistry; Springer: Heidelberg, New York, Dordrecht, London, 2013; pp 81–122.
- (4) Brennwald, M. S.; Vogel, N.; Scheidegger, Y.; Tomonaga, Y.; Livingstone, D. M.; Kipfer, R. In *The Noble Gases as Geochemical Tracers*; Burnard, P. G., Ed.; Advances in Isotope Geochemistry; Springer, 2013; pp 123–153.
- (5) Stanley, R. H. R.; Jenkins, W. J. In *The Noble Gases as Geochemical Tracers*; Burnard, P., Ed.; Advances in Isotope Geochemistry; Springer, 2013; pp 55–79.
- (6) Aeschbach-Hertig, W.; Peeters, F.; Beyerle, U.; Kipfer, R. Interpretation of dissolved atmospheric noble gases in natural waters. *Water Resour. Res.* **1999**, *35*, 2779–2792.
- (7) Beyerle, U.; Aeschbach-Hertig, W.; Hofer, M.; Imboden, D. M.; Baur, H.; Kipfer, R. Infiltration of river water to a shallow aquifer investigated with ³H/³He, noble gases and CFCs. *J. Hydrol.* **1999**, *220*, 169–185.
- (8) Aeschbach-Hertig, W.; Peeters, F.; Beyerle, U.; Kipfer, R. Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air. *Nature* **2000**, *405*, 1040–1044.
- (9) Hohmann, R.; Schlosser, P.; Jacobs, S.; Ludin, A.; Weppernig, R. Excess helium and neon in the southeast Pacific: Tracers for glacial meltwater. J. Geophys. Res.-Oceans 2002, 107, 3198.
- (10) Thomas, J. M.; Hudson, G. B.; Stute, M.; Clark, J. F. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada. *Env. Geol.* **2003**, *43*, 568–579.
- (11) Brennwald, M. S.; Imboden, D. M.; Kipfer, R. Release of gas bubbles from lake sediment traced by noble gas isotopes in the sediment pore water. *Earth Planet. Sci. Lett.* **2005**, *235*, 31–44.
- (12) Huber, C.; Beyerle, U.; Leuenberger, M.; Schwander, J.; Kipfer, R.; Spahni, R.; Severing-haus, J. P.; Weiler, K. Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. *Earth Planet. Sci. Lett.* 2006, 243, 61–73.
- (13) Severinghaus, J. P.; Battle, M. Fractionation of gases in polar ice during bubble close-off: new constraints from firn air Ne, Kr, and Xe observations. *Earth Planet. Sci. Lett.* **2006**, *244*, 474–500.

- (14) Klump, S.; Kipfer, R.; Cirpka, O. A.; Harvey, C. F.; Brennwald, M. S.; Ashfaque, K. N.; Badruzzaman, A. B. M.; Hug, S. J.; Imboden, D. M. Groundwater Dynamics and Arsenic Mobilization in Bangladesh Assessed using Noble Gases and Tritium. *Environ. Sci. Technol.* 2006, 40, 243–250.
- (15) Klump, S.; Tomonaga, Y.; Kienzler, P.; Kinzelbach, W.; Baumann, T.; Imboden, D.; Kipfer, R. Field experiments yield new insights into gas exchange and excess air formation in natural porous media. *Geochim. Cosmochim. Acta* **2007**, *71*, 1385–1397.
- (16) Cey, B. D.; Hudson, G. B.; Moran, J. E.; Scanlon, B. R. Impact of Artificial Recharge on Dissolved Noble Gases in Groundwater in California. *Environ. Sci. Technol.* 2008, 42, 1017– 1023, PMID: 18351066.
- (17) Klump, S.; Cirpka, O.; Surbeck, H.; Kipfer, R. Experimental and numerical studies on excessair formation in quasi-saturated porous media. *Water Resour. Res.* **2008**, *44*, W05402.
- (18) Holzner, C. P.; McGinnis, D. F.; Schubert, C. J.; Kipfer, R.; Imboden, D. M. Noble gas anomalies related to high-intensity methane gas seeps in the Black Sea. *Earth Planet. Sci. Lett.* **2008**, *265*, 396–409.
- (19) Althaus, R.; Klump, S.; Onnis, A.; Kipfer, R.; Purtschert, R.; Stauffer, F.; Kinzelbach, W. Noble gas tracers for characterisation of flow dynamics and origin of groundwater: A case study in Switzerland. *J. Hydrol.* **2009**, *370*, 64–72.
- (20) Chaduteau, C.; Jean-Baptiste, P.; Fourré, E.; Charlou, J.-L.; Donval, J.-P. Helium transport in sediment pore fluids of the Congo-Angola margin. *Geochem. Geophys. Geosyst.* **2009**, *10*, Q01002.
- (21) Pitre, F.; Pinti, D. L. Noble gas enrichments in porewater of estuarine sediments and their effect on the estimation of net denitrification rates. *Geochim. Cosmochim. Acta* **2010**, *74*, 531–539.
- (22) Severinghaus, J. P.; Albert, M. R.; Courville, Z. R.; Fahnestock, M. A.; Kawamura, K.; Montzka, S. A.; Mühle, J.; Scambos, T. A.; Shields, E.; Shuman, C. A.; Suwa, M.; Tans, P.; Weiss, R. F. Deep air convection in the firn at a zero-accumulation site, central Antarctica. *Earth Planet. Sci. Lett.* **2010**, *293*, 359–367.
- (23) Hall, C. M.; Castro, M. C.; Lohmann, K. C.; Sun, T. Testing the noble gas paleothermometer with a yearlong study of groundwater noble gases in an instrumented monitoring well. *Water Resour. Res.* 2012, 48, W04517.
- (24) Grundl, T.; Magnusson, N.; Brennwald, M. S.; Kipfer, R. Mechanisms of subglacial groundwater recharge as derived from noble gas, ¹⁴C, and stable isotopic data. *Earth Planet. Sci. Lett.* 2013, 369-370, 78–85.
- (25) Loose, B.; Jenkins, W. J. The five stable noble gases are sensitive unambiguous tracers of glacial meltwater. *Geophys. Res. Lett.* **2014**, *41*, 2835–2841.

- (26) Tomonaga, Y.; Brennwald, M. S.; Meydan, A. F.; Kipfer, R. Noble gases in the sediments of Lake Van – Solute transport and palaeoenvironmental reconstruction. *Quaternary Sci. Rev.* 2014, 104, 117–126.
- (27) Tomonaga, Y.; Brennwald, M. S.; Kipfer, R. Attenuation of diffusive noble-gas transport in laminated sediments of the Stockholm Archipelago. *Limnol. Oceanogr.* **2015**, *60*, 497–511.
- (28) Tomonaga, Y.; Brennwald, M. S.; Livingstone, D. M.; Tomonaga, G.; Kipfer, R. Determination of Natural In Vivo Noble-Gas Concentrations in Human Blood. *PLOS ONE* **2014**, *9*, e96972.
- (29) Thevis, M.; Piper, T.; Geyer, H.; Thomas, A.; Schaefer, M. S.; Kienbaum, P.; Schänzer, W. Measuring xenon in human plasma and blood by gas chromatography/mass spectrometry. *Rapid Comm. Mass Spectrometry* **2014**, *28*, 1501–1506.
- (30) Stanley, R. H. R.; Kirkpatrick, J. B.; Cassar, N.; Barnett, B. A.; Bender, M. L. Net community production and gross primary production rates in the western equatorial Pacific. *Global Biogeochem. Cycles* **2010**, *24*, GB4001.
- (31) Freundt, F.; Schneider, T.; Aeschbach-Hertig, W. Response of noble gas partial pressures in soil air to oxygen depletion. *Chem. Geol.* **2013**, *339*, 283–290.
- (32) Mächler, L.; Brennwald, M. S.; Kipfer, R. Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. *Environ. Sci. Technol.* **2013**, *47*, 7060–7066.
- (33) Mächler, L.; Peter, S.; Brennwald, M. S.; Kipfer, R. Excess air formation as a mechanism for delivering oxygen to groundwater. *Water Resour. Res.* **2013**, *49*, 1–10.
- (34) Eveleth, R.; Timmermans, M.-L.; Cassar, N. Physical and biological controls on oxygen saturation variability in the upper Arctic Ocean. J. Geophys. Res.–Oceans 2014, 119, 7420–7432.
- (35) Peter, S.; Mächler, L.; Kipfer, R.; Wehrli, B.; Durisch-Kaiser, E. Flood-Controlled Excess-Air Formation Favors Aearobic Respiraton and Limits Denitrification Activity in Riparian Groundwater. *Frontiers Env. Sci.* **2015**, *3*.
- (36) Hofer, M.; Imboden, D. M. Simultaneous determination of CFC-11, CFC-12, N₂ and Ar in water. *Anal. Chem.* **1998**, *70*, 724–729.
- (37) Beyerle, U.; Aeschbach-Hertig, W.; Imboden, D. M.; Baur, H.; Graf, T.; Kipfer, R. A mass spectrometric system for the analysis of noble gases and tritium from water samples. *Environ. Sci. Technol.* **2000**, *34*, 2042–2050.
- (38) Kulongoski, J. T.; Hilton, D. R. A quadrupole-based mass spectrometric system for the determination of noble gas abundances in fluids. *Geochem. Geophys. Geosyst.* 2002, *3*, 1–10.
- (39) Stanley, R. H. R.; Baschek, B.; Lott III, D. E.; Jenkins, W. J. A new automated method for measuring noble gases and their isotopic ratios in water samples. *Geochem. Geophys. Geosyst.* **2009**, *10*, Q05008.

- (40) Sültenfuss, J.; Roether, W.; Rhein, M. The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and tritium in water. *Isotopes In Environmental and Health Studies* **2009**, *45*, 83–95.
- (41) Brennwald, M. S.; Hofer, M.; Kipfer, R. Simultaneous analysis of noble gases, sulphur hexafluoride and other dissolved gases in water. *Environ. Sci. Technol.* **2013**, *47*, 8599–8608.
- (42) Visser, A.; Singleton, M. J.; Hillegonds, D. J.; Velsko, C. A.; Moran, J. E.; Esser, B. K. A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples. *Rapid Communications in Mass Spectrometry* **2013**, *27*, 2472–2482.
- (43) Kotiaho, T. On-site Environmental and In Situ Process Analysis by Mass Spectrometry. *Journal of Mass Spectrometry* **1996**, *31*, 1–15.
- (44) Ketola, R. A. In *Environmental Instrumentation and Analysis Handbook*; Randy D. Down P E, R. D., Lehr, J. H., Eds.; Wiley, 2005; pp 187–220.
- (45) Schlüter, M.; Gentz, T. Application of Membrane Inlet Mass Spectrometry for Online and In Situ Analysis of Methane in Aquatic Environments. J. Am. Soc. Mass Spectromet. 2008, 19, 1395–1402.
- (46) Gentz, T.; Schlüter, M. Underwater cryotrap-membrane inlet system (CT-MIS) for improved in situ analysis of gases. *Limnol. Oceanogr. Methods* **2012**, *10*, 317–238.
- (47) Sommer, S.; Schmidt, M.; Linke, P. Continuous inline tracking of dissolved methane plume at a blowout site in the Northern North Sea UK water column stratification impedes immediate methane release into the atmosphere. *Marine and Petroleum Geology* **2015**, *68*, 766–775.
- (48) Schmidt, M.; Linke, P.; Sommer, S.; Esser, D.; Cherednichenko, S. Natural CO₂ seeps offshore Panarea – A test site for subsea CO₂ leak detection technology. *Marine Technology Society Journal* **2015**, *49*, 19–30.
- (49) Mächler, L.; Brennwald, M. S.; Kipfer, R. Membrane Inlet Mass Spectrometer for the Quasi-Continuous On-Site Analysis of Dissolved Gases in Groundwater. *Environ. Sci. Technol.* 2012, 46, 8288–8296.
- (50) Cassar, N.; Barnett, B.; Bender, M. L.; Kaiser, J.; Hamme, R. C.; Tilbrook, B. Continuous High-Frequency Dissolved O₂/Ar Measurements by Equilibrator Inlet Mass Spectrometry. *Anal. Chem.* 2009, *81*, 1855–1864.
- (51) Manning, C. C.; Stanley, R. H. R.; Lott III, D. E. Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer. *Anal. Chem.* **2016**, *88*, 3040–3048.
- (52) Mächler, L. Quantification of oxygen turnover in groundwater by continuous on-site gas concentration measurements. Ph.D. thesis, ETH Zürich, 2012.
- (53) Mächler, L.; Brennwald, M. S.; Tyroller, L.; Livingstone, D. M.; Kipfer, R. Conquering the Outdoors with On-Site Mass Spectrometry. *Chimia* **2014**, *68*, 155–159.

- (54) Fryer, G. M. A theory of gas flow through capillary tubes. Proc. Royal Soc. London, Ser. A Math. Phys. Sci. 1966, 293, 329–341.
- (55) Werle, P.; Mücke, R.; Slemr, F. The Limits of Signal Averaging in Atmospheric Trace-Gas Monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS). *Appl. Phys. B* **1993**, 131–139.
- (56) Burnard, P.; Zimmermann, L.; Sano, Y. In *The Noble Gases as Geochemical Tracers*; Burnard, P., Ed.; Advances in Isotope Geochemistry; Springer, 2013; pp 1–15.
- (57) Davies, S.; Rees, J. A.; Seymour, D. L. Threshold ionisation mass spectrometry (TIMS); a complementary quantitative technique to conventional mass resolved mass spectrometry. *Vacuum* **2014**, *101*, 416–422.
- (58) McGinnis, D. F.; Kirillin, G.; W, T. K.; Flury, S.; Bodmer, P.; Engelhardt, C.; Casper, P.; Grossart, H.-P. Enhancing Surface Methane Fluxes from an Oligotrophic Lake: Exploring the Microbubble Hypothesis. *Environ. Sci. Technol.* **2015**, *49*, 873–880.
- (59) Berndt, C. et al. Rifting under steam how rift magmatism triggers methane venting from sedimentary basins. *Geology* **2016**, G38049.1.

Tables

Table 1: Parts list (see also Figure 1).

Part	Description
S	6-port inlet selector valve (VICI C5-2306EMHY)
С	10 m stainless steel tubing with 0.1 mm inner diameter (VICI TSS104)
V	Inlet valve (Swagelok SS-4H)
QMS	Quadrupole mass spectrometer with Faraday cup and secondary electron mul-
	tiplier detectors (Stanford Research Systems RGA-200)
TP	Turbomolecular pump with 70 L/s pumping speed (Pfeiffer HiPace 80)
DP	Diaphragm pump for < 20 mbar forevacuum (KNF N 813.4 ANDC-B)
Power supply	24 VDC power supply (max. 5 A during turn on) for S, QMS, TP, and
	DP, for instance 2×12 V 'car batteries' or mains voltage converter (e.g.,
	Mean Well SP-240-24)

Table 2: Field test results for accuracy and precision of the miniRuedi analysis and the GE-MIMS method (see text). Means (μ) and standard deviations (σ) of the residuals of the observed concentrations relative to the atmospheric equilibrium concentrations, and standard deviations of replicate air analysis results (σ_{air}).

Species	μ (%)	σ (%)	$\sigma_{ m air}$ (%)
⁴ He	-0.5	2.5	1.9
N_2	-0.3	1.2	0.9
⁴⁰ Ar	0.8	2.3	1.1
⁸⁴ Kr	0.9	3.3	3.2

Figures

Figure 1: Schematic overview (top) and photo (bottom) of the miniRuedi mass-spectrometer system (see also Table 1): 6-port inlet selector valve (S), capillary (C), inlet valve (V), quadrupole mass spectrometer (QMS), turbomolecular pump (TP), diaphragm pump (DP). The inlet selector valve and the quadrupole mass spectrometer are controlled by a computer. The photo shows the miniRuedi mounted in a wheeled hardshell suitcase for transport and protection.

Figure 2: Peak heights $s_{m/z}$ obtained with F and M detectors from a test gas mixture (at ambient pressure) that was incrementally diluted with pure N₂ to reduce the partial pressures of the various gas species (see text). The dilution is quantified as the fraction α of the original test gas remaining in the dilution. The m/z = 28 peak heights corresponding to the N₂ of the test gas (denoted by an asterisk, N₂*) was arithmetically corrected for the contribution of the N₂ added for dilution. The dots show the peak heights at the respective m/z values (mean values of three replicate analyses). Error bars reflecting the standard deviations of the replicate measurements are covered by the plot symbols, except for N₂* error bars, which reflect the uncertainty of the dilution correction. The best-fit lines are of the form $s_{m/z} = \text{const.} \times \alpha$, with $r^2 > 99.5\%$ for all fits.

Figure 3: Relative Allan deviations σ_A as a function of the averaging time τ of the F and M signal readings obtained from the analysis of an air sample (see text). The instrument was operated in a laboratory with ambient temperature stabilised to $\pm 1^{\circ}$ C.

Figure 4: Peak heights at m/z = 20 and m/z = 40 as a function of the ionising electron energy. A: analysis of pure Ar (99.999%) using the F detector. B: analysis of air, where peak heights at m/z = 20 were analysed using the M detector and divided by 1000 to compensate for the higher sensitivity of the M detector relative to the F detector.

Figure 5: Bias in partial pressures obtained from GE-MIMS measurements in groundwater using miniature membrane contactors (Liqui-Cel MicroModule, type $0.5 \times 1 / 6591$) relative to partial pressures in larger membrane contactors as required for the original GE-MIMS instrument⁴⁹ (Liqui-Cel MiniModule, type $1.7 \times 5.5 / 6542$). The miniature contactors were operated either as a single unit or as a parallel combination of two units. Groundwater was pumped through the membrane contactors, and tee branches were used to split the water flow among the membrane contactors for parallel operation of the MicroModules and the MiniModule. The error bars reflect the variability of the gas concentrations in the groundwater flow and the noise in the MS detector signals during each measurement.

Figure 6: Soil gas composition in a covered landfill: volumetric concentrations of Ar vs. concentrations of $i = N_2, O_2, CO_2, CH_4$ in the five observations wells A–E. Replicate samples were taken in wells A, B and C. Error bars reflecting the standard errors of the measurements are covered by the plot symbols.

Figure 7: Gas exchange at the water surface of Lake Soppensee: changes of the partial pressures of Ar, N₂, O₂, CO₂, and CH₄ in an air volume above the water surface, before and after isolating the air volume from the atmosphere (Δp_i , change relative to initial partial pressures in free air).

Figure 8: Screening seawater samples for hydrothermal fluids released from black smokers in the Gulf of California:⁵⁹ He, CO_2 , and CH_4 concentrations in water samples taken at water depths of up to 2 km (note the logarithmic axis scales).