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Second Referee: Prof. Dr. Martin Heimann

Date of oral examination: August 10th, 2015

Approved for publication: August 10th, 2015

Signed:

Prof. Dr. Wolfgang J. Duschl, Dean





Contents

Contents iii

List of Figures vi

List of Tables viii

Abstract ix

Zusammenfassung xi

Acknowledgments xiii

Declaration xvii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Carbon Dioxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Methane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Nitrous Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Carbon Monoxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Atmospheric Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Southern Africa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.8 Biomass Burning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.9 The African Haze Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.10 The Benguela Current Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.11 The Namib Desert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.12 Gobabeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 The Representativeness of Observations at NDAO 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 The Hadley Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Regional Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Mesoscale Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.4 NOAA NMB Surface Flask Record . . . . . . . . . . . . . . . . . . . . 18

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Atmospheric Transport Modeling . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Flask Data Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Back-Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Comparison of Back-Trajectories with in situ Meteorology . . . . . . . 23

iii



iv CONTENTS

2.3.4 The NMB Flask Record, Compared to Other Marine Background Sites 23

2.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Station Design and Performance 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Response Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Leak and Fractionation Tests . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.4 Carbon Dioxide and Methane Measurements . . . . . . . . . . . . . . 32

3.2.5 Nitrous Oxide and Carbon Monoxide Measurements . . . . . . . . . . 32

3.2.6 Atmospheric Oxygen Measurements . . . . . . . . . . . . . . . . . . . 33

3.2.7 Meteorological Measurements . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.8 Flask Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.9 Sensor Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.10 Drying and Water Correction . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.11 Calibrations and System Performance Evaluation . . . . . . . . . . . . 36

3.2.12 Drift Correction of the OA-ICOS Analyzer . . . . . . . . . . . . . . . 37

3.2.13 Performance Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 General Performance of the Measurement System . . . . . . . . . . . . 38

3.3.2 Response Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Leak and Fractionation Tests . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.4 Stability of the CRDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.5 Stability of the OA-ICOS . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.6 Stability of the DFCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.7 Water Correction of the CRDS . . . . . . . . . . . . . . . . . . . . . . 44

3.3.8 Water Correction of the OA-ICOS . . . . . . . . . . . . . . . . . . . . 46

3.3.9 Calibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.10 Target Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.11 Drift Correction of the OA-ICOS . . . . . . . . . . . . . . . . . . . . . 50

3.3.12 External Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 The NDAO Time Series 55

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Data Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.2 Singular Spectrum Analysis . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Variability of Basic Meteorological Parameters . . . . . . . . . . . . . 56

4.3.2 The Local Wind System . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.3 Diurnal Variability of the Main Measurands . . . . . . . . . . . . . . . 62

4.3.4 Seasonal Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.5 Annual Growth Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Seasonally Occurring Anomalies of CO2, CH4, and CO, Induced by

Biomass Burning and Variability in Atmospheric Transport 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS v

5.1.1 Enhancement Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.2 O2 and CO2 Molar Exchange Ratios . . . . . . . . . . . . . . . . . . . 70

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Determination of Slopes . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Back-Trajectory Classification . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Remote Sensing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Seasonal Divergences from the Marine Background . . . . . . . . . . . 72

5.3.2 Pathways of Polluted Air Masses . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Stiochiometry: Enhancement and Molar Exchange Ratios . . . . . . . 73

5.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Top-Down Estimates of Greenhouse Gas Emissions from the Lüderitz
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Abstract

A new, near-coastal background site was established for observations of greenhouse gases

(GHGs) and atmospheric oxygen in the central Namib Desert near Gobabeb, Namibia. The

location of the site was chosen to provide observations in a data-poor region in the global

sampling network for GHGs. Semi-automated, continuous measurements of carbon dioxide,

methane, nitrous oxide, carbon monoxide, atmospheric oxygen, and basic meteorology are

made at a height of 21 m a.g.l., 50 km from the coast at the northern border of the Namib

Sand Sea. Atmospheric oxygen is measured with a differential fuel cell analyzer. Carbon

dioxide and methane are measured with an early-model cavity ring-down spectrometer; ni-

trous oxide and carbon monoxide are measured with an off-axis integrated cavity output

spectrometer. Instrument-specific water corrections are employed for both instruments in

lieu of drying.

The representativity of the site was assessed within the context of atmospheric transport.

During austral summer, strong equatorward winds are present as a result of the Hadley

circulation. This brings marine boundary layer air inland to Gobabeb. In austral winter,

the descending branch of the southern Hadley cell is at the same latitude as NDAO, which

encourages the establishment of anticyclonic conditions over southern Africa. The variability

of air mass history during this time of year is quite high, alternating between marine and

terrestrial air masses, as well as air that was recently in contact with the surface and air that

had descended from heights greater than 2 km. NOAA flask samples taken at Gobabeb from

1996 to the present appeared to respond to these seasonal patterns in atmospheric dynamics,

when compared to other marine background sites at the same latitude as NDAO.

Two years of data are presented from the observatory. Diurnal variability was noted at

times for all species, particularly for atmospheric oxygen. Through stoichiometry and phas-

ing, this was attributed primarily to the local wind system, which features a prominent

sea breeze, and daily boundary layer oscillations. Large anomalies in carbon monoxide and

methane were observed in the time series on a synoptic time scale, during the ascending

portion of the seasonal cycle. These were attributed to an alternation between polluted air

masses from the continental interior and marine boundary layer air. The continental air

masses were progressively influenced by biomass burning as the fire season developed. The

concentration of fire activity close to the station increased throughout the year, peaking in

September, a fact reflected in the enhancement ratio of CH4 to CO. During such synoptic

events the molar exchange ratio of O2 to CO2 also supported this interpretation.

Finally, the NDAO time series was used to make top-down estimates of air–sea fluxes of the

main measurands from the Lüderitz and Walvis Bay upwelling cells in the Benguela Current

region, during upwelling events. Flux densities were evaluated using shipboard measure-

ments within the study area, showing good agreement with the top-down estimates. Average

flux densities for CO2 were 0.45± 0.4 µmol m−2 sec−1, −3.9± 2.6 µmol m−2 sec−1 for O2,

6.0± 5.0 nmol m−2 sec−1 for CH4, 0.5± 0.4 nmol m−2 sec−1 for N2O, and 2.7± 1.7 nmol

m−2 sec−1 for CO. N2O fluxes were fairly low, in accord with previous work, suggesting that
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the evasion of this gas from the Benguela is smaller than in other upwelling systems. Con-

versely, methane release was very high for the marine environment, which adds to mounting

evidence of a large sedimentary source of methane in the Walvis Bay area. Carbon dioxide

and oxygen fluxes were substantial and probably not accounted for in current budgets.



Zusammenfassung

Zur Beobachtungen von Treibhausgasen (THG) und Luftsauerstoff wurde eine neue, küsten-

nahe Stelle zur Hintergrundmessung in der zentralen Namib Wste in der Nähe von Gobabeb,

Namibia etabliert. Die Lage des Standortes wurde gewählt, um Erfassungen in einem date-

narmen Bereich des globalen Messnetzwerks für THG zu ermöglichen. Halbautomatische,

kontinuierliche Messungen von Kohlendioxid, Methan, Distickstoffmonoxid, Kohlenmonoxid,

Luftsauerstoff und grundlegender Meteorologie werden in einer Höhe von 21 m über Grund

und 50 km von der Küste entfernt an der nördlichen Grenze der Namib Sand Sea gemacht.

Der Luftsauerstoff wird mit einer differenziellen Brennstoffzellmessung ermittelt. Kohlen-

dioxid und Methan werden mit einem älteren Cavity Ring-Down Spektrometer gemessen;

Distickstoffmonoxid und Kohlenmonoxid mit einem Off-Axis Hohlraumintegrierten Output-

Spektrometer. Für beide Instrumente werden entsprechend der Austrocknung gerätespezifis-

che Wasserkorrekturen durchgeführt.

Die Repräsentativität des Ortes wurde im Rahmen des atmosphärischen Transports beur-

teilt. Im Südsommer herrschen als Folge der Hadley Zirkulation äquatorwürts starke Winde.

Dies bringt Luft der marinen Grenzschicht ins Landesinnere nach Gobabeb. In Südwinter ist

der absteigende Ausläufer der südlichen Hadley Zelle auf demselben Breitengrad wie NDAO,

was antizyklonale Bedingungen über Südafrika begünstigt. Die Variabilität der Luftmassen

ist während dieser Zeit des Jahres recht hoch, bedingt durch den Wechsel zwischen marinen

und terrestrischen Luftmassen, sowie Luft, die vor kurzem in Kontakt mit der Oberfläche war

und Luft, die aus einer Höhe von mehr als 2 km herabgestiegen ist. NOAA-Kolbenproben

bei Gobabeb von 1996 bis heute scheinen bei Vergleich mit anderen marinen Stellen zur

Hintergrundmessung auf dem gleichen Breitengrad wie NDAO auf diese saisonalen Muster

der atmosphärischen Dynamik reagiert zu haben.

In dem Observatorium liegen Daten aus zwei Jahren vor. Diurnale Variabilität wurde

manchmal für alle Arten festgestellt, insbesondere für Luftsauerstoff. Durch Stöchiometrie

und Phasing wurde dies in erster Linie auf das lokale Windsystem zurückgefhrt, das sich

durch eine starke Meeresbrise und tägliche Schwingungen der Grenzschicht auszeichnet. Im

ansteigenden Teil des Jahreszyklus wurden in der Zeitreihe auf einer synoptischen Zeitskala

starke Anomalien in Kohlenmonoxid und Methan beobachtet. Diese wurden auf eine Wech-

selfolge von verschmutzten Luftmassen aus dem Landesinneren und Meeresgrenzschichtluft

zurückgeführt. Die kontinentalen Luftmassen wurden zunehmend durch die Verbrennung

von Biomasse beeinflusst, während die Brandsaison beginnt. Die Konzentration von Bran-

daktivitäten in der Nähe der Station erhöhte sich im Laufe des Jahres und erreichte seinen

Hochpunkt im September, was sich in der Enhancement Ratio von CH4 zu CO widerspiegelt.

Während solcher synoptischer Ereignisse wurde diese Interpretation auch durch das molare

Umtauschverhältnis von O2 zu CO2 unterstützt.

Schließlich wurde die NDAO-Zeitreihe verwendet, um Top-Down Schätzungen der Luft-

Meer Strömungen der wichtigsten Messgrößen in den Auftriebszellen der Lüderitz und Wal-

fischbucht in der Benguela Strömungsregion unter Umständen des Auftriebs zu machen.
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xii ZUSAMMENFASSUNG

Mit Bordmessungen wurden im Untersuchungsgebiet Flussdichten gemessen, welche gute

Übereinstimmung mit den Top-Down Schätzungen zeigen. Durchschnittliche Flussdichten

für CO2 waren 0.45± 0.4 µmol m−2 sec−1, −3.9± 2.6 µmol m−2 sec−1 für O2, 6.0± 5.0

nmol m−2 sec−1 für CH4, 0.5± 0.4 nmol m−2 sec−1 für N2O, und 2.7± 1.7 nmol m−2 sec−1

für CO. N2O-Strömungen waren in Übereinstimmung mit früheren Arbeiten eher niedrig,

was darauf hindeutet, dass die Migration dieses Gases aus dem Benguela kleiner ist, als in

anderen Auftriebssystemen. Umgekehrt war Methanfreisetzung in der marinen Umwelt sehr

hoch, was die Hinweise auf ein großes sedimentäres Vorkommen von Methan in der Gegend

Walfischbucht weiter verdichtet. Die Strömungen von Kohlendioxid und Sauerstoff waren

signifikant und werden in laufenden Haushaltsplnen vermutlich nicht bercksichtigt.
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erarbeitet und verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel ver-

wendet habe.

Ich versichere, dass diese Arbeit in der vorgelegten oder einer ähnlichen Fassung noch nicht
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1
Introduction

1.1 Motivation

Naturally occurring trace constituents of the atmosphere, such as carbon dioxide, methane,

and nitrous oxide, can have a profound and complex interrelationship with the planet’s geo-

logical and biological surface processes. It has been well-established by considerable scientific

inquiry, for instance, that changes in the background abundance of these greenhouse gases

(GHGs) affect the earth’s climate system by altering the planetary energy balance of the

planet [Forster et al., 2007]. These three species are also significant actors in atmospheric

chemistry and composition, and serve as tracers of biogeochemical processes.

A well-distributed global atmospheric sampling network for these gases and related trac-

ers is a necessity for studying their role in Earth system science. Expanding the existing

network will further our understanding of global biogeochemical cycles, particularly the un-

certainties in terrestrial sources and sinks in the carbon cycle [Bakwin et al., 2004, Cihlar

et al., 2002]. Furthermore, remote sensing of trace gases from satellites shows significant bias

and uncertainty; such measurements require validation and ground-truthing. All modeling

efforts also ultimately depend on in situ measurements. Stationary, long-term time series are

particularly crucial for studies of global change, as multi-decadal records are necessary to

capture and document significant trends. Records of the dry air mole fractions of these trace

gases can also be used to verify anthropogenic emissions, create top-down estimates of fluxes,

study regional biogeochemical cycling and surface-atmospheric processes, and compare inter-

regional differences in GHG abundance [Nisbet and Weiss, 2010]. Finally, measurements of

trace gases also inform on atmospheric mixing and transport, on pollution events, and on

regional budgets of species that influence the composition of the atmosphere, as well as on

a number of biogeochemical and surface-atmosphere processes.

The continent of Africa is underrepresented in the global network for ground-based mea-

surements of many trace gases, despite its size: currently there are only a handful of oper-

ational atmospheric observatories in Africa. Besides the measurement stations at the Cape

Verde Islands, Izaña, and the Seychelles, on the continent proper there are measurement

sites for GHGs in Kenya (Mt. Kenya), in South Africa—at Cape Point and two additional

measurement sites close to the Cape—and a flask sampling site in Algeria (at Assekrem). As

of the time of writing a new observatory for continuous observations of GHGs and other trace

gases is in development at Mt. Karisimbi, Rwanda. Additionally, there have been quite a few

eddy covariance flux measurement sites in operation at various times throughout southern

Africa [Kutsch et al., 2011, Merbold et al., 2009, Sjöström et al., 2013]. This means that

estimates of the magnitude of fluxes of important gases are still uncertain, and accordingly

sensitive to the addition of even a single station to the network [Gloor et al., 2000, Rayner

et al., 1996]. Continuous measurements of N2O are particularly rare [Thompson et al., 2011].

Observations of other important non-greenhouse trace gases, like CO or O3, are still sparse

1
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on the continent.

To fill this gap in the global sampling network, the Max Planck Institute for Biogeochem-

istry has created an atmospheric observatory in southern Africa to continuously measure the

long-lived greenhouse gases CO2, CH4, N2O, and the tracers CO and δ(O2/N2). In addition

to being radiatively active, the trace gases (CO2, CH4, N2O, CO) have other key proper-

ties: the carbon-containing compounds have significance for the carbon cycle (and N2O for

the nitrogen cycle) and inform on biogeochemical processes. CH4, N2O, and CO also all

have important roles in atmospheric chemistry, particularly in their relationship to ozone.

Atmospheric oxygen is interesting to measure because it somewhat mirrors the behavior of

CO2 except for certain oceanic processes, which makes such data a valuable complement

to carbon dioxide time series, particularly in coastal areas. To my knowledge there are no

facilities continuously measuring δ(O2/N2) in Africa with the exception of the Cape Verde

Atmospheric Observatory, off the coast of Senegal.

Despite rapid atmospheric mixing, molar ratios of many trace gases in the lower tropo-

sphere vary in space and time, as sources and sinks can be patchily distributed in both

dimensions. Time series of biogeochemically active gases are subject to high-frequency varia-

tions, which are often smoothed or filtered to produce a more coherent record. For greenhouse

gases, their effect on climate can only be assessed over long (i.e., decadal) time scales, a period

over which discreet measurements, if made frequently enough, are adequate for identifying

long term trends, interannual differences and growth rates, latitudinal gradients, etc. While

much has been learned from a global network of flask samples, this type of sampling is usu-

ally conducted during “clean” conditions, meaning that strong sources can be excluded from

these signals; hence, continuous measurements, if enough supporting data is available, are

superior for identifying and quantifying regional to local scale sources and sinks of important

gases [Geels et al., 2004, Huntzinger et al., 2011, Law et al., 2002]. Continuous measurements

are also preferable because they provide more statistical power than single measurements,

eliminate uncertainty over the accuracy of outliers from flask time series, and reveal diurnal

cycles [Uglietti et al., 2008].

A complex time series is usually thought of as being comprised of several different com-

ponents. For CO2, for instance, this includes the “secular” trend (i.e., the increase of the

global background), the seasonal cycle, a diurnal cycle, synoptic variability (anomalies in

CO2 generated over a strong source or sink, subject to atmospheric transport) and meso- to

local scale variance [Mahecha et al., 2010]. Such events typically occur on the order of days,

as pressure systems pass over the measurement location. Furthermore, vertical mixing of the

atmosphere can have a major impact on trace gas mole fractions; the height and stability

of the boundary layer is important as it can push air masses dominated by active processes

closer to the earth’s surface, concentrating gases [Pino et al., 2012, Wallace and Hobbs, 2006].

There are many types of investigations into the spatiotemporal distribution of trace gases:

aircraft campaigns, eddy flux towers, tall towers, flask samples, and remote sensing. All

of these methods provide important information on trace gas distribution, and the best

approach is to use a combination of observation types. Measurements made from towers,

particularly tall towers, are attractive for regional studies because they can provide continu-

ous data at different heights, and if they extend above the surface layer and into the mixed

layer, are more regionally representative than ground-based measurements [Bakwin et al.,

1995, Haszpra et al., 2012, Tans, 1993, Vermeulen et al., 2004]. In Europe and North Amer-

ica, for instance, large networks of towers and measurement stations have greatly increased

understanding of regional biogeochemical cycles and budgets of important atmospheric con-

stituents on these continents [Bakwin et al., 1995, Vermeulen et al., 2004]. When a tall (i.e.,

hundreds of meters) tower is not feasible, some type of mast or short tower is still preferred

to sample above the immediate surface layer and limit the representation of local influences.
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1.2 Carbon Dioxide

The major sources of CO2 to the atmosphere are fossil fuel emissions, cement production,

deforestation, biomass burning, and biotic respiration; the major sinks are terrestrial and

marine photosynthesis and inorganic ocean uptake [GCP, 2011, Schlesinger, 1997]. Current

atmospheric molar ratios of CO2 are the highest seen in at least the last 800,000 years

[Lüthi et al., 2008, Petit et al., 1999]. Growth rates of CO2 show variability due to volcanic

eruptions, changes in the land and ocean sinks, the El Niño / Southern Oscillation (ENSO),

fossil fuel emissions, and land use change, but in general are constrained, averaging to ∼2

ppm per year [Francey et al., 2010, Raupach et al., 2008]. Studies have confirmed that roughly

half of this CO2 released from fossil fuel combustion between 1960 and 2007 has remained

in the atmosphere [Boden et al., 2009]. The rest of the anthropogenic carbon released has

been taken up by the surface of the earth. The oceanic sink, which is decreasing slightly,

accounts for approximately a third, and the land sink, which is even more uncertain, around

10% [Sarmiento et al., 2010, Takahashi et al., 2009].

1.3 Methane

Methane is a powerful greenhouse gas, the most abundant hydrocarbon in the atmosphere,

a major sink of OH, and a precursor for other important trace species in the troposphere,

such as ozone [Forster et al., 2007, Lelieveld et al., 1998, Wuebbles and Hayhoe, 2000].

Methane is produced biogenically in the absence of oxygen by anaerobic microorganisms

and by plants, and geologically through the thermal decomposition of organic matter buried

in sediments. Sources include the guts of ruminants, termites, rice paddies, natural wetlands,

biomass burning, as well as some geologic sources. A substantial portion of methane emissions

each year come from anthropogenic sources; estimates vary greatly, but these sources are

probably between 40 and 70% [Bousquet et al., 2006, Kirschke et al., 2013]. Methane has an

atmospheric lifetime of 8–9 years [Forster et al., 2007, Prather et al., 2012]. The major sink

is the hydroxyl free radical, the variations of which have a large influence on the atmospheric

burden [Bousquet et al., 2006, Reeburgh, 2007b]. The mole fraction of CH4 in the atmosphere

is controlled by a somewhat delicate balance of sources and sinks, which has resulted in

variable growth rates since data has become available, with several periods of zero growth or

decrease having been observed [Dlugokencky et al., 2009, Monteil et al., 2011, Rigby et al.,

2008]. Growth rates have been declining since the 1980s, and while the cause of this is still

subject to debate, there is good evidence that it is related to reduced fugitive fossil fuel

emissions [Aydin et al., 2011, Heimann, 2011, Kai et al., 2011, Simpson et al., 2012].

1.4 Nitrous Oxide

N2O is a radiatively active gas and an important stratospheric ozone-depleting substance,

due to its formation of NOx [Forster et al., 2007, Ravishankara et al., 2009]. N2O has a

long atmospheric lifetime of ∼130 years [Prather et al., 2012], and absorbs very strongly in

the infrared, giving it a high global warming potential [Myhre et al., 2013]. In the ocean,

most N2O is formed as a by-product during nitrification (the oxidation of NH4
+or NH3 to

NO2
– and then NO3

–) [Voss et al., 2013, Zamora et al., 2012]. N2O is also produced as

an intermediate during denitrification (the reduction of NO3
– to N2), so some release may

occur, although denitrification also consumes N2O; the net effect depends largely on oxygen

concentrations [Bange et al., 2010, McKenney et al., 1997, Voss et al., 2013, Zamora et al.,

2012].
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The major sources of atmospheric N2O are microbial activity in soils, with agricultural

lands being particularly important, industry, and the world’s oceans, especially the coasts

[Reay et al., 2012]. The total marine source is somewhere between 1.8 and 9.4 TgN yr−1

[Ciais et al., 2013]. A recent intercomparison of global atmospheric inversions gave a range

of 5.3–6.32 TgN yr−1, or 31–38% of the total annual source [Thompson et al., 2014]. Coastal

upwelling regions can be hotspots [Bange et al., 1996a, Kock et al., 2012, Nevison et al.,

2004b, Rhee et al., 2009]. The sum of terrestrial sources is about 6.6 TgN yr−1, albeit also

with large uncertainties.

The principal sink is photochemical reactions in the stratosphere, and knowledge of strato-

spheric mixing is an important factor in interpreting time series of N2O [Forster et al., 2007,

Nevison et al., 2004a, Park et al., 2012]. With precise measurements, seasonal cycles (∼0.5

ppb), interannual variability, and interhemispheric differences (∼0.8 ppb) have been detected

[Ishijima et al., 2009, Nevison et al., 2004a, 2011, Park et al., 2012]. The globally averaged

surface background mixing ratio is currently about 325 ppb. The increase is quite linear

and is about 0.8 ppb yr−1 on average [NOAA/ESRL, 2012]. Recent modeling efforts have

highlighted the importance of episodic pulses of nitrous oxide from tropical regions in deter-

mining the global distribution, and more continuous measurements in these areas are needed

to examine this source [Kort et al., 2011].

1.5 Carbon Monoxide

CO is a major sink for OH, and its abundance can affect tropospheric ozone, depending on

the co-occurrence of NOx [Crutzen, 1973, Seiler, 1974]. CO is toxic to humans and consid-

ered a pollutant. While CO is produced during vegetation fires, since it is also produced from

combustion of any type of matter, its utility as a unique tracer for biomass burning is limited

if there are anthropogenic emissions in the same region, particularly if there is significant

dilution, mixing, or ageing of the affected air mass: CO is also a product of the oxidation

of methane and non-methane hydrocarbons [Duncan et al., 2007, Seiler, 1974, Wang et al.,

2012]. In southern Africa several other non-biomass burning source regions have been iden-

tified: charcoal kilns in the central/southern portion of the region, the Copperbelt industrial

area in Zambia and the industrial region in South Africa/Lesotho [Kirkman et al., 2000].

There is a small ocean source of CO, but it is quite small compared with other terms in

the budget [Bates et al., 1995, Stubbins et al., 2006]. From firn air and modeling analysis, it

seems that CO increased throughout the 20th century until the 1970s, when concentrations

began to decline, likely due to pollution controls [Duncan et al., 2007, Petrenko et al., 2013].

Whether there is a current trend in CO at either the hemispheric or global scale is unclear

[Wai et al., 2014, Worden et al., 2013]. For a more detailed discussion of recent trends, see

Section 2.3.4.

1.6 Atmospheric Oxygen

The variability of atmospheric oxygen is quite small relative to the total mass of oxygen

in the atmosphere. As measuring small changes against the large background is technically

challenging, it is common practice to measure oxygen relative to atmospheric N2, defining

the O2/N2 ratio as δ(O2/N2), against a known standard, in per meg, akin to the notation

for stable isotopes [Keeling, 1988, Keeling and Shertz, 1992]:

δ(O2/N2) =

(
O2/N2sample − O2/N2ref

O2/N2ref

)
× 106 (1.1)
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Atmospheric oxygen can be used as a top-down constraint on the carbon cycle, since

the major biogeochemical processes that consume or produce carbon dioxide on the global

scale—such as respiration, photosynthesis, decompostion, or combustion—also consume or

produce oxygen [Keeling and Manning, 2014, Keeling and Shertz, 1992]. Since both CO2 and

O2 have long atmospheric lifetimes, the composition of air masses affected by these processes

conforms to the stoichiometry of these reactions, such that a characteristic molar exchange

ratio or oxidative ratio, OR, can be retained after an air mass has been influenced by a net

surface flux. The OR of the consumption or production of organic matter is defined as a

unitless stoichiometric ratio,

OR = − ∆O2

∆CO2

(1.2)

with both changes expressed in moles.

The oxidative or molar exchange ratio resulting from burning processes will vary with

the composition of the organic matter, so that in theory one can distinguish between source

types of fossil fuels, for instance, or fossil fuel emissions from biomass burning, based on the

relationship between O2 and CO2 in the atmosphere [Keeling and Shertz, 1992, Minejima

et al., 2012, Steinbach et al., 2011]. The stoichiometry of marine respiration and photosyn-

thesis is not preserved after surface-atmosphere exchange, however, as the ratio of O2 to

CO2 is altered by the slower equilibration of CO2 with the atmosphere due to the carbonate

equilibrium system. Furthermore, as the world’s oceans are not a long-term sink or source of

O2, but are a sink for CO2, measurements of atmospheric oxygen can be used to constrain

the marine uptake of CO2 [Keeling et al., 1996, 1998b, Stephens et al., 1998]. A data-derived

tracer has been standardized to isolate only the portion of atmospheric oxygen that is in-

fluenced by marine processes, called atmospheric potential oxygen (APO). APO is defined

as:

δAPO = δ(O2/N2) +
1.1

XO2

(CO2 − 350) (1.3)

Here 1.1 is the nominal oxidative ratio (OR; see Section 5.1.2) for terrestrial photosynthesis

and respiration [Keeling and Manning, 2014, Severinghaus, 1995], and XO2
is the mole frac-

tion of oxygen in the atmosphere, 0.209392 [Tohjima et al., 2005a]. 350 is a reference CO2

value, and CO2 is the in situ mole fraction of carbon dioxide, in ppm. δAPO is expressed in

per meg [Stephens et al., 1998].

1.7 Southern Africa

Southern Africa is dominated by arid regions, with moister climes along the eastern and

southern edge of the continent (Figure 1.1). Much of the western and central portions of

the region, containing the Namib Desert and the Kalahari, are depopulated [CIESIN, 2005].

The areas with the greatest concentrations of people and industry are in South Africa, and

along the coasts. The great majority of the subcontinent is part of a large plateau known

as the Great Escarpment (Figure A.1). This topographic feature influences the atmospheric

circulation over southern Africa, particularly at the coasts (see Section 2.1.3) [Hills, 1979,

Tyson and Preston-Whyte, 2000].

The northern portion of the land surface of southern Africa is dominated by savannas

and grasslands. In January, the intertropical convergence zone (ITCZ) is at its southern-

most position and its passage to and from this southerly maximum brings summer rains to

this region during November–April [Schneider et al., 2014, Tyson and Preston-Whyte, 2000].

During austral winter the ITCZ is in the Northern Hemisphere, and conditions throughout

much of the subcontinent are dry, creating a seasonality in precipitation, a cycle to which the

activity of the terrestrial biosphere is linked (Figure A.2) [Reason and Mulenga, 1999]. The
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Figure 1.1: The Köppen-Geiger climate zones of southern Africa. Data from Kottek et al.
[2006]. The “X” marks the location of NDAO. “Med.” stands for Mediterranean.

main synoptic system that produces rainfall over the area are known as tropical-temperate

troughs, which are associated with tropical convection, and form when upper atmosphere

troughs combine with low-lying tropical disturbances [Macron et al., 2014, Ratna et al., 2013,

Reason and Mulenga, 1999]. Subtropical cut-off lows also bring a substantial amount of rain-

fall to the region. These structures form when cold air from the stratosphere is isolated from

the original source and capped underneath by a pool of warm air; they occur preferentially

in March–May [Singleton and Reason, 2007]. Additionally, the El Niño–Southern Oscillation

(ENSO) has a significant effect on precipitation over interannual time scales. During the

high/positive phase of the Southern Oscillation (La Niña conditions), the ascending limb of

the African Walker cell is over the center of the region, creating dry conditions, whereas dur-

ing low/negative phase (El Niño conditions), the descending limb of the Walker cell is over

central southern Africa, creating unusually wet conditions [Lyon and Mason, 2007, Muller

et al., 2008, Ratnam et al., 2014, Reason and Rouault, 2002, Tyson and Preston-Whyte,

2000]. ENSO is also the major driver of interannual variability in carbon fluxes from south-

ern Africa; ENSO events create positive anomalies in CO2 flux [Ciais et al., 2009, 2011,

Valentini et al., 2014]. On a global scale, the entire continent accounts for about one quarter



1.8. BIOMASS BURNING 7

of the interannual variability of the carbon cycle [Valentini et al., 2014, Williams et al., 2007].

On balance, while the entire continent of Africa is probably a small sink for CO2, southern

Africa considered alone is probably a net source of CO2 [Bombelli et al., 2009, Ciais et al.,

2011, Valentini et al., 2014, Williams et al., 2007]. This is also true for CH4 and N2O. The

magnitude of these fluxes is still quite uncertain, and obviously dependent on how much

area is integrated [Gurney et al., 2002, Valentini et al., 2014]. Carbon emissions from land-

use changes in Africa are larger than the continent’s fossil fuel emissions [Ciais et al., 2011,

Valentini et al., 2014, Williams et al., 2007]. South Africa is the largest emitter of CO2 from

the burning of fossil fuels for any African nation, with Zambia, Zimbabwe, the Democratic

Republic of the Congo, and Angola also in the top fifteen emitters [Canadell et al., 2009]. An-

thropogenic emissions from fossil and biofuels are expected to increase in the coming decades

as cities develop and expand; fossil fuel emissions could rival that of biomass burning on the

continent by 2030 [Liousse et al., 2014]. While fossil fuel emissions are low for the depopu-

lated interior (Botswana, Namibia, parts of South Africa), domestic burning of biofuels is an

important and unconstrained source of emissions (see Section 1.8). The southernmost coastal

region appears, from atmospheric data, to be a net sink. Savanna carbon balances are still

quite uncertain; while the biomes is quite productive, biomass burning alters its utility as a

long-term sink, and termite activity in these areas could be a substantial source of CH4 to

the atmosphere [Ciais et al., 2011]. The uncertainty in carbon and GHG fluxes for southern

Africa is mostly due to data paucity [Ciais et al., 2011]. Atmospheric inversions for Africa

are severely hampered by the lack of observations [Gurney et al., 2003, Williams et al., 2007].

1.8 Biomass Burning

Biomass burning—referring to the combustion of any type of biomass, whether through pre-

scribed burns, wildfires, or domestic use—is a considerable source of trace gases and aerosols

to the atmosphere and has an important role in global ecology, atmospheric chemistry, cli-

mate, and human health [Bowman et al., 2009, Crutzen and Andreae, 1990, Langmann et al.,

2009]. The savannas and grasslands of southern Africa experience a tremendous number of

fires each year during the dry season (typically April to October) [Scholes et al., 1996, Silva

et al., 2003, van der Werf et al., 2010]. The humid savanna region between 5–20°S hosts the

most fire activity and is a global hotspot for vegetation fires [Hoffa et al., 1999, Justice et al.,

1996, Sá et al., 2011, Ward et al., 1996] (Figure 1.2). Inside this latitudinal zone the highest

fire activity spans a region shared by Angola, The Democratic Republic of the Congo, and

Zambia [Amraoui et al., 2010].

Most savanna fires are anthropogenic [Archibald et al., 2009, Edwards, 1984, Hall, 1984,

Lauk and Erb, 2009]. Fires are set by farmers and herders to promote the growth of herba-

ceous plants for livestock, by hunters and farmers to flush out and manage game, for snake

removal, and for landscape management by locals or landscape management authorities

[Shaffer, 2010, Sheuyange et al., 2005, van Wilgen et al., 1990]. It is interesting to note that

fires are crucial to the maintenance of savanna ecosystems in southern Africa: simulations and

empirical studies have shown that most savanna regions would develop into closed-canopy

forests without a frequent fire regime [Bond et al., 2005]. Precipitation also exerts a strong

control over the distribution and occurrence of fires, by dictating the fuel load [Archibald

et al., 2009, Sá et al., 2011]. In the last decade, the incidence of fire has increased in southern

Africa by about 10% per year, due mostly to increasing precipitation trends [Andela and

van der Werf, 2014]. African savannas and grasslands are likely to be a net carbon sink, as

fire emissions are compensated for by the subsequent regrowth after burning [Ciais et al.,

2011, Lehsten et al., 2009, Saamak, 2001, Williams et al., 2007].
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Figure 1.2: The mean fraction of each grid cell that is burned each year (left panel), and a
time series of the total area burned in the domain per day (right panel). Data is from the
Global Fire Emissions Database (GFED), Version 4.0 [Giglio et al., 2013].

Excluding South Africa, three quarters of total primary energy consumption in the region

comes from biofuels; 81% of households in Sub-Saharan Africa use wood-derived biofuels,

with fuelwood usage predominating in rural areas and charcoal in urban centers [AFREA,

2011, Bertschi et al., 2003, FAO, 1999]. In contrast to wildfires, emissions are year-round.

Such domestic biomass burning (as distinct from vegetation fires) is also thought to be a

globally significant source of trace gases and aerosols to the atmosphere, and particularly

prevalent in southern Africa, although there is not as much research on this type of biomass

burning as compared to others [Andreae and Merlet, 2001, Bertschi et al., 2003]. Bertschi

et al. [2003] estimated that 84% of total CH4 emissions from biomass burning in Zambia were

from domestic fuel use, and that the contribution of CO was about equal with that from

savanna fires. Domestic biomass burning can be composed of fuelwood, nonwoody vegetation,

agricultural residues, or dung, in addition to domestic use of charcoal, coal, garbage, and

liquid petroleum products; per capita usage rates vary with season, availability, family size,

and degree of urbanization [Brocard and Lacaux, 1998, Ludwig et al., 2003, Marufu et al.,

1997, 1999, Mulaudzi, 2006].

1.9 The African Haze Layer

Due to the extent of these emissions and the vertical stability of the atmosphere over southern

Africa (see Section 2.1.2), thick haze persists in the lower troposphere (surface to 3–6 km) and

exerts an influence over the region even in areas remote from direct sources, where pollutant

levels can rival urban air [Kirkman et al., 2000, Sinha et al., 2003, Swap et al., 2003]. The

haze layer is usually well-mixed and is characterized by high levels of aerosols, CO, H2O,

O3, and other trace species, with the degree of enhancement against the background of these

depending on the age of the air [Haywood et al., 2003, Swap et al., 2003]. Most plumes

from savanna fires are indistinct from the haze layer within 10–30km of the fire [Yokelson

et al., 2003]. Plumes of aged burning products occurring above the boundary layer of trace

gases and aerosols resulting from southern African biomass burning are a major source of

these products to the southern Atlantic Ocean and the Indian Ocean, primarily the latter

[de Laat, 2002, Garstang et al., 1996, Sinha et al., 2004, Thompson et al., 1996, Tyson, 1997,
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Tyson et al., 1996b, Zhang et al., 2010]. Such plumes, of CO2 for instance, have been shown

to extend from southern Africa to as far as Australia [Tyson and D’Abreton, 1998]; one

particularly notable event observed during an ENSO year was dubbed the “River of Smoke”

[Annegarn et al., 2002]. Model simulations have shown that the climate of southern Africa is

sensitive to aerosol loading and GHGs from biomass burning, although the net effect of all

direct and indirect effects is uncertain [Paeth and Feichter, 2006, Randles and Ramaswamy,

2010, Roeckner et al., 2006].

Namibia is also subject to these sub-continental trends, although polluted air masses are

often separated from the planetary boundary layer by clean layers, or clean air slots (CAS)

[Hobbs, 2003]. CAS are thought to be caused by thermally stable, subsiding air from the free

troposphere, although mixing of the plume into the haze layer and subsequent recirculation

has also been seen [Singh et al., 1996, Sinha et al., 2003, Tyson and D’Abreton, 1998,

Yokelson et al., 2003]. During SAFARI 2000, vertical profiles off the Namibian coast showed

clean marine air masses close to the surface, underlying the continental outflow characterized

by a biomass burning-induced haze region starting at ∼2km [Schmid et al., 2003, Sinha et al.,

2003, Yokelson et al., 2003].

1.10 The Benguela Current Region

The Benguela Current extends poleward from the Angola Current (14–17°S) to the Agulhas

Current (35–37°S) along the western coast of southern Africa, and is unique among the other

eastern boundary currents in that it is bordered by warmer water at both its northern and

southern edges [Hutchings et al., 2009]. The region is considered to represent a biogeochemical

province that is distinct from the South Atlantic [Reygondeau et al., 2013]. Generally the

Benguela is thought of as being divided into a northern and southern region, separated by

the intense upwelling cell at Lüderitz1 [Fennel, 1999, Veitch et al., 2009]. The system is a

major fishery for hake, sardines, and other planktivorous fish, although these are vulnerable

to episodes of high sulfide, low oxygen water, the Benguela Niño, and overfishing [Heymans

et al., 2004, Hutchings et al., 2009].

Coastal upwelling is a phenomenon in which sustained northerly winds (Northern Hemi-

sphere) or southerly winds (Southern Hemisphere) push the surface waters away from shore

due to Ekman transport [Mann and Lazier, 1996, Sverdrup, 1938]. The advected surface wa-

ter is then replaced through upwelling of bottom water from the continental slope; as water

from these depths is usually quite old, much or most of the organic matter has been reminer-

alized during its long storage away from the euphotic zone. As a result, upwelled waters are

characterized by high nutrient concentrations and cold temperatures. Phytoplankton blooms

are common after upwelling events, as nutrient limitation of growth is removed. Accordingly,

many of the eastern boundary currents of the world are highly productive marine systems.

There are five major coastal upwelling regions in the world, namely the Peru Current, the

Canary Current, the California Current, and the Benguela current; the exception being the

Somali Current, which is not an eastern boundary current, but where an upwelling region is

created by the monsoon [Mann and Lazier, 1996].

The Benguela upwelling system is the most productive of the eastern boundary-associated

upwelling zones, with an annual primary productivity of approximately 0.37 PgC [Carr,

2002] and a maximum areal rate of ∼3 gC m−2 day−1 [Carr and Kearns, 2003], qualifying it

as a hypertrophic system under Nixon’s classification scheme [Nixon, 1995]. Organic carbon

1At one point it was reported that the town had been renamed in 2013 to !Nami}Nûs, as part of a larger effort
to restore indigenous names to places named during colonial times. This was a misunderstanding relating
to the ambiguous wording of a statement by President Hifikepunye Pohamba, as it was later clarified to
pertain to the constituency only [Staff Reporter, August 27, 2013].
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settling fluxes on the continental slope were found to be on the order of 10–100 gC m−2

yr−1 [Aspetsberger et al., 2007, Inthorn et al., 2006]. The high productivity to be found in

this region is mainly a result of the particularly strong and near-continuous nature of the

upwelling, the magnitude of which is the largest of the major eastern boundary currents

[Bakun and Weeks, 2004].

The magnitude of the advection of the ocean surface layer has considerable consequences

for the ecology and biogeochemistry of the region. While phytoplankton populations thrive

in this region, herbivorous zooplankton populations, with their longer generation times,

are unable to keep pace with the primary producers [Bakun and Weeks, 2004], resulting

in the underutilization of the carbon fixed by autotrophs and in significant deposition of

autochthonous organic matter to the sediments. It has been suggested that this situation

has been greatly exacerbated by the overfishing of sardine populations in the 1970s: sardines

are very effective grazers in other coastal upwelling systems and, unlike zooplankton, can

move against the offshore transport [Bakun and Weeks, 2004, Boyer, 1996]. The sardine

stocks have yet to recover from this overfishing, and their absence may have enabled a large

increase in the number of jellyfish [Lynam et al., 2006].

1.11 The Namib Desert

The Namib Desert is one of the driest areas on Earth, with annual precipitation usually

less than 25 mm yr−1, although consecutive years without rain are not unusual [Hutchinson,

1995]. A distinctive feature of the area is the common occurrence of fog (60–200 days yr−1),

a result of the nearby cold waters of the Benguela Current; fog is a larger source of moisture

than rainfall to the region [Lancaster et al., 1984, Olivier and Stockton, 1989, Shanyengana

et al., 2002]. The Köppen-Geiger climate classification is BWh (“hot desert”) or sometimes

BWk (“cold desert’) [Kottek et al., 2006]. The Namib Desert extends ∼2000 km along the

coast and some 150 km inland where it terminates at the Great Escarpment. The biomes

bordering the Namib are classified as xeric shrublands, drylands or savannas [Olson et al.,

2001].

1.12 Gobabeb

NDAO (23.563118°S; 15.045660°E) is located at Gobabeb, in the Erongo Region, ∼600 m

from Gobabeb Research and Training Centre (GTRC), a desert research station. The station

is situated at an elevation of 408 m above sea level, ∼50 km from the coast, along the Kuiseb

River, an ephemeral river that demarcates the northern margin of the Namib Sand Sea from

a gravel plain region to the north. There is significant vegetation along the river, though

much of it is dead or dormant. In the Sand Sea, years with rain can trigger the growth of

psammophilous plants such as the !nara (Acanthosicyos horridus) [Sjöskog, 2008].

All of the facilities at Gobabeb are solar powered, although there is a backup generator

that runs occasionally when there is fog or if the load on the system is too high. The

primary goals of GRTC are to educate and study sustainable living in arid environments

and to study dryland ecology. The total number of staff at Gobabeb fluctuates quite a

bit but is usually under 30. In recent years atmospheric research has become an increasingly

important aspect of the scientific activities at Gobabeb, due to its remote location. Karlsruhe

Institute of Technology operates a land surface temperature validation project, as well as

a Baseline Surface Radiation Network station. A group from the University of Basel makes

micrometerological measurements including CO2, water vapor, and energy fluxes. From the

perspective of NDAO, the most relevant independent atmospheric research activity in the
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area is the NOAA ESRL flask sampling site (station ID “NMB”) in the dunes close to the

station, the data from which is presented and discussed in Section 2.1.4.





2
The Representativeness of

Observations at NDAO

2.1 Introduction

The atmosphere is generally described as well-mixed. A conservative tracer emitted at any

location on the surface will be widely distributed throughout the troposphere in both hemi-

spheres in less than one year. Over shorter time scales, it is also evident that a measurement

must be downwind of a local source or sink to detect its influence on the time series. Hence,

in order to interpret stationary measurements that are influenced by surface fluxes, it is

necessary to consider atmospheric transport to their location. The time interval considered

also determines the amount of spatial information that is integrated. For example, the yearly

average CO2 mole fractions measured at the South Pole will be affected by fluxes of CO2

in the Northern Hemisphere. The first ground stations, such as at Mauna Loa [Pales and

Keeling, 1965], were selected as they were determined to be background sites—locations

where the measurements were as representative of as large a volume of air as possible, and

uninfluenced by near-field fluxes [Tans et al., 1990].

In this chapter the spatial representativeness (as a function of time) of the NDAO time

series is discussed in the context of general, regional, and mesoscale circulation. Atmospheric

transport to the station was modeled for the operable period and compared to the in situ

meteorological record. The NOAA flask time series from the nearby site NMB was also

analyzed to extend the current observations back in time, and to assess the seasonal cycle

and secular increase in greenhouse gases as seen from the station location.

2.1.1 The Hadley Circulation

A feature of the general circulation with particular relevance to the study region is the

southern Hadley Cell. Air ascends in the region of the equator due to high insolation at the

intertropical convergence zone (ITCZ), and is replaced by a large-scale meridional pressure

gradient—which is deflected by the Coriolis force—resulting in the trade winds [Hadley,

1735, Lorenz, 1967, Webster, 2004]. This pattern creates a global circulation cell that forms

a zonal band, causing large-scale subsidence in the subtropics around 30°N or S, transporting

heat poleward, exchanging air between the upper troposphere and stratosphere, and causing

persistent climatic patterns in precipitation and temperature at the surface [Newell et al.,

1972, Quan et al., 2004]. It is this region of large-scale subsidence that causes the zonal band

of deserts of which the Namib is a part [Dirmeyer and Shukla, 1996, Webster, 2004].

The width and location of the southern Hadley cell, however, varies seasonally [Cook,

2003, Kang and Lu, 2012]. This is the basis for the distinct seasonality in transport modes

seen at NDAO, which will be shown later. During austral summer, atmospheric water vapor

is higher, atmospheric pressure is lower, and strong equatorward winds carry marine air

13
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Figure 2.1: Atmospheric pressure and water vapor as seen at NDAO, aggregated to 1-hour
means. Pressure is measured with a sensor on the meteorological array. The absolute mole
fraction of water vapor is determined with the CRDS after applying a correction. Missing
data from the CRDS (blue dots) is supplemented with calculated water vapor mole fractions
from the meteorological data (gray dots). Also plotted is a 24-hour running mean (skyblue
line). Note that relative humidity shows the same seasonality as water vapor (see Figure
4.2).

masses inland. At this time the descending limb of the southern Hadley cell is well south of

NDAO and the ITCZ has moved into the Southern Hemisphere, but is still appreciably to

the north of the station. In austral winter, the Hadley cell moves northward and the station

is underneath the region of large-scale subsidence, resulting in drier, more stable conditions

and higher atmospheric pressure (Figure 2.1).

2.1.2 Regional Circulation

The seasonality induced by the general circulation also has an effect on the different modes

of synoptic variability. The dominant or most characteristic mode of atmospheric circulation

over southern Africa is anticyclonic around a continental high pressure region (Figure 2.2).

This mode is most prevalent during austral winter—June through August, roughly—as con-

ditions are more favorable for its formation during the period of the year when the region

of large-scale subsidence is overhead [Newell et al., 1972, Tyson et al., 1996b]. In contrast,

easterly wave disturbances prevail during the austral summer months.

The other common modes, ridging highs and westerly wave disturbances, have less sea-

sonality and can occur throughout the year [Tyson et al., 1996b]. Ridging anticyclones are a

result of westerly disturbances from the South Atlantic Anticyclone, which follow the west-

erlies but ridge over the continent [Tyson and Preston-Whyte, 2000, Tyson et al., 1996b].
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Figure 2.2: Climatology of the major circulation modes of the troposphere over southern
Africa. Data is replotted from Tyson et al. [1996b].

Westerly waves also bring moisture and air masses from the South Atlantic, every 6 days

on average, and disrupt the stability created by the semi-permanent continental high [Swap

et al., 1996, Tyson et al., 1996b]. Other synoptic modes are possible, of course, and in practice

atmospheric circulation does not always conform to these generalizations.

To the west of the continent, the South Atlantic Anticyclone1 is the most persistent and

dominant feature [Richter et al., 2008, Venegas et al., 2000]. The anticyclone shifts about

13° zonally throughout the course of the year, reaching its westernmost extent in August

[Reason et al., 2006, Vigaud et al., 2009]. The eastern boundary of this pressure system

is composed of equatorward winds (Figure 2.3). In this region wind speeds are strong and

defined enough to be classified as a coastal jet, according to Nicholson [2010]. This jet is

analogous to ones found in other eastern boundary current systems. Such coastal jets are

a distinct type of low-level jet in that they occur alongshore and are driven, in part, by a

land-ocean temperature gradient, and affected by local topography [Parish, 2000]. The core

of the jet is typically located beneath the trade wind inversion, at the top of the marine

boundary layer [Nicholson, 2010]. Wind speeds in the structure are strongest in the area

with the highest upwelling, and the seasonality mirrors that of the coastal upwelling, due to

the positive feedback between the two: as winds increase in magnitude, upwelling increases

and SST drops, in turn strengthening the jet [Nicholson, 2010, Parish, 2000]. The core is an

average of 650 km offshore, at a height of 200–800 m a.s.l., ranging from 17°S to 25°S; it

is weakest in May and June, but fairly persistent throughout the year with a maximum in

October [Nicholson, 2010].

1Sometimes the South Atlantic High, or St. Helena High
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Figure 2.3: Mean sea level pressure and 10 m wind speed over southern Africa for October
2012–October 2014. Data is from the ECMWF ERA-Interim reanalysis [Dee et al., 2011].

The Angola Low is another key feature of southern Africa (see Figure 2.3), due to its role in

regional rainfall as a moisture source [Hart et al., 2010, Kuhnel, 1989, Lyon and Mason, 2007,

Reason and Mulenga, 1999, Reason et al., 2006]. This heat low has intensified in recent years,

thought to be due to the shift towards a more positive Southern Annular Mode, which in turn

is linked to the Antarctic ozone hole [Manatsa et al., 2013]. Heat lows are surface disturbances

characterized by cyclonic flow, and often form in arid regions with high insolation and a

horizontal gradient in temperature, such as at a coastal location [Rácz and Smith, 1999].

The Angola Low and the South Atlantic Anticyclone have a strong connection and act in

concert to drive equatorward winds in the region of NDAO. The cyclonic circulation around

this low pressure region develops around October and strengthens through February [Piketh

and Walton, 2004, Reason et al., 2006].

Also of note are the presence of absolutely stable layers (ASL) above the sub-continent.

This well-established feature was noted and investigated during the SAFARI2 and the NASA

Transport and Atmospheric Chemistry near the Equator–Atlantic (TRACE A) campaigns,

along with independent aircraft campaigns and modeling studies. The consensus is that there

exist one or two temporally persistent ASL in the mid- to upper troposphere [Cosijn and

Tyson, 1996, Garstang et al., 1996, Piketh and Walton, 2004, Tyson and Preston-Whyte,

2000]. ASLs, i.e., a layer of the atmosphere where the lapse rate is smaller than the satu-

rated adiabatic lapse rate, can form in regions with large scale subsidence, due to adiabatic

2There were two SAFARI campaigns; the first was the South African Fire—Atmospheric Research Initiative
(1992). The second was also named SAFARI, but in that case the acronym stood for the “South African
Regional Science Initiative” (2000).
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warming. These layers were found to preferentially occur at ∼500 hPa, ∼700 hPa, and ∼850

hPa [Freiman and Tyson, 2000, Piketh and Walton, 2004, Swap and Tyson, 1999, Tyson

and Preston-Whyte, 2000, Tyson et al., 1996b]. Such discontinuities inhibit vertical mixing

between the lower to upper troposphere.

The ASL concept grew partly from the distinct and visible haze layers that commonly occur

over southern Africa [Hobbs, 2003], but primarily from radiosonde soundings. Recently, the

idea that ASLs preferentially form at two or three geopotential heights has been questioned

by Burger and Piketh [2013], using a large dataset of more than 90,000 soundings. The

authors point out that data analysis during the SAFARI period of radiosonde data was

often restricted to a few heights due to limited computational resources, and that if ASLs

are looked for at all observed heights, as many as 100 can be found on a given day. ASLs

tend to be found preferentially at certain heights, such as the lower 2 km of the atmosphere,

or between 500 and 600 hPa. Thus it seems likely that while the stability of the atmosphere

at certain heights, due to regional subsidence and anticyclonic conditions, is well-established

and unquestioned, the attribution of this stability to one or two ASLs is likely due to a

sampling artifact.

Recirculation of air around the high pressure zone over southern Africa is also an inter-

esting characteristic of the region. Recirculation is defined such that an air mass that passes

a meridional plane placed in the center of the anticyclone is recirculated; such recirculation

events can last for up to 20 days, averaging to 4–10 days [Tyson et al., 1996a]. One study

determined that a little less than half of the mass of aerosols being transported across the

continent during the period of a year were recirculated material [Tyson and D’Abreton,

1998]. This phenomenon, in conjunction with the inhibited vertical mixing during anticy-

clonic conditions, means that aerosols, terrestrially-sourced trace gases, and other continental

influences can be concentrated in the southern African boundary layer, and that horizontal

transport is maximized [Piketh et al., 2002, Tyson, 1997, Tyson et al., 1996a, 2001].

2.1.3 Mesoscale Circulation and the Thermo-Topographic Wind System

The central Namib features pronounced mesoscale circulation patterns that are manifest in

the wind field as a distinctive diurnal cycle. This local thermo-topographic wind system has

been studied by Tyson and Seely [1980], Lancaster et al. [1984], Lancaster [1985], Lindesay

and Tyson [1990], and [Brimelow and van Heerden, 1996]. The system was modeled by

Hänsler [2011], with good agreement for the Gobabeb site. For much of the year the near-

surface wind field is dominated by mesoscale features, which are said to be decoupled from

synoptic activity [Lengoasa et al., 1993]. Goldreich and Tyson [1988] compared the ratio

of diurnal variability in wind speed to inter-diurnal variability and found that the Namib

was unique in its high degree of mesoscale wind activity when compared to the whole sub-

continent. This is due in part to the large temperature contrast between land and ocean in

the region, and the high relief between the coastal plain and the Great Escarpment [Tyson

and Seely, 1980].

There are five different wind systems in the Namib which are referred to in the literature:

� Sea breeze (SB). Strong, southwesterly winds that develop in the morning along

the coast and are carried towards the Great Escarpment, penetrating as far inland

as Gamsberg (170 km from the coastline) [Lindesay and Tyson, 1990]. The pressure

gradient is zonal but due to the Coriolis force the wind direction is SW3. The sea

breeze reaches Gobabeb in the late afternoon and stops at ground level shortly after

3For Gobabeb, 52 km from the coast, and with an average wind speed of 8–10 m sec−1, the Rossby number
is about 1, hence the Coriolis force is not negligible [Jackson, 1954].
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nightfall as the mountain-plain wind (MPW) or plain-mountain wind (PMW) develops,

although it persists for a few more hours at the 500–700 m level. The sea breeze occurs

year-round.

� Land breeze (LB). The counterpart to the sea-breeze, this wind is weaker, more

shallow, and less frequent than the sea breeze.

� Plain–mountain wind (PMW). A northwesterly wind driven by the temperature

contrast between the plateau and the large expanse of stone desert to the north of

Gobabeb. This is one of the strongest and most consistent modes in the central Namib,

although it is less common and weaker during austral winter.

� Mountain–plain wind (MPW). From the SE, occurring at night when the interior

has cooled faster than the gravel plains. The MPW is a weaker flow compared to the

SB or PMW, and occurs almost exclusively during austral winter. The wind develops

during the late evening and blows throughout the night until sunrise.

� Bergwind (BERG). Also known as föhn, the bergwind is synoptically induced by a

high pressure system over the interior of southern Africa and a low pressure system at

the coast [Tyson, 1964]. The dry air heats adiabatically as it descends the Escarpment.

The winds can be quite intense and occasionally cause sandstorms at Gobabeb.

Such wind systems are likely to cause distinct variations in atmospheric composition, since

Gobabeb sits in the middle of a gradient in the atmosphere between land and ocean. This is

evident in the zonal extent of fog and rain in the central Namib, which follows a declining

gradient from the coast to the Escarpment [Eckardt et al., 2013, Hänsler, 2011, Juergens

et al., 2013, Lancaster et al., 1984].

2.1.4 NOAA NMB Surface Flask Record

Surface flask samples have been taken near Gobabeb (Figure 2.4) sporadically since 1997 as

part of the U.S. National Oceanic and Atmospheric Administration Earth System Research

Laboratory Global Monitoring Division (NOAA ESRL GMD) Carbon Cycle Cooperative

Global Air Sampling Network. Data coverage is generally low and no samples were taken

between March 2001 and July 2006, although after this lacuna the coverage has more than

doubled. For a record spanning 5,357 days, approximately 200 days were sampled. Data

paucity aside, this historic record augments the in situ measurements at NDAO and affords

an opportunity to assess how well large-scale and long-term trends of greenhouse gases are

represented through observations at Gobabeb.

The data that are available from the NOAA ESRL flasks are mole fractions of CO2 [Conway

et al., 2011], CH4 [Dlugokencky et al., 2010], N2O, CO [Novelli and Masarie, 2010], SF6, and

H2 [Novelli et al., 2010]; also measured are the δ13C [White and Vaughn, 2011] and δ18O

[White and Vaughn, 2009] isotopic ratios of CO2.

2.2 Methods

In this study atmospheric transport was simulated for the station-operable period. Modeled

back-trajectories and footprints were compared to in situ meteorological data to assess their

accuracy. Back-trajectories were then analyzed to determine the spatial representativity of

GHG observations at NDAO as a function of time. Finally, the NMB flask record was used

to compare the seasonal cycle and secular increase seen from Gobabeb to other sites in the

Southern Hemisphere.
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NDAO

NMB
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Figure 2.4: Location of the NOAA ESRL flask sampling site (NMB) and NDAO.

2.2.1 Atmospheric Transport Modeling

Two transport models were used, one with a regional domain and the other with a global

domain. The regional model employed was the Stochastic Time-Inverted Lagrangian Trans-

port (STILT) model [Lin et al., 2003]. The global model employed was the HYbrid Single

Particle Lagrangian Integrated Trajectory (HYSPLIT) 4 model [Draxler, 1999, Draxler and

Hess, 1997, 1998].

Back-trajectories, which trace the path of a particle from a receptor point backwards in

time, can give some impression of the recent origin of air masses that pass over the station.

Trajectories were run backwards with the HYSPLIT model from the NDAO tower for 120

hours. The selection of this time length was fairly arbitrary—long enough to see synoptic

patterns, but as short as possible, since longer trajectories usually have greater errors. A

new trajectory was calculated every six hours, starting at 0:00 UTC, i.e., at 1:00, 7:00,

13:00, and 19:00 local time. The model was run with a spatial resolution of 1°× 1° and a

temporal resolution of 1 hour. A vertical cut-off of 10 km a.g.l. was used. Meteorology was not

calculated in the model but taken as model input; the fields selected were from the National

Center for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS). It

is important to note that back-trajectories can contain considerable errors and should not be

interpreted too closely, particularly if they are run for several days or more [Stohl, 1994]. In

data-poor regions, such as the South Atlantic, trajectories driven with different meteorology

can diverge on the order of several thousand kilometers after a few days [Pickering et al.,

1994].

The zone of surface influence around a ground-based station is better realized as a 2-D

footprint, either in terms of concentration or flux [Gloor et al., 2001, Horst and Weil, 1994,

Schmid, 2002]. This directly quantifies the influence of surface fluxes on the concentration,

and giving the potential effect of a unit of flux on the mole fraction or mixing ratio, e.g.,

in ppm/µmol m−2 sec−1. Footprints were calculated using the STILT model. STILT was

run with European Centre for Medium-Range Numerical Weather Prediction (ECMWF)

meteorological fields on a 0.25° × 0.25° grid. The domain chosen to run the model was 5°N
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NMB
 CFA

EIC

      20S
25S

ASC

CPT

Figure 2.5: Location of marine background flask sampling sites. The sites are, from left to
right, 20S: Pacific Ocean (shipboard measurement) 20°S, 174°W, NOAA; 25S: Pacific Ocean
(shipboard measurement) 25°S, 171°W, NOAA; EIC: Easter Island, Chile, NOAA; NMB:
Gobabeb, Namibia, NOAA; CPT: Cape Point, South Africa, SAWS; CFA: Cape Ferguson,
Australia, CSIRO.

to -45°S; -30°W to 40°E. The model was run backwards for 10 days at one-hour intervals,

producing a 10-day integrated footprint for each hour of the day.

2.2.2 Flask Data Treatment

In addition to the NMB site, several other flask sampling sites from the NOAA and the Aus-

tralian Commonwealth Scientific and Industrial Research Organisation (CSIRO) networks

were selected for comparison to the NMB record (Figure 2.5 and Table B.1). Each site was

a coastal or marine site within 5° latitude of NDAO. The datasets were from a CSIRO site

located at Cape Ferguson, Australia (CFA), and three NOAA sites: Easter Island (EIC),

and two shipboard measurement sites, at 20°S, 174°W (20S) and 25°S, 171°W (25S). Also

included were the NOAA flask sampling site on Ascension Island (ASC), and the continuous

measurement site located at Cape Point (CPT), South Africa, run by the South African

Weather Service (SAWS).

NOAA ESRL flasks from the NMB site are taken in pairs, which means that if there is

a fault with one flask both should be discarded. Data that had been flagged for analyti-

cal reasons were excluded entirely, although flask pairs whose absolute difference exceeded

WMO/GAW recommendations (see Table 3.2) were used in some instances. In such cases this

is clearly specified. Data flagged as preliminary were included in the analysis. All data were

acquired from the WMO/GAW World Data Centre for Greenhouse Gases. At the CSIRO

site, flasks are taken in triplicate, so if the difference between one flask and the other two was

greater than the WMO/GAW compatibility guideline, the single flask was discarded and the

remaining two were used. All pairs and triplicates were taken as a mean.

For CPT, continuous observations were available. A filtered, clean marine background time

series of CO2, CO, and CH4 was extracted from the full half-hourly Cape Point Observatory

(CPT) record. The CPT background data is generated by selecting only observations which

have a corresponding wind direction between 170° and 320°, and a 222Rn concentration less

than 350 mBq m−3 [Brunke et al., 2004]. Data selected in this manner is considered to be
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Figure 2.6: Aggregated 5-day back trajectories calculated every 6 hours (1:00, 7:00, 13:00,
19:00 local time) with the HYSPLIT model from October 1, 2012–October 1, 2014. The color
gradient shows the log of the number of trajectory points in each 0.1° grid cell.

widely representative of the Southern Hemisphere marine background; the CPT is one of a

few global GAW stations.

The isolation of trends and seasonal cycles was done following an approach similar to that

of Thoning et al. [1989] and Dlugokencky et al. [1994]. After aggregating to daily means,

a smooth curve was fit to the data by fitting a second-order polynomial and up to four

harmonics, depending on the significance these terms. Significance was deemed present if

the p-value of the F statistic of the null hypotheses test that the coefficient was equal to

zero was less than 0.05. Outliers were identified as points that were more than two standard

deviations from the resulting curve; these points were then excluded and the curve refit

[Tans et al., 1990]. The residuals of this curve were linearly interpolated and subsequently

filtered to remove high-frequency variations using a low-pass Butterworth filter with a cut-off

frequency of ω = 80 days. These filtered residuals were then fitted with a smoothing spline

(λ = 0.0015) to obtain the interannual variability. The seasonal cycle was then taken as the

sum of all harmonic terms from the final fitted curve, plus the filtered residuals. Average

growth rates were calculated as the mean rate of increase after deseasonalizing the final fitted

curve and adding the filtered, smoothed residuals.

2.3 Results and Discussion

2.3.1 Back-Trajectories

Three major structures are readily seen in the HYSPLIT back-trajectories of air from NDAO:

the South Atlantic High, the westerlies, and the anticyclone over southern Africa (Figure

2.6). The majority of trajectories pass over the South Atlantic or Southern Ocean (sometimes

as far away as the Drake Passage in 5 days) and enter the South Atlantic high pressure

system, passing Cape Point and running directly up the coast to NDAO. The other major

trajectory pathway captured by HYSPLIT was located in the anticyclonic circulation around

the sub-continent. These trajectories travel westwards through Mozambique, Zimbabwe, and

Botswana, also touching on the southern portions of Angola, Zambia, and the Democratic

Republic of the Congo.
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Figure 2.7: Top panel : The horizontal length scale of individual back-trajectories, determined
as the maximum distance a particle has traveled from NDAO. The scale is in 103 km. Middle
panel : the vertical length scale, taken as the average height of each trajectory; note that the
model has a vertical cut-off of 10 km. Bottom panel : the fraction of each trajectory which
resides over land, PBL fterr, for trajectory points under 1 km, intended to be representative
of trajectories in the planetary boundary layer (PBL).

Back-trajectories also exhibited a distinct seasonality. During the height of summer (December–

February), trajectories were exclusively marine in origin, while during austral winter (June–

August) a mix of marine and terrestrial trajectories were seen (Figure A.3). However,

throughout the entire year, the area with the greatest density of back-trajectories, and the

most persistent feature represented in HYSPLIT, is the coastline, where the alongshore winds

from the South Atlantic High and the Benguela jet occur (see Section 2.1.2).

Selecting only trajectories that were below 1 km made no difference in the distribution.

This is because there is a seasonality in the height of air mass recent origin (Figure 2.7, middle

panel). This annual cycle reflects the formation of the continental anticyclone during periods

of large-scale subsidence. Likewise, if air masses are categorized based on the amount of time

they reside over land, the degree of terrestrial influence also displays the same seasonality

(Figure 2.7, bottom panel). There is also a strong seasonal effect on the horizontal range of

transport to the site. While trajectories travelled farther over the previous five days during

summer, on average, the highest variability and the longest trajectories were found in the

winter months (Figure 2.7, top panel).
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Figure 2.8: The average integrated 10-day footprint, expressed as the sensitivity of the mole
fraction of CO2 as measured at the receptor point (NDAO), to a unit of flux in each grid
cell. Modeled with STILT, for the calendar year 2013. The pixel size increases in distance
from NDAO due to the dynamic grid resolution of the model. Location of NDAO is given
by a blue dot.

2.3.2 Footprints

2-D footprints (Figure 2.8), calculated with the STILT model for CO2, displayed similar

patterns in transport, which is not surprising given that the STILT model is a descendant

of HYSPLIT [Lin et al., 2003]. Nevertheless, it is encouraging since the models had differ-

ent resolutions (1° for HYSPLIT and 0.25° for STILT) and meteorology (NCEP GDAS for

HYSPLIT and ECMWF for STILT). Footprints and back-trajectories are also not directly

comparable, since footprints explicitly show the sensitivity of the measurements to the entire

surface within the domain, (but of course give no information about actual fluxes). The ex-

pected seasonal difference in sensitivity due to shifts in transport was also observed (Figure

A.4.)

2.3.3 Comparison of Back-Trajectories with in situ Meteorology

Given its coarse resolution, it is unrealistic to expect that the HYSPLIT model would per-

fectly simulate the local wind system in the central Namib. However, the model does capture

the shift from the marine sectors to the terrestrial sectors at the end of austral summer (Fig-

ure 2.9). This also implies that the local wind system is not largely decoupled from synoptic

patterns as suggested by some authors [Hänsler, 2011, Lengoasa et al., 1993]. Or rather, the

concept can be qualified: on a diurnal scale, decoupling seems to be a fair description, but

not on an annual or seasonal scale.

2.3.4 The NMB Flask Record, Compared to Other Marine Background Sites

Determinations relating to the seasonality and average annual growth rates are given in

Tables B.2 and B.3, for each flask sampling site by species. Due to the large gap in the NMB

flask measurements (see Figure A.5), assessing the degree of interannual variability was not

very profitable, so the discussion is confined here to average growth rates and seasonality. It
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Figure 2.9: Comparison of the seasonality of wind direction, as measured at NDAO (top
panel), and HYSPLIT back-trajectories, expressed as the fraction of each trajectory that
resides over land, PBL fterr, excluding those points which are greater than 1 km in altitude
(bottom panel). Wind direction is plotted as a running 24-hour mean, PBL fterr as a daily
mean. Since NDAO is on the western coast, winds coming from the east would result in
longer residence time over land.

should be emphasized that the curve fitting procedure described in Section 2.2.2 contains a

degree of arbitrariness, and that different approaches to curve fitting and component isolation

will yield slightly different results, particularly so if variability components like the seasonal

cycle are small [Pickers and Manning, 2015]. However, experimentation with different fitting

approaches demonstrated that the results presented here are robust to the method of time

series analysis, though admittedly the comparison of different approaches was not done in a

formal or exhaustive way.

In general, growth rates of all species were very close between sites. The average annual

growth rate for CO at NMB for the period 1997–2014 was −0.49± 2.5 ppb yr−1, though

since a large portion of the record is missing, this cannot be taken as definitive. In con-

trast, a positive trend was seen at Ascension Island (0.22± 2.5 ppb yr−1), while the other

locations experienced declines in CO, on average. Identifying global or hemispheric trends

in carbon monoxide is rather complicated as the spatial variability can be quite high, and

significant interannual variability (IAV) is seen for this species [Strode and Pawson, 2013].

IAV in biomass burning, fossil fuel emissions, and in atmospheric transport are important

determinants of year-to-year differences in CO mole fractions [Langenfelds et al., 2002, Nov-

elli et al., 2003, Szopa et al., 2007]. A trend of 0.33 ppb yr−1 for the period 2001–2011 was

found in the Ascension Island flask record and attributed to increases in biomass burning

and in the atmospheric methane content of the Southern Hemisphere [Wai et al., 2014]. A
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contrasting result was found for a study of total column observations from satellites [Worden

et al., 2013]. For the period 1999–2001 no trend was found for the Southern Hemisphere by

Novelli et al. [2003], using the NOAA surface flask network. Zeng et al. [2012] found a signif-

icant, negative trend for FTIR measurements in Antarctica and New Zealand for the period

1997–2009; the discrepancy between surface flask measurements and satellite measurements

has yet to be fully examined. Trends from satellite measurements must be used with caution,

since instruments like MOPITT (Measurement of Pollution in the Troposphere) often have

large biases and are not as sensitive to surface emissions [Chevallier et al., 2009, Hooghiem-

stra et al., 2012]. On the other hand, given the variability in emissions, single stations should

not always be taken as indicative of large areas, even if they are meant to be globally rep-

resentative. Yoon and Pozzer [2014] simulated CO globally with an atmospheric chemistry

general circulation model for 2001–2010, and found a decreasing trend in much of the North-

ern Hemisphere, but an increasing trend for the Ascension Island site, India, and east Asia.

For southern Africa, the model returned an increasing trend for southern Africa, but it was

not significant, due to the large IAV. Clearly, any long-term trends are region-specific, and

not hemisphere-wide.

Growth rates of CO2, CH4, and N2O at NMB were in good agreement with all other sites.

There was a also a clear decreasing trend in the δ13C content of CO2, −0.03h yr−1 at NMB

and matched by the other flask sampling sites, a measure of the 13C Suess Effect [Keeling,

1979]. This is similar to the trend observed at Cape Grim for a longer, but overlapping, period

[Allison and Francey, 2007], and is close to the global mean growth rate of −0.02h yr−1

[Langenfelds et al., 2002].

Due to the sometimes sparse data coverage, it is difficult to assess synoptic variability

except to say that it can be discerned in the time series, particularly for carbon monoxide

(Figure A.5). Seasonality, however, was clearly evident in most species. The phasing and

amplitude of the seasonal cycle of CO2, CH4, and CO varied between sites. For CO2, this

is not surprising. The Southern Hemisphere has a smaller land mass than the Northern

Hemisphere, and consequentially the contribution of terrestrial land plants to the seasonal

cycle of CO2 is reduced in comparison to the Northern Hemisphere. As a result, the seasonal

cycle of CO2 is small in the Southern Hemisphere. Emissions in the Northern Hemisphere

from fossil fuel consumption are also greater than in the Southern Hemisphere. Hence, the

seasonal cycle of CO2 in the Southern Hemisphere is influenced by terrestrial plants, biomass

burning, fossil fuel consumption, ocean ventilation, and interhemispheric transport, in some

cases to a nearly equal degree [Gurney et al., 2004, Heimann et al., 1998, Stephens et al.,

2013]. These factors can compete with or enhance one another, depending on their phasing.

The seasonality of CO2 was essentially identical in phasing and amplitude at the three Pa-

cific Ocean sites (Figure 2.10): Easter Island (EIC), and the two Pacific Ocean sites (20S and

25S). The amplitude of the seasonal cycle was smallest at these sites, reaching a maximum

in December/January, and a minimum in April. They also all showed a smaller secondary

peak in austral midwinter. Cape Ferguson (CFA) had similar timing to these sites in the

occurrence of maximum and minimum values, but showed greater variability throughout the

year, which complicated the climatology. At the South Atlantic locations, Ascension Island

(ASC) and Cape Point (CPT), the annual peak in CO2 mole fractions was during austral

winter, making them nearly opposite in phase to the Pacific sites. While the NMB site was

roughly in phase with the other South Atlantic locations, it had a much larger amplitude.

The small 0.4 ppb seasonal cycle of N2O at NMB had a maximum in February and a

minimum in late August. This is shifted in phase relative to CFA and also with reported

data for Cape Grim [Nevison et al., 2005, Park et al., 2012]. The seasonal cycle of N2O in the

Southern Hemisphere is due thermal effects on the solubility of N2O in seawater, ventilation

and biological activity, and stratospheric mixing [Nevison et al., 2005, Park et al., 2012].
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Figure 2.10: Climatology of selected flask sampling sites. The first 6 months of the year are
repeated for visual clarity. The location of each site is given in Figure 2.5.

Interestingly, the climatology of CH4 and CO was synchronized with that of CO2 at NMB,

while it was not at any other location. The seasonal cycle of CO and CH4 is due to changes

in OH abundance and source strength throughout the year [Seiler et al., 1984]. Clearly some

regional or local phenomenon influences the NMB measurements which is either absent or

only partially exerted at other sites at the same latitude. The causes of this distinctive

climatology is discussed at length in Chapter 5.

2.4 Summary and Conclusions

Based on the results of transport modeling and in situ observations of wind direction and

wind speed, a coherent picture of the representativity of the station has been created. The

representativity of the site changes based on seasonal shifts in the general circulation and

synoptic modes. In austral summer, the station sees air masses from the South Atlantic that

typically travel up the western coast of southern Africa, due to the strong equatorward winds.

These air masses experience longer-range transport and generally reside closer to the surface
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in the marine boundary layer. As the Hadley cell shifts poleward, the anticyclone develops

over the continent underneath subsiding air masses, and a terrestrial influence predominates

until the break-up of the anticyclone. Measurements at NDAO remain sensitive to marine

fluxes during austral winter, however, and it is during March–October that the greatest

variability in synoptic modes is seen. Based on the NMB flask record, a strong regional

influence from southern Africa on CO2, CH4, and CO is detected in austral winter that is

seen only weakly at other South Atlantic sites, and not at all at Pacific Ocean sites. As

such, it is concluded that NDAO is a regional background site with a high degree of synoptic

variability.





3
Station Design and Performance

3.1 Introduction

The success of efforts to use atmospheric oxygen to quantify the global carbon cycle is

dependent primarily on the availability of data, since coverage is lower for O2 than for CO2

[Manning and Keeling, 2006, Rödenbeck et al., 2008]. As oxygen is a major constituent of the

atmosphere, measuring small changes against the large background is technically challenging

but feasible with several methods, including mass spectrometry, paramagnetic analyzers, gas

chromatography, vacuum ultraviolet absorption, and fuel cell techniques [Bender et al., 1994,

Keeling et al., 1998a, Manning et al., 1999, Stephens et al., 2003, 2007, Tohjima, 2000].

Absorption spectrometers featuring high-finesse optical cavities are proving to be a highly

sensitive and user-friendly approach to measuring trace gases and are being widely adopted

by the GHG measurement community [Andrews et al., 2014, Paldus and Kachanov, 2005].

Commercial analyzers using the cavity ring-down spectroscopy and off-axis integrated cavity

output spectroscopy techniques can now be purchased to measure all of the major non-

synthetic greenhouse gases. While there are a fair number of reports on using such analyzers

to measure CO2, CH4, and the tracer CO [Chen et al., 2010, 2013, Flowers et al., 2012,

O’Shea et al., 2013, Rella et al., 2013, Winderlich et al., 2010, Zellweger et al., 2012], there

are few assessments of such analyzers for N2O, particularly from the field. Given that the

natural variability of this gas in the atmosphere is quite small—consider that the seasonal

cycle of N2O is typically less than 1 ppb in the lower troposphere [Jiang et al., 2007, Park

et al., 2012]—the potential for OA-ICOS instruments to greatly increase our understanding

of this powerful greenhouse gas is quite high.

3.2 Methods

3.2.1 Overview

The top of an aluminum 21 m mast serves as the basis for all atmospheric observations at the

observatory. Each of the three main instruments and the flask sampler has its own dedicated

sample line. The top of an aluminum 21 m mast serves as the basis for all atmospheric

observations at the observatory. Each of the three main instruments and the flask sampler

has its own dedicated sample line. The intakes of the sample lines are each protected from

suspended material and precipitation with a custom inlet. The inlet is mushroom-shaped

and allows for the flow-through of air, such that sample air is drawn from underneath the

cap of the inlet, through a 5 µm polyester filter, and then a portion is siphoned into the main

sampling line. From the top of the mast to the outer wall of the container the air sampling

lines are 12 mm SERTOflex tubing (SERTO GmbH, Kassel, Germany).

Large volume (5 L min−1) pumps run continuously to pull sample air down from the tower.

Inside the container, sample lines (1/8” O.D. stainless steel tubing) pull a smaller volume of air
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Table 3.1: Measurement Scales

Measurand Scale

CO2 WMO X2007

CH4 NOAA 2004

N2O NOAA 2006a

CO WMO X2004

δ(O2/N2) SIO

with a lower flow rate from the larger diameter tubing running up the tower via a T-junction.

7 L buffer volumes are located upstream of the large pumps to minimize pressure fluctuations.

Three lines of sample air pass through cool (4°C) water traps filled with glass beads, and

cryotraps (−80°C), also containing glass beads (Figure A.6 and Figure A.7). All water traps

are made from electropolished stainless steel. Sample air then is routed to the instruments: an

Oxzilla FC-II dual absolute and differential oxygen analyzer (DFCA), measuring δ(O2/N2)

(Sable Systems International, Las Vegas, NV, USA), a Picarro ESP-1000 cavity ring-down

spectrometer measuring CH4 and CO2, (Picarro Inc, Santa Clara, CA, USA) and a Los

Gatos N2O/CO-23d cavity-enhanced absorption spectrometer measuring N2O and CO (Los

Gatos Research Inc, Mountain View, CA, USA). Downstream of the T-junctions, the flow

rates are slightly different between instruments, reflecting their different requirements for

gas supply: flows are between 90–95 mL min−1 for the DFCA, between 150–210 mL min−1

for the CRDS, and 110–220 mL min−1 for the OA-ICOS. The larger range for the latter

two instruments is given because flow and sample line pressures gradually decline in between

filter replacements, due to the very fine dust present at the site.

The DFCA and CRDS are both housed in a rack receiving air directly from the air condi-

tioner, to minimize temperature fluctuations and to provide greater cooling power. Similarly,

the OA-ICOS is housed in an actively ventilated insulated box. Temperature control of the

laboratory is accomplished with two air-conditioning units which run singly in 12 hour shifts.

Total power consumption of the observatory is about 2.5 kW.

A complete diagram of the instrument system can be seen in Figure A.8, and a part list is

presented in Table B.4. Four-port, two-way valves, determined to have no cross-port leakage

(Bürkert GmbH, Ingelfingen, Germany), are used to switch between reference gas streams and

the air sample stream. Small membrane pumps (KNF Neuberger GmbH, Freiburg, Germany)

are used to maintain sample flow during measurements of reference gases, so that sample

air does not sit stagnate in the lines, and so that no additional purge is necessary upon the

completion of a reference cycle. The entire system is under automatic control, using a custom

program written in LabVIEW. Data is logged at an interval of 1 second; data generated at

a higher frequency than this is averaged by the software. In addition to the control and data

acquisition computer running the LabVIEW software, a second computer is used for off-site

data transfer and remote access to the laboratory network.

As both the CRDS and OA-ICOS instruments are upstream of their pumps, these sam-

ple lines are under-pressurized (100–200 mbar under ambient), and the instruments actively

regulate the pressure inside the measurement cavity. The CRDS has been fitted with an

external diaphragm pump (Vacuubrand model MD1, Vacuubrand GmbH, Wertheim, Ger-

many) for better ease of maintenance. Since the DFCA does not have its own pump, air is

forced through the analyzer via a small membrane pump located upstream of the fridge traps

and cryotraps (Figure A.8); consequently in this region the sample lines are over-pressurized.
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3.2.2 Response Times

Response times vary between instruments, mostly a result of the different residence times of

air in the separate inlet systems. Each sample line has slightly different operating conditions

(i.e. pressure, flow) due to the differing needs of the instruments. Additionally for CO2 there

are also surface or memory effects to take into consideration, as the molecule can interact

with the stainless steel tubing, necessitating longer purging times compared to a species like

methane.

The residence time of each species was estimated as:

τ =
V

F
(3.1)

where V is the volume of the gas handling system and F is the average flow rate. The

response time was also tested for the laboratory portion of the measurement system only, by

connecting two working tanks by means of a three-port valve to the point just downstream of

the large pumps, this being the highest point upstream of the devices that could be connected

a tank. The gas flow to the instrument was switched between the two tanks every 5 min. The

response time was then calculated as the length of time between stable values. The design

of the test was meant to create an instantaneous change of concentration in the sample air

stream under constant conditions.

3.2.3 Leak and Fractionation Tests

As the sample lines of the OA-ICOS and CRDS instruments are partially evacuated a pres-

sure gradient exists which threatens to contaminate the sample stream with laboratory air.

For carbon monoxide and carbon dioxide this is particularly serious as the air inside the

laboratory can be quite enhanced in both species. While the oxygen plumbing is mostly

downstream of a pump, meaning that the pressure gradient would force air out of the tub-

ing, portions upstream are also partially evacuated and so leaks are a concern in this region.

Downstream of the pump the sample line is overpressurized, so any leak would not force

laboratory air into the sample stream. Leaks and T-junctions in this region can fraction-

ate atmospheric oxygen, however, and as a result introduce artifacts [Keeling et al., 1998a,

Kozlova and Manning, 2009, Manning, 2001, Stephens et al., 2007].

The original design of the laboratory system was simplified to eliminate as many fittings,

junctions, and orifices as possible, and to reduce the total volume where feasible. During

installation the system was tested for leaks by both pressurizing and underpressurizing with a

hand pump and a coarse resolution pressure sensor (accurate to ± 0.02 bar). After an artifact

in the CO signal developed two weeks after installation, further leak tests were conducted

during the following maintenance visit inside the laboratory with high-resolution pressure

sensors (accurate to ± 0.02 mbar); none were found. It was not until the third maintenance

visit in July 2013 that an integral leak test from the top of the tower to the device was

performed with a high-resolution sensor overnight. This test revealed a leak outside of the

laboratory next to the air conditioner unit, which was causing a ∼300 ppb amplitude diurnal

cycle in CO. The design of the alcove housing the air conditioner was modified so that it is

no longer necessary to disconnect the 12 mm sample lines to access the A/C.

In the case of the oxygen air sample lines, an integral leak test was not really possible since

enough alterations to the system would have to be made to pressurize it without damaging

the sensitive pressure transducer (see Section 3.2.6) or venting the added pressure through

a release valve which is in effect during normal operation. As a result such a test would not

really reflect the system in its normal state, since many adjustments would have to be made.

Hence, the system was tested in three separate segments.
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3.2.4 Carbon Dioxide and Methane Measurements

The Picarro ESP-1000 (Serial No. CFADS-06) instrument is an early-model cavity ring-

down spectrometer (CRDS). This optical technique is a type of laser absorption spectroscopy,

whereby a continuous wave laser emits a pulse of light into an optical cavity. This high-finesse

optical cavity is equipped with highly-reflective mirrors that allow some light to escape. One

of the advantages of CRDS is that it creates an large effective path length (tens of kilometers),

enabling measurements of high sensitivity. The laser is tuned to several specific wavelengths

where the measurand has strong absorption, and to regions without absorption, in order to

determine the ring-down time with and without absorption by the measurand. The difference

in decay time of the light intensity (as measured by a photo-detector) between the two modes

is the signal of the analyzer which is converted to a mole fraction [Crosson, 2008]. Since the

CRDS software calculates the mole fractions of CO2¸ , CH4, and H2O, this output can be used

directly, after the application of an instrument-specific water correction and a calibration.

The absorption of CO2 is measured by scanning around 1,603 nm, while the H2O and

CH4 peaks are evaluated in a region around 1,650 nm. Since the CRDS is tuned to spe-

cific absorption features, it measures only the main isotopologues of each species, namely
12C16O2, 12C1H4 and 1H2

16O [Crosson, 2008]. Therefore, the isotopic composition of cali-

bration standards and other reference gases must be close to that of the sample to avoid

artifacts [Chen et al., 2010]. Likewise, standard gases should have the same composition as

the sample, meaning that synthetic air standards should not be used [Nara et al., 2012].

As the shapes of these spectral lines are quite sensitive to temperature and pressure,

the levels of both must be carefully maintained by the instrument. The cavity is held at a

constant pressure of 186.7± 0.1 mbar and a constant temperature of 45± 0.01°C.

3.2.5 Nitrous Oxide and Carbon Monoxide Measurements

The Los Gatos N2O/CO-23d Analyzer employs cavity enhanced absorption off-axis inte-

grated cavity output spectroscopy (OA-ICOS) [Paul et al., 2001, Peltola et al., 2012]. In this

technique, light from a laser is emitted into a cavity and the temporally integrated intensity

of the transmission of the light out of the cavity is the raw measurement signal [Baer et al.,

2002]. Like the CRDS, the OA-ICOS software calculates the mole fractions of N2O, CO,

and H2O; this output is used directly after the application of an instrument-specific water

correction, calibrations, and a drift correction.

The optical cavity is equipped with reflecting mirrors that amplify the effective path

length. The laser is tuneable and produces a full spectrum over a selected region for each

measurement, which can be viewed in real-time by the user. CO and N2O are determined from

their most prominent absorption feature in a 22 GHz region centered near 1564 nm/191.68

THz. Water vapor is also measured in this spectral range.

As the instrument is fairly new, few published studies on the analyzer are available, partic-

ularly those that evaluate both N2O and CO. However, the instrument, at least on short-term

time scales, performs with excellent precision, particularly for N2O. Initial assessments in-

dicate that the instrument has the potential for use in making atmospheric measurements,

eddy covariance methods, and aqueous dissolved gas concentrations measured in equilibrated

headspace, provided the drift of the analyzer is accounted for and care is taken with respect

to gas handling, since the concentration ranges are usually small [Arévalo-Mart́ınez et al.,

2013, Blomquist et al., 2012, Zellweger et al., 2012].
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3.2.6 Atmospheric Oxygen Measurements

The differential fuel cell analyzer (DFCA) does not measure the O2/N2 ratio itself but instead

measures the O2 mole fraction directly in dry air through an electrochemical method. There

are two sensors in the device, each containing an anode, cathode and weak acid electrolyte.

Atmospheric oxygen is reduced on the cathode, generating a current which is the analytical

signal. The Oxzilla analyzer was originally developed for respirometry but careful develop-

ment of the gas handling techniques by the atmospheric oxygen community has enabled it to

achieve excellent precision [Stephens et al., 2007, Thompson et al., 2007, 2009]. Differences

in pressure on the sensor will necessarily result in a higher signal, therefore pressures and

flows must be kept completely uniform. In practice this is quite challenging, so to minimize

artifacts measurements of reference gases or sample air are always made differentially against

a dedicated reference cylinder that flows continuously while the instrument is operational.

Since it is not necessary to know the exact δ(O2/N2) content of this reference gas, it is not

measured; in this work such a cylinder is called a “working tank”. A four-port, two-way valve

switches between these two streams every 1.5 min to avoid artifacts from the drift of either

fuel cell, and computation of the final δ(O2/N2) is thus made relative to both the difference

between the two fuel cells and between the sample air and reference gas within one fuel cell:

∆raw = (C1
WT − C1

X) − (C2
X − C2

WT ) (3.2)

δ(O2/N2) =
∆cal + [(CO2)M − (CO2)ref ] ·XO2

(1 −XO2) ·XO2

(3.3)

Here C is the raw measurement from the DFCA fuel cells, in percent. The subscript refers

to a discreet measurement of the working tank (CWT ), or the gas stream one wishes to

quantify (CX), be it a reference gas or sample air. The numbered superscripts refer to fuel

cell/channel 1 or 2. Each value of C represents the average of 1 sec measurements for the

duration of the period between switches. The first 30 seconds of this period are discarded, as

the fuel cell has to stabilize after a valve switch. Solving Equation 3.2 gives the uncalibrated

differential signal, ∆raw. After a calibration is applied (see Equation 3.11), ∆cal is used to

calculate the final concentration in per meg, as per Equation 3.3, after Stephens et al. [2003]

and Kozlova et al. [2008]. (CO2)M is the final dry mole fraction in ppm as measured by the

CRDS and (CO2)ref is an arbitrary reference value of the Scripps scale, 363.29 ppm. XO2

is the mole fraction of O2 in standard dry air, 0.209392 [Tohjima et al., 2005a].

The working tank gas flow is controlled precisely by a mass-flow controller (MKS In-

struments, Andover, MA, USA). A pressure transducer (also MKS) measures the pressure

difference between the two gas streams and a proportional valve equalizes the pressures so

that they do not vary by more than ± 0.2 mbar.

3.2.7 Meteorological Measurements

A small meteorological sensor array is located at the inlet height on the mast. Wind di-

rection and wind speed are measured with a Thies Clima 2-D sonic anemometer (model

4.3810.30.310), temperature and relative humidity with a combined Galltec-Mela instru-

ment (model C 2.4), barometric pressure with a Young pressure sensor (model 61202V), and

solar irradiance with a Kipp and Zonen ISO 9060 first class pyranometer (model CMP11).

Data is passed to the LabVIEW system via a controller area network (CAN bus).
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3.2.8 Flask Sampling

In order to provide an independent corroboration of the in situ data, flask samples were taken

on a (nominally) weekly basis, with variations in timing and small gaps due to personnel

availability. Since sampling is done manually, the time of day is always between sunrise and

sunset, but typically in the afternoon. This preferentially samples the coastal wind sector,

since a strong sea breeze is common (but not assured) during the afternoon hours at NDAO.

Meteorological conditions are not taken into account during sampling, however, as there are

no strong local sources of contamination, provided the generator is not running. All species

which are measured continuously at the station are also measured in flasks; additionally the

flasks are also analyzed for δ13C–CO2, δ13C–CH4, δ18O–CO2, δD–CH4, H2, Ar/N2, and SF6.

The flasks used by the Max Planck Institute for Biogeochemistry (MPI-BGC) are borosil-

icate glass and 1 L in volume, with two valves equipped with Kel-F®, (polychlorotrifluo-

roethylene; PCTFE) seals. PCTFE has been shown to have a low permeability to most gases

compared to other common sealing materials, as long storage times can change the composi-

tion of sample air in flasks [Sturm et al., 2004]. Flasks are shielded from light exposure with

a black sheath. Before sampling the flasks are pre-conditioned by evacuation at 60°C for 72

hours and then filled with dry air at a pressure of 1.6 bars.

Samples are taken in triplicate and connected in series upstream of a pump. A dedicated

line (identical to the continuous sample lines) is used exclusively for the flasks, although the

portion that it downstream of the main pump is not flushed or purged when not in use.

The pump body and valve plates are aluminum, and the structured diaphragms are made of

PTFE. When in use the flow rate (3.2 L min−1) is higher than the in situ analyzer flow rates

(100–200 mL min−1). Air is dried with a cryotrap identical to the one used for the oxygen

sampling line. During sampling, the line is flushed for 5 minutes before any air is directed

to the flasks, then a bypass is opened and the flasks are flushed for an additional 15 minutes

before they are sealed again. After closure, the pressure of the flask is about 1.6 bars.

Due to the lengthy shipping route and remote location of the station storage time of flasks

can be lengthy—the mean number of storage days is 100, the maximum thus far is 226—and

for reactive species like CO this can result in storage-related artifacts and/or permeation.

Laboratory demands and a large volume of samples from this and other stations in the

MPI-BGC network mean that not all flasks are analyzed for all species, and in the case

of methane isotopic composition, only two out of three flasks are analyzed. δ(O2/N2) is

measured with mass spectrometry; CH4, CO2, and CO with GC-FID; and N2O with GC-

ECD. Isotopic ratios are determined with isotope ratio mass spectrometry (IRMS).

3.2.9 Sensor Stability

In order to characterize the stability of the main instruments, a stream of dry air with

a constant composition was supplied to each device for a 24-hour period during the final

stages of the laboratory installation on site. From this the Allan variance was computed.

The Allan variance, a method for computing the frequency stability of clocks, can also be

used to analyze the noise of a sensor [Land et al., 2007, Siraya, 2001]. Allan variance is given

as:

σ2
y(τ) =

∑N−2n+1
i=1 (Ti+2n − 2Ti+n + Ti)

2

2τ2 · (N − 2n+ 1)
(3.4)

where τ is the sampling interval, N is the number of measurements of some quantity Ti, n

is the number of adjacent values of Ti in τ [Land et al., 2007]. Akin to the standard deviation,

the Allan deviation is the square root of the variance,
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σy(τ) =
√
σ2
y(τ) (3.5)

The advantage of the Allan deviation is that it is determined in the same units as the

measurand is reported. In some cases, the minimum value of the deviation is the ideal

averaging interval for the sensor, being the integration time for which sensor noise is the

lowest. In practice, however, the integration time which yields the lowest deviation may be

too large to be practical.

3.2.10 Drying and Water Correction

The absolute abundance of water vapor varies widely throughout the atmosphere; even under

well-mixed conditions in the troposphere, the mixing ratio of H2O(g) can span several percent.

This dilutes the mixing ratio of trace gases and can obscure their “true” variability if mole

fractions are not determined against moles of dry air.

With the meteorological array at NDAO, the mole fraction of water vapor can be de-

termined from the relative humidity, temperature and pressure measured on the mast, as

follows:

RH =
Pw

Pws
· 100 (3.6)

where RH is the relative humidity, in percent, Pw is the partial pressure of water vapor, and

Pws is the saturation water vapor pressure, determined as (hPa):

Pws = A · 10( m·T
T+Tn

) (3.7)

where A and Tn are constants, 6.116441 and 240.7263, respectively, and T is the air temper-

ature in °C. Note that this is only valid over ambient temperatures of −20 to 50°C. Then, if

the atmospheric pressure, Ptot, is known, the mole fraction of water vapor (H2Oact) is simply

H2Oact =
Pw

Ptot − Pw
· 106 (3.8)

in ppm.

As both the CRDS and OA-ICOS instruments measure water vapor, they afford the op-

portunity to dispense with sample drying and apply a water correction instead. There are

drawbacks to any water correction or drying method. Sample drying introduces a physical

alteration of the sample matrix, and increases the total number of seals and connections of

the gas handling system which must be rendered gas-tight. Drying also generally requires

additional consumables. Finally, depending on the method used there is also contingent

maintenance required to remove the collected water, which can be problematic at remote

sites.

Water corrections, on the other hand, require continuous, extremely precise and stable

measurements of water vapor, which is analytically challenging. It is also a newer approach,

and as such represents a major break in methodological continuity, a concern for long-term

time series. Switching between humid (sample) and dry (reference) air streams is also not

ideal. Nevertheless, the method has been shown to be robust for measurements of CO, CO2

and CH4 with the type of instrumentation at NDAO [Chen et al., 2010, Nara et al., 2012,

Rella et al., 2013, Winderlich et al., 2010, Zellweger et al., 2012].

It was decided to forgo sample drying for the CRDS and OA-ICOS instruments at NDAO

for several reasons: first, the station is in a desert environment, where water vapor concen-

trations are typically low and water corrections perform best; second, since the site is remote

and there are no formally trained technicians available, simple maintenance procedures are
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greatly preferred; third, the precise, continuous measurements of H2O made by the CRDS

can be corrected to yield accurate observations of water vapor, data which otherwise would

be unavailable [Winderlich et al., 2010]; and fourth, obviating the need for drying greatly sim-

plifies the plumbing system for these two instruments, both of which operate under ambient

pressure, reducing the potential for leaks inside the laboratory.

A version of the ‘water droplet’ method was used to humidify the air stream of a target gas

cylinder, using a slight variant of one of the methods in Rella et al. [2013] (Method 2, “Empa

variation”). The apparatus allows the operator to easily switch between dry and humidified

gas streams with the aid of the manual valves. The gas stream passes over the surface of

a water droplet (< 200 µL) placed in a small well. After the water droplet is completely

evaporated and the residual humidity in the tubing is fully removed, the entire shape of the

correction function is delimited. The ‘tuning’ parameters used to achieve a sufficient initial

water vapor concentration are the height of the tubing over the droplet, the absolute pressure

in the trap, and the temperature of the lab (J. Winderlich, personal communication).

Due to broadening effects on the spectral lines, both the CRDS and the OA-ICOS must

be corrected for each species, X, with a second-order function, in the form of

Xwet

Xdry
= 1 + a · H2Orep + b · H2O2

rep (3.9)

H2Orep is the mole fraction of water vapor measured by the instrument in question without

correction, usually in percent, and a and b are empirically determined factors determined

by the experiment described above. In the case of the CRDS, H2Oact can be determined as

[Winderlich et al., 2010]:

H2Oact = 0.0292 + 0.7718 · H2Orep + 0.0197 · H2O2
rep (3.10)

This relationship is thought to hold between Picarro CRDS instruments, since they are

all calibrated on the same scale during manufacture. A major assumption here is that the

absolute drift of the water vapor signal is negligible. It should also be noted that the OA-ICOS

instrument was not used for determining H2Oact, since tests showed that it was both less

accurate and less sensitive than the CRDS; the water vapor data is used only for correction.

3.2.11 Calibrations and System Performance Evaluation

All reference gases are stored horizontally in an insulated box to minimize stratification and

temperature fluctuations. Reference gases are calibrated against primary standards at the

Max Planck Institute for Biogeochemistry (MPI-BGC) GASLAB for CO2, N2O, CO and

CH4. The O2/N2 ratio of reference cylinders is measured at MPI-BGC by mass spectrome-

try. All reference gases were tied to primary standards on the measurement scales given in

Table 3.1. All reference gases are comprised of dry, ambient air and stored in 50 L aluminum

cylinders. The initial pressure of each cylinder is 200 bar. Calibration of the instruments

is done through four working secondary standards and instrument performance is periodi-

cally checked with “target” cylinders (i.e., tanks of known mole fraction which are regularly

re-measured). In addition 3 long-term reference gases (“archives”) are available to ensure

accuracy over the course of the station lifetime. Atmospheric concentrations of CO2, CH4,

N2O, and CO all are reported as dry air mole fractions, e.g., 1 µmol mol−1 = 1 ppm.

Instrument calibrations are performed automatically by the LabVIEW program using four

working secondary standards. The mole fractions of these tanks were selected to bracket the

natural variability which was expected for this site. Mole fraction ranges were 370–410 ppm

for CO2, 1,600–1,920 ppb for CH4, 300–340 ppb for N2O, 40–250 ppb for CO, and between

−300 and −700 per meg for δ(O2/N2). The interval between calibrations was 123 hours for
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the CRDS and OA-ICOS, and 71 hours for the DFCA. Target measurements were made

every 49 hours for the CRDS, and every 35 hours for the OA-ICOS and DFCA. Various

schemes were implemented, but the ones used represent the best compromise between the

need to save reference gases and the drift of the sensors. As preparation, shipment, customs

clearance and local delivery of a pallet of cylinders to NDAO from MPI-BGC in Germany

usually takes about one year, we implemented the most conservative (in terms of gas usage)

calibration frequency possible without unduly compromising measurement accuracy.

Reference gases (working secondary standards or targets) were measured for a total of

12 minutes after a two minute, high flow rate (250 mL/min) purge of the sample line.

During purges the reference gas flow is not directed to the instrument, but vented at the

junction closest to the instrument. A stable signal is generally reached after 6 minutes of

measurements for all measurands. During purges the reference gas flow is not directed to

the instrument but vented at the junction closest to the instrument. As non-linearity was

not observed for any instrument in the concentration ranges of tanks used at NDAO, the

instrument response functions for all species were taken as a linear fit of the average of

the last 5 min of working secondary standards (WSS) measurements and the mole fraction

determined by the MPI-BGC facilities (all WSSs are traceable to NOAA or Scripps primary

standards):

y = mx+ b (3.11)

where x is the “true” value of the measurand, supplied by the analytical facilities at MPI-

BGC, and y is the dry air mole fraction or O2 to N2 ratio measured by the instrument during

a specific calibration. The slope (m) and intercept (b) are linearly interpolated between

calibrations.

A dedicated reference cylinder was used as a target tank to assess long-term repeatability

and instrument precision. Target measurements are an imperfect descriptor of system perfor-

mance, or at least not a complete guarantor of data quality, since such measurements would

not reveal a leak in air sampling lines upstream of the common tee. In the case of our mea-

surement system, the pressure of sample line of the CRDS and OA-ICOS while measuring

target gas is slightly over ambient and dry, meaning it is measured under different condi-

tions from sample air. For some species, like CO2, there are can be small adsorption-related

artifacts during gas storage or gas handling which might appear to be due to poor instru-

ment performance, but would not be shared by the in situ time series. Nevertheless, regular

target measurements can reveal long-term problems or biases, and can give an estimate of

measurement uncertainty and repeatability.

Following in part the recommendations of Andrews et al. [2014], we report the measure-

ment uncertainty as the target-derived measurement uncertainty (see equations 9a–9d in

Andrews et al. [2014]). This quantity, uTAR, was calculated as the 67th percentile of the

absolute value of the difference between the laboratory assigned value or “setpoint”, and the

individual mean target determination in a moving window of 1 week.

3.2.12 Drift Correction of the OA-ICOS Analyzer

During laboratory tests before the deployment of the OA-ICOS instrument, it became appar-

ent that it is susceptible to temperature and pressure-related drift. Our Los Gatos analyzer

does not have the improved temperature control that later models do (the “enhanced per-

formance” feature). We opted to attempt to correct this drift empirically by measuring a

working tank at 2-hour intervals, a determination arrived at through consideration of the

rate and magnitude of the sensor drift, the loss of in situ data, and the usage rate of the

working tank.
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Table 3.2: WMO/GAW Recommendations for Measurement Compatibility [WMO/GAW,
2013]

Measurand Compatability Goal Unit

CO2 ± 0.05 ppm

CH4 ± 2 ppb

N2O ± 0.1 ppb

CO ± 2 ppb

δ(O2/N2) ± 2 per meg

H2 ± 2 ppb

SF6 ± 0.02 ppt

δ13C-CO2 ± 0.01 h
δ18O-CO2 ± 0.05 h

Data is corrected for drift after the water correction but before applying the calibration.

Each working tank measurement lasts 8 min, without a line purge, and only the last 2 min

are used. A spline is fit through the average of all working tank measurements made on the

same tank, and the difference of these interpolated measurements from the mean of the tank

is then applied to each time step as a correction factor.

3.2.13 Performance Goals

The Global Atmosphere Watch Programme of the World Meteorological Organization (WMO

/GAW) is the international authority on atmospheric measurements of greenhouse gases

(GHGs) and related tracers. The WMO/GAW Experts’ biennial meeting produces a set of

recommendations for stations within the GAW network. Even for stations which are not

GAW certified, it is advantageous to follow these recommendations, and they have served

as a guideline for the design and implementation of NDAO. WMO/GAW recommendations

for compatibility of measurements are given in Table 3.2. There are no recommendations

from this body for δ13C-CH4, δD-CH4, or Ar/N2. These compatibility goals were used as

guidelines for evaluating target measurements and instrument error.

3.3 Results and Discussion

3.3.1 General Performance of the Measurement System

High temperatures are a major challenge of working at this site, and maintaining a constant

temperature in the laboratory and for the devices is crucial. The CRDS and DFCA are

both housed in an insulated rack, which reduces the range of temperatures the devices are

exposed to compared to the variation in the laboratory itself. The standard deviation of the

air temperature laboratory was 1.5°C over the operational lifetime of the station and 0.77°C

for the instrument rack; for comparison the value for the in situ air temperature was 6.8°C.

The CRDS cavity temperature was stable within 0.02°C. The OA-ICOS fared less well since

it was too large to fit inside the rack (1σ = 0.90°C). An insulated box was built for it instead,

with active ventilation control. The insulated box performed better than no protection at

all, but is still not as efficient as the rack, which is reflected in the OA-ICOS instrument

temperature; it should be noted, however, that the CRDS has superior temperature control

for its measurement cell. For the DFCA, which also has active temperature control, the

standard deviation was 0.05°C.
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Table 3.3: Total System Leak Rates

Measurand Leak Rate (mbar L sec−1) Max. Artifact

CO2 6.3 × 10−4 0.014 ppm

CH4 6.3 × 10−4 0.0017 ppb

N2O 3.0 × 10−4 7.6 × 10−5 ppb

CO 3.0 × 10−4 0.0052 ppb

There is one large gap in the record during July 2013 when the hard drive of the mea-

surement computer failed. This was a solid-state drive (SSD), and there is some evidence to

suggest that these drives are more prone to failure than traditional hard drives [Ku, 2011].

Given that the SSD of the communication computer also failed in January 2014, we have

forsworn the use of SSDs at NDAO in favor of traditional hard drives.

The second large gap in the records of δ(O2/N2), CO2, CH4, and H2O are due to a

dust storm during a bergwind event which clogged the CRDS sample line shortly after the

communication computer failed and remote connection with the site was no longer possible.

The DFCA sample line was not as affected but δ(O2/N2) requires in situ CO2 data. Due to

the large amount of fine dust at the site, filters have to be exchanged frequently and flow

rates generally slowly decline as they are clogged; sudden events, however, can cause a rapid

decline in flow and pressure in the sample lines and necessitate shutdown until the filters

can be replaced.

The data stream also has smaller gaps, due to calibrations, target measurements, Lab-

VIEW software issues, or maintenance. Software and computer issues, rather than instru-

ment failure, is probably the more common cause of data gaps related to technical problems;

the exception to this was from March to July 2013, when the station was plagued by frequent

(sometimes daily) power outages. Nevertheless, absolute data coverage since October 2012

is approximately 75% or higher for most measurands.

The time series for N2O and CO start 8 months after the beginning of the station operation

due to a leak in the tower line developed a few weeks after installation and contaminated

the line with air conditioner exhaust.

3.3.2 Response Times

Calculated residence times (τcalc) of the major measurands can be found in Table B.5. For

the CRDS and OA-ICOS measurands, the total system residence time is around 10 seconds;

for the DFCA the residence time is much longer, due to the slightly lower flow rate and the

much greater volume, due to the more complicated gas handling and the drying system. τcalc
for the 12 mm sampling lines on the tower was 3.9 seconds, lower than the residence time in

the 1/8’ tubing sections due to the higher flow rate created by the large volume pumps.

In practice the residence time can be longer due to surface interactions with tubing, as

can be seen in the case of CO2 and CO. The response time, or apparent residence time

(τapp), as we define it, also includes some stabilization time for the sensor, which is negligible

for the OA-ICOS and CRDS, but substantial for the dual-differential fuel cell analyzer; full

stabilization of the signal can take some minutes. This test also to some extent includes some

mixing in the gas stream of the two tanks, and a slight delay due to the speed of the valve

used to switch between the two streams.
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3.3.3 Leak and Fractionation Tests

The results of the integral leak test for can be seen in Figure 3.1 and Table 3.3. Most of the

observed variability in pressure was caused by temperature variations. The sudden increase in

observed pressure towards the end of the integral leak tests is likely due to an underestimate

of temperature-based pressure changes in the SERTOflex tubing on the mast. This is the

larger volume and it seems reasonable to assume that there is some significant enhanced

heating of this tubing relative to the surrounding air temperature due to the protective

black coating. This also indicates that the calculated leak rate is likely a large overestimate,

since it was assumed that any increase above what would be expected due to temperature

change in the calculated final pressure was due to leakage.

For the atmospheric oxygen gas handling system, downstream of the membrane pump

(C104) a linear leak rate of < 0.17 mbar L sec−1; upstream of C104 no detectable leak was

seen over a period of 12 hours. The main portion of this loss came from the two fridge traps

which are connected by Tygon tubing to the bottom of the fridge trap to remove pooling

water via a peristaltic pump. Fractionation was tested by introducing a constant flow from

a working tank directly into the instrument, and the point of introduction upstream. If the

gas handling system were to cause some fractionation of atmospheric oxygen, the difference

should be readily seen by the averages of the concentrations of the measurements made at

different points in the system. The results of the fractionation test of the atmospheric oxygen

sample line can be seen in Figure 3.2; no significant fractionation was detected, as the means

of the concentrations measured of gas introduced directly into the instrument and introduced

upstream of the entire gas handling system were indistinguishable.

It should be noted that estimating the leak rate and its impact on the observed mole

fraction of a given measurand involves several assumptions and oversimplifications, such as

the concentration of each species in the laboratory. Accordingly the leak rates and change in

signal reported here represent “worst-case” scenarios, using concentration values for contam-

inated air that were the highest ever measured for each species inside the lab. Furthermore,

separate testing of different portions of the plumbing system indicated that the observed

leak rate was more likely to be outside the laboratory than in, where air is more likely to be

closer to ambient—with the exception of CO.

3.3.4 Stability of the CRDS

The Allan deviation of both CO2 and CH4 exhibit minima around the 1 to 11
2 hour window

(Figures 3.3 and 3.4), after which the drift of the sensor begins to dominate. In the case

of CO2, this drift was clearly (inversely) dependent on the air temperature surrounding the

working tank, as measured by a temperature sensor inside the insulated box housing all

cylinders. Correlations were not seen with rack temperature, regulator temperature (housed

outside of the insulated box for cylinders), or room temperature. While it is not atypical

for Picarro CRDS analyzers to drift with temperature to this degree [Crosson, 2008], the

evidence points to an artifact related to the tank. The effect is about −0.06 ppm °C−1 over a

24 hour period (Figure A.9). A weaker relationship with opposite sign was seen for methane.

Using the raw (i.e., uncalibrated) target measurements as an assessment of the long-

term drift of the instrument, we note that long-term drift was not linear over the entire

measurement period, but wandering due to a slight seasonality in the temperature of the

laboratory. The absolute range of raw target measurements on one tank was 0.4 ppm for

CO2 and 2.3 ppb for CH4.
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Figure 3.1: Pressure measured in the OA-ICOS (OA-ICOSObs) and CRDS (CRDSObs)
sample lines with a high-resolution pressure sensor (P303 and P205). Also included are a
modeled pressure weighted by the volumes of the 12 mm tubing outside of the laboratory
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modeled pressures plus the linear leak rate (+LR). The two vertical lines mark sunrise for
both tests, which were conducted on different days. The leak rate was calculated after fitting
the modeled pressure to the observations, excluding the portion of the test after sunrise, when
the 12 mm tubing on the mast began to heat relative to the surrounding air temperature.
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tion evolution from the beginning of each test (top panel) and as boxplots of both populations
(bottom panel).
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Figure 3.3: Anomaly of measurands of the CRDS and OA-ICOS, calculated as the instanta-
neous data minus the mean of the whole test.

3.3.5 Stability of the OA-ICOS

While the OA-ICOS is very precise over short intervals, it is much more prone to drift than

the CRDS. The optimal averaging interval for this instrument is around 100 seconds for

both species, after which drift begins to dominate the sensor error. The OA-ICOS is prone

both to sudden spikes and rapid linear drift when the instrument heats or cools the cavity to

maintain a constant temperature. Raw target measurements over 2 years showed a maximal

spread of 2.9 ppb for N2O and 0.8 ppb for CO, although the long-term drift was not linear

but governed by laboratory temperature.

3.3.6 Stability of the DFCA

Due to the differential nature of the DFCA, characterizing the noise of the individual sensors

would serve little purpose, since the operator expects that the absolute signal of both fuel

cells will drift. The simplest and most meaningful test of sensor stability in the case of

this instrument was to provide both fuel cells with flow from a working tank, and calculate
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Figure 3.4: Log-log plots of the Allan deviations of the output of the CRDS and OA-ICOS
instruments as they received gas flow from a working tank for 24 hours.

the Allan deviation of the differential signal (Figure 3.5, top panel), regardless of the low

frequency of measurements.

From the time series of the DFCA output (3.5, bottom panel), it seems that the analyzer

took roughly 5 hours to stabilize during the stability test. This apparent start-up drift is fairly

small and could represent a gradual flushing of the regulator. Despite some small, sudden

spikes, the DFCA shows the least dependence of the main instruments on the temperature

and pressure of its environment, not surprising since the nature of the dual differential

measurement should cancel out temperature effects. WMO/GAW compatibility goals for

δ(O2/N2) can be reached with an averaging interval greater than 7 minutes.

While the fuel cells have been monitored for degradation, no detectable loss in sensitivity

has been noticed over the 2 years of operation.

3.3.7 Water Correction of the CRDS

The aggregated results of several water correction tests can be seen in Figure 3.6. The fit

parameters determined from the aggregate tests show some small but significant differences

from other values reported in the literature for similar instruments (Table B.6), highlighting
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Figure 3.5: Log-log plot of the Allan deviation of the DFCA for the 24 hours of working tank
flow (top panel) and anomaly of δ(O2/N2), calculated as the instantaneous data minus the
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the importance of performing instrument-specific water correction tests with this class of

CRDS. For instance, using the values from Rella et al. [2013] to correct a NDAO CO2 wet

value of 390 ppm at 1.5% water vapor content would result in a difference of 0.23 ppm.

It should be noted that the reference values cited from the literature were obtained using

different models of the same CRDS instrument.

An earlier test, in which the absolute pressure of the target gas was increased to reduce

the humidity level, is also included. A stainless steel trap of the same make as the small

cryotraps (Figure A.7) used for the DFCA line was placed in a water bath (4°C) with a

water droplet at the bottom of the trap. The pressure of the target gas was then increased

stepwise from 0.2 bar (gauge, not absolute) to 1.5 bars. This method was discarded for the

simpler water droplet test, as it proved to be cumbersome and did not yield high enough

initial water vapor concentration, likely due to the low temperature of the water bath. The

results agreed well with the other method, however.
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Figure 3.6: Water correction functions (dotted lines, see Equation 3.9) from different tests for
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mole fractions of the cylinder used for the test, all in ppb, except for CO2, which is in ppm.

3.3.8 Water Correction of the OA-ICOS

Table B.6 gives the values of the coefficients for a second-order water correction for both N2O

and CO. Given the only recent availability of the instrument, and the greater prevalence of

drying, there are no coefficients to compare to. Zellweger et al. [2012] performed a thorough

comparison of the response of several different analyzers to water vapor, including the OA-

ICOS N2O/CO-23d, but only considered carbon monoxide.

We also note that the absolute concentration of water vapor reported by the OA-ICOS

disagrees considerably with that of the CRDS (which in part accounts for the lower water

vapor concentrations displayed in Figure 3.6 for the OA-ICOS), the OA-ICOS values being

2,329 ppm (1σ = 342 ppm) lower on average. We verified the accuracy of the CRDS water

vapor measurements by comparing it to values calculated from the meteorology. Effectively,

this means that the OA-ICOS instrument cannot detect values below ∼2,000 ppm, which

results in artifacts during reference gas cycles (targets and calibration runs), as the air

stream continues to dry after the instrument returns a 0 value for water vapor and the

water correction cannot be applied. In fact, much of the scatter in the N2O time series is

related to periods of higher relative humidity and water vapor concentration in the in situ

measurements.

Finally it should be mentioned that OA-ICOS’s internal water correction is not sufficient to

remove the full influence of water vapor, and does not account for the quadratic nature of the

response curve to water vapor for both N2O and CO. If one compares the dry air mole fraction

using the OA-ICOS linear internal water correction to the second-order water correction

function used in this work, the two diverge with increasing water vapor concentration. For

instance, an error of approximately 1.8 ppb at an ambient water vapor concentration of
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H2Orep = 20,000 ppm or ∼3.5 ppb at a concentration of 30,000 ppm would be produced for

N2O using the linear function relative to the quadratic. For CO the effect was less pronounced

but would result in errors of 0.7 and 1.5 ppb, respectively.

3.3.9 Calibrations

Calibrations were subjected to quality control (QC) assessments and discarded if they failed

to meet specific QC targets for individual species.

For the CRDS, 4% of calibrations were excluded, based on the following QC criteria: a

coefficient of determination greater than 0.9999, a deviation from the mean slope greater

than 0.002 (unitless; ppm/ppm), or a deviation from the mean intercept larger than 1 ppm.

For CH4, the QC flags were 0.999, 0.02, and 10 ppb, respectively. This approach ensures

that anomalous calibration coefficients were not used in producing the final time series. In

most cases the poor calibrations were related to recent power outages or large variations in

temperature in the laboratory, and the species causing the flag was CO2. The mean R2 was

0.9999987 for CO2 and 0.999995 for CH4.

20% of the OA-ICOS calibrations were rejected, in almost all instances due to N2O not

meeting QC standards. The QC standards were: greater 0.9999 coefficient of determination,

slope deviation from the mean not greater than 0.015, and an intercept within ± 5 ppb of

the mean of all intercepts. For CO the corresponding values were: 0.99996, 0.02, and 1 ppb.

The mean R2 was 0.99997 for N2O and 0.999989 for CO.

In the case of atmospheric oxygen, 33% of calibrations were discarded, most of these during

a period of frequent power outages and hence poor temperature control in the instrument

rack. The QC criteria were an R2 > 0.99, a slope not deviating more than 0.01 from the

mean, and an intercept within 25 per meg of the average. The mean R2 was 0.996.

3.3.10 Target Measurements

Target measurements (tanks of known concentrations which are treated as unknowns) for

the time series are presented in Figure 3.7. Periods of poorer performance are associated

with inadequate electricity supply, dust events, and/or degraded temperature control of the

laboratory or a specific instrument. The target tank had to be changed several times during

the first 6 months of operation due twice to the loss of target gas during power outages

before a more robust power-down procedure was implemented. In the new procedure, after

power loss the control computer, while running on an uninterrupted power supply (UPS)

system, returns all valves to a configuration that prevents the loss of gas. Other target tank

changes were due to the necessity of switching which tanks served as target and which as

working secondary standards as the calibration scheme was adjusted to conserve gas before

more cylinders could be delivered. Bias (mean offset) between the assigned values obtained

from MPI-BGC laboratories of reference tanks and the average of all target measurements

at NDAO are given in Table B.7.

For oxygen this bias is large enough to warrant some speculation. As the target gas shares

the same plumbing lines as the calibration gases, a leak or fractionation effect is unlikely,

since it would effect the calibration gases as well. It is always possible that the target was

contaminated during installation due to blowback when installing the regulator, which might

account for the slightly enhanced CO2 and CO, and the depleted δ(O2/N2), while N2O

and CH4 are unaffected, as this is the sort of profile one would expect in the laboratory

environment. The slope of the linear fit to the calibration data is also quite sensitive to the

absolute value of the cylinder with the lowest concentrations, so these small biases could also

be due to inter-laboratory differences at the low end of the scale for those three species.
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Vertical lines indicate a target tank change.

Measurement uncertainty was estimated from the target tank time series (uTAR) to give

a time-varying quantity (Figure 3.8). The average bias of each target tank was removed to

calculate the measurement uncertainty since this varied from tank to tank and would not

necessarily impinge on sample uncertainty of the in situ data. Note that this bias was not

removed from the target tank time series in Figure 3.7.

The mean uncertainty for each species was: 0.21 ppb for N2O, 0.15 ppb for CO, 0.028 ppm
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Table 3.4: Measurement Compatibility with Cape Point Observatory and MPI-BGC (flask
vs. in situ)

Measurand MPI-BGC Cape Point Unit

CO2 0.14 0.1 ppm

CH4 1.6 1.2 ppb

N2O 0.33 1.3 ppb

CO 4.5 0.2 ppb

δ(O2/N2) 9.4 — per meg

for CO2, 0.17 ppb for CH4, and 6.5 per meg for δ(O2/N2).

3.3.11 Drift Correction of the OA-ICOS

The average drift correction over each two hour period for the N2O data was ±± 0.47 ppb

(or 0.2 ppb per hour), with a maximum of ± 1.9 ppb. The corrections for CO were a little

lower, with an average of ± 0.31 ppb (or 0.16 ppb per hour) and a maximum of ± 1.1 ppb.

The application of this empirical drift correction significantly improved the data quality for

both species as measured through the target cylinders (Figure 3.9). In the case of N2O, this

allowed for the performance goal for this species to be reached, on average.

3.3.12 External Validation

A small inter-laboratory comparison was performed with the global GAW station run by the

South African Weather Service at Cape Point, South Africa. A cylinder of dry background

air from Cape Point was measured at both sites for CO2, CH4, N2O, and CO. The absolute

value of the difference between the final determinations, i.e., the compatibility, was 0.1 ppm,

1.2 ppb, 1.3 ppb and 0.2 ppb, respectively. More comparisons are planned.

Flask samples also offer a kind of external validation of the in situ measurements, through

assessing the compatibility of the flask and continuous data. The flask time series begins in

mid-2013 and is ongoing. The average standard deviation of the flask triplicates were 0.04

ppm for CO2, 1.6 ppb for CH4, 0.06 ppb for N2O, 1.1 ppb for CO, 4.0 per meg for δ(O2/N2);

and 3.9 per meg for APO.

Measurement compatibility between flask and in situ measurements are given in Table

3.4. The difference between the flask measurement and the in situ is displayed as a time

series in Figure A.10. Most of the bias seen between flask and in situ measurements can be

explained for carbon monoxide. CO mole fractions are known to increase in flasks during

storage [Brenninkmeijer et al., 2001, Novelli et al., 1998]. At MPI-BGC, tests showed rates

between 0.02 and 0.03 ppb day−1, in some cases as high as 0.05 ppb day−1 (Armin Jordan,

personal communication). Additionally, the offset showed some dependency on storage time

(Figure 3.10); the specific mechanism is unknown.

Additionally, the NDAO in situ time series was compared to the available dataset from the

nearby NOAA ESRL GMD sampling site NMB (Figure 3.11). It should be noted that this is

not a direct assessment of the compatibility between the two measurement programs, since

the two stations do not really measure the same air masses; the sites are about 2 km apart

and have a height differential of 32 m. This can be of consequence since the boundary layer

oscillations in the local wind field often create considerable heterogeneity in flow, creating

spatial and temporal gradients [Lindesay and Tyson, 1990]. While small differences between

concurrent measurements at the two sites would be expected, the synoptic variability, sea-

sonality, and long-term trend should be the same, and this is what is observed (Figure 3.11,



3.3. RESULTS AND DISCUSSION 51

N
2
O

 [
p

p
b

]

Cal only

3
2

4
3

2
6

3
2

8
3

3
0

3
3

2

N
2
O

 [
p

p
b

]

Cal + WTcorr

3
2

4
3

2
6

3
2

8
3

3
0

3
3

2

∆
 N

2
O

 [
p

p
b

]

Corr Factors

−
4

−
2

0
2

4

Sep Nov Jan Mar May

−
4

−
2

0
2

4

∆
 N

2
O

 [
p

p
b

]

Targets

Cal only

3
2

4
3

2
6

3
2

8
3

3
0

3
3

2

N
2
O

 [
p

p
b

]

Cal + WTcorr

N
2
O

 [
p

p
b

]

3
2

4
3

2
6

3
2

8
3

3
0

3
3

2

Corr Factors

∆
 N

2
O

 [
p

p
b

]

−
4

−
2

0
2

4

Targets

∆
 N

2
O

 [
p

p
b

]

−
4

−
2

0
2

4

Sat Sun Mon Tue Wed
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Figure 3.10: Evidence for a carbon monoxide storage-related artifact.

Sections 4.3.4 and 4.3.5). After excluding outliers greater than 3σ, the average absolute dif-

ference of all concurrent measurements (using one-hour means for the in situ data) was 0.43

ppm for CO2, 2.2 ppb for CHe4, 0.25 ppb for N2O, and 3.5 ppb for CO.

3.4 Summary and Conclusions

Generally it is found that the gas handling, instrumentation, and conservative reference

gas scheme perform acceptably. Using water corrections in lieu of drying is feasible but

complicates calibrations and target measurements as the gas lines switch between dry and

humidified air. The reduction in maintenance, gas handling complexity, and drying related

artifacts, however, make this approach preferable.

The differential fuel cell analyzer is a successful approach to the challenge of measuring

atmospheric oxygen in a remote location. The CRDS was found to be quite robust and stable.

The OA-ICOS instrument gives good performance if instrument drift can be corrected for

with a working tank.

NDAO is not totally impervious to the harsh environment, notably dust and heat, and

the whole system is sensitive to the large diurnal temperature variation. Most challenging

was the inadequate electricity supply, which reduced temperature control in the laboratory,

and destroyed two hard drives. Overall, when basic requirements for laboratory operation

are met, the measurement system presented can yield much-needed data from a remote and

sometimes harsh location.
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4
The NDAO Time Series

4.1 Introduction

Stationary time series of atmospheric constituents can demonstrate variability over multiple

time scales. The decomposition of a time series through spectral analysis can yield insight

into the causes of this variability if a spatial scale can be inferred from the temporal scale.

For example, diurnal variability in CO2 or O2 is often a result of local fluxes, while seasonal

cycles are influenced by hemispheric-scale fluxes. Intraseasonal or sub-seasonal variability is

generally related to the passage of synoptic-scale weather systems. Such temporal variability

can be related quantitatively to a spatial scale by modeling atmospheric transport. For

the NDAO site, for instance, examining the distance traveled by particles released in the

HYSPLIT model throughout the evolution of each back-trajectory shows that, on average,

synoptic scale levels of transport are reached after a period of 5 days (Figure A.11).

In this chapter, the main time series from the NDAO is presented and decomposed, to

better understand the causes of the variability of each measurand.

4.2 Methods

Planetary boundary layer (PBL) heights were taken from the European Centre for Medium-

Range Weather Forecasting’s (ECMWF) ERA-Interim dataset [Dee et al., 2011]. The product

has a time step of 3 hours.

Diurnal cycles were calculated for each measurand and some additional meteorological

variables, using hourly means. In all cases, the mean value for the entire day was subtracted

from each hourly value; the resulting anomaly for each hour was then averaged for all days

in a month, or all days in a year.

4.2.1 Data Treatment

The NDAO time series was processed using the methods discussed in Section 2.2.2. NDAO

data was also compared to other marine background flask sampling sites, which are detailed

in the same section, for the only overlapping time period available, October 2012–December

2013. Since this is a relatively short period of time, average growth rates were determined

by calculating a regression line using the Theil-Sen estimator, a non-parametric technique

that determines the slope as the median of slopes of all pairs of sample points [Sen, 1968,

Theil, 1950]. This technique was used since it is less sensitive to outliers than ordinary least

squares, a concern when dealing with smaller datasets. For slopes of measurand–measurand

regressions, the reduced major axis method was employed.

55
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4.2.2 Singular Spectrum Analysis

Singular spectrum analysis is a nonparametric technique that can be used to decompose

a noisy time series into a trend and periodic components. SSA was performed using the

“Rssa” package for R. The details are beyond the scope of this work, but the technique is

briefly described as follows [Ghil et al., 2002, Schoellhamer, 2001]: first, a covariance matrix

is constructed of the time series X(t) and K lagged vectors of X(t), with length L, where

K = N −L+ 1. L is the window length, and should be less than N/2. This yields a matrix,

X, upon which a singular value decomposition is performed. The eigentriples from this SVD

are then grouped by shared characteristics (determined by the operator) and the components

are reconstructed to form a component of the original time series, such as diurnal variations,

seasonal variations, etc. These isolated oscillatory components of the time series should be

robust with regards to the selection of window length.

For each measurand, SSA was performed on the complete, unfiltered time series consisting

of hourly averages, using window lengths that varied from 100 to 500 and 7000 to 9000. The

range in window lengths was necessary to identify both high- and low-variability components.

Diurnal variations, if they existed, were identified by period length. All oscillations greater

than one day and less than six months were summed together to form a single intraseasonal

component. For consistency, and since the NDAO time series is short, trends and seasonal

amplitudes and phasing were determined identical to the method described in Section 2.2.2.

In practice, the selection of eigentriples and window length is done through experimentation

and requires judgments from the operator that would result in small differences if the SSA

is repeated with small variations (i.e., it is unlikely that two different operators working on

the same time series would come up with the same exact trend and oscillatory components).

Since the goal of employing SSA in this work was simply to identify and extract modes of

variability in the time series in order to better understand the behavior of each species, some

small uncertainty in the final results was deemed acceptable.

4.3 Results and Discussion

The full station time series consists of the five main measurands—CO2, CH4, δ(O2/N2),

N2O, and CO—plus atmospheric potential oxygen (APO), and is presented in its entirety

in Figure 4.1. The six meteorological parameters measured at the station are presented in

Figure 4.2.

4.3.1 Variability of Basic Meteorological Parameters

Air temperature at NDAO displayed seasonal variability, but due to synoptic dependence,

had a distorted cycle. Temperatures peaked in mid-April and reached a low at the end of

July, five months out of phase with the peak of insolation, in late November. Instead, the

seasonal peak of temperature is roughly in phase with the proportion of air masses that

are terrestrial in origin, PBL fterr. (see Section 2.3.1 and Figure 2.7). Barometric pressure

reached a maximum in late July and a minimum in mid-February. This appears to reflect the

passage of the Hadley cell (see Section 2.1.1). Relative humidity also showed some seasonality,

similar to that of atmospheric water vapor, although there was considerable variability. Wind

speed showed almost no appreciable annual cycle, although the highest wind speeds slightly

favored the winter months.

All meteorological measurands also showed consistent diurnal variability. The daily cycle of

air temperature ranged between 10 and 18°C, comparable to the amplitude of the harmonic

fit to the seasonal cycle, 8.1°C. Air temperature peaked on average in the early afternoon,



4.3. RESULTS AND DISCUSSION 57

3
9
0

3
9
5

4
0
0

C
O

2
 [
p
p
m

]

1
7
4
0

1
7
9
0

1
8
4
0

C
H

4
 [
p
p
b
]

3
2
4

3
2
7

3
3
0

N
2
O

 [
p
p
b
]

3
0

1
0
5

1
8
0

C
O

 [
p
p
b
]

−
6
1
0

−
5
2
0

−
4
3
0

δ
(O

2
/N

2
) 

[p
e
rm

e
g
]

−
3
6
0

−
2
7
0

−
1
8
0

A
P

O
 [
p
e
rm

e
g
]

10.12 01.13 04.13 07.13 10.13 01.14 04.14 07.14 10.14
Date [mm.yy]

Figure 4.1: Main time series from NDAO, plotted as daily averages.
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between 15:00 and 16:00, with the coldest daily temperature occurring between 3:00 and 5:00

in the morning. Barometric pressure reached a maximum around 10:00 local time, with a

minimum at 16:00 local time, but also showed semidiurnal variations, due to the atmospheric

lunar tide [Paulino et al., 2013]. The diurnal variability of wind speed was much less well-

defined than other meteorological variables, but generally winds were higher by 3–4 m sec−1

at 16:00–17:00, when the sea breeze was at its peak. Winds were generally weakest in the

morning, between 6:00 and 7:00.

The average maximum height of the planetary boundary layer (PBL) was 1439.1 m, and

the average minimum was 38.8 m. PBL heights consistently peaked around 13:00± 2 hours,

local time (Figure 4.4). The nocturnal boundary layer reached its smallest height between

22:00 and 4:00. PBL height showed a slight seasonality in its maximum and minimum daily

value; higher maximums minimums were seen in austral summer (December and January).

Similar to the characteristics of back-trajectories (see Section 2.3.1), the greatest values and

largest variability in daily maximum PBL height were seen during austral summer (Figure

4.3).

4.3.2 The Local Wind System

Four prominent sectors were visible in the wind direction time series (Figure 4.5 and Figure

A.12). These corresponded well to the thermo-topographic wind system described by other

authors in the literature [Brimelow and van Heerden, 1996, Hänsler, 2011, Lancaster et al.,

1984, Lancaster, 1985, Lindesay and Tyson, 1990, Schulze, 1969, Tyson and Seely, 1980]
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Figure 4.4: The average diurnal cycle of temperature, radiation, and PBL height. The light-
colored ribbon shows one standard deviation, and the dark line the mean.

(see also Section 2.1.3). The sectors with the strongest winds were the sea breeze (SB), the

plain-mountain wind (PMW), and the bergwinds (BERG). Bergwinds are only identifiable

from the land breeze if temperature and humidity are taken into account. When wind speeds

less than 1 m sec−1 are ignored, the five components of the thermo-topographic wind system

account for 68% of all observations.

The sea breeze sector exhibited a double-peaked distribution, likely due to blocking by

Station Dune1. The sector spanning 187–197° (SB1) covers the plain to the west of Station

Dune, and sees winds stronger by 1.0 m sec−1 than SB2. Land breezes (LB) were the weakest

winds, with an average of 4.4 m sec−1, and bergwinds were the strongest, with an average

of 7.7 m sec−1.

The sea breeze occurs throughout the year with only occasional interruptions of its reg-

ularity due to strong synoptic events (Figure 4.6). Plain-mountain winds are more frequent

during austral summer but are seen year round. Bergwinds, land breezes, and mountain-

plain winds are almost entirely restricted to the austral winter months. Hence, westerly

winds (from the ocean) predominate during austral summer and easterly winds (from the

interior) predominate during austral winter (see also Figure 2.9). Wind sector prevalence

also showed a pronounced diurnal variability (Figure 4.6). Sea breezes develop at Gobabeb

in the late afternoon, between 12:00 and 18:00, stopping shortly after sunset. The rest of

the diurnal period is typically dominated by PMWs, MPWs, or LBs, depending on the sea-

son. Bergwinds are more preferentially a daytime phenomenon, but can blow throughout the

night on occasion.

1“Station Dune” is the name given to this specific sand dune by the GRTC community. The closest portion
of the crest is 674 m from NDAO, lying in the 185–215° sector (SW); the front of the dune is oriented
NNW–SSE. See Figure 2.4.
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Figure 4.5: Histograms of meteorological wind direction measured at NDAO from the mast,
using 1-hour means for the period October 2012–October 2014. Prominent sectors are labeled
over their peaks, in red: “MPW” stands for mountain-plain wind, “SB” for sea breeze,
“PMW” for plain-mountain wind, “LB” for land breeze, and “BERG” for bergwinds. The
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in the middle and bottom panels, the dataset has been filtered by wind speed (WS).
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4.3.3 Diurnal Variability of the Main Measurands

Some diurnal variability was observed for all measurands, though for CO, N2O, CH4, and

CO2, this was often negligible or lost within intradiurnal variability. A diurnal cycle was very

prominent and consistent for δ(O2/N2). Diurnal variability is shown both in the results of

the SSA for each species (Figures A.13 through A.17), and in the average monthly diurnal

cycles (Figures A.18 through A.22).

These diurnal cycles appeared to be a result of boundary layer oscillations, which are large

at Gobabeb, combined with horizontal advection of air via the local wind system. The two

processes can create competing or complementing influences on the daily concentrations of

NDAO measurands. This is because of a distinct vertical gradient in airflow, a fact noted

in both the early empirical descriptions of the local wind system of the central Namib and

in high-resolution (18 km) model simulations for the region [Hänsler, 2011, Lengoasa et al.,

1993, Lindesay and Tyson, 1990, Tyson and Seely, 1980]. In summer, when PMWs dominant

the surface flow, a LB or MPW can be found at height (ca. 1000 m). In winter, when MPW

and LBs are found at the surface, a PMW can form above as a return flow [Hänsler, 2011,

Lengoasa et al., 1993]. As the PBL height increases throughout the day, convection would

mix the upper air masses with the dominate surface flow.

The degree to which species followed the local wind system or the PBL height gives some

insight into the regional sources and sinks of these gases. For CO2, for instance, the amplitude

of the diurnal cycle extracted with SSA ranged from essentially 0 to as much as 4 ppm.

Diurnal variability in CO2 and O2 at background sites is usually a result of surface fluxes

due to vegetation and boundary layer oscillations [Stephens et al., 2007]: during daytime,

when the boundary layer height is large, the flux signal from the surface is diluted with air

at greater height. At night, as the ground cools, a stable, lower-lying nocturnal boundary

layer typically forms that traps emissions from the surface [Aubinet et al., 2012]. Since the

vegetation is very sparse or non-existent at Gobabeb except for a thin strand of brush and

trees along the Kuiseb River, one would expect there to be little in the way of near-field fluxes

due to photosynthesis and respiration of plants. Though there have been some reports of high

CO2 uptake by desert soils with high carbonate content [Ma et al., 2014, Serrano-Ortiz et al.,

2010, Wohlfahrt et al., 2008, Xie et al., 2009], this has been challenged [Schlesinger et al.,
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Figure 4.7: CO2, δ(O2/N2), wind direction, and wind speed over four days in November 2012.
The wind direction shows a typical PMW/SB alternation, which induces a diurnal cycle in
both CO2 and O2. In the bottom panel, the dark blue bar shows the PMW sector, the light
blue bar shows the SB, and the orange bar shows the MPW.

2009, Stone, 2008], and, regardless, the central Namib does not fit the special characteristics

of the sites where such abiotic fluxes have been reported.

A photosynthetic/respiratory signal can be discounted as the cause of the diurnal vari-

ability of O2 and CO2 for most of the time series, since the cycle was typically the inverse of

this pattern: the peak of CO2 occurs during the afternoon, around 14:00 (Figure A.18 and

Figure 4.7). The diurnal cycles of CO2 and O2 were also slightly out of phase. For example,

on November 3rd, 2012, the decline in δ(O2/N2) began shortly after 7:00 and reached a mini-

mum at 8:00, a decrease of about 75 per meg (Figure A.23). During this period of time, wind

speeds were low and the wind direction changed from a typical PMW to the NE, and the

nocturnal boundary layer was beginning to break up. As the sea breeze developed throughout

the afternoon, the boundary layer deepened, CO2 mole fractions rose and δ(O2/N2) declined.

It is not fully clear from these data what caused the additional variability in O2. It could

be related to the break-up of the nocturnal boundary layer, although this would not explain

the very steep slope found between CO2 and O2. A full explanation would need to include

a much more detailed study of the micrometeorology of the Gobabeb site.

The exchange ratio (see Section 1.6) of these typical PMW/SB cycles was indicative of a

marine signal; the exchange ratio of the entire two-year dataset for all combined PMW and

SB data was −7.6± 0.2, while the exchange ratios for the easterly sectors—MPW, LB, and
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Figure 4.8: CO2, δ(O2/N2), wind direction, and wind speed over four days in November 2012.
The wind direction shows a typical PMW/SB alternation, which induces a diurnal cycle in
both CO2 and O2. In the bottom panel, the dark blue bar shows the PMW sector, the light
blue bar shows the SB, and the orange bar shows the MPW.

BERG—were close to −1 (Figure 4.9). Likewise, the exchange ratio of the monthly average

diurnal cycles was very negative for July though March, but close to −1 for April through

June. During those months with a strong MPW occurring at night, the terrestrial exchange

ratio dominated most of the day, appearing to overwhelm the marine influence on the diurnal

cycle (Figure A.24 and Figure A.25).

In contrast, CO and CH4 had a much less pronounced or consistent diurnal variation

(Figure A.20–A.22 and Figures A.15–A.17). For carbon monoxide, the diurnal variability

became greatest when the synoptic variability was greatest, which created a seasonality

in daily variations for this species. During winter months, the diurnal cycle became more

pronounced and its peak was associated with the maximum PBL height, while smaller peaks

coincided with changes in wind sector and/or wind speed (Figure A.26). Since the local wind

system and the PBL are not in phase, this created semi-diurnal oscillations that could be

fairly prominent for CH4 and CO at times (Figure A.20 and Figure A.21). A daily peak in

CO coincident with the greatest extent of vertical mixing is consistent with more polluted

layers at height, a phenomenon discussed at length in Chapter 5.

The diurnal variability evident from the results of the SSA on N2O was dwarfed by noise

and intradiurnal variations, and should be viewed with caution. These sporadic, small diurnal

cycles were largest during times of increased synoptic variability. While this species was also
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Figure 4.9: δ(O2/N2) and CO2 by wind sector. δ(O2/N2) is given in ppm equivalents.
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of course responsive to changes in boundary layer height, wind sector, or wind speed (i.e.,

meso- and microscale transport), the magnitude of these changes was—unlike CO—very

small compared to the drift of the OA-ICOS. It was shown in Chapter 3 that while the drift

correction removes most of the influence of daily temperature changes on the time series, it

does not account for all artifacts.

To summarize, the diurnal cycles of O2 and CO2 were found to be mostly due to the

daily contrast between coastal background air, from the NW (the PMW), and air that was

more directly influenced by air–sea exchange of CO2 and O2, advected to NDAO by the

sea breeze. During April through June of each year, when the SE winds (MPW) are seen

at night, terrestrial exchange by land plants dominated the diurnal cycle of CO2 and O2.

The most likely source of this signal would be the trees and brush along the Kuiseb River,

since the MPW is channeled through this area [Tyson and Seely, 1980]. The influence of the

Benguela Current region on the NDAO time series is discussed at length in Chapter 6. CO

and CH4 were both dependent on oscillations in the height of the PBL, which appeared to

create a rise in both species during specific synoptic conditions. This was restricted mostly

to austral winter, and is discussed at length in Chapter 5.

4.3.4 Seasonal Cycles

While the time period considered was relatively short, seasonality was apparent for all mea-

surands (Table 4.1 and Figure 4.1). Seasonal cycles were also evident in the meteorological

time series (Figure 4.2), although in the case of air temperature, the diurnal and synoptic

variability masked much of the small seasonal cycle; this is to be expected for a near-tropical

site. For CO2, CH4, and CO, the phasing of the seasonal cycle agreed well with the NMB

flask record (Chapter 2), peaking in early July and reaching a minimum in late January

or early February. Atmospheric oxygen and APO were in opposite phase with CO2. As the

observational period for CO and N2O was too short to see more than one seasonal cycle, the

seasonal characteristics should be treated with caution, though it is noted that the NDAO

amplitude and phasing also agreed well with the NMB record for these measurands. While
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Table 4.1: NDAO Seasonal Cycles and Growth Rates: Oct. 2012–Oct. 2014a

Measurand Amplitudeb Peakc Troughd Growth Ratee

CO2 2.36 ppm Jul. 11 Feb. 6 1.82± 0.07 ppm yr−1

CH4 30.5 ppb Jul. 7 Feb. 2 8.0± 0.4 ppb yr−1

CO 37.0 ppb Jul. 2 Jan. 23 —

N2O 0.8 ppb Mar. 22 Jul. 10 1.2± 0.06 ppb yr−1

δ(O2/N2) 61.0 per meg Jan. 31 Jun. 28 −16.1± 1.1 per meg yr−1

APO 49.7 per meg Jan. 30 Jun. 28 −7.7± 0.9 per meg yr−1

a For CO2, CH4, δ(O2/N2), and APO. For N2O and CO, the observational period is July
2013–October 2014.

b Average peak-to-trough amplitude.
c Day at which the peak of the seasonal cycle is reached.
d Day at which the trough of the seasonal cycle is reached.
e Determined through ordinary least squares regression.

the phasing of APO and δ(O2/N2) is in good agreement with measurements from the Pacific

at the same latitude, the amplitude of both is a little higher than is observed in that region

[Tohjima et al., 2005b, 2012].

4.3.5 Annual Growth Rates

Growth rates were determined for the study period (Oct. 2012–Oct. 2014) and were found to

be close in agreement to the background sites discussed in Chapter 2. Additionally, NOAA

flask data from the Cape Grim Observatory (CGO) was included. For this comparison,

growth rates were compared for the period Oct. 2012–Dec. 2013 (Table B.9). During this

period, the growth rate of CO2 at NDAO, NMB, and ASC was 2.8 ppm yr−1; these sites are

all impacted by biomass burning emissions from southern Africa. At the marine background

sites CPT2, EIC, CFA, and CGO, the growth rate was a little lower: 2.6–2.7 ppm yr−1. Some

of this discrepancy may be due to the short time span and low frequency of sampling, which

makes the calculation sensitive to outliers. The average global growth rate of CO2 for the

calendar year 2013 was 2.9 ppm yr−1 [WMO/GAW, 2014].

The only δ(O2/N2) data available to the author for comparison was from the Cape Grim

Observatory (CGO); the growth rate was a little more negative at NDAO, by about 6 per

meg yr−1 for δ(O2/N2), and 2 per meg yr−1 for APO, though given the uncertainties involved

in determining a growth rate for such a short period of time, it would be unwise to read too

much into this difference.

The average global increase of methane during 2013 was 6 ppb yr−1 [WMO/GAW, 2014],

which is close to the range of values seen here: 3.4–6.8 ppb yr−1. As growth rates of methane

vary with location and latitude [Dlugokencky et al., 1994, Langenfelds et al., 2002], small

differences between sites are to be expected. At NMB, NDAO, and CGO, the growth rate of

N2O was 1.3 ppb yr−1. This is higher than the globally averaged value of 0.8 [WMO/GAW,

2014].

2Recall that the CPT is a GAW global background station, as the data are filtered to remove any continental
influence.
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4.4 Summary and Conclusions

In this chapter the main time series from the Namib Desert Atmospheric Observatory was

presented. Small diurnal cycles were noted for CO2 and δ(O2/N2), as well as occasionally

for CH4, CO, and N2O. This was attributed to boundary layer oscillations, and the local

wind system, which advects air masses that possess a strong gradient between marine and

terrestrial influences. Low seasonality was noted for CO2, CH4, and CO, similar to other

marine background sites from this latitude. Growth rates were fairly high for the last 10–

15 years, although this appeared to be consistent with other observations for 2013. Most

importantly, the NDAO time series agreed very well with the NMB flask record presented

in Chapter 2, in terms of annual growth rates and seasonal characteristics. Considerable

synoptic variability for all species was observed, notable for a background site; the causes of

such synoptic variability are discussed in the final chapters.





5
Seasonally Occurring Anomalies of

CO2, CH4, and CO, Induced by

Biomass Burning and Variability in

Atmospheric Transport

5.1 Introduction

Variability in biomass burning has been shown to have a significant effect on the interannual

variability of CO2, CH4, and CO [Langenfelds et al., 2002]. Due to its semi-arid climate and

agricultural practices that are common in the region, southern Africa is a global hotspot for

biomass burning emissions. The yearly fire season (May–November) sees the development of

an area of elevated CO over the savanna region between 5 and 20°S [Hooghiemstra et al., 2012,

Inness et al., 2013, Kopacz et al., 2010, Reeves et al., 2010, Scholes et al., 1996, Sinha et al.,

2003, van Leeuwen et al., 2013, Yoon and Pozzer, 2014]. The amount and relative proportions

of the trace gases that are emitted from savanna fires vary widely depending on the type

of vegetation, soil, land use, combustion, climate, and fire frequency [Andreae and Merlet,

2001, van Leeuwen and van der Werf, 2011, van Leeuwen et al., 2013, Ward et al., 1996].

Since emissions occur at the surface, concentrations are highest in the planetary boundary

layer. As the sensitivity of satellite measurements decreases towards the surface [Chevallier

et al., 2009], the lack of in situ measurements from this region hampers attemps to quantify

these emissions using inverse techniques.

Despite its location in a sparsely populated, sparsely vegetated coastal environment, at-

mospheric observations at Gobabeb, both with flasks (the NOAA record, referred to here by

its ID, NMB) and continuous measurements (NDAO), have demonstrated that the site sees

greater variation in carbon monoxide and methane than one might at first expect. In fact, the

original motivation for selecting this specific location for the NMB flask measurement site

was because it was hoped that the site was impacted by southern African biomass burning,

which was not well-constrained by atmospheric observations [Novelli, 2014].

There is little direct wildfire activity at Gobabeb or in the Namib Desert, since there

is so little vegetation (Figure 1.2). Yet, inspection of the CO NDAO record reveals large

intraseasonal variability, which is not constant in magnitude, but which varies with the

seasonal cycle. This chapter is focused on exploring the distinctive seasonal cycles for CO2,

CH4, and CO presented in Chapter 2 and Chapter 4, in the context of synoptic variability

and biomass burning.

69
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5.1.1 Enhancement Ratios

The relative proportions of trace gases released from the combustion of organic matter can

be quantified as either as an emission factor, i.e., the mass of a compound emitted per unit

of dry biomass consumed, or as an emission ratio, i.e., as the molar ratio of two trace gases

as measured directly in the fresh smoke of a fire, compared to a background. Emission ratios

(ER) are defined as:

ER∆X/∆Y =
∆X

∆Y
=
Xplume −Xbackground

Yplume − Ybackground
(5.1)

where X and Y are the dry air mole fractions of two species of interest. Emission ratios

typically vary with both combustion phase, i.e., whether it is a predominately flaming or

smoldering process, and fuel source [Akagi et al., 2011, Andreae and Merlet, 2001, van

Leeuwen and van der Werf, 2011]. This means that there is often not a single characteristic

emission factor or ratio that characterizes a given ecosystem. Within savannas, for instance,

emission ratios can vary by more than a factor of 6 [Ward et al., 1996]. In many cases, it is

not the vegetation type that determines the ERs, but the environmental conditions during

the fire [Yokelson et al., 2011]. ERs can also vary throughout the lifetime of a single fire

[Wooster et al., 2011].

The species chosen as Y from Equation 5.1 is most often either CO or CO2 [Akagi et al.,

2011, Andreae and Merlet, 2001]. The relative amounts of CO and CO2 released from a

fire are largely dependent on the combustion phase. CO is usually the choice for smoldering

combustion, although CO2 is preferable for large-scale estimates because it is the dominant

species for biomass burning emissions as a whole, and has a longer atmospheric lifetime

[Andreae and Merlet, 2001]. However, both of these compounds have high emission factors

from all types of fires, and are followed by CH4 as the next-most abundant species released

from typical wildfires [Akagi et al., 2011].

The term enhancement ratio (EN) is sometimes employed when measurements are made

far from the emission source, or if the species involved are affected by secondary reactions;

this quantity is calculated identically to the emission ratio [Hobbs et al., 2003, Jost et al.,

2003a, Wada et al., 2011, Wooster et al., 2011, Yokelson et al., 1999]. Enhancement ratios are

also sometimes called “normalized excess mixing ratios” [Akagi et al., 2011]. Enhancement

ratios can be calculated with two or more measurement points or can be taken as the slope

of the regression line between two species; either the excess mole fractions or the absolute

mole fractions can be used as a means of comparing the in situ covariance of two compounds

directly with their emission ratio [Guyon et al., 2005, Keene et al., 2006, Wada et al., 2011,

Wofsy et al., 1992, Wooster et al., 2011]. In this text, if the absolute mole fractions are referred

to, the nomenclature ENX/Y will be used; normalized excess mole fractions will be denoted

as EN∆X/∆Y . In some works enhancement ratios are also simply called correlation slopes.

It is important to note that while such ratios can yield some insight into the biogeochemical

process causing a departure from the background during a synoptic event, photochemistry

and atmospheric mixing alter the composition of an air mass over the lifetime of a plume,

causing the EN∆X/∆Y to diverge from the original emission ratio [Mauzerall et al., 1998,

McKeen and Liu, 1993].

5.1.2 O2 and CO2 Molar Exchange Ratios

The oxidative ratio (OR) is a unitless molar ratio that quantifies the stoichiometric relation-

ship between the amount of O2 consumed and CO2 produced during the oxidation of organic

matter [Keeling, 1988]. This can be either determined through chemical analysis or calculated

theoretically, based on the elemental composition of the organic matter in question [Keeling,
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1988, Masiello et al., 2008, Severinghaus, 1995, Steinbach et al., 2011]. It is perhaps useful

to distinguish between the oxidative ratio as a theoretical or analytically derived value, and

the OR of ecosystem gas exchange, which would be the ratio of the net fluxes of O2 and

CO2. In this work we will refer to such values as the molar exchange ratio, ∆O2:∆CO2, on

a mol mol−1 basis.

Over time, ∆O2:∆CO2 resulting from surface fluxes due to net ecosystem exchange (NEE)

should converge to the OR of the dominant type of organic matter within the ecosystem [Keel-

ing and Manning, 2014]. The value of the OR varies somewhat depending on the composition

of the organic matter being created or destroyed through reactions like photosynthesis, respi-

ration, decompostion, and combustion [Hockaday et al., 2009, Keeling, 1988, Masiello et al.,

2008, Severinghaus, 1995]. In field and modeling studies, a considerable range of ∆O2:∆CO2

is observed, especially over shorter spatial and temporal scales [Angert et al., 2015, Ishidoya

et al., 2013, Randerson et al., 2006, Seibt et al., 2004, Steinbach et al., 2011, Stephens et al.,

2007]. Molar exchange ratios determined from a regression of atmospheric δ(O2/N2) and

CO2 will integrate and alias signals from a wide variety of ecosystem fluxes [Sturm et al.,

2005, van der Laan et al., 2014]. If the ecosystem is not in steady state, the exchange ratio of

the biosphere–atmosphere flux can differ from the exchange ratio of atmosphere–biosphere

flux [Hockaday et al., 2009, Randerson et al., 2006].

If the observed exchange ratio differs substantially from the OR range of organic matter, it

can be inferred that significant additional biological reactions or processes that do not involve

organic matter are present [Seibt et al., 2004]. The most important example of this is the

more negative exchange ratios observed during air–sea gas exchange. CO2, upon dissolving

in seawater, is subject to further reactions with the carbonate system, while O2 remains

relatively inert. This results in exchange ratios typically less than −2 [Keeling and Manning,

2014, Keeling et al., 1993, Manning et al., 1999].

5.2 Methods

5.2.1 Determination of Slopes

EN∆X/∆Y were determined by subtracting a background fit from the original time series

(see Chapter 4) and finding the slope of the regression line between the resulting ∆X and

∆Y. The slopes of simple linear regressions of any two selected species were determined using

the reduced major axis method.

5.2.2 Back-Trajectory Classification

Back-trajectories from HYSPLIT (see Section 2.2.1) were matched to hourly means of the

main measurands. Back-trajectories were then pooled into classes. Trajectories with a mean

height less than 200 m, a maximum height less than 500m, and a fterr less than 0.2 (fterr
is the fraction of each trajectory that resides over land, see Section 2.3.1) were classified as

“marine boundary layer” (MBL) air. Trajectories with a mean and maximum height less

than 1,000 m, a fterr greater than or equal to 0.3, and lying east of 14°E were classified as

“anticyclone boundary layer” (ABL). Trajectories with a mean and maximum height greater

than 2,000 m, a maximum distance at any point on the trajectory less than 2,000 km,

and a significant and negative slope were classified as “descending air masses” (DAM). The

classification criteria are somewhat arbitrary but were chosen to select the largest clusters

of like trajectories.
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5.2.3 Remote Sensing Data

A normalized difference vegetation index (NDVI) dataset was acquired from the Oak Ridge

National Laboratory Distributed Active Archive Center (ORNL DAAC), i.e., the Interna-

tional Satellite Land-Surface Climatology Project (ISLSCP) Initiative II Global Inventory

Modeling and Mapping Studies (GIMMS) Monthly NDVI, 1981–2002 [Tucker et al., 2010].

This 22-year NDVI dataset was used to create a climatology of NDVI for southern Africa,

using the domain between 10–42°E and 0–35°S.

In order to obtain an indicator or metric of fire activity, data giving the extent of burned

area were obtained from the Global Fire Emissions Database (GFED), Version 4.0 [Giglio

et al., 2013]. The data have a daily time step and a 0.25°resolution. This product combines a

MODIS burned area product with active fire data from the algorithm 2 Along-Track Scanning

Radiometer (ATSR) World Fire Atlas (ATSR), and from the Visible and Infrared Scanner

(VIRS). Data from 2008–2013 were combined to create a climatology for fire activity in

southern Africa for the 10–42°E and 0–35°S domain.

5.3 Results and Discussion

5.3.1 Seasonal Divergences from the Marine Background

NDVI showed a predictable seasonal pattern following the general climatology of the ITCZ;

greening occurred during the wet season and browning during the dry (Figure 2.1 and Figure

A.2). Fire activity, expressed as the extent of total burned area in southern Africa, had a

close, inverse relationship with NDVI (Figure 5.1). In the absence of extensive wetlands, a

greening landscape would not have as much influence on CO and CH4 as biomass burning

would. For CO2 and O2, this would imply that biomass burning and land plants act in concert

to produce the seasonal cycles described in Chapter 2 and Chapter 4. Biomass burning is a

known source of CO and CH4, and has been shown to produce a substantial contribution to

the seasonal cycle of CO2 at background sites, particularly in areas where the contribution

of land plants is lower [Wittenberg et al., 1998].

A striking feature of the NDAO CO time series is the high degree of intraseasonal vari-

ability between March and October (Figure 5.2). These positive anomalies cause a seasonal

divergence from the marine background signal as seen from the Cape Point Observatory

(CPT; see Section 2.2.2), and occur on the ascending portion of the seasonal cycle. This

pattern is also observed in methane, and to a lesser extent, CO2.

From this continuous record, it is clear that the distinctive seasonal cycle seen at NMB and

NDAO in CO2, CH4, and CO is not really due to a change in the background. Rather it is due

to a peak in synoptic activity during July, when the likelihood of a flask sample being elevated

is highest, since mole fractions of these species are only rarely close to the CPT background.

This is also when anticyclonic circulation is at its peak, and trapping/recirculation of polluted

air over the continent is more likely [Tyson et al., 1996b].

The month of July is also when the tiny seasonal cycle of SF6 peaks. As this greenhouse

gas is emitted solely from industrial sources, its emission rates are thought to be constant

throughout the year [Patra et al., 2009, Ravishankara et al., 1993]. Back-trajectories imply

that during July there is a lot of direct transport from the South African Highveld, where

the Guateng conurbation is located. This region contains a high density of SF6 emissions

(Figure A.27.)
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Figure 5.1: Annual cycles of the normalized difference vegetation index (NDVI), averaged
for southern Africa; biomass burning (BA) averaged for the same region; and the average
annual cycle of the fraction of each back-trajectory that resides over land arriving at NDAO,
fterr. Envelopes show one σ, and lines the average seasonal cycle. NDVI and fterr share the
same axis. The first 6 months of the year are repeated for visual clarity.

5.3.2 Pathways of Polluted Air Masses

Synoptic events with elevated mole fractions of CH4 and CO were often associated with the

ABL and DAM classes of back-trajectories, while baseline values were more often seen when

back-trajectories were of the MBL class (Figure A.28). This implied two common pathways

or routes for polluted air masses to NDAO: the first, characterized by the ABL class, was

for surface trajectories via the southern African anticyclone. The second pathway was via

a descending air mass, which had mostly been residing over the coast or interior of the

continent. The interpretation here is that mixing or descent of polluted layers at height was

often a source of high CO air. This interpretation is well-supported by previous aircraft

campaigns in the Namibian region, which have often found elevated concentrations of CO

and CH4 above the continental or marine boundary layer, in the 2–6 km region [Bartlett

et al., 1996, Hobbs, 2003, Jost et al., 2003a,b, Mauzerall et al., 1998, Mühle et al., 2002,

Sinha et al., 2003, 2004, Tyson and D’Abreton, 1998].

5.3.3 Stiochiometry: Enhancement and Molar Exchange Ratios

The covariation of carbon monoxide and methane observations was dominated by two lin-

ear subpopulations, after diurnal variations were removed (Figure A.29). The second pop-

ulation was mostly composed of the anticyclic and subsiding trajectory classes, while the

first population was dominated by MBL trajectories. The distinction is not perfect, as

it is both an oversimplication and reliant on the accuracy of back-trajectories. But, we

can say that high CO events tend to have certain trajectory types associated with them.

MBL-associated data had an ENCH4/CO of 1.32± 0.07 ppb ppb−1. This population repre-

sented background values of CH4 and CO: the correlation slope matched that of the Cape

Point background (ENCH4/CO = 1.64± 0.4 ppb ppb−1), and the strength of the correlation

(R2 = 0.54; n = 549; p < 2×10−16) decreased when the data were deseasonalized (R2 = 0.27;
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Figure 5.2: Hourly averages of CO2, CH4, and CO (colored points) and running 24-hour
means (colored lines) from NDAO, compared with filtered half-hourly, marine background
values from Cape Point (CPT; black points and grey lines).

n = 549; p < 2×10−16). That the NDAO and CPT ENCH4/CO agree so well is due to the

synchronization of the seasonal cycles of CH4 and CO. Both the ABL and DAM data were

characterized by higher CO anomalies, with a combined EN∆CH4/∆CO of 0.28± 0.05 ppb

ppb−1 (with outliers greater than 2σ removed). The CH4 and CO of these two populations

were also significantly correlated (R2 = 0.45; n = 91; p = 2.1×10−13).

As CH4 and CO are produced primarily during smoldering combustion, the range of

ER∆CH4/∆CO reflects more the fuel composition than combustion dynamics. Grassland and

savanna fires, for instance, produce smaller ratios than woodland fires [Akagi et al., 2011,

Andreae and Merlet, 2001, Bartlett et al., 1996]. Most savanna fires have a high combustion

efficiency and are predominately flaming [Hao et al., 1996]. The emission ratio—and the

enhancement ratio if measured close to the source—of CH4 to CO is between 0.01 and 0.1

[Akagi et al., 2011, Andreae and Merlet, 2001, Bartlett et al., 1996, Hobbs et al., 2003]. CO is

progressively lost in plumes, however, due to photochemical reactions, so ageing of the plume

alters the EN from the original ER [Mauzerall et al., 1998]. In a campaign using a commer-

cial airliner, Mühle et al. [2002] encountered a plume over Namibia with an EN∆CH4/∆CO of

0.227± 0.035 Working with data from TRACE A aircraft campaigns over the South Atlantic

and southern Africa, Mauzerall et al. [1998] found an ENCH4/CO of 0.16± 0.05 (ppb ppb−1)

for fresh plumes, 0.37± 0.003 for recent plumes, 0.6± 0.076 for aged plumes, and 0.44± 0.12

for old plumes. In their classification scheme, old refers to plumes less than 1 week in age,
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Figure 5.3: The day of the year with the most common (i.e., median) fire occurrence for all
pixels, using the period 2008–2013. Location of NDAO is given by a black circle with a white
“x”.

aged less than 5 days, recent less than 1 day, and fresh less than half a day. Since the average

enhancement ratio for terrestrial air masses in the present study was 0.28± 0.05 ppb ppb−1,

this supports the conjecture that most of the polluted air masses arriving at NDAO were

influenced by biomass burning rather recently.

The enhancement ratio of CH4 and CO at NDAO had a seasonal component as well. During

austral summer, EN∆CH4/∆CO hovered around the background value of around 1 or greater.

In May, as the synoptic variability of CH4 and CO increased, the average EN∆CH4/∆CO

dropped to around 0.3 (Figure 5.4). The largest synoptic events were in July, which was also

when the lower EN∆CH4/∆CO pointed to more recent combustion. This observation agreed

well with the timing of biomass burning events from the GFED database, which showed a

southward progression of biomass burning throughout the year (Figure 5.3). The fires that

occur before June were located primarily north of −10°S; anticyclonic surface trajectories

were rarely seen north of −16°S. Taken together with the transport modeling discussed

in Section 5.3.2, this implied that starting in March, CO and CH4 synoptic events began

to occur due to the seasonal shift towards more terrestrial air masses. In April and May,

the EN∆CH4/∆CO remained elevated since NDAO was farther away from the combustion

source, and most of the enhanced CO and CH4 was transported to NDAO via the DAM-

type circulation. By July, EN∆CH4/∆CO dropped, indicating a more recent combustion source,

which was consistent with the observation that more active fires were closer to the station.

As shown previously, emissions from biomass burning events can arrive at NDAO through

either ABL- or DAM-type circulation. Without relying too heavily on atmospheric transport

modeling—the errors associated with back-trajectories can be high, particularly in regions

of the world where meteorological data is lacking—it is encouraging that the model results

support the evidence from the stoichiometry of the synoptic events.
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Figure 5.4: The enhancement ratio of CH4 and CO (EN∆CH4/∆CO) for a portion of 2014
(top panel). EN∆CH4/∆CO are determined by calculating a running slope in a 5-day window
(gray points) on the ∆CH4 and ∆CO time series which have been smoothed with a running
24-hour mean. If the R2 is less than 0.6, the slope is excluded. The resulting EN∆CH4/∆CO

were then aggregated to 10-day means to produce the red line. Also plotted is the O2:CO2

molar exchange ratio, calculated in the same manner as the EN∆CH4/∆CO.

Throughout most of the year, the molar exchange ratio of synoptic variations of CO2

and δ(O2/N2) were substantially more negative (i.e., less than −2) than the range of mo-

lar exchange ratios associated with terrestrial plants and soils, combustion, decomposition,

etc. Such lower values pointed to air–sea exchange as the type of surface flux that caused

these events; this phenomenon is explored further in Chapter 6. In July, however, when the

intraseasonal variability of CH4 and CO reached its maximum, the 10-day average apparent

molar exchange ratio of O2:CO2 was between −1.2 and −1.5. This is very close to the range

of −1.1 to −1.4 found by Lueker et al. [2001] over the course of a forest fire in northern

California. A more negative value is indicative of incomplete combustion, such as would

occur in a smoldering fire. However, given the uncertainty in the slope determination, the

unknown degree of atmospheric mixing, and what are likely large distances between NDAO

and any active fires, nothing definitive can be concluded about the type of combustion. The

point here is more that the stoichiometry of O2 and CO2 switched from marine-dominated

exchange process during most of the year, to likely combustion-dominated exchange during

July, when the influence of fire activity was most likely to be strongest at the station.
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5.4 Summary and Conclusions

Striking seasonality in the synoptic variability of CO and CH4 is observed at NDAO. Begin-

ning in March, the magnitude of these positive anomalies increases until July. At this time,

CO2 and O2 also show covariation with CH4 and CO, and background observations of all

species are uncommon. By November, these large synoptic events have become rare and CO

and CH4 are mostly background values for the remainder of austral summer. The cause of

this annual pattern is attributed to greater variability in atmospheric transport, which alter-

nates between air masses that have been altered by the marine or terrestrial environment.

The magnitude of synoptic variability increases as biomass burning events move southward

through the dry season. This is reflected in the enhancement ratio of CH4 and CO, which

shows a more aged value in April through June, and ratios indicative of more recent events

in July and September, when more fires are located closer to the station. At this time, the

exchange ratios of O2 and CO2, which usually point to marine surface fluxes, are also in

accordance with biomass burning.





6
Top-Down Estimates of Greenhouse

Gas Emissions from the Lüderitz and

Walvis Bay Upwelling Cells

6.1 Introduction

Coastal margins, particularly those associated with the upwelling of nutrient-rich bottom

waters, are very biogeochemically active regions [Levin et al., 2015]. The air–sea fluxes of

greenhouse gases (GHGs; referring here to the long-lived, natural greenhouse gases CO2,

CH4, and N2O) from or to such systems can vary markedly, both spatially and temporally

[Evans et al., 2011, Naqvi et al., 2010, Reimer et al., 2013, Torres et al., 1999]. This is

because coastal upwelling events are episodic in nature, as they are forced by surface winds

that occur under specific synoptic conditions; even large events happen only on a time scale

of days [Blanke et al., 2005, Desbiolles et al., 2005, 2014, Goubanova et al., 2013]. Coastal

upwelling regions also tend to be very productive, due to high nutrient availability, but such

productivity is dependent on the resupply of remineralized bottom waters, which is largely

wind-driven [Mann and Lazier, 1996]. As a result of this high primary productivity, coastal

upwelling systems can also be associated with large oxygen minimum zones (OMZs), due

to the respiration at depth of exported organic matter from the photic zone [Capone and

Hutchins, 2013, Paulmier et al., 2008]. Of the major eastern boundary upwelling systems,

the Benguela is probably the least sampled for air–sea fluxes of GHGs [Laruelle et al., 2014,

Naqvi et al., 2010, Nevison et al., 2004b].

In the Benguela, upwelled waters are brought to the surface from a depth between 100 and

300 m [Boyer et al., 2000, Mohrholz et al., 2014, Shannon and Nelson, 1996]. The upwelling

zone is some 200 km wide, although filaments can extend much farther, up to 1000 km

long [Fennel, 1999, Lutjeharms et al., 1991, Veitch et al., 2009]. In the northern Benguela

upwelling activity is highest during the winter, while the opposite is seen in the southern

Benguela [Campillo-Campbell and Gordoa, 2004, Veitch et al., 2009]. Upwelled waters can be

sourced from different water masses; at Cape Frio, for instance, this is usually the aged (∼50

years) and hypoxic Eastern Tropical South Atlantic Central Water (Eastern Tropical SACW,

sometimes called Angola Basin SACW), whereas the better-ventilated Cape Basin SACW

upwells through the Lüderitz cell [Duncombe Rae, 2005, Mohrholz et al., 2008, Monteiro

et al., 2006, Poole and Tomczak, 1999, Shannon and Nelson, 1996]. The region between

Lüderitz and Walvis Bay sees the transition between the dominance of the two types of

water masses.

Adding additional complexity, upwelling is not homogeneous along the coast. Specific

upwelling events cluster geographically, forming upwelling cells [Lutjeharms and Meeuwis,

1987]. Seven semi-distinct cells have been recognized [Demarcq et al., 2003, Lutjeharms and

79
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Meeuwis, 1987, Lutjeharms and Stockton, 1987, Veitch et al., 2009]. However, there is some

limit to the utility of this classification, since large events are often observed that span more

than one cell. The region of coastal shelf near Lüderitz is subject to the strongest upwelling

fluxes in the Benguela region [Hagen et al., 2001, Hutchings et al., 2009, Lutjeharms and

Meeuwis, 1987, Veitch et al., 2009]. The Lüderitz cell frequently overlaps with the Walvis

Bay upwelling cell [Lutjeharms and Meeuwis, 1987], and in this study the two cells are

considered together. At Lüderitz, the surface winds are the strongest, and surface chlorophyll

is at a minimum (as compared to the rest of the Benguela) [Demarcq et al., 2007, Hutchings

et al., 2009]. While upwelling in this area is perennial, seasonality is seen in the intensity of

upwelling due to the annual migration of the South Atlantic Anticyclone, with a minimum

in austral winter [Hagen et al., 2001, Hardman-Mountford et al., 2003, Peard, 2007, Veitch

et al., 2009]. The Lüderitz upwelling cell separates the Benguela region into a northern and

southern portion, distinct from one another both biogeochemically and physically [Agenbag

and Shannon, 1988, Duncombe Rae, 2005, Hutchings et al., 2009].

A large oxygen minimum zone is endemic to the shelf area between 20°S and 25°S [Brüchert

et al., 2006, Monteiro and van der Plas, 2006, Monteiro et al., 2008]. Water on the inner

shelf, where surface waters are more productive and biological oxygen demand is highest, is

more hypoxic than water on the outer shelf [Monteiro and van der Plas, 2006]. The presence

of the OMZ is attributable both to the substantial remineralization of particulate organic

carbon from the photic zone and to the advection of low-oxygen Eastern SACW onto the

shelf [Brüchert et al., 2000, 2003, Mohrholz et al., 2008, 2014, Monteiro and van der Plas,

2006, Monteiro et al., 2006, Weeks et al., 2004], though the importance of water column

biogeochemistry in sustaining the OMZ has been challenged by Monteiro et al. [2008]. Oxygen

concentrations on the shelf are highest during periods of the greatest ventilation, both on

seasonal and interannual time scales; concentrations are usually lowest—and can reach an

anoxic state—in austral summer [Mohrholz et al., 2008, Monteiro et al., 2008].

Ventilation of older water masses that have been removed from the atmosphere for decades

or more can deviate substantially from atmospheric equilibrium in their trace gas content

[Hamme and Keeling, 2008, Nevison et al., 2005]. As water masses age away from the eu-

photic zone, microbial respiration remineralizes organic matter, reducing concentrations of

oxygen and increasing pCO2. Upwelled water is usually cold, which means that the solubility

of dissolved gases will decrease with increasing temperature as water masses warm at the

surface. A competing influence for CO2 exists in that the supply of inorganic nutrients from

an upwelling events can lead to blooms of phytoplankton and a net drawdown of atmospheric

CO2 (Figure 6.1). Hence, coastal upwelling regions can oscillate between being sources and

sinks of CO2 [Cao et al., 2014, Evans et al., 2015, González-Dávila et al., 2009, Gregor and

Monteiro, 2013a, Santana-Casiano et al., 2009, Torres et al., 1999].

Additionally, most coastal upwelling systems are also known to be regional hotspots of N2O

emission [Bange et al., 2001, Bianchi et al., 2012, Cornejo et al., 2006, Lueker et al., 2003].

Since N2O production is enhanced at low oxygen concentrations, OMZs can consequently be

significant source regions to the atmosphere [Bianchi et al., 2012, Faŕıas et al., 2007, Nevison

et al., 2003, Paulmier et al., 2008, Suntharalingam and Sarmiento, 2000, Zamora et al.,

2012]. Methane release from coastal upwelling regions is also possible [Kelley and Jeffrey,

2002, Kock et al., 2008, Rehder et al., 2002, Upstill-Goddard et al., 1999]. Supersaturation

of CH4 in surface waters can occur as a result of methanogenesis within the anaerobic

microenvironments of particles and in the guts of zooplankton [Bates et al., 1996, de Angelis

and Lee, 1994, Karl and Tilbrook, 1994]. There is evidence that aerobic methane production

is also possible as a by-product of methylphosphonate decomposition [Karl et al., 2008]. If

there exists a mechanism by which bottom waters can be quickly ventilated (such as coastal

upwelling), methane from in situ biological production in low-oxygen water or even from
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Figure 6.1: Simplified conceptual diagram of the competing influences on air–sea gas exchange
in a coastal upwelling system. In the top panel, the dominant controls are shown in their
expected locations relative to the coast, with the dotted line showing the movement of bottom
water to the surface during an upwelling event. A mast is depicted on land, representing
NDAO. Initially water is brought to the surface that has been extensively remineralized, and
is out of equilibrium with the atmosphere. The presence of inorganic nutrients in the photic
zone spurs primary productivity. As upwelled waters warm at the surface, the solubility of
gases decreases, though this effect is smaller for CO2, which is buffered by the inorganic
carbonate system. Expected sign and relative magnitude of fluxes for different species are
also shown.
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sedimentary/geological sources can be released to the atmosphere [Bange et al., 1998, Hu

et al., 2012, Kelley and Jeffrey, 2002, Owens et al., 1991, Rehder et al., 2002, Solomon et al.,

2009].

Concentrations of methane in bottom waters on the Namibian shelf are likely the highest

ever measured in an open coastal system. Values as high as 475 µM in the bottom waters

and greater than 5,000 µM in sediment porewaters have been observed [Brüchert et al.,

2009, Monteiro et al., 2006, Naqvi et al., 2010, Scranton and Farrington, 1977]. In the water

column, the concentration maxima is usually at the seabed or in bottom water, but it is

variable and can even occur at the surface (1 m) [Brüchert et al., 2009]. Dissolved methane

concentrations are tightly coupled with O2 and show considerable variability, with elevated

concentrations being triggered by episodes of hypoxia [Brüchert et al., 2009, Monteiro et al.,

2006]. The pulse-like nature of CH4 in the Benguela means that the full range of dynamics

cannot be captured with a campaign-based sampling approach [Brüchert et al., 2009]. What

is clear is that there is a tremendous amount of methane production at depth, but that the

source is variable in strength [Brüchert et al., 2009, Emeis et al., 2004]. In light of the fact

that large pockets of free methane gas are contained in the sediment in the Walvis Bay region,

as well as the existence of craters and pockmarks on the seafloor, combined with observation

of bubble streams from the seabed, suggest a mechanism by which methane produced in

sediments can be abruptly transported to the surface and hence, avoid oxidation [Brüchert

et al., 2006, 2009, Emeis et al., 2004]. Consequently, the Benguela Current is a suspected

source of CH4 to the atmosphere, but the amount is unconstrained [Naqvi et al., 2010].

The most common method of estimating yearly budgets of air–sea fluxes for GHGs is

to take wind fields and interpolated or representative surface measurements, use them to

calculate a flux density, and scale it up over a selected area. The high variability of air–sea

exchange means that determining yearly budgets of air–sea fluxes of GHGs is challenging

without a high degree of spatial and temporal sampling. Flux density calculations from bulk

measurements are typically made in the upper 10 m of the ocean, but not at the surface.

The method assumes a homogeneous distribution between the measurement depth and the

surface, which is often a poor assumption [Calleja et al., 2013]. The flux density (F , in units

of mol m−2 sec−1) is typically determined according to [Garbe et al., 2014, Wanninkhof

et al., 2009]:

F = kw(Cw − αCa) (6.1)

where kw is the gas transfer (or piston) velocity, in m sec−1, Cw is the dissolved concentration

in the water phase (mol m−3), and Ca is the concentration of the species in the air in the same

units. The formulation can also be altered to accommodate units of partial pressure in both

phases. The expression αCa gives the dissolved concentration in the water phase directly

at the surface; α is the Ostwald solubility coefficient: the reciprocal of the dimensionless

air–water partition coefficient (KAW ) for some temperature, T , and salinity, S [Mackay and

Shiu, 1981].

This approach is valid for lightly soluble gases and assumes an aqueous mass boundary

layer with a uniform temperature, negligible chemical or biological enhancement, bulk con-

centrations in air and water that are well-mixed, and that the surface boundary layers are

in equilibrium, so that the concentration directly at the top of the aqueous mass boundary

layer can be calculated from Ca, using Henry’s Law [Garbe et al., 2014, Wanninkhof, 1992,

Wanninkhof et al., 2009].

Even if the analytical uncertainty in Cw and Ca is low, one must know the correct value of

kw, which is dependent on environmental conditions. There are many approaches suggested

for gas transfer velocity parameterization in the literature, most of them based on wind speed

measured at 10 m above the sea surface. Such kw–U10 relationships vary from linear to cubic
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and kw is a large source of uncertainty in determining air–sea gas fluxes [Johnson et al.,

2011, Otero et al., 2013, Takahashi et al., 2009]. While some of the range of kw–U10 results

is related to experimental uncertainty, much of the factor-of-two spread [Ho et al., 2011,

Johnson et al., 2011] reflects what is probably the real, natural variability in piston velocities

under different conditions involving varying importances of additional forcers (bubbles, sea

spray, surfactants, rain, etc.) [Garbe et al., 2014]. Parameterizing kw based on wind speed

means that not only is the uncertainty in the correct parameterization significant, but that

uncertainty in the wind speed data itself is also important to account for [Otero et al., 2013].

Another approach, and one that sidesteps some of these difficulties, is to use a top-down

method, i.e. using atmospheric measurements to infer fluxes from the surface, using simple

models [Lueker, 2004, Lueker et al., 2003, Nevison et al., 2004b, Thompson et al., 2007,

Yamagishi et al., 2008] or more complex inverse methods (e.g., Rödenbeck et al. [2008]).

The top-down approach has been successfully employed to detect air–sea fluxes of O2, CO2,

and N2O from the California Current upwelling zone from a coastal atmospheric monitoring

station at Trinidad Head, California [Lueker, 2004, Lueker et al., 2003, Nevison et al., 2004b].

In the present, a simple Lagrangian model is employed to create a top-down constraint for

the air–sea exchange of GHGs, oxygen, and carbon monoxide from two prominent upwelling

cells in the Benguela Current region, using the NDAO time series. These estimates are then

validated with shipboard measurements from a cruise in the two upwelling centers, and scaled

up to create annual flux estimates due to upwelling events for these gases of interest.

6.2 Methods

6.2.1 Remote Sensing Data

Following the reasoning of Goubanova et al. [2013], sea surface temperature (SST) data

were obtained from the Remote Sensing Systems (http://www.remss.com/) data archive.

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) daily optimally

interpolated SST product was selected. The major advantage this instrument has is its ability

to measure SST through clouds, which are considerable over the coast, as the TMI measures

frequencies in the microwave region (4–11 GHz). The drawback of this dataset is that there

is no data within 100 km of the coast. Large upwelling features, however, extend much

farther out than this and are readily seen by TMI [Goubanova et al., 2013]. Even with this

loss of near-shore data, the data coverage is still superior to that of optical sensors like the

Moderate-Resolution Imaging Spectroradiometer (MODIS). The TRMM SST data presented

in this work is deseasonalized by subtracting a second harmonic fit to the data, as it showed

a strong seasonal cycle which masked some of the intraseasonal variability when plotted as

a time series.

Wind speed data for the South Atlantic was also derived from the TMI instrument on

the TRMM satellite. This dataset is a level 3 product which gives the 10 m wind speed

over marine areas within the sensor’s field of view. The 18.7 GHz channel data product was

selected. Like the SST data, a major drawback of this dataset is the absence of data within

100 km of land.

Unfortunately, for measurements of surface chlorophyll a (chl-a), optical sensors are the

only option. Chl-a is a proxy for phytoplankton biomass. Two surface chlorophyll products

were used, both level 3 binned products that combined data from multiple satellites, accessed

through ESA GlobColour website (http://www.globcolour.info/). The first is denoted

CHL1-GSM; this dataset is a merged product of two different sensors (during the time period

considered), MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS). The data

is merged using the Garver, Siegel, Maritorena (GSM) model, which blends the normalized
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water-leaving radiances instead of the end product (chl-a concentrations) [Maritorena and

Siegel, 2005]. The second product is denoted CHL1-AVW; these data are merged using a

weighted average method (AVW). Like CHL1-GSM, it combines data from MODIS and

VIIRS for the time frame considered.

6.2.2 Identification of Upwelling Events and Selection of Atmospheric Anoma-

lies

A subset of the coastal region was extracted to represent the Lüderitz and Walvis Bay

upwelling cells, hereafter referred to as the “Lüderitz/Walvis Bay domain.” The boundaries

of this domain were at 13°E, 15°E, 23°S, and 27°S (Figure 6.2, right panel), representing an

ocean area of 56,196 km2.

Upwelling events were identified based on SST and 10 m wind speed anomalies. Specifically,

an event was determined to occur if the average deseasonalized SST of the domain was 0.5°C

or lower than a smoothed, second-degree polynomial fit to the entire time series, and the

average 10 m wind speed of the study area was 2.5 m sec−1 above a smoothed, second-degree

polynomial fit to the wind data. These thresholds were arrived at through visual inspection

of maps and time series of SST and wind speed data, and are specific to the domain chosen,

since the data considered were averages of the entire area. That is, the actual SST of a pool

of recently upwelled water is more on the order of 4–5°C cooler than its surroundings. Since

the resolution of the SST and wind speed time series is daily, all higher resolution data falling

within a day during which an upwelling event occurred was similarly flagged.

Through inspection of the time series, it was noted that large atmospheric anomalies of a

few hours’ duration were associated with upwelling events. The manner in which such features

appear in the atmosphere is controlled both by the timing and location of surface fluxes and

atmospheric dynamics. Specific events were identified and quantified in the following manner:

a second-harmonic fit was generated iteratively to all data, excluding all points that lay above

the curve for the subsequent iteration for CH4, N2O, and CO. For δ(O2/N2) the process

was the same, only points which lay below the curve were excluded, since the majority of

anomalies are negative for this species. For CO2, points that lay above or below one standard

deviation of the initial fit were excluded from the final fit, since anomalies for this species

are both positive and negative. Once a background curve was obtained, the NDAO time

series was filtered by wind (wind speeds greater than 2 m sec−1 and wind direction within

the NNW–SSW sector) and back-trajectory to exclude anomalies which were not associated

with marine air masses. For the latter, trajectories could not reside for more than 36 hours

of the total 120 hours over land, and could not travel more than 50 km inland past NDAO.

6.2.3 Top-Down Air–Sea Flux Estimates

In order to estimate the surface flux associated with atmospheric anomalies due to upwelling

events, the approach of Lueker et al. [2003] was adopted. A simple model was employed to

describe the change in the concentration of a species within a well-mixed column of air as it

moves over a source region [Jacob, 1999]:

∆C =


F
hk

(
1 − e−

kx
U

)
, for 0 ≤ x ≤ L

∆CL

(
e−

k(x−L)
U

)
, for x ≥ L

(6.2)

Here ∆C is the concentration of the species of interest, in mol m−3, expressed as an anomaly

against the background. ∆C is a function of x, which is the distance along a back-trajectory
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from NDAO to the area affected by upwelling. L is the point at which the column (with

height h, in m) leaves this region, characterized by a constant flux, F , in mol m−2 hr−2, and

a constant wind speed, U , in m hr−1. After the column leaves the flux region (x ≥ L), the

loss of ∆C from its peak at L (∆CL) is governed by dilution due to mixing of background

air. This requires the dilution rate constant, kdil, in hr−1, to be known.

Since NDAO is well-outside the flux region, one solves for ∆CL and then for F . Wind

speeds were obtained from satellite data (Section 6.2.1) and the in situ data from NDAO.

h was taken as the average height of the planetary boundary layer (PBL) for the Lüde-

ritz/Walvis Bay domain1 over the course of any given event. PBL data was acquired from

the European Centre for Medium-Range Weather Forecasting’s (ECMWF) ERA-Interim

dataset [Dee et al., 2011]. The dilution rate constant was estimated by comparing measure-

ments of CO2 and CH4 made on the Meteor during M99. Back-trajectories from NDAO were

matched to the closest ship location at the appropriate time. Any back-trajectory points that

were within 100 km of the ship—both horizontally and vertically—within the space of 1 hour

were identified, and a dilution rate constant was calculated for both CO2 and CH4, as [Price

et al., 2004]:

kdil =
1

t
ln

(
CM99 − Cb

CNDAO − Cb

)
(6.3)

The kdils that were obtained from this exercise were then filtered for poor agreement between

kdils for CO2 and CH4, and the average was taken to arrive at a single value, 0.011± 0.006

hr−1.

6.2.4 Determination of Spatially Integrated Annual Flux Rates

To obtain an estimate of the total, annual mass flux of the NDAO measurands from the

Lüderitz and Walvis Bay upwelling cells, the flux density estimates obtained from the ap-

proach described in Section 6.2.2 were integrated over a surface area determined as follows.

Grid cells with wind speeds above 3.5 m sec−1 and a deseasonalized SST below −0.1°C, were

identified, and then all assumed to have the same flux rate (Figure A.30). The aim here was

to simply exclude portions of the domain that were not affected by upwelling, rather than to

develop a predictive empirical relationship between fluxes of different species and upwelling

activity, since for species like CO2, no such simple relationship exists [Santana-Casiano et al.,

2009]. Since the TRMM SST data contains no values within 100 km of the coast, for any

grid cell passing the thresholds that bordered this area, it was assumed that the upwelling

extended to the coast. The daily summed net flux was then integrated over the whole time

series to obtain a total annual flux rate for the two upwelling cells. This approach neces-

sarily resulted in an underestimate, since transport conditions were not always conducive to

observing an upwelling event.

6.2.5 FS Meteor Cruise M99

Cruise M99 of the FS Meteor left Walvis Bay on July 31st, 2013, and returned to port

on August 23rd. The ship called at Lüderitz on the 11th and 12th. Throughout the cruise,

continuous or semi-continuous measurements were made of atmospheric CO2, CH4, and N2O,

and dissolved CO2, CH4, N2O, and O2.

Atmospheric measurements of CO2 and CH4 were made with a CRDS analyzer (model

G1301, Picarro Inc, Santa Clara, CA, USA) located in the atmospheric chemistry laboratory.

The instrument’s internal pump was used to draw air through a 7 m length of 1/4” SERTOflex

1NDAO is within the N–S boundaries of the domain and only 4 km outside the eastern boundary.
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tubing, at a flow rate 150 mL min−1. Inlets identical to those used at NDAO (Section

3.2.1) were placed on the starboard railing of the 6th superstructure deck, just above the

atmospheric chemistry lab, at a total height of ∼21 m above sea level. A second-order,

instrument-specific water correction was performed in lieu of physical or chemical drying

(see Section 3.2.10). As the instrument’s pressure control seemed to be affected by strong

vessel motion, measurements were excluded if the cavity pressure deviated by more than 0.04

torr. Calibrations were conducted on average every three days and target measurements were

made once per day. Reference gases were calibrated at MPI-BGC GASLAB. The uncertainty,

derived from the target measurements as at NDAO, was determined to be ± 0.03 ppm for

CO2 and ± 0.43 ppb for CH4. The dataset was filtered for contamination by the ship’s exhaust

using the relative wind direction data from the ship’s meteorological instrumentation.

A complete description of the instrumentation setup used for dissolved gases is given in

Arévalo-Mart́ınez et al. [2013], with a few modifications that are mentioned here. Briefly,

surface water was drawn at a flow rate of 2 L min−1 from the ship’s moonpool at a depth

of ca. 6 m with a subpump. A 25 m line brought sample water from the moonpool into

the laboratory, where seawater was routed to a Weiss-type equilibrator. Water vapor was

removed from the sample air stream with a condenser in an ice bath and a Nafion® dryer

(model MD-070-72F-4). After drying, the equilibrated sample air was routed (235 mL min−1)

to an OA-ICOS analyzer (model RMT-200, Los Gatos Research Inc, Mountain View, CA,

USA), using the instrument’s internal pump, and then to a non-dispersive infrared (NDIR)

gas analyzer (model LI-6262, LI-COR Biosciences, Lincoln, Nebraska, USA) for CO2. After

measurement, sample air was returned to the equilibration chamber. Every six hours the

system measured atmospheric mixing ratios and reference gases for calibration and/or drift

correction. The headspace of the equilibration chamber was open to the atmosphere to

maintain the pressure at ambient levels. Dissolved oxygen was measured with an Aanderaa

oxygen optode (Model 4330, Aanderaa Data Instruments AS, Bergen, Norway).

The estimated uncertainty of the dissolved CO2 measurements was ± 2 µatm; of dissolved

O2 measurements, ± 4 µmol L−1; of dissolved N2O, ± 0.1 nmol L−1. The uncertainty of the

atmospheric measurements of N2O was ± 0.9 ppb.

In situ oceanographic and meteorological data were taken from the Meteor ’s instrumen-

tation. In order to determine the total dissolved inorganic carbon (DIC) content of surface

waters, total alkalinity was estimated from temperature and salinity data, using the algo-

rithm of Lee et al. [2006]. The dissociation constants of carbonic acid were also determined

from temperature and salinity using the formulations of Millero et al. [2006]. The total DIC

content was then estimated from the total alkalinity and f CO2. Meteorological data (air

temperature, barometric pressure, wind speed, etc.) was observed at a height of 37 m above

sea level. The absolute wind speed measured on the Meteor was converted to U10 through

the relationship [Justus and Mikhail, 1976]:

U10 = Umeas

(
z10

zmeas

)n

(6.4)

n =
0.37 − 0.0081 · ln(Umeas)

1 − 0.0881 · ln( zmeas

10 )
(6.5)

where Umeas is the wind speed in m sec−1, measured at some height zmeas, in m.

6.2.6 Shipboard Air–Sea Flux Density Estimates

Marine surface flux densities of CO2, N2O, and O2 were estimated for the vessel location

throughout M99 from shipboard measurements of atmospheric dry air mole fractions and dis-
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solved aqueous concentrations, according to Equation 6.1. In the case of O2, the atmospheric

concentration was not measured, so it was taken as the mole fraction of O2 in standard dry

air, 0.209392 [Tohjima et al., 2005a]. The in situ aqueous solubility of O2 was calculated

using the equations of Garćıa and Gordon [1992], of N2O using those in Weiss and Price

[1980], and of CO2 using Weiss [1974]. Sea-to-air fluxes (net evasion) are positive.

As there is no definitive kw–U10 parameterization, fluxes were computed with four different

parameterizations of kw: that of Liss and Merlivat [1986] (kL&M), Wanninkhof [1992] (kW92),

Nightingale et al. [2000] (kN00), and McGillis et al. [2001] (kMcG01).

kL&M =



(0.17U10)
(

Sc
600

)−2/3

for U10 ≤ 3.6

(2.85U10 − 9.65)
(

Sc
600

)−0.5

for 3.6 < U10 ≤ 13

(5.9U10 − 49.3)
(

Sc
600

)−0.5

for U10 > 13

(6.6)

kW92 = 0.31U2
10

(
Sc

660

)−0.5

(6.7)

kN00 = (0.222U2
10 + 0.333U10)

(
Sc

600

)−0.5

(6.8)

kMcG01 = (3.3 + 0.026U3
10)

(
Sc

660

)−0.5

(6.9)

In these equations, U10 is the wind speed at 10 m’s height, and Sc is the Schmidt number

of a particular gas at in situ conditions [Jähne et al., 1987, Wanninkhof, 1992]. The Schmidt

number is scaled to the reference conditions of the parameterization, i.e. 600 or 660, which

is the Sc of CO2 at 20°C in fresh water or seawater, respectively. The Schmidt number is

dimensionless and kw and U10 must be in the same units, e.g., m sec−1.

6.3 Results and Discussion

6.3.1 Chlorophyll a and SST

As the chl-a products suffered from low data coverage, the median was chosen as being

more representative than the mean value, since the inclusion of a few pixels with low or high

values could greatly effect the mean. Chl-a within the Lüderitz domain was fairly constant

over the two-year study period; the variability was almost entirely driven by intraseasonal

events (Figure A.31) and was more pronounced spatially than temporally. In contrast, SST

showed a pronounced seasonality, peaking in February and reaching a minimum in October

(Figure A.31 and Figure A.32). During the summer months, when upwelling fluxes tend to

be stronger, the contrast between the coast and South Atlantic is quite readily seen.

Despite the poor data coverage for chl-a, results were in agreement with previous assess-

ments of the nature of productivity and upwelling for the Lüderitz cell. While the upwelling

in this area is extremely intense—some of the strongest volume fluxes in the world are seen

here—phytoplankton biomass is at a minimum compared to the rest of the Benguela sys-

tem; presumably this is because phytoplankton are light-limited due to the high winds that

deepen the mixed layer and carry phytoplankton to depth [Carr, 2002, Chavez and Messié,

2009, Demarcq et al., 2003, 2007]; the high-nutrient, recently upwelled water at Lüderitz is
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carried northward by surface currents, and as a result the area of highest productivity and

most intense hypoxia is located around 24°S [Brüchert et al., 2006].

6.3.2 Dissolved Gas Concentrations and Air–Sea Fluxes During M99

N2O surface concentrations were rather low for an upwelling region, but agreed well with

previously reported values, with the maximum observed concentration of 20.5 nM being

comparable to the highest values seen by Frame et al. [2014] for surface measurements in the

same region as the M99 cruise. The only other in situ measurements of N2O in the Benguela

region known to the author are in the Marine Methane and Nitrous Oxide (MEMENTO)

database2 [Bange et al., 2009], from a single cruise in 2009 aboard the FRS Africana, as part

of the Geochemistry and Ecology of the Namibian Upwelling System (GENUS) project. In

this dataset, dissolved N2O concentrations for surface waters (the top 15 m) were in the range

of 1–19 nM, which brackets the range measured during M99. Even when one considers the

Frame et al. [2014] and GENUS measurements made at depth reported by the (a maximum

not exceeding 50 nM for either), this would put the Benguela an order of magnitude or so

lower below the maximum values measured in the Chilean and Peruvian upwelling systems,

but on par with the Mauritanian system [Bakker et al., 2014, Naqvi et al., 2010].

All three species measured underway in the water phase showed the largest deviation from

atmospheric equilibrium closest to shore (Figure A.33). The dissolved oxygen was mostly at

saturation or slightly above, although close to shore the concentration dropped to a mini-

mum of 180.8 µM (67% saturation). CO2 concentrations, expressed as the fugacity (f CO2)

ranged from 355.5 to 852.3 µatm (87.8% to 207.3% saturation), with most of the observed

oversaturation occurring under upwelling conditions.

The main upwelling event of the cruise, in the Lüderitz/Walvis Bay cells, began on August

4th, 2013, and lasted until August 11th. Wind speeds declined rapidly after the 8th. The

upwelling event was encountered by the Meteor starting on the 8th as the vessel reached

an upwelling filament, the outer edge of which was subject to net evasion of all three gases

(CO2, O2, N2O), likely a result of warming temperatures that would reduce the solubility.

The highest flux rates (positive for N2O and CO2, and negative for O2) were seen within

the recently upwelled waters experiencing high wind speeds (Figure A.34). Fluxes displayed

coupling between all three species, though the area of high flux density for O2 and N2O was

more sharply defined than for CO2.

Only CO2 and CH4 were measured continuously in the atmosphere on M99. During the

first days of the cruise, a synoptic event brought elevated mixing ratios of CO2 and CH4

offshore (Figure A.35 and Figure A.36). The shipboard measurements of CH4 show a clear

enhancement relative to the background seen at NDAO. This coincides with the regions of

higher flux closer to the coast encountered under upwelling conditions. In contrast, methane

was consistently at background levels, usually below the value seen at NDAO.

6.3.3 Atmospheric Anomalies Due to Upwelling Events

In all, 173 days with upwelling events were identified, representing 24% of the two-year

study period. Of these 173 days, 157 of them had atmospheric transport conditions favorable

for detecting an event. Despite the greater prevalence of equatorward winds during austral

summer, the distribution of events displayed little seasonality (Figure A.31), reflecting the

fact that upwelling is a short-term, intraseasonal phenomenon, forced by specific atmospheric

conditions [Goubanova et al., 2013, Risien et al., 2004]. Note that while the occurrence of

2https://memento.geomar.de/
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Figure 6.2: An example of an upwelling event at the end of 2013. The median chlorophyll a
of the domain is shown over a period of one month, along with the domain-averaged 10-m
wind speed and sea surface temperature (left panel). The Lüderitz/Walvis Bay domain is
shown, overlain on a bathymetric map (right panel). Data is from Amante and Eakins [2009].
Location of NDAO is given by a red dot.

upwelling has little seasonal signal at Lüderitz, the magnitude of the volume flux does display

seasonality [Veitch et al., 2009].

Atmospheric data corresponding to these days with upwelling events were then selected,

using the filtered, marine-only observations. Visualization of the back-trajectories corre-

sponding to these events confirmed that the selection of atmospheric data was successful

(Figure A.37). An example of such an event is given in Figure 6.2, Figure 6.3, and Figure

A.38. On November 27th, 2013, high winds resulted in the creation of a very large pool of

colder water on the surface that persisted for four days, until winds relaxed and the upwelling

temporarily ceased until the 4th of December. During both upwelling events, chl-a values

were higher. A change in the background values of APO, N2O, and CH4 was seen, with a

smaller anomaly for CO2. The peak for each species came during the sea breeze on August

28th (Figure A.39).

If the area of high flux is close to the coast, anomalies could arrive within a few hours

at NDAO, with the sea breeze. If the region of flux is closer to Lüderitz, the arrival time

could be delayed by as much as 50 hours, depending on the wind speed and the degree of

meandering of the air mass. Back-trajectories implied that despite the high wind speeds

usually seen in this coastal zone, significant travel time (1 to 2 days) could be expected for

most air masses of interest. Hence the marine surface flux associated with an atmospheric
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Table 6.1: Means of All Atmospheric Anomalies and Top-Down Flux Density Estimates for
Identified Upwelling Events

Species Mean Anomaly± 1σ Mean Flux Density± 1σ

O2 −49.7± 24.9 per meg −3.9± 2.6 µmol m−2 sec−1

CO2 1.69± 1.37 ppm 0.45± 0.4 µmol m−2 sec−1

CH4 19.36± 16.40 ppb 6.0± 5.0 nmol m−2 sec−1

N2O 1.5± 0.9 ppb 0.5± 0.4 nmol m−2 sec−1

CO 9.7± 4.3 ppb 2.7± 1.7 nmol m−2 sec−1

anomaly could only be said to have taken place with 50 hours of its detection. The magnitude

of the average atmospheric anomaly and its corresponding flux density estimate are given in

Table 6.1.

6.3.4 Estimated Flux Densities

The moderate, positive methane spikes (∼20 ppb) seen during upwelling events corresponded

to an average flux density of about 6 nmol m−2 sec−1 and a maximum of 24.7 nmol m−2 sec−1,

a high value even for coastal waters, though it must be emphasized that these flux densities

correspond only to specific events and are not constant throughout the year. There are few

reported measurements of flux densities or dissolved CH4 for the Benguela region to place

these estimates in context. In what are likely the first measurements of dissolved methane

in the Benguela, Scranton and Farrington [1977] observed concentrations near Walvis Bay

at multiple depths in the 200–900 nM range. The only other available data known to the

author are from the 2009 GENUS cruise. These concentrations were also taken at a variety

of depths (up to 400 m) and ranged from 3.7 to 140.0 nM. Using the three samples taken

from the top 15 m from this cruise, at in situ conditions, a flux of ∼0.3 nmol m−2 sec−1

would be expected. Naqvi et al. [2010] used the data from Scranton and Farrington [1977]

and from Monteiro et al. [2006] to estimate flux densities of 0.03–8.7 nmol m−2 sec−1,

the upper end-member of which compares favorably with the rates found in this study

for the same ocean region. Though the latter study observed concentrations at a mooring

near Walvis Bay as high as 10 µM, these data were from an uncalibrated probe and are

not usable for a direct comparison to other campaigns. In other eastern boundary upwelling

systems, reported flux densities are much lower. For the Chilean/Peruvian upwelling systems,

shipboard measurements have determined fluxes to be on the order of 5× 10−4 to 1.3 nmol

m−2 sec−1 [Faŕıas et al., 2009, Kelley and Jeffrey, 2002, Naqvi et al., 2010], a little higher

than that found for the Mauritanian upwelling region, 0.005–0.02 nmol m−2 sec−1 [Kock

et al., 2008]. In the shelf waters of the Black Sea, where rates are high due to inputs from

rivers, in situ methanogenesis, and seepage from the sediments, representative values were

found to be 0.37–0.61 nmol m−2 sec−1 [Amouroux et al., 2002].

The average flux density attributable to specific upwelling events for N2O was 0.5± 0.4

nmol m−2 sec−1, moderate for a coastal upwelling system. Surface data from the 2009

GENUS cruise would have yielded a maximum flux density of about 0.2–0.3 nmol m−2

sec−1. Frame et al. [2014] observed flux rates as high as 0.52 nmol m−2 sec−1 in the Cape

Frio upwelling cell. The 3-D coupled physical/biogeochemical model of Gutknecht et al.

[2013a,b] predicts an 8-year mean flux density of 0.02–0.16 nmol m−2 sec−1 for the Walvis

Bay region, including both shelf and deeper waters as far west as 10°E. The mean flux density

of the entire M99 cruise was ∼0.03 nmol m−2 sec−1. The model predicts a maximum flux

density at the coast (22–24°S) of 0.6 nmol m−2 sec−1. Sea–air flux densities from the anal-
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ogous Chilean OMZ during upwelling events fall between 0.04 and 3.8 nmol m−2 [Cornejo

et al., 2006, Paulmier et al., 2008]. Large fluxes reported for the Indian continental shelf

in an OMZ were a result of flux densities of 0.46–3.1 nmol m−2 sec−1 [Naqvi et al., 2000],

and later up to 38 nmol m−2 sec−1 [Naqvi et al., 2010]. Values as high as 3–5.7 nmol m−2

sec−1 have been reported from the Somali upwelling region [de Wilde and Helder, 1997]. In

the Mauritanian upwelling region, the highest flux densities are around 2 nmol m−2 sec−1

[Wittke et al., 2010], with values more typically in the 0.5–1.5 nmol m−2 sec−1 range, similar

to that seen here for the Lüderitz region. In the Arabian Sea, coastal upwelling events yield

flux densities of 0.7–1.4 nmol m−2 sec−1 [Bange et al., 1996b]. During a strong upwelling

event in the California system, Lueker [2004] observed a value of 2 nmol m−2 sec−1 using

the same top-down approach adopted in the present study.

CO2 fluxes were positive for all upwelling events, with an average flux density of 0.45± 0.3

µmol m−2 sec−1 and a maximum value of 2.4 µmol m−2 sec−1. During upwelling conditions,

it is not uncommon to see such strong outgassing of CO2 in a coastal upwelling region; the

biological response to new nutrients takes some days to draw down DIC levels [Cao et al.,

2014, Loucaides et al., 2012, Torres et al., 1999]. In the waters off of central Chile, upwelling

events can cause a net evasion of CO2 on the order of 0.03–0.2 µmol m−2 sec−1 [Torres et al.,

1999, 2002]. In an area containing a large OMZ off of the coast of Mexico, outgassing was as

high as 0.04 µmol m−2 sec−1 [Franco et al., 2014]. Supersaturated waters during upwelling

events in the Arabian Sea reached values as high as 1.4 µmol m−2 sec−1 [Körtzinger et al.,

1997]. The southern Benguela, for instance, has been found to have an average net sink of

0.04 to 0.09 µmol m−2 sec−1 [González-Dávila et al., 2009, Gregor and Monteiro, 2013a,

Santana-Casiano et al., 2009], although during upwelling events, outgassing can result in the

region, on the order of 0.6 µmol m−2 sec−1 [Gregor and Monteiro, 2013b]. Santana-Casiano

et al. [2009] used underway systems on cargo ships and weekly wind speeds to arrive at a

mean flux between ca. −0.06 and 0.03 µmol m−2 sec−1 for the Lüderitz region, with peak

rates as high as 0.06 µmol m−2 sec−1 in August. González-Dávila et al. [2009] found that the

Lüderitz region is under-saturated with respect to CO2, with only upwelled waters seeing

oversaturation, with average fluxes on the order of −0.03 ± 0.3 µmol m−2 sec−1. The flux

densities for CO2 reported in the present study are not necessarily in conflict with these

studies, since a yearly-averaged flux density is a different quantity from the event-based flux

densities. The implication instead is that flux densities attributed to upwelling events are

high enough to contribute significantly to the carbon balance of the Lüderitz and Walvis

Bay regions.

Typical O2 flux densities were about −4 µmol m−2 sec−1, and the direction of exchange

was always into the ocean. The estimated average flux density for the entire mid-South

Atlantic (encompassing the latitudinal range of the whole Benguela, but extending to the

coast of South America) was ∼0.03 µmol m−2 sec−1 in the inverse modeling study of Gruber

et al. [2001], and ca. 0.06 µmol m−2 sec−1 in the forward run of a coupled climate and ocean

biogeochemistry model of Bopp et al. [2002]. For a strong upwelling event, Lueker [2004]

reported −18.5 µmol m−2 sec−1 as a representative value for the California Current region.

For a region in the Southern Ocean experiencing a phytoplankton bloom, Thompson et al.

[2007] estimated fluxes to be approximately 4.7 µmol m−2 sec−1.

The determined flux densities for carbon monoxide were much higher than values reported

previously for upwelling regions and the open ocean. Kitidis et al. [2011] observed flux densi-

ties in the range of 0.05–0.1 nmol m−2 sec−1 within a filament in the Mauritanian upwelling

region. A study in the California upwelling system resulted in estimated air–sea fluxes with

an average of 0.06 nmol m−2 sec−1 and a maximum value of 0.3 [Day and Faloona, 2009].

In the equatorial Pacific upwelling region, Ohta [1997] measured flux densities of 0.05 nmol

m−2 sec−1. The average evasion of the South Atlantic Ocean has been estimated to be 0.03
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Table 6.2: Estimated Annual Fluxes of the Lüderitz and Walvis Bay Upwelling Cells

Species Flux Unit

O2 −1.4± 0.2 Tmol yr−1

CO2 208± 34 Gmol yr−1

CH4 2.2± 0.3 Gmol yr−1

N2O 124± 13 Mmol yr−1

CO 577± 60 Mmol yr−1

nmol m−2 sec−1 [Stubbins et al., 2006]. CDOM, the photolysis of which is the major source

of CO in surface waters, is often elevated in coastal upwelling systems even in the absence

of major riverine input, due to higher concentrations in remineralized water and to degra-

dation of organic matter [Coble et al., 1998]. Remote sensing of ocean color has shown that

the northern Benguela has high concentrations of CDOM [Siegel et al., 2014].

6.3.5 Comparison of Top-Down Flux Density Estimates with M99 Shipboard

Determinations

Due to local wind variability, suitable conditions for detecting the upwelling event encoun-

tered by the Meteor were only seen at NDAO on the 6th, 8th, and 10th of August, 2013.

As the vessel was not always in the upwelling cell, only a single atmospheric anomaly at

NDAO could be matched to in situ shipboard measurements, namely an anomaly occurring

on August 10th. The top-down estimates, 0.43± 0.04 µmol m−2 sec−1 for CO2, −2.5± 0.2

µmol m−2 sec−1 for O2, and 0.40± 0.03 nmol m−2 sec−1 for N2O, agreed well with the

corresponding mean shipboard estimates of 0.48± 0.31 µmol m−2 sec−1 for CO2, −3.2± 2.2

µmol m−2 sec−1 for O2, and 0.29± 0.25 nmol m−2 sec−1 for N2O (Figure 6.4). While this

provides a measure of confidence in the top-down flux density estimates, it should be noted

that the neither of the estimated uncertainties for the top-down or bottom-up approaches

account for errors incurred by the simplifying assumptions within their formulations.

6.3.6 Spatially Integrated Annual Fluxes

Scaling measurements or estimates of flux densities to a spatially and temporally integrated

domain can be fraught with uncertainty. The estimates here (Table 6.2) are limited in that

the approach assumes a constant flux over the area of upwelled water that reaches the surface,

an assumption that is certainly unrealistic. They are also likely underestimates, since about

10% of upwelling events during the two-year time series occurred when atmospheric transport

was unsuitable for observing the flux.

Much like the flux density, the estimated annual net release from Lüderitz and Walvis Bay

of methane, 2.2± 0.3 Gmol yr−1 (35± 6 Gg yr−1), was very large for the marine environment.

This estimate is two to three times higher than the net evasion from the Arabian Sea [Bange

et al., 1998], and 10 to 20 times greater than the annual release of CH4 from the entire

Mauritanian upwelling system [Brown et al., 2014, Kock et al., 2008]. For further context,

the estimate for the annual flux from the Black Sea is 6.7–11.7 Gmol yr−1 (107.5–187.7 Gg

yr−1) [Amouroux et al., 2002]. Nevertheless, the ocean source is a small term in the global

budget, being 25–1,247 Gmol yr−1 (0.4–20 Tg yr−1) of the total estimated global source

term of ca. 31–38 Tmol yr−1 (500–600 Tg yr−1), with coastal regions dominating [Bange

et al., 1994, Bates et al., 1996, Dlugokencky et al., 2011, Ehhalt, 1974, Houweling et al.,

2014, Kirschke et al., 2013, Lambert and Schmidt, 1993, Reeburgh, 2007a,b, Rhee et al.,
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Figure 6.4: Air–sea flux densities for CO2, N2O, and O2 using bottom-up methods (left
panel), with a shaded envelope depicting the estimated surface flux and its uncertainty. A
positive value indicates net evasion. The top-down flux density estimate is plotted as a dot at
the time of detection of the associated atmospheric anomaly. The horizontal line extending
from each dot represents the time period during which the flux density associated with the
anomaly must have occurred. Dotted lines indicate the uncertainty of the top-down estimate.
Grid-cell average TRMM SST data for the three-day period is overlain with a cruise track
and the Lüderitz/Walvis Bay domain (right panel). Location of NDAO is given by a red dot.

2009]. The large range of estimates is partially due to whether the coastal environment is

considered or not [Kelley and Jeffrey, 2002]. While small compared to global-scale or even

regional-scale terrestrial budgets [Bergamaschi et al., 2013, Ghosh et al., 2015, Reeburgh,

2007a], these fluxes are nevertheless large for the marine environment, especially when one

considers that these two upwelling cells are two out of the total seven or eight (depending

on how they are defined).

Unlike methane, the emissions of N2O, 124± 13 Mmol yr−1 (3.5± 0.4 Gg–N yr−1), are

more modest when compared to the budgetary calculations of other coastal regions. As the

global coastal upwelling source of N2O is estimated to be 7,140 Mmol yr−1 (200±>70%

Gg–N yr−1) [Nevison et al., 2004b], the emissions for the Lüderitz/Walvis Bay region would

represent 3.2% of this area but only 1.8% of these emissions. In the Nevison et al. [2004b]

study, the whole Benguela Current region (5–30°S) is assigned a yearly flux of only 571

Mmol yr−1 (16 Gg–N yr−1), which means a contribution of approximately 20% from these

two upwelling cells to the emissions of the whole system. While these two upwelling cells

do emit substantial amounts of N2O, it is regionally significant but not a source of global
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importance. For reference, the entire Mauritanian upwelling region emits 21–350 Mmol yr−1

(0.6–9.8 Gg–N yr−1) [Rees et al., 2011, Wittke et al., 2010], with the large range depending

on the area considered. The Arabian Sea has an annual sea–air flux of 7,500 to 15,900 Mmol

yr−1 (210–446 Gg–N yr−1) [Bange et al., 2001], and a global ocean source of 45–386 Gmol

yr−1 (1.2–10.8 Tg–N yr−1) [Bange et al., 1996a, Nevison et al., 1995, Rhee et al., 2009,

Suntharalingam and Sarmiento, 2000].

The CO2 source, 208± 34 Gmol yr−1 (2.5± 0.4 Tg–C yr−1), is quite substantial when

compared to the net flux that Laruelle et al. [2014] estimated of −424.9 Gmol yr−1 (−5.103

Tg–C yr−1) for the entire Benguela region, or the −141.5 Gmol yr−1 (−1.7 Tg–C yr−1)

found by Gregor and Monteiro [2013a] for the southern Benguela. While the Benguela is not

an outsize source or sink for carbon relative to its area, the Benguelan air–sea fluxes of CO2

are large enough to warrant consideration in regional budgets. For an area of 1,900 km2 off

the coast of central Chile, Torres et al. [1999] estimated a daily release of 0.010 Gmol day−1

(0.121 Gg–C day−1) under upwelling conditions. The average daily flux for upwelling for the

Lüderitz and Walvis Bay upwelling cells was 2.5 Gmol day−1 (30.0 Gg–C day−1). That the

flux from the Lüderitz and Walvis Bay area is so much greater (on a per area basis) is a

reflection both of the higher wind speeds and the more remineralized character of the South

Atlantic Central Water that upwells at Lüderitz.

Using inverse methods, Gruber et al. [2001] constrained the net flux of oxygen for the

temperate South Atlantic (an area of 1.5× 107 km2) to be 15.5 Tmol yr−1 (10.8 if the global

budget is closed), which, if correct, would indicate that upwelling events in the Lüderitz

region (−1.4± 0.2 Tmol yr−1) are regionally significant.

Finally, the yearly sea–air flux of CO associated with upwelling events has been estimated

to be 0.6 Gmol yr−1 (7.2 Gg–C yr−1). The total annual source of CO from this region is

surely larger, since, while CDOM concentrations are supplemented by upwelling, the pho-

todegradation of dissolved organic matter would not be restricted to upwelling conditions.

On the other hand, productivity in the area of Lüderitz is lower than the rest of the Benguela

[Demarcq et al., 2007, Hutchings et al., 2009], anomalies in the atmospheric CO record were

only observed during upwelling events, and the diurnal variability of this species was quite

low; if production of CO was high during non-upwelling conditions, this would be manifest in

a peak associated with the sea breeze. For context, the Mauritanian upwelling region emits

ca. 1.4 Gmol yr−1 (17 Gg–C yr−1) to the atmosphere [Kitidis et al., 2011]. While the ocean

source of carbon monoxide is not terribly important to the global budget, it is quite uncer-

tain, likely between 308–4,163 Gmol yr−1 (3.7–50 Tg–C yr−1) [Bates et al., 1995, Stubbins

et al., 2006].

6.3.7 Stoichiometry

Correlation slopes of atmospheric species can provide further confidence and insight into

source processes, if there is an underlying biogeochemical relationship. The well-known in-

verse relationship between N2O and O2 in the ocean, for instance, is a result of organic matter

decomposition and nitrification [Cohen and Gordon, 1979, Frame et al., 2014, Naqvi et al.,

2010, Nevison et al., 2003]. The tight coupling between N2O and O2 seen in surface concen-

trations during M99 is preserved during air–sea gas exchange, as these gases behave simi-

larly (Figure 6.4 and Figure 6.5). That the stoichiometric ratio is the same for atmospheric

anomalies attributed to upwelling events, for their estimated flux densities, the shipboard

measurements of air–sea flux densities during M99, and for surface water concentrations, is

consistent evidence that observations at NDAO are directly influenced by ventilation signals

from the Benguela, and highlights the importance of the OMZ as a hotspot of N2O release.

The approximate molar ratio of the ventilation flux, −1× 10−4 (N2O:O2; mol mol−1), is the
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same observed by Lueker et al. [2003] for the Trinidad Head region, and appears to be a

globally consistent value [Manizza et al., 2012, Nevison et al., 2005].

This linear regression slope is often expressed in terms of the excess N2O (measured N2O

minus N2O at saturation) and apparent oxygen utilization (saturation minus observed),

∆N2O–AOU in nmol µmol−1. Quantified in this way, it has been used as an estimate of the

yield of N2O as a function of the amount of oxygen consumed [Nevison et al., 2003]. However,

the relationship is not strictly linear, since N2O production is enhanced at low oxygen levels

[Naqvi et al., 2010, Nevison et al., 2003]. ∆N2O–AOU is also sensitive to mixing, as N2O

production rates vary widely in the ocean, meaning that the mixing of water masses with

different compositions can overwhelm the in situ production signal [Nevison et al., 2003,

Suntharalingam and Sarmiento, 2000]. The ∆N2O–AOU for M99 was 0.088± 0.003 nmol

µmol−1, with an intercept of 1.6± 0.04 nmol, and an R2 of 0.69. This is a low value, nearly

identical to results from the eastern basin of the sub-tropical North Atlantic, where South

Atlantic Central Water is found [Cohen and Gordon, 1979, Suntharalingam and Sarmiento,

2000, Walter et al., 2006], and low compared to the Tropical Atlantic (> 0.2) [Oudot et al.,

2002]. Most of the N2O in the Benguela is produced in the water column and in the sediment

by nitrifier denitrification [Frame et al., 2014]; annamox is the dominant nitrogen removal

process in the low-oxygen areas, which produces less N2O than denitrification [Kartal et al.,

2007, Kuypers et al., 2005]. Modeling studies and observations suggest that a substantial

portion of the N2O that is produced in the sediment, or in the water column below the mixed

layer, remains at depth (concentration maximum at 200–400 m) and is advected away from

the region, without the chance for atmospheric release [Frame et al., 2014, Gutknecht et al.,

2013a,b]. Hence, the low ∆N2O–AOU value found for the Meteor cruise probably reflects

both physical and biogeochemical dynamics.

In the case of variations of O2 and CO2, the stoichiometry of surface waters is not preserved

after air–sea exchange, as the majority of carbon is speciated in the carbonate system, and

only the portion that remains as dissolved CO2 is available for air–sea gas exchange. This

leads to a change in the molar exchange ratio (∆O2/∆CO2 on a mol/mol basis), for instance,

from 0.58± 0.03 in surface waters to −6.53± 0.42 in the atmosphere, for the upwelling event

encountered by the Meteor (Figure 6.6). For reference, marine boundary layer air that has

not been affected by upwelling shows an average exchange ratio of −2.23± 0.12. These two

species can become decoupled through the influences of changing solubility, which would

drive evasion of both gases, and net biological production, which would drive evasion of

O2 and invasion of CO2. These complicating influences are the likely reason for the poorer

correlation seen between these two species when compared with N2O and O2.

Interestingly, methane was not well-correlated with either APO or CO2 in the atmosphere

during all upwelling events, suggesting a spatial decoupling (since a cross-correlation analysis

indicated this was not a result of lag/temporal decoupling) between methane and these two

species (Figure 6.7). While background observations of CH4 were generally well-correlated

with CO2 and O2 at NDAO, only some upwelling events showed such coupling; it seems

there is a general relationship between methane and oxygen, but it is not consistent and is

occasionally non-existent. Unfortunately, since there are still very few measurements of water-

column CH4 in the Benguela, a full explanation of the methane source remains elusive. From

these atmospheric trends it can only be deduced that there is some separate biogeochemical

influence on methane that is not exerted over CO2, O2, or N2O. This observation is arguably

consistent with the concept of a dominant sedimentary source of methane that is more

localized within the inshore mud belt, where high POC fluxes have created a thick layer of

diatomaceous ooze containing free methane gas pockets [Brüchert et al., 2006, 2009, Emeis

et al., 2004, van der Plas et al., 2007].

Finally, it is noted that the ∆CH4/∆CO (ppb ppb−1) of 1.7± 0.05 is much greater than
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Figure 6.7: Comparison of the variability of O2 and CO2 with respect to CH4 at NDAO
during upwelling events, colored by date to separate specific events. Anomalies are calculated
against a harmonic fit to the background.

emission ratios seen for combustion processes (see Section 5.3.3), which gives further evidence

that the CO atmospheric anomalies detected following upwelling events are marine in origin

and attributable to in situ production.

6.4 Summary and Conclusions

It has been shown that atmospheric anomalies of CO2, CH4, N2O, CO, and O2 can be related

to upwelling events in the Lüderitz and Walvis Bay cells. A simple model has allowed these

fluxes to be constrained within the limitations of its assumptions. These top-down estimates

of surface fluxes have been validated with in situ surface fluxes determined from shipboard

measurements. Observations at NDAO provide the opportunity to capture these episodic

and short-lived events that cannot be seen without continuous monitoring.

The Lüderitz and Walvis Bay upwelling cells have been shown to be an unusually large

source of methane to the atmosphere for the marine environment. In contrast, the region is a

weaker source of N2O, compared to other upwelling regions, a fact which has been predicted

from modeling studies and noted in observations of dissolved concentrations and air–sea

fluxes. This upwelling area also functions as a minor source of CO to the atmosphere, and

is a significant source term in the CO2 budget of the Benguela Current.

Trends in the intensity or duration of coastal upwelling can be difficult to assess, as the

results can be sensitive to region selection or use of proxies which may be affected by other

factors (SST, wind speeds, wind stress, etc.). Decadal or interdecadal variability can also be

substantial. There is some evidence to show that upwelling at Lüderitz or in the northern

Benguela has declined [Hutchings et al., 2009, Monteiro et al., 2008, Peard, 2007]. Yet, other

research has shown that the duration and intensity of coastal upwelling in the Benguela in

general is likely increasing and will continue to increase with climatic change in the coming
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decades, driven by an increasing land–sea temperature gradient [Bakun, 1990, Demarcq,

2009, Narayan et al., 2010, Santos et al., 2012, Sydeman et al., 2014, Wang et al., 2015].

Meanwhile, warming trends in the broader Benguela region can already be detected [Monteiro

et al., 2008, Santos et al., 2012]. Whatever the result, it is clear from the present study that

coastal upwelling events near Lüderitz and Walvis Bay result in a large net invasion of O2

and regionally significant emissions of the major greenhouse gases.



7
Summary and Outlook

7.1 Summary

Two years of continuous atmospheric measurements of CO2, CH4, N2O, CO, and δ(O2/N2)

at a new background site in the central Namib Desert have been presented and analyzed. The

station, located at Gobabeb, in the Erongo Region of Namibia, is a remote site with minimal

local infrastructure. As such, the measurement system used to make these observations was

designed to require as little maintenance and operator intervention as possible.

Carbon dioxide and methane were measured with cavity ring-down spectroscopy (CRDS),

nitrous oxide and carbon monoxide with off-axis integrated cavity output spectroscopy (OA-

ICOS), and atmospheric oxygen with a differential fuel cell analyzer (DFCA). The DFCA

instrument met quality criteria goals when adequate electricity demands and temperature

control were present; performance suffered during a period of frequent power outages. The

CRDS performed quite well and yielded stable, accurate measurements, as assessed with

target tank measurements and other tests, even with a relatively long interval between cal-

ibrations. The OA-ICOS was determined to be quite a precise instrument, but subject to

temperature-related drift. This was corrected with frequent measurements of a working tank.

Neither of the sample air streams were dried prior to measurement with the OA-ICOS or

CRDS instruments; instead, a second-order water correction function was applied.

The representivity of NDAO as a measurement point was assessed using a ca. 20-year,

multi-species flask sampling record from the NOAA network (site code NMB). While growth

rates were similar between the NMB data and other marine background reference sites at a

similar latitude, the seasonal climatologies constructed from this record showed consistent

differences in phasing and amplitude when compared to these other background locations.

This was demonstrated to be a result of continental influence, which was expressed at NDAO

primarily during austral winter, when the formation of anticyclonic conditions over southern

Africa made the transport of air masses influenced by terrestrial surface fluxes to NDAO

more likely. Conversely, during austral summer, strong equatorward winds brought marine

boundary layer air to NDAO. This regular progression in atmospheric transport was due to

the meridional movement of the southern Hadley cell.

As a result of these atmospheric dynamics, NDAO was affected by biomass burning dur-

ing austral winter. The influence of biomass burning was most notably manifest as large,

positive anomalies of CO and CH4, as well as smaller positive anomalies of CO2 and nega-

tive anomalies of δ(O2/N2). Two distinct pathways were identified that could bring polluted

air to NDAO: anitcyclonic surface trajectories, originating in eastern southern Africa and

traveling westward to the Namib, and subsiding air masses, which brought biomass burning-

influenced air masses from the African haze layer down to the surface. The stoichiometry of

the major measurands, particularly that of CO to CH4 and CO2 to O2, indicated that the

source fires creating the emissions detected at NDAO ocurred closer to Gobabeb throughout

101
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the fire season. This was corroborated with data from the Global Fire Emissions Database

(GFED).

During austral summer, however, little burning occurs in southern Africa, and the pre-

vailing winds at Gobabeb are from the ocean. These winds, which blow equatorwards along

the coast, are responsible for the upwelling of water along the Benguela current region. Up-

welling events dominate the intraseasonal variability for δ(O2/N2), APO, and N2O during

austral summer. Since upwelling events occur only under certain atmospheric conditions, the

duration of anomalies caused by upwelling is not more than a day or two, and sharp peaks

in the atmospheric record only last several hours. Upwelling events at NDAO were carefully

identified based on multiple criteria relating to sea surface temperature, surface winds over

the ocean, local wind variability at NDAO, and back-trajectories from NDAO.

A simple Lagrangian model was employed to estimate the flux density necessary to create

the atmospheric anomalies seen during upwelling events. Despite its simplifying assumptions,

the model calculations agreed quite well with flux densities calculated from shipboard flux

density determinations, which were based on underway measurements of bulk concentrations

in surface water and in the atmosphere. This provided a measure of confidence in the mod-

eling approach, and was the rationale for estimating the total mass flux from the Lüdertiz

and Walvis Bay upwelling cells on an annual basis, due to upwelling events. Upwelling from

these two cells proved to be a significant source of CO2 to the atmosphere when compared to

estimated budgets for the northern and southern Benguela upwelling systems. The Lüderitz

and Walvis Bay upwelling cells were moderate sources of N2O compared to other coastal

upwelling regions, but a surprisingly large source of methane to the atmosphere. Based on

previous research presented in the literature, it seems likely that this methane source is ulti-

mately due to an unusually large sedimentary source in the shallow shelf waters surrounding

Walvis Bay.

7.2 Outlook

Now that the basic phenomonolgy and representivity of the site has been described, it is

clear that NDAO can provide background observations that contain valuable information

about two major biogeochemical processes: biomass burning and coastal upwelling. This

makes the station fairly unique, especially when one considers that it is almost entirely

free of local influence, and is not directly impacted by anthropogenic emissions. Inverse

modeling of the NDAO dataset could provide a better constraint on upwelling emissions

than the simple approach adopted here. Use of the CO2 atmospheric record from NDAO

could also inform on carbon cycling in southern Africa in such a modeling study. A successful

inverse modeling effort would recquire a high-resolution regional transport model that could

accurately simulate the unusual mesoscale phenomena that control much of the diurnal

variability at Gobabeb1, or at least the NDAO data would need to be carefully selected. The

station provides a valuable top-down perspective on the nothern Benguela upwelling system,

and it would be a shame not take advantage of it. Methane biogeochemistry in the Benguela,

for instance, remains a rather intriguing subject, and there is plenty of scope for future work

on this issue, particularly on sedimentary methane release and the infamous hydrogen sulfide

“eruptions” seen in the region.

Likewise, inverse or forward modeling of biomass burning emissions could produce some

valuable new constraints on the magnitude of emissions from southern Africa. The original

selection of Gobabeb as a flask sampling site in the NOAA network was motivated by the

1Note that Hänsler [2011] was able to represent the thermo-topographic local wind system at Gobabeb fairly
well, using the REMO model.
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hope that it would be influenced by southern African vegetation fires, and this has proven to

be the case. NDAO is currently the only site in southern Africa that can make background

measurements of greenhouse gases and atmospheric oxygen during the burning season. It

should also be mentioned that aerosol measurements would be fairly easy to implement at

the station, given that there already exists a sample line and filter apparatus for such work.

Africa is a very large and understudied continent; it is developing rapidly, and is ex-

pected to be hard-hit in future decades by climatic change. The inclusion of more stations

in the fledgling African network would only improve our understanding of carbon cycling

and surface–atmosphere fluxes of greenhouse gases in this region. Atmospheric time series

like those produced at NDAO are a cornerstone of biogeochemistry, and their value only

increases with the length of the record. To this end, I can only hope that the measurements

at NDAO continue for many years to come.
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Figure A.1: Elevation along a longitudinal transect of southwestern Africa at the latitude of
NDAO, showing the continental shelf and the western edge of the Great Escarpment. The
location of NDAO is given by a red dot and sea level is indicated by a dotted blue line.
Elevation data is from Amante and Eakins [2009].
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Figure A.4: Average integrated footprints for NDAO during 2012–2013, using the STILT
model. Average austral summer (November–February) footprints are shown in the top row
and average austral winter (June–September) footprints are shown in the bottom row, in-
tegrated over 1, 3, and 5 days. The pixel size increases in distance from NDAO due to the
dynamic grid resolution of the model.
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Figure A.13: Decomposed time series of CO2, showing the original time series, the diurnal
cycle, synoptic variability, and residuals.
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Figure A.14: Decomposed time series of δ(O2/N2), showing the original time series, the
diurnal cycle, synoptic variability, and residuals.
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Figure A.15: Decomposed time series of N2O, showing the original time series, the diurnal
cycle, synoptic variability, and residuals.
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Figure A.16: Decomposed time series of CH4, showing the original time series, the diurnal
cycle, synoptic variability, and residuals.
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Figure A.17: Decomposed time series of CO, showing the original time series, the diurnal
cycle, synoptic variability, and residuals.
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Figure A.18: The diurnal cycle of CO2, averaged for each month.
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Figure A.19: The diurnal cycle of δ(O2/N2), averaged for each month.
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Figure A.20: The diurnal cycle of CH4, averaged for each month.
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Figure A.21: The diurnal cycle of CO, averaged for each month.
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Figure A.22: The diurnal cycle of N2O, averaged for each month.
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Figure A.23: CO2, δ(O2/N2), wind direction, wind speed, and planetary boundary layer
height on November 3rd, 2012.
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Figure A.24: CO2, δ(O2/N2), wind direction, wind speed, and planetary boundary layer
height on April 5th and 6th, 2013.
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Figure A.25: The O2:O2 molar exchange ratio of the combined average monthly diurnal cycles
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Figure A.26: CH4, CO, wind direction, and planetary boundary layer height over four days
in July 2014. Winds were generally southerly or easterly, but both species follow the PBL
height more closely than the wind sector. The time period selected shows an increase in CH4

and CO due to a synoptic event.
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Figure A.27: The seasonal cycle of SF6 from the NMB flask record, with a gray enve-
lope showing one standard deviation of the residuals (top panel), and the location of
known industrial emissions of SF6 in 2010 (bottom panel). Emission data is from the
Emission Database for Global Atmospheric Research (EC-JRC/PBL. EDGAR version 4.0.
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Figure A.29: The three categories of selected back-trajectories (top panels). MBL are surface
marine trajectories, ABL are surface anticyclone-associated trajectories, and DAM are de-
scending air masses without long-range transport. In the bottom left panel, CH4 is plotted
as a function of CO. Both have been smoothed with a 24-hour running mean to remove
diurnal variations. In the bottom right panel, ∆CH4 is plotted as a function of ∆CO. The
∆ indicates that these two species have been deseasonalized in addition to the smoothing
applied in the bottom left panel, so that only intraseasonal-scale variations are shown.



136 APPENDIX A. SUPPLEMENTARY FIGURES

−
0.

2
0.

0
0.

2
0.

4
0.

6
C

O
2 

F
lu

x 
[µ

m
ol

 m
−2

 s
ec

−1
]

0.
0

0.
1

0.
2

0.
3

N
2O

 F
lu

x 
[n

m
ol

 m
−2

 s
ec

−1
]

−
4

−
3

−
2

−
1

0
1

2

0 5 10 15

O
2 

F
lu

x 
[µ

m
ol

 m
−2

 s
ec

−1
]

U10 [m sec−1]

−
0.

2
0.

0
0.

2
0.

4
0.

6

C
O

2 
F

lu
x 

[µ
m

ol
 m

−2
 s

ec
−1

]

0.
0

0.
1

0.
2

0.
3

N
2O

 F
lu

x 
[n

m
ol

 m
−2

 s
ec

−1
]

−
4

−
3

−
2

−
1

0
1

2

11 13 15 17

O
2 

F
lu

x 
[µ

m
ol

 m
−2

 s
ec

−1
]

SST [°C]

Figure A.30: Justification for the sea surface temperature (SST) and wind speed thresholds
for identifying the area of upwelled water for each event. In each case, the threshold is
identified by the dotted vertical line. All data is from M99.
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domain over the course of the two-year study period. Days which have been flagged as
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Figure A.33: Air–sea flux densities for CO2, O2, and N2O during M99 as a function of
distance from shore (left panel), and the dissolved concentrations of the same species in
surface water, ca. 6 m depth, also as a function of distance from shore (right panel).
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Figure A.36: Atmospheric observations of CO2 and CH4, expressed as a dry air mole fraction,
during the M99 cruise. Black points are the shipboard measurements and colored points are
the NDAO measurements. NDAO measurements are colored by wind sector. Also shown for
both species is a smooth fit to a rolling daily average (lines).

−20 0 20 40

−
50

−
40

−
30

−
20

−
10 Upwelling

−20 0 20 40

−
50

−
40

−
30

−
20

−
10 Non−Upwelling

Figure A.37: Back-trajectories associated with days with upwelling events (left panel) and
days without upwelling events (right panel). Location of NDAO is given by a red dot.
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event described in Figure 6.2. In the bottom two panels, the back-trajectories calculated for
the respective periods are overlain. Location of NDAO given by a red dot.
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Supplementary Tables

Table B.1: Flask Sampling Site Locations

Site ID Latitude Longitude Height (m.a.s.l.) Organization

Cape Grim CGO 40.68°S 144.68°E 94 NOAA

Easter Island EIC 27.13°S 109.45°W 50 NOAA

Cape Point CPT 34.35S 18.48E 230 SAWS

Cape Ferguson CFA 19.28°S 147.05°E 2 CSIRO

Pacific Ocean 20S 20S 20.00°S 174.00°W 10 NOAA

Pacific Ocean 25S 25S 25.00°S 171.00°W 10 NOAA

Gobabeb NMB 23.57°S 15.02°E 461 NOAA
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Table B.2: Variability of NDAO Measurands at Proximal Flask Sites, 1997–2014

Site Amplitudea Day Max.b Day Min.c Growth Rated

CO2 (ppm or ppm yr−1)

Gobabeb (NMB) 2.52 Jul. 29 Feb. 27 2.0± 0.3

Cape Ferguson (CFA) 1.35 Dec. 13 Jul. 3 1.9± 0.6

Cape Point (CPT) 0.64 Aug. 15 Mar. 6 2.0± 0.4

Easter Island (EIC) 1.05 Dec. 24 Apr. 22 2.0± 0.4

Pacific Ocean 20°S (20S) 0.86 Dec. 30 Apr. 25 1.9± 0.4

Pacific Ocean 25°S (25S) 0.92 Dec. 25 Apr. 24 1.9± 0.3

Ascension Island (ASC) 1.80 Jul. 20 Apr. 1 2.0± 0.4

CH4 (ppb or ppb yr−1)

Gobabeb (NMB) 29.5 Jul. 29 Feb. 4 3.6± 4.0

Cape Ferguson (CFA) 28.9 Aug. 17 Feb. 14 3.6± 4.1

Cape Point (CPT) 31.8 Aug. 28 Feb. 20 3.6± 3.0

Easter Island (EIC) 31.5 Sep. 7 Feb. 12 3.6± 4.0

Pacific Ocean 20°S (20S) 20.0 Aug. 10 Feb. 9 3.3± 3.5

Pacific Ocean 25°S (25S) 26.2 Aug. 13 Feb. 11 3.3± 3.8

Ascension Island (ASC) 22.8 Aug. 5 Feb. 1 3.6± 3.6

N2O (ppb or ppb yr−1)

Gobabeb (NMB) 0.4 Feb. 29 Aug. 31 0.81± 0.2

Cape Ferguson (CFA) 0.3 Dec. 30 Jul. 29 0.60± 0.2

Cape Point (CPT) — — — —

Easter Island (EIC) — — — —

Pacific Ocean 20°S (20S) — — — —

Pacific Ocean 25°S (25S) — — — —

Ascension Island (ASC) — — — —

CO (ppb or ppb yr−1)

Gobabeb (NMB) 27.3 Jul. 20 Jan. 19 −0.49± 2.5

Cape Ferguson (CFA) 33.2 Oct. 3 Feb. 21 −1.3± 4.4

Cape Point (CPT) 24.1 Sep. 14 Feb. 7 −0.03± 2.3

Easter Island (EIC) 23.1 Sep. 27 Feb. 14 −0.02± 2.0

Pacific Ocean 20°S (20S) 24.2 Sep. 20 Jan. 28 −0.32± 2.2

Pacific Ocean 25°S (25S) 24.2 Sep. 20 Jan. 29 −0.32± 2.2

Ascension Island (ASC) 30.8 Sep. 28 Jan. 31 0.22± 3.9

a Average amplitude of the seasonal cycle, calculated as peak minus following trough.
b Average day during which the maximum value for the year is reached. Note that this is

approximate since flask sampling is not continuous
c Average day during which the minimum value for the year is reached.
d Average annual growth rate, plus or minus the standard deviation.



147

Table B.3: Variability of Additional Measurands at Proximal Flask Sites, 1998–2014

Site Amplitudea Day Max.b Day Min.c Growth Rated

H2 (ppb or ppb yr−1)

Gobabeb (NMB) 24.1 Dec. 30 Jun. 29 −0.98± 5.5

Cape Ferguson (CFA) 23.5 Feb. 1 Jul. 3 0.35± 3.6

Cape Point (CPT) — — — —

Easter Island (EIC) 18.0 Jan. 23 Aug. 16 i.d.

Pacific Ocean 20°S (20S) 20.0 Nov. 21 Jul. 19 i.d.

Pacific Ocean 25°S (25S) 20.2 Jan. 13 Jul. 14 i.d.

Ascension Island (ASC) 15.3 Dec. 9 May 16 i.d.

SF6 (ppt or ppt yr−1)

Gobabeb (NMB) 0.04 Jul. 27 Feb. 9 0.25± 0.04

Cape Ferguson (CFA) — — — —

Cape Point (CPT) — — — —

Easter Island (EIC) — — — —

Pacific Ocean 20°S (20S) — — — —

Pacific Ocean 25°S (25S) — — — —

Ascension Island (ASC) — — — —

δ13C–CO2 (h or h yr−1)

Gobabeb (NMB) 0.08 Mar. 24 Jul. 26 −0.03± 0.02

Cape Ferguson (CFA) 0.06 Mar. 23 Nov. 27 −0.02± 0.02

Cape Point (CPT) — — — —

Easter Island (EIC) 0.05 Apr. 18 Dec. 4 −0.02± 0.02

Pacific Ocean 20°S (20S) 0.03 May 2 Dec. 3 −0.03± 0.01

Pacific Ocean 25°S (25S) 0.03 Mar. 31 Sep. 30 −0.02± 0.03

Ascension Island (ASC) 0.09 Apr. 19 Nov. 4 −0.02± 0.01

δ18O–CO2 (h or h yr−1)

Gobabeb (NMB) 0.073 Sep. 30 Mar. 31 −0.002± 0.05

Cape Ferguson (CFA) — — —

Cape Point (CPT) — — — —

Easter Island (EIC) 0.28 Sep. 23 May 24 −0.002± 0.08

Pacific Ocean 20°S (20S) 0.20 Sep. 30 Mar. 31 −0.006± 0.1

Pacific Ocean 25°S (25S) 0.23 Oct. 25 Apr. 25 −0.006± 0.07

Ascension Island (ASC) 0.26 Nov. 2 Jun. 1 −0.015± 0.08

a Average amplitude of the seasonal cycle, calculated as peak minus following trough.
b Average day during which the maximum value for the year is reached. Note that this is

approximate since flask sampling is not continuous
c Average day during which the minimum value for the year is reached.
d Average annual growth rate, plus or minus the standard deviation.
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Table B.5: Measurand Total System Residence (τcalc) and Response (τapp) Times

Measurand τcalc [sec] τapp [sec]

CO2 16 137

CH4 16 45

N2O 15 48

CO 15 115

δ(O2/N2) 200 234

Flask 53 —
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Table B.6: Comparison of Fit Parameters

Reference Model N2O CO

a× 10−2 b× 10−4 a× 10−2 b× 10−4

This Work N2O/CO-23d −1.142 −6.723 −1.114 0.885

CO2 CH4

a× 10−2 b× 10−4 a× 10−2 b× 10−4

This Work ESP-1000 −1.17 −3.08 −0.96 −0.78

Winderlich et al. [2010] EnviroSense 3000i −1.21 −2.03 −1.01 −1.45

Chen et al. [2010] G1301 −1.20 −2.67 −0.98 −2.39

Rella et al. [2013] Various −1.21 −2.48 −1.02 −1.40
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Table B.7: Target Tank Biases (Mean of NDAO Target Measurements - Assigned Value from
MPI-BGC)

Tank CO2 CH4 N2O CO δ(O2/N2)

[ppm] [ppb] [ppb] [ppb] [per meg]

D417492 -0.38 -0.20 -0.61 -0.91 -6.4

D417437 -0.01 -0.70 0.26 -0.06 -9.8

D417479 0.01 -0.96 -0.03 -1.37 3.7

D417471 0.04 -0.19 0.07 0.44 -7.5

D417455 0.04 0.05 0.08 0.74 -3.0
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Table B.8: Definition of Wind Sectors

Wind Sector ID Lower Bound [°] Upper Bound [°]

Bergwinda BERG 55 105

Land Breeze LB 55 105

Mountain-Plain Wind MPW 112 140

Sea Breeze (All) SB 185 225

Sea Breeze 1 SB1 187 197

Sea Breeze 2 SB2 210 225

Plain-Mountain Wind PMW 305 340
a Bergwinds are defined as being distinct from land breezes by having an air

temperature over 20°C and relative humidity under 20%.

Table B.9: Growth Rates of Selected Measurands for the Period October 2012–
December 2013

Sitea CO2 δ(O2/N2) APO CH4 N2O

[ppm yr−1] [per meg yr−1] [per meg yr−1] [ppb yr−1] [ppb yr−1]

NDAO 2.80± 0.1 −33.4± 1.4 −16.4± 1.3 4.4± 0.3 1.3± 0.1

NMB 2.79± 0.01 —. — 6.8± 1.5 1.3± 0.06

CPT 2.63± 0.1 — — 4.1± 0.1 —

ASC 2.80± 0.1 — — 3.4± 0.5 —

EIC 2.58± 0.1 — — 4.9± 0.5 —

CFA 2.69± 0.4 — — 5.1± 1.7 —

CGO 2.65± 0.03 -26.9± 1.5 −14.6± 3.6 4.9± 0.4 1.4± 0.2
a Sites are given by their short ID, see Section 2.2.2 for a map and locations.
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Prevalence of strong vertical CO2 and O2 variability in the top meters of the ocean.

Global Biogeochemical Cycles, 27:1–9, 2013. doi: 10.1002/gbc.20081.

C. Campillo-Campbell and A. Gordoa. Physical and biological variability in the Namibian

upwelling system: October 1997-October 2001. Deep-Sea Research II, 51:147–158, 2004.

J.G. Canadell, M.R. Raupach, and R.A. Houghton. Anthropogenic CO2 emissions in Africa.

Biogeosciences, 6:463–468, 2009.

Z. Cao, M. Dai, W. Evans, J. Gan, and R. Feely. Diagnosing CO2 fluxes in the upwelling

system off the Oregon–California coast. Biogeosciences, 11(22):6341–6354, 2014. doi:

10.5194/bg-11-6341-2014.

D.G. Capone and D.A. Hutchins. Microbial biogeochemistry of coastal upwelling regimes in

a changing ocean. Nature Geoscience, 6:711–717, 2013.

M-E. Carr. Estimation of potential productivity in Eastern Boundary Currents using remote

sensing. Deep-Sea Research II, 49:59–80, 2002.

M-E. Carr and E.J. Kearns. Production regimes in four Eastern Boundary Current systems.

Deep-Sea Research II, 50:3199–3221, 2003.
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