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Summary

Coastal upwelling systems associated to the eastern continental margins of the 

Atlantic and Pacific Oceans are among the most productive realms of the 

marine ecosystems. Although they only occupy a small area, they play a 

globally important role in the cycling of nitrogen (N), phosphorus (P) and other 

biologically relevant elements. In subsurface waters of upwelling systems, 

oxygen minimum zones (OMZs) persist as a result of biological degradation 

and sluggish ventilation. Reduced oxygen concentrations influence redox 

sensitive nutrient inventories by promoting N loss processes and P release 

from the sediment. Hence, water masses upwelled to the surface feature low 

N:P ratios that deviate from canonical Redfield proportions of 16:1. Due to the 

excess P over N, upwelling systems are thought to favor the growth of 

dinitrogen (N2) fixing organism (diazotrophs) that could potentially restore 

inorganic nutrient ratios back to Redfield proportions and replenish the N 

deficit in those waters. Contrary to this assumption, the presence of non-

diazotrophic phytoplankton utilizing nutrients in lower than Redfield 

proportions has been suggested to eliminate the niche for diazotrophs. Thus, 

the dominance of either Redfield or non-Redfield primary production is 

thought to determine the amount of N fixed in upwelling systems.

In light of expanding OMZs and the predicted modification of nutrient 

inventories, this doctoral dissertation aimed to investigate the impact of 

changing N:P supply ratios on phytoplankton and organic matter composition. 

Moreover, the potential of primary producers to modify nutrient supply 

anomalies and their role in coupling or decoupling sources and sinks of fixed N 

was assessed. To accomplish this, nutrient manipulation experiments and a 

field study were conducted in the eastern tropical North Atlantic (ETNA) and 

eastern tropical South Pacific (ETSP). 

To better understand the impact of changing N:P ratios on primary production 

and on N2 fixation in the ETNA surface ocean, mesocosm experiments with 

natural plankton communities were carried out in the first study. Nutrient 

drawdown, bloom formation, biomass build-up and diazotrophic feedback 

mechanisms in response to variable N:P ratios were investigated. The obtained 

results indicate that N availability was the key factor determining primary 

production. Moreover, phytoplankton elemental composition depended on the 

organisms’ growth phase rather than on initial nutrient supply ratios. A 

channeling of excess P into the dissolved organic phosphorus (DOP) pool was 
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observed in all experiments. Two findings strongly challenged the classical 

Redfield-based view on N2 fixation: (i) the availability of inorganic N 

compounds did not negatively affect N2 fixation and (ii) under P limitation, 

DOP seemed to provide an additional P source for diazotrophs. 

In the second study, phytoplankton species distribution and organic matter 

composition was investigated during in situ measurements in the ETSP. 

Results from this study demonstrated that low inorganic N:P ratios in the 

water column were not mirrored in particulate organic matter ratios, which 

was contrary to previous studies in this region. Drawdown of excess P and 

accumulation of DOP was indicative of the same mechanism of P channeling 

into the dissolved organic pool that was observed in the mesocosm 

experiments. The presence of previously undetected diazotrophic pigments in 

the highly productive shelf region further pointed towards the depletion of 

excess P or DOP through N2 fixation.

Motivated by the outcome of the first two studies, bioassay experiments were 

conducted in the third study to test the availability of selected organic and 

inorganic P sources to diazotrophs. The obtained results demonstrated that 

diazotrophs were able to sustain and increase N2 fixation rates on all tested P 

compounds, highlighting their competitive advantage under conditions of P 

depletion and DOP availability. 

Results from this doctoral dissertation indicate that excess P is consumed and 

partially converted to DOP in upwelling regions. Transformation of excess P to 

DOP and its consumption by diazotrophs supports the assumption of a local 

replenishment of the N deficit via N2 fixation.
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Zusammenfassung

Die küstennahen Auftriebsgebiete der östlichen Kontinentalränder von 

Atlantik und Pazifik gehören zu den produktivsten Ökosystemen der Ozeane. 

Trotz ihrer geringen Ausdehnung sind sie von globaler Bedeutung für den 

Stickstoff- (N) und Phosphorkreislauf (P) sowie für den Umsatz weiterer 

biologisch relevanter Elemente. Als Resultat biologischer Abbauprozesse und 

einer trägen Ventilation befinden sich in den mittleren Wasserschichten dieser 

Auftriebsgebiete Sauerstoffminimumzonen (SMZ). Niedrige Sauerstoff-

konzentrationen beeinflussen das redoxsensitive Nährstoffinventar und 

begünstigen Stickstoffverlustprozesse und die Freisetzung von P aus dem 

Sediment. Entsprechend findet sich in den zur Oberfläche auftreibenden 

Wassermassen ein niedriges N:P Verhältnis, das vom Redfield-Verhältnis von 

16:1 abweicht. Es wird angenommen, dass der P-Überschuss in 

Auftriebsgebieten das Wachstum von Organismen fördert, die molekularen 

Stickstoff (N2) fixieren können.  Diese Diazotrophen sind möglicherweise in 

der Lage das N Defizit in solchen Gebieten auszugleichen und so das 

Verhältnis anorganischer Nährstoffe wieder an das Redfield Verhältnis 

anzunähern.  Dieser Vermutung steht die Theorie gegenüber, dass nicht-

stickstofffixierendes Phytoplankton, welches Nährstoffverhältnisse kleiner 

Redfield nutzt, die ökologische Nische für Diazotrophe eliminiert. Daher wird 

davon ausgegangen, dass das Ausmaß der N2-Fixierung von der 

vorherrschenden Art der Primärproduktion (im oder unterhalb des Redfield-

Verhältnisses) abhängig ist.

Angesichts der zunehmenden Ausdehnung von SMZ und der prognostizierten 

Änderung des Nährstoffinventars, war das Ziel der vorliegenden Dissertation 

den Einfluss von veränderten N:P Verhältnissen auf Phytoplankton und die 

Zusammensetzung organischer Materie zu bestimmen. Darüber hinaus wurde 

untersucht, ob Primärproduzenten das Potential haben Nährstoffanomalien zu 

modifizieren und welche Rolle sie in der Kopplung und Entkopplung von N-

Quellen und -Senken spielen. Hierzu wurden Nährstoffmanipulations-

experimente und eine Feldstudie im tropischen Nordostatlantik und 

tropischen Südostpazifik durchgeführt. Um die Auswirkungen sich 

verändernder N:P Verhältnisse auf die Primärproduktion und die N2 

Fixierung im Oberflächenwasser des Nordost-Atlantiks zu erfassen, wurden 

im Rahmen der ersten Studie Mesokosmosexperimente mit natürlichen 

Planktongemeinschaften durchgeführt. Im Speziellen wurde der Aufbau der 
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Biomasse und die Reaktionsmechanismen von Diazotrophen auf sich ändernde 

N:P Verhältnisse untersucht. Die Ergebnisse dieser Studie deuten darauf hin, 

dass die Verfügbarkeit von N das Ausmaß der Primärproduktion bestimmt. 

Zudem war die elementare Zusammensetzung des Phytoplankton nicht vom 

initialen Nährstoffverhältnis, sondern vielmehr von der Wachstumsphase der 

Organismen abhängig. Ein Transfer von überschüssigem P in gelöstes 

organisches Phosphat (DOP) ließ sich in allen Experimenten beobachten.  Zwei 

Studienergebnisse stellen die klassische Sichtweise einer Redfield-basierten 

N2-Fixierung in Frage: (i) die Verfügbarkeit von fixiertem N hatte keinen 

negativen Einfluss auf die N2-Fixierung und (ii) unter P-Limitierung schien 

DOP eine zusätzliche P-Quelle für Diazotrophe zu bieten. 

In der zweiten Studie wurden mittels in situ Messungen die Verteilung von 

Phytoplanktonarten und die Zusammensetzung organischer Materie im 

südöstlichen Pazifik untersucht. Im Gegensatz zu bisherigen in dieser Region 

durchgeführten Studien ließ sich hier beobachten, dass niedrige N:P 

Verhältnisse  in der Wassersäule sich nicht in der Zusammensetzung der 

partikulären organischen Materie spiegelten. Die Aufnahme überschüssigen P 

und die Akkumulation von DOP deuteten auf denselben Mechanismus des P-

Transfers in den Pool gelösten organischen Materials hin, der auch schon in 

den vorangegangenen Mesokosmosexperimenten beobachtet werden konnte. 

Der Nachweis bis dato unentdeckter Pigmente von Diazotrophen in den 

hochproduktiven Schelfgebieten des Südost-Pazifiks deutet darauf hin, dass 

überschüssiges P oder DOP durch N2-Fixierung verbraucht wurde.

Motiviert von den Ergebnissen der ersten beiden Arbeiten, fanden im Zuge der 

dritten Studie Bioassay Experimente statt. Hier sollte die Verfügbarkeit 

verschiedener organischer und anorganischer P-Quellen für Diazotrophe 

getestet werden. Es zeigte sich, dass N2-Fixierung mit allen P-Quellen 

aufrechterhalten oder gesteigert werden konnte. Diese Beobachtung hebt den 

Konkurrenzvorteil von Diazotrophen bei reduzierter P-Konzentration und 

gesteigerter DOP-Verfügbarkeit hervor.

Die Ergebnisse dieser Dissertation deuten darauf hin, dass überschüssiges P 

in Auftriebsgebieten konsumiert und partiell zu DOP konvertiert wird. Die 

Transformation überschüssigen P zu DOP und sein Verbrauch durch 

Diazotrophe bekräftigt die Annahme einer lokalen Wiederaufstockung des N-

Defizits durch N2-Fixierung.
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General Introduction

Eastern boundary upwelling systems

At the eastern continental margins of the tropical and subtropical Atlantic and 

Pacific Ocean, cold, nutrient-rich water masses from depth are transported 

into the sunlit surface zone. The physical mechanism of coastal upwelling is 

well understood (e.g. Barber and Smith, 1981; Smith, 1995): alongshore winds 

are driven by large-scale atmospheric pressure gradients between continental 

low pressure cells and high pressure systems over the eastern subtropical 

ocean basins. These upwelling favorable winds drive currents, which flow 

equator-wards along the eastern continental boundaries. Due to the Coriolis 

force stemming from the Earth’s rotation, an ‘Ekman flow’ (Ekman, 1905) is 

produced, which transports surface water away from the coast. To compensate 

for this imbalance, water masses from deeper layers are upwelled to the 

surface.

The four eastern boundary upwelling systems (EBUS) are the Canary- and 

Benguela upwelling systems in the Atlantic and their Pacific counterparts the 

California- and Humboldt upwelling systems. Although both spatial extent 

and upwelling intensity in these systems vary seasonally (Narayan et al., 

2010), permanent upwelling zones remain year-round (Chavez and Messié, 

2009), which are characterized by low surface temperatures and high 

concentrations of inorganic nutrients such as silicate, nitrate, phosphate and 

iron. The high nutrient supply supports ‘new’ primary production, as opposed 

to ‘regenerated’ production based on recycled nutrients (Dugdale and Goering 

1967), and greatly enhances phytoplankton biomass (Pennington et al., 2006; 

Ryther, 1969), mainly consisting of large and fast growing diatoms (Bruland et 

al., 2005). The high abundance of primary producers forms the basis for a 

short, productive food chain with large zooplankton standing stocks (Chavez 

and Messié, 2009) and extensive populations of small pelagic fish like sardines 

and anchovies (Rykaczewski and Checkley, 2008). Although driven by large-

scale wind and circulation patterns, upwelling is a mesoscale process confined 

to a narrow costal band. EBUS only cover a small part of the ocean (<1%), but 

support around 5% of the global marine primary production (Carr, 2002) and 

~25% of the worlds fishery (Chavez and Messié, 2009; Pauly and Christensen, 

1995). Thus, EBUS are among the most productive ecosystems in the world’s 

oceans (Lachkar and Gruber, 2012) and are of great economical importance.
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Oxygen minimum zones

A distinct feature of eastern boundary upwelling systems is the prevalence of 

permanently low dissolved oxygen (O2) concentrations in the subsurface ocean 

between 100-900 m water depth (Karstensen et al., 2008; Fig.1). 

The formation and maintenance of such oxygen minimum zones (OMZs) is a 

consequence of both physical and biogeochemical processes (Paulmier and 

Ruiz-Pino, 2009). Biogeochemical controls on O2 concentrations in OMZs are 

mainly exerted through O2 consumption via respiration and other chemical 

reactions depleting oxygen. High biological production in upwelling systems 

generates large amounts of organic material in surface waters, which 

subsequently sink into the ocean interior as detrital material (Muller-Karger 

et al., 2005). Here, microorganisms consume and degrade organic matter using 

O2 as an electron acceptor. Oxygen is further depleted by oxidation of reduced 

molecules, such as sulfide and methane (Zhang et al., 2010). From the physical 

perspective, oxygen concentrations are low because subsurface water masses 

are poorly ventilated in the tropical and subtropical ocean. While oxygen in the 

surface is exchanged with the atmosphere and O2 concentrations are 

maintained near saturation, water column stratification impairs vertical 

mixing and ventilation of the deeper water layers below the surface. Upwelled 
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Figure 1: Global dissolved oxygen concentrations (mL L-1) at 400 m water depth (annual 
mean). Black squares indicate the two areas investigated in this thesis: the eastern tropical 
South Pacific and eastern tropical North Atlantic. Data from World Ocean Atlas 2013 
(NOAA) were plotted using Ocean Data View, http://odv.awi.de, Schlitzer, R., 2015.



source waters from the deep ocean are usually oxygen-poor as they have not 

been in contact with the atmosphere for a long time (centuries to millennia). 

Thus, O2 concentrations are further reduced in mid-waters. 

The terminology and thresholds defining oxygen deficiencies differ widely 

among studies (Riedel et al., 2016) and depend on whether the terms are used 

to describe sensitivities of marine taxa, microbial processes or biogeochemical 

cycling. Hypoxia is typically defined by a threshold of ~60 µmol kg-1 (Gray et 

al., 2002). Below these concentrations many higher animal taxa are not able to 

survive (Vaquer-Sunyer and Duarte, 2008).  O2 values below ~5 µmol kg-1 are 

termed suboxic and changes in biogeochemical cycling occur because O2 is 

replaced by alternative electron acceptors (Ward et al., 2009). The term anoxic 

is used when O2 levels drop to zero. Under these conditions anaerobic 

microbes, which convert sulfate to sulfide, tend to dominate the marine 

ecosystem (Keeling et al., 2010).
Oxygen concentrations in the eastern tropical Pacific OMZ are lowest, with 

mean values of ~50 µmol kg-1 at 400 m water depth (Karstensen et al., 2008). 

Suboxic conditions are found at depths between 150–300 m and anoxia is often 

prevalent close to the shelf (Keeling et al., 2010). Compared to other OMZs, the 

Pacific Ocean also contains the largest volume of oxygen deficient water. In the 

North and South Pacific, 40% and 13% of the absolute volume is occupied by 

water masses with O2 values below 90 µmol kg-1, respectively (Karstensen et 

al., 2008). Due to stronger ventilation, the Atlantic OMZ is not as oxygen-

depleted or geographically expansive as its Pacific counterpart. In the North 

and South Atlantic, mean values of ~100 µmol kg-1 and ~50µmol kg-1 can be 

found at 400 m depth, respectively (Karstensen et al., 2008) and no significant 

sub- or anoxic conditions occur. Water masses with O2 values of 90 µmol kg-1 

occupy approximately 5% and 7% of the North and South Atlantic, 

respectively.

As mentioned previously, O2 levels in the sub- and anoxic range alter key 

pathways of biogeochemical processes and microbial activities (Doney and 

Karnauskas, 2014; Keeling et al., 2010; Paulmier and Ruiz-Pino, 2009), which 

in turn affect the composition and productivity of the ecological community. In 

particular nitrogen, iron and phosphorus cycling is influenced by low oxygen 

concentrations, thus the connection between O2 and these nutrient cycles will 

be discussed in more detail hereafter. 
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The effect of low O2 concentrations on nutrient cycling

Oxygen plays a critical role in the marine nitrogen (N) cycle, which includes 

various chemical species that exhibit a different degree of oxidation: 

ammonium (NH4
+), nitrite (NO2

–), nitrate (NO3
–), nitrous oxide (N2O) and 

dinitrogen (N2).

Under oxic conditions, NH4
+ is oxidized to NO3

– in a process called 

nitrification. When O2 concentrations fall below 5  µmol kg-1, microbes – 

predominantly facultative anaerobic prokaryotes (Kuypers et al., 2005) – use 

NO3
– instead of O2 to oxidize organic matter (Codispoti et al., 2001). During 

this process, termed denitrification, nitrate is reduced to gaseous N2O or N2 

via several intermediates: NO3
– à NO2

– à NO à N2O à N2. Thereby, 

bioavailable N (i.e. NO3
–, NO2

–, NH4
+) is lost from the oceans nutrient 

inventory, while organic matter is consumed and inorganic nutrients such as 

NH4
+ and phosphate (PO4

3–) are regenerated in order to sustain primary 

production (Ward et al., 2009). Another biochemical pathway removing fixed N 

from the environment under suboxic conditions was discovered in the 

beginning of the 21st century and is termed ‘anammox’: anaerobic ammonium 

oxidation (Dalsgaard et al., 2003; Kuypers et al., 2005). Anammox is performed 

by autotrophic bacteria that respire NH4
+ with NO2

– to N2. It is still under 

debate whether denitrification or anammox is primarily responsible for 

removing fixed nitrogen from the water column in OMZs. While denitrification 

is thought to be the major N loss process in the Arabian Sea OMZ (Bulow et 

al., 2010; Ward et al., 2009), anammox is presumed to dominate in the OMZ 

associated to the Benguela upwelling (Kuypers et al., 2005) and the Humboldt 

upwelling systems (Hamersley et al., 2007; Lam et al., 2009; Thamdrup et al., 

2006; Ward et al., 2009). However, high denitrification rates were recently 

detected in subsurface waters off Chile and Peru, where maximum rates were 

up to an order of magnitude higher than those of anammox (Dalsgaard et al., 

2012). In contrast to the Pacific, O2 concentrations within the North Atlantic 

OMZ are too high to support denitrification or anammox, thus no water 

column N loss processes are thought to occur in this area (Karstensen et al., 

2008; Ryabenko et al., 2012). Recent studies in mesoscale eddies in the eastern 

tropical North Atlantic (ETNA) are challenging this view, as extremely low O2 

concentrations in sub- and anoxic ranges were discovered in the cores of these 

eddies (Karstensen et al., 2015). A survey of the microbial community within 

one of these eddies indeed yielded the first indication of water column N loss in 

the ETNA (Löscher et al., 2015). Moreover, in the benthic environment off 
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Northwest Africa, ammonium-oxidizing bacteria have been detected (Jaeschke 

et al., 2010). These findings suggest that localized N loss processes might occur 

in the ETNA, but direct rate measurements are still missing.

Besides their critical role in the nitrogen cycle, OMZs also modulate the 

oceanic phosphorus (P) and iron (Fe) inventories, particularly where oxygen 

deficiency interacts with the sediment. In benthic environments, P is mainly 

bound to organic matter and fish debris. Moreover, P and Fe dynamics in the 

sediment are closely connected as a large P fraction is associated with iron 

oxyhydroxides (Hensen et al., 2006). Under reducing conditions, P is released 

from the sediment during the degradation of organic material and during the 

reduction of iron oxyhydroxides (Ingall and Jahnke, 1994; Noffke et al., 2012). 

The latter process also liberates dissolved ferrous iron (Fe2+), which are then 

dispersed into the sediment-water interface (Scholz et al., 2014).

General Introduction
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Figure 2: Schematic view of key nutrient fluxes within OMZs. Close to the shelf, primary 
production is high and a large amount of organic matter sinks to the ocean interior, where it 
is remineralized while O2 is consumed. In these suboxic waters, anammox and 
denitrification convert NH4

+, NO2
– and NO3

– to N2, resulting in the loss of bioavailable N 
from the system. Additionally, Fe and P are released from the sediment under suboxic 
conditions, thus water masses upwelling to the surface are depleted in N relative to P. 
Further downstream, nutrient supply is diminished and primary production is low. 
It is still unknown through which process P* is reduced as water masses are transported 
offshore and whether N2 fixation replenishes the N deficit in upwelling regions.
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In summary, OMZs are sinks for nitrogen, but provide a source of phosphorus 

(c.f. Fig. 2 for an overview of key nutrient fluxes in the realm of OMZs). As a 

result, an excess of P (P*) over N is present in the water column, which is 

defined as: 

   P* = PO4
3– – NO3

– / 16                                                             (1)

after Deutsch et. al (2007).

Because of severe oxygen depletion and on-going N loss processes in the Pacific 

OMZ, P* values in this area are high (Fig. 3). In contrast, P* values are close 

to zero in the Atlantic OMZ, where the moderate oxygen deficiency prevents 

large-scale N loss.
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Figure 3: Mean annual distribution of P* (µmol L-1) at 100 m water depth, calculated as 
P*  = PO4

3– – NO3
–/16 after Deutsch et al. (2007). Positive values indicate an excess of 

phosphate over nitrate relative to canonical Redfield proportions. Data from World Ocean 
Atlas 2013 (NOAA) were plotted using Ocean Data View, http://odv.awi.de, Schlitzer, R., 
2015.
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Phytoplankton production and nutrient stoichiometry

Phytoplankton are suspended photosynthetic microorganisms living in the 

euphotic (i.e. sunlit) layer of oceans and freshwater ecosystems. They produce 

organic matter during photosynthesis, a process where inorganic nutrients and 

carbon dioxide are transformed into organic biomass and oxygen using light 

energy and water as reducing agent (c.f. Eq. 2). As primary producers they are 

the main source of energy for heterotrophic consumers in the pelagic 

ecosystem and form the basis of the aquatic food web. Thus, they have a 

critical ecological function connecting all marine organisms to the abiotic ocean 

environment and contribute to the biogeochemical cycling of important 

chemical elements.

The most important inorganic nutrients required for phytoplankton growth 

are carbon (C), nitrogen and phosphorus. While C is a structural cell 

component, providing the fundament for carbohydrates and lipids, N is a key 

component of amino acids, which are the building blocks of all proteins. P is a 

major constituent of the cell membrane, of energy molecules such as adenosine 

triphosphate (ATP) and of DNA and RNA. The uptake of N and P by 

phytoplankton is closely linked to the fixation of carbon during photosynthesis. 

In 1958, Redfield observed that the average proportion of the three major 

elements C, N and P is remarkably similar in phytoplankton and in the deep 

ocean (Redfield, 1958). This led to the widespread view that these elements 

tend to be incorporated in a relatively fixed ratio by phytoplankton: 

106CO2 + 16NO3
– – HPO4

2– + 78H2O + 18H+ à C106H175O42N16P + 150O2    (2)

Correspondingly, Redfield concluded that the inorganic nutrient ratios in the 

oceans interior are controlled by the requirements of phytoplankton that 

ultimately sink and are remineralized at depth. Redfield’s early observations 

have been confirmed several times (e.g. Anderson and Sarmiento, 1994; 

Goldman et al., 1979) and the Redfield Ratio of C:N:P of 106:16:1 remains a 

fundamental concept in marine ecology and biogeochemistry (Sterner and 

Elser, 2002). 

However, it is known that under certain conditions inorganic nutrient 

stoichiometries (i.e. the proportion of the constituents N and P) shift away 

from the Redfield Ratio. These processes include dinitrogen (N2) fixation, 

which adds fixed N in excess of P to the aquatic environment; as well as 

denitrification and anammox, which both remove fixed N from the water, 
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thereby leaving behind an excess of P over N. Based on Liebig’s law of the 

minimum (Liebig, 1842), it has been suggested that the nutrient potentially 

controlling primary production can be predicted from nutrient concentrations 

in seawater (Kirkkala et al., 1998; Smith, 1984). Divergence from Redfield 

stoichiometry are then used as an indication of which nutrient is limiting 

(Ammerman et al., 2003). Others suggested that the abundance of certain 

phytoplankton species is determined by the relative proportion of nutrients in 

seawater and not by their absolute concentration (Tilman, 1982). Specific 

phytoplankton species are expected to dominate at their optimal resource ratio 

and will be replaced by others when the nutrient stoichiometry changes 

(Tilman, 1982). However, many authors argue that the Redfield Ratio is not 

the universal and constant stoichiometry of phytoplankton, but is only an 

average optimal ratio for the whole phytoplankton community (Deutsch and 

Weber, 2012; Falkowski, 2000; Klausmeier et al., 2008; Lagus, 2004). 

Indeed, it is increasingly recognized that inorganic nutrient stoichiometries 

marking the point of nutrient limitation and phytoplankton cellular N:P ratios 

differ greatly within and between taxa, with growth conditions and with 

growth strategies (Table 1 provides an overview of studies investigating the 

connection between inorganic N:P ratios and phytoplankton elemental 

stoichiometries). One the one hand, species-specific differences in cellular 

stoichiometries seem to be determined by the microorganisms’ phylogenetic 

background. Quigg et al. (2003) showed that C:N:P ratios vary substantially 

between phyla that belong to different superfamilies. For example, 

chlorophytes and prasinophytes belonging to the green superfamily exhibit 

mean N:P ratios of ~30:1. In contrast, diatoms and prymnesiophytes are 

members of the red superfamily and have lower N:P ratios of about 10:1. On 

the other hand, the relative contributions of cellular constituents such as 

phospholipids, ATP, DNA/RNA, chlorophyll and amino acids were shown to 

determine the overall N:P ratio of phytoplankton (Geider and La Roche, 2002; 

Gillooly et al., 2005; Sterner and Elser, 2002). As photoautotrophs invest the 

majority of N into proteins and the majority of P into ribosomal RNA, these 

two cellular components seem to be the major contributors to cellular N:P 

ratios in primary producers (Falkowski, 2000; Geider and La Roche, 2002; 

Klausmeier et al., 2004; Loladze and Elser, 2011). Another central paradigm of 

ecological stoichiometry is the growth rate hypothesis (Elser et al., 1996). It 

states that growing organisms need to increase their uptake of P to satisfy the 

elevated demand required for RNA synthesis. Based in this concept and 
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theoretical work by Klausmeier et al. (2004), Arrigo (2005) developed the 

notion of ‘survivalists’ and ‘bloomers’. In short, he suggests that fast growing 

phytoplankton (‘bloomers’) contain a high amount of growth machinery (i.e. 

rRNA) and thus exhibit low N:P ratios, while slow-growing phytoplankton 

have a proportionally high amount of resource acquisition machinery (i.e. 

chlorophyll and proteins), exhibiting a high N:P ratio. He concluded that 

certain environmental conditions select for the dominance of phytoplankton of 

either of these two groups, with N:P supply ratios determining the abundance 

of ‘bloomers’ and ‘survivalists’ (Arrigo, 2005). 

In coastal upwelling zones, fast growing diatoms are known to dominate the 

phytoplankton community (Bruland et al., 2005; Chavez et al., 1996; Franz et 

al., 2012b). Since these organisms have been shown to exhibit low cellular N:P 

ratios (Quigg et al., 2003; Weber and Deutsch, 2010), they are thought to 

consume the excess of phosphate present in the water column via non-Redfield 

General Introduction

21

Study Study-type
N:Pi 

influences 
N:PPhyt

N:PPhyt 
independent 

from N:Pi

Major finding/theory Specifics

Goldman 1979
Laboratory 

experiments
√

N:PPhyt = 16:1 under 
maximum growth

Variable N:PPhyt under 
nutrient limitation

Tilman 1982
Theoretical 

work
√

Resource ratio 
hypothesis

Species dominate at their 
optimal N:Pi

Redfield 1985
Theoretical 
work and 

review
√ Redfield Ratio

Phytoplankton 
requirements control N:Pi

Geider and La 
Roche 2002

Review √
N:PPhyt depends on 
growth condition

Nutrient replete: low 
N:PPhyt, nutrient limited: 

high N:PPhyt

Sterner and 
Elsner 2002

Review √
Growth rate 
hypothesis 

Growth rate and cellular 
phosphorus content 
correlate positively

Quigg 2003
Laboratory 
experiment

√
Phylogenetic dependence of 

N:PPhyt

Green superfamily: high 
N:PPhyt, red superfamily: 

low N:PPhyt

Klausmeier 
2004

Modeling √
N:PPhyt influenced by 

growth strategy

Nutrient replete: high 
N:PPhyt, nutrient limited: 

low N:PPhyt

Arrigo 2005 Review √
Bloomers’ and 
‘Survivalists’

Nutrient replete: high 
N:PPhyt, nutrient limited: 

low N:PPhyt

Hall 2005
Field and 
laboratory 

experiments
√

N:Pi is not reflected in 
N:PPhyt

N:PPhyt constant over wide 
N:Pi ranges

Weber and 
Deutsch 2010

Field data and 
modeling

√
N:Pi governed by 
phytoplankton 
biogeography

Species composition and 
distribution influences 

N:Pi

Loladze and 
Elser 2011

Modeling and 
review

√
Redfield Ratio rooted in 

protein-to-RNA ratio

Nutrient replete: 16:1Phyt, 
nutrient limited: variable 

N:PPhyt

Hillebrand et 
al. 2013

Meta-analysis √
N:PPhyt more restricted 
under nutrient replete 

conditions

Nutrient replete: low 
N:PPhyt, nutrient limited: 

variable N:PPhyt

Table 1: Overview of major studies investigating the connection between inorganic nutrient 
stoichiometries (N:Pi) and cellular stoichiometries of phytoplankton (N:PPhyt).



nutrient utilization (Mills and Arrigo, 2010). As the availability of phosphate 

controls the distribution of N2 fixing organisms, this would have major 

implications for the N cycle since the relative abundance of fast- and slow- 

growing phytoplankton would control the amount of new nitrogen added to the 

ocean. This feedback will be discussed in more detail in the next section.

Regardless of whether phytoplankton cellular stoichiometry is ultimately 

controlled by growth rate, growth strategy or nutrient supply ratio, the 

influence of dissolved organic matter (DOM) on phytoplankton production and 

elemental composition has often been overlooked. DOM can be a major 

reservoir of N and P in the surface ocean, both in eutrophic (Davis et al., 2014) 

and oligotrophic realms  (Reynolds et al., 2014; Torres-Valdés et al., 2009). 

Therefore, DOM potentially plays an important role in sustaining 

phytoplankton growth, especially in areas where primary production is limited 

by inorganic nutrients (Mather et al., 2008; Sañudo-Wilhelmy et al., 2001). 

Due to its chemical complexity, DOM is not yet fully characterized and 

remains largely under-sampled, but evidence suggests that the stoichiometry 

of DOM differs drastically from Redfield proportions in many areas of the 

ocean (Deutsch and Weber, 2012; Hopkinson and Vallino, 2005). Studies 

investigating the elemental composition of DOM suggest that dissolved organic 

phosphorus (DOP) is more reactive and is remineralized faster than dissolved 

organic nitrogen (DON). Thus, DON and DOP seem to be less coupled 

compared to the inorganic and particulate organic forms of N and P. Moreover, 

the spatial distribution of DOP is more variable than that of DON, both in the 

Pacific (Abell et al., 2000; Raimbault et al., 2008) and the Atlantic (Landolfi et 

al., 2016; Letscher et al., 2013; Torres-Valdés et al., 2009). The apparent 

differences in production and remineralization of DON and DOP are thought 

to strongly affect DOM stoichiometry. As primary producers and N2 fixers 

seem to be able to utilize certain DOM compounds – especially DOP (Dyhrman 

et al., 2006; Mahaffey et al., 2014; Sohm and Capone, 2006) – dissolved organic 

matter concentration and lability might be a crucial factor influencing nutrient 

supply and uptake by phytoplankton in the surface ocean. 

Nitrogen fixation and the diazotrophic niche in upwelling 

regions 

The availability of fixed N is considered to limit oceanic primary productivity 

on a global scale (Gruber, 2004). The fixation of N2 is the dominant source of 

bioavailable N to the marine environment (Benavides and Voss, 2015; 
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Falkowski et al., 1998) and the only natural process that counterbalances N 

loss by denitrification and anammox (Gruber and Sarmiento, 1997). 

Biological nitrogen fixation occurs through the conversion of atmospheric N2 

into ammonium, which is performed by a variety of prokaryotes called 

diazotrophs (Capone et al., 2008). The reduction of N2 is an energetically costly 

process: the nitrogen molecule consists of two N atoms that are bound through 

a triple covalent bond, making the molecule highly inert and non-reactive. The 

breaking of this bond is catalyzed by the nitrogenase enzyme, which consists of 

two proteins containing iron and molybdenum (Postgate, 1982). Since the 

biological N2 fixation pathway is so energy-intensive (~16 moles of ATP are 

required to reduce one mole of N2), diazotrophs grow slowly in comparison to 

other phytoplankton species and are considered to be outcompeted by other 

primary producers when nutrients are abundant (Bonnet et al., 2009; Monteiro 

et al., 2011). Thus, their classical niche is set in areas where low bioavailable 

N hampers the production of non-diazotrophs and their requirements for 

phosphorus and iron are met (Tyrrell, 1999). Phosphate and iron-rich upwelled 

waters are thought to provide such a niche for N2 fixers (Deutsch et al., 2007). 

The premise is that nutrient assimilation by non-diazotrophs in the highly 

productive surface ocean is according to Redfield and residual phosphate is left 

behind (Deutsch et al., 2007; Tyrrell, 1999). This hypothesis is in direct 

contrast to the assumption of non-Redfield production (e.g. by diatoms) in 

upwelling regions (Mills and Arrigo 2010). As mentioned before, the 

availability of fixed nitrogen depends on the differences between loss processes 

and fixation (Gruber and Galloway, 2008) and on the distribution and 

magnitude of diazotrophic activity in the ocean (Benavides and Voss, 2015; 

Weber and Deutsch, 2014). If N loss processes were coupled both 

geographically and temporally to N2 fixation through P* as suggested by 

(Deutsch et al., 2007), this feedback cycle would balance the marine N budget. 

If the abundance of diazotrophs is, however, controlled by non-diazotrophs 

consuming P*, N loss and gain processes would be spatially and temporally 

decoupled (Mills and Arrigo, 2010). This could lead to a perturbation of the N 

cycle steady-state, resulting in an unbalanced marine N budget, as has 

previously been suggested by others (Codispoti, 2007; Codispoti et al., 2001; 

Galloway et al., 2004).

General Introduction

23



EBUS and climate change

Fossil fuel emissions and increasing anthropogenic carbon dioxide (CO2) 

concentrations in the atmosphere lead to ocean acidification, rising surface 

ocean temperatures and deoxygenation (Gruber, 2011). As these changes 

intensify, the oceanic environment will be fundamentally changed, with 

potentially serious consequences for marine ecosystems. Increasing 

stratification and decreased oxygen solubility due to ocean warming are 

affecting OMZs in particular, with an expansion and shoaling of low oxygen 

waters already being observed (Stramma et al., 2008; 2009; 2010). For the next 

century, modeling approaches have predicted a further decline of the global 

ocean oxygen inventory between 1 and 7% (Keeling et al. 2011). Reduced 

oxygen levels pose a threat to a variety of marine organisms in benthic and 

pelagic habitats that respire aerobically (Rabalais et al., 2010; Vaquer-Sunyer 

and Duarte, 2008). A reduction of habitable areas could cause shifts in species 

diversity and food web structure in these regions (Wishner et al., 2013). 

Moreover, decreasing levels of dissolved oxygen could further increase 

denitrification and anammox processes, with substantial consequences for the 

marine nitrogen inventory (Lam and Kuypers, 2011). Not only do these 

processes contribute to marine N loss via the regeneration of N2, 

denitrification also produces nitrous oxide (N2O) (Arévalo-Martínez et al., 

2015; Naqvi et al., 2010). N2O is a strong greenhouse gas and ∼300 times more 

potent than CO2 (Ravishankara et al., 2009), thus an increased production 

could potentially amplify global warming (Gruber and Galloway, 2008).

With a possible facilitation of N loss processes in OMZs, the N deficit in these 

waters might increase further in the future. The oxygen depleted areas in the 

tropical North Atlantic could encounter strong changes, where a moderate O2 

deficiency has prevented extensive N loss processes to date (Karstensen et al., 

2008). An enhancement of N loss processes in upwelled waters could result in 

a decline of total primary production, as phytoplankton were shown to be 

primarily limited by the availability of N in these areas (Codispoti et al., 2001; 

Franz et al., 2012a; Gruber, 2004). This decline could further be enhanced by 

higher stratification, reducing the effective provision of nutrients from 

upwelling systems (Gruber, 2011), with unknown consequences for the highly 

productive and economically important ecosystems of upwelling regions. 
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Motivation and thesis outline

Open questions and major objectives 

Despite our increasing knowledge regarding the influence of variable nutrient 

stoichiometries on the production and composition of organic matter, there are 

still major uncertainties concerning the role of changing nutrient supply ratios 

in upwelling regions. Especially in light of climate change and the predicted 

increase in N loss processes within OMZs, it is crucial to assess the role of 

phytoplankton in modulating biogeochemical cycles of N and P. Specifically, 

uncertainties remain about the connection between different N turnover 

processes in OMZ influenced water masses. Although Deutsch (2007) 

suggested that N loss processes are spatially and temporally coupled to 

nitrogen fixation in upwelling regions, other authors suggested that P* is 

utilized via non-Redfield production, thus removing the niche for diazotrophs 

(Mills and Arrigo, 2010). Field studies investigating the mechanisms of P* 

removal in upwelling regions are scarce, but Franz et al. (2012b) found that 

non-diazotrophs reduced P* via non-Redfield production in the Peruvian 

upwelling system. In a separate study these authors found that P* was 

channeled through the particulate organic phosphorus into the DOP pool 

during non-Redfield nutrient utilization (Franz et al., 2012a). As diazotrophs 

are thought to be available to assimilate DOP (Dyhrman et al., 2006; Sohm 

and Capone, 2006), N2 fixation might be stimulated by enhanced DOP supply 

under low nutrient N:P ratios (c.f. Fig. 2 for an overview of potential N and P 

fluxes in upwelling regions). Thus, more information on the availability and 

fate of DOP in upwelling regions is extremely valuable.

A major aim of this thesis was to address fundamental questions on how 

variable nutrient stoichiometries influence primary producers and the 

composition of particulate and dissolved organic matter pools. Another goal 

was to assess the mechanism of P* removal in upwelling regions and to 

determine the role of DOP in P* consumption and as a nutrient source for 

diazotrophs. These questions were tackled within two major upwelling regions 

that show some distinct biogeochemical differences: the eastern tropical North 

Atlantic and the eastern tropical South Pacific.
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Chapter I presents results from two consecutive mesocosm experiments that 

investigated the effect of changing nutrient stoichiometries as a consequence of 

ocean deoxygenation on biomass production and diazotrophy in the ETNA. In 

mesocosms with low N:P supply ratios, the role of excess P on phytoplankton 

growth and particulate and dissolved organic matter production was 

investigated. Phosphorus dynamics and their influence on N2 fixation were 

monitored. Since the availability of fixed N is suggested to inhibit N2 fixation, 

high N:P supply ratios were applied to assess the effect of bioavailable N on N2 

fixation. To characterize the diazotrophic community, we conducted direct N2 

fixation rate measurements and determined nifH gene and transcript 

abundances. 

Chapter II contains results from in situ measurements in the ETSP 

investigating the phytoplankton species distribution and organic matter 

composition in water masses featuring low inorganic N:P ratios. We examined 

spatial P* and DOP dynamics on transects off the Peruvian coast to ascertain 

the mechanisms responsible for P* removal and to investigate the fate of DOP 

in upwelling region. Furthermore, we conducted pigment composition analyses 

via high performance liquid chromatography (HPLC) to assess the distribution 

of diazotrophic and non-diazotrophic phytoplankton.

Chapter III reports on the results from nutrient incubation experiments in 

the ETNA, where we investigated the response of the natural phytoplankton 

community to amendments with different phosphorus compounds. At six 

stations, surface seawater was incubated with either dissolved inorganic 

phosphate (DIP) or one of two different DOP sources to assess whether DOP 

can be utilized by diazotrophs and stimulates N2 fixation and whether 

bioavailability differs between DIP and DOP compounds.
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Abstract

Ocean deoxygenation due to climate change may alter redox-sensitive nutrient 

cycles in the marine environment. The productive eastern tropical North 

Atlantic (ETNA) upwelling region may be particularly affected when the 

relatively moderate oxygen minimum zone (OMZ) deoxygenates further and 

microbially driven nitrogen (N) loss processes are promoted. Consequently, 

water masses with a low nitrogen to phosphorus (N:P) ratio could reach the 

euphotic layer, possibly influencing primary production in those waters. 

Previous mesocosm studies in the oligotrophic Atlantic Ocean identified 

nitrate availability as a control of primary production, while a possible co-

limitation of nitrate and phosphate could not be ruled out. To better 

understand the impact of changing N:P ratios on primary production and N2 

fixation in the ETNA surface ocean, we conducted land-based mesocosm 

experiments with natural plankton communities and applied a broad range of 

N:P ratios (2.67–48). Silicic acid was supplied at 15 µmol L-1 in all mesocosms. 

We monitored nutrient drawdown, biomass accumulation and nitrogen fixation 

in response to variable nutrient stoichiometry. Our results confirmed nitrate to 

be the key factor determining primary production. We found that excess 

phosphate was channeled through particulate organic matter (POP) into the 

dissolved organic matter (DOP) pool. In mesocosms with low inorganic 

phosphate availability, DOP was utilized while N2 fixation increased, 

suggesting a link between those two processes. Interestingly this observation 

was most pronounced in mesocosms where nitrate was still available, 

indicating that bioavailable N does not necessarily suppress N2 fixation. We 

observed a shift from a mixed cyanobacteria/proteobacteria dominated active 

diazotrophic community towards a diatom-diazotrophic association of the 

Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in 

nutrient stoichiometry in the ETNA might lead to a general shift within the 

diazotrophic community, potentially influencing primary productivity and 

carbon export. 
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Introduction

Eastern boundary upwelling systems are characterized by cold, nutrient-rich 

water masses that are transported from intermediate water layers towards the 

surface. The resulting extensive primary production forms the basis for high 

biomass development and a productive food web (Pennington et al., 2006). At 

the same time, biological degradation at depth and weak interior ventilation 

cause permanently low oxygen concentrations in intermediate water masses 

(100–900 m, Karstensen et al., 2008). These low oxygen conditions support 

denitrification and anammox that remove bioavailable nitrogen (N) from the 

water column (e.g. Codispoti et al., 2001; Kalvelage et al., 2011; Lam et al., 

2009). Oxygen minimum zones (OMZs) also influence the availability of 

inorganic phosphate (P), silicon (Si) and trace elements such as iron (Fe), 

which are released at the sediment-water interface under oxygen-deficient 

conditions (Hensen et al., 2006; Ingall and Jahnke, 1994). Subsequently, the 

elemental stoichiometry of inorganic nutrients (N:P) in upwelled water masses 

is below the Redfield ratio of 16:1 (Redfield, 1958), which manifests itself as an 

excess of P (P*) relative to N (P* = PO4
3– – NO3

–/16, after Deutsch et al. 2007).

In the eastern tropical North Atlantic (ETNA) nutrient concentrations and 

stoichiometry within the euphotic layer cover a wide range. Water masses in 

coastal regions feature low N:P ratios mainly as a result of benthic N loss 

along with P leaching from the sediment (Jaeschke et al., 2010; Schafstall et 

al., 2010; Trimmer and Nicholls, 2009), suggesting an N limitation of primary 

production in OMZ-influenced surface waters (Deutsch et al. 2007). In the 

transition zone between coastal upwelling and open ocean, N:P ratios approach 

Redfield proportions (Moore et al., 2008). Nevertheless, the nitracline tends to 

be deeper than the phosphocline in the ETNA (Hauss et al., 2013; Sandel et 

al., 2015), which also points towards a deficiency of N over P in the euphotic 

zone. In the Central and West Atlantic, N:P ratios beyond 30:1 can be reached 

(Fanning, 1992; Moore et al., 2008), suggesting a severe P limitation of 

primary producers (Ammerman et al., 2003; Mills et al., 2004). Additional 

input of atmospheric anthropogenic nitrogen into the open ocean could further 

increase this P deficit in the future (Duce et al., 2008). Oxygen concentrations 

within the oxygen minimum in the ETNA are usually above 40 µmol kg-1 and 

thus considered too high to support N loss processes in the water column 

(Karstensen et al., 2008; Löscher et al., 2012; Ryabenko et al., 2012). However, 

recent observations of very low oxygen levels just below the mixed layer 

Chapter I

45



associated to anticyclonic modewater eddies suggest a potential for localized 

denitrification – with an accompanied decrease in N:P ratios  – in the open 

ocean of the ETNA (Karstensen et al., 2015). 

Discrepancies from the canonical N:P ratio are known to influence productivity 

and composition of primary producers (Grover, 1997). Since the average 

elemental composition of N and P in seawater as well as in phytoplankton is 

16:1, a deviation of dissolved inorganic nutrients from this ratio could indicate 

which nutrient can potentially become limiting before the other (Lagus, 2004; 

Moore et al., 2013). Transferring this concept to upwelling regions with 

inorganic N:P ratios below Redfield, one would expect that the limiting 

nutrient for phytoplankton growth in those areas is N. It has been shown, 

however, that certain functional ecotypes of phytoplankton differ in their 

required nutrient ratio, as specific cellular entities (e.g. chlorophyll, proteins or 

rRNA) of primary producers have a unique stoichiometric composition 

deviating from the classical Redfield stoichiometry (Arrigo, 2005; Geider and 

La Roche, 2002; Quigg et al., 2003). Thus, surface waters adjacent to OMZs 

potentially provide a niche for certain types of primary producers, whose 

growth strategy and metabolic requirements are favored by low ratios of N:P. 

Arrigo (2005) refers to them as ‘bloomers’ and characterizes them as organisms 

adapted to exponential growth, which contain high amounts of ribosomes and 

P rich rRNA. Those organisms build their biomass in non-Redfield proportions 

and exhibit low cellular N:P ratios. The deficit in inorganic N of water masses 

adjacent to OMZs would thus be reduced by this non-Redfield production and 

N:P ratios further offshore would approach Redfield conditions. 

Another concept of phytoplankton growth in N-deficient waters is that 

inorganic nutrients are taken up in Redfield proportion by primary producers, 

which leaves the surface water masses enriched in P. Excess phosphate 

presence has been hypothesized to favor N2 fixation (Deutsch et al., 2007). The 

conversion of readily available dissolved N2 into bioavailable forms of fixed N 

by diazotrophs could replenish the N-deficit in surface waters adjacent to 

OMZs. 

Previous bioassay studies that were conducted to identify controlling factors 

for primary production in the eastern Atlantic using inorganic N, P and 

dissolved Fe addition, determined N as the key limiting nutrient (e.g. Graziano 

et al., 1996; Mills et al., 2004; Moore et al., 2008). These findings are in 

accordance with an on-board mesocosm study from the same area, where 

phytoplankton growth depended on the initial supply of N rather than on the 
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N:P ratio and where a combined addition of N and P did not further increase 

biomass production compared to the addition of N sources alone (Franz et al., 

2012). Additionally, the authors deduced that at low N:P ratios excess P was 

assimilated by non-diazotrophic phytoplankton and was channeled into 

dissolved organic phosphorus (DOP). As DOP might serve as an additional 

source of P for bacteria and phytoplankton (Mahaffey et al., 2014 and 

references therein) and is preferentially taken up by the filamentous 

diazotrophic cyanobacterium Trichodesmium (Dyhrman et al., 2006; Sohm and 

Capone, 2006), it has been proposed that N2 fixation might be stimulated by an 

enhanced DOP supply under low N:P ratios (Franz et al., 2012).

Until recently, oceanic N2 fixation was mainly attributed to phototrophic 

cyanobacteria, such as Trichodesmium or Crocosphaera, which are restricted 

to nutrient depleted surface to subsurface waters due to their light demand 

(Capone et al., 1997; Zehr and Turner, 2001). However, several groups of non-

cyanobacterial diazotrophs and cyanobacterial symbionts have been detected 

in various oceanic regions, thus demonstrating the ubiquity and high diversity 

of diazotrophs (Farnelid et al., 2011; Foster et al., 2009; Loescher et al., 2014). 

Despite the growing awareness of diazotrophic diversity and distribution, the 

environmental conditions controlling diazotrophy are still not well understood. 

However temperature, Fe and P availability and dissolved oxygen 

concentrations are regarded as key factors for diazotrophic distribution and 

partly for active N2 fixation (e.g. Sohm et al., 2011). The presence of high 

amounts of fixed N is thought to inhibit N2 fixation (Weber and Deutsch, 

2014), since diazotrophs are either outcompeted by fast growing phytoplankton 

species such as diatoms (Bonnet et al., 2009; Monteiro et al., 2011), or they 

themselves take up bioavailable forms of N rather than use the energy 

consuming process of N2 fixation (Dekaezemacker and Bonnet, 2011; 

Mulholland and Capone, 2001; Mulholland et al., 2001).

In the ETNA, upwelling of N depleted waters along with high Fe input via 

Saharan dust deposition (Gao et al., 2001) sets a classical niche for N2 fixation, 

while high N:P ratios beyond the upwelling region of the ETNA point towards 

P limitation of diazotrophs (Ammerman et al., 2003; Mills et al., 2004). 

Nevertheless, a diverse community of cyanobacterial diazotrophs such as 

Trichodesmium (Capone et al., 1997; Tyrrell et al., 2003), a variety of 

unicellular cyanobacterial diazotrophs (Groups A, B, C, diatom-symbionts) 

(Falcon et al., 2002; Langlois et al., 2005) as well as non-cyanobacterial 

diazotrophs such as different clades of proteobacteria are abundant and widely 
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distributed (e.g. Langlois et al., 2005; 2008). Those diazotrophs have 

previously been demonstrated to actively fix N2 in the ETNA (Foster et al., 

2009; Langlois et al., 2005; 2008), showing highest rates in nutrient depleted 

surface to subsurface waters (Großkopf et al., 2012).

We investigated the effect of variable nitrate and phosphate supply on 

phytoplankton growth and addressed the diazotrophic response to changes in 

N:P stoichiometry over time in two consecutive mesocosm experiments. In 

order to extend the design of previous mesocosm experiments (Franz et al., 

2012), N and P supply ratios were varied while keeping either nitrate or 

phosphate at constant concentrations. High N:P ratios were applied to 

investigate potential inhibition of N2 fixation, while low N:P supply ratios were 

applied to unravel the role of excess P and consecutively formed DOP on 

primary production and diazotrophy. Direct N2 fixation rate measurements as 

well as determination of nifH gene and transcript abundances were carried out 

to characterize the diazotrophic community and their response to the chosen 

treatment levels. The experimental design and response variables were chosen 

in order to assess responses of the phytoplankton community to possible 

changes in oceanic nutrient stoichiometry as a consequence of ocean 

deoxygenation.

Introduction

48



Methods

Experimental setup

In October 2012 we conducted two 8-day mesocosm experiments at the 

Instituto Nacional de Desenvolvimento das Pescas (INDP), Mindelo, Cabo 

Verde. The night before the start of each experiment, surface water was 

collected with RV Islândia south of São Vicente (16°44.4’N, 25°09.4’W) and 

transported to shore using four 600 L food safe intermediate bulk containers. 

Containers for water transport were first rinsed with diluted HCl and several 

times with deionized water. The experimental setup comprised 16 plastic 

mesocosm bags, which were distributed in four flow-through water baths. 

Blue, transparent lids were added to reduce the light intensity to 

approximately 20% of surface irradiation. The collected water was evenly 

distributed among mesocosm bags by gravity, using a submerged hose to 

minimize bubbles. The volume inside each mesocosm was calculated after 

adding 1.5 mmol silicic acid and measuring the resulting silicic acid 

concentration. The volume ranged from 105.5–145 liters. Nutrients in all 

mesocosms were measured before nutrient manipulation. Nitrate (NO3
–), 

nitrite (NO2
–), phosphate (PO4

3–) and silicic acid (Si(OH)4) were all below the 

detection limit and far below the manipulation levels (see Fig. 2). We therefore 

conclude that no contamination with these nutrients occurred during water 

sampling, transport and mesocosm filling. Experimental manipulation was 

achieved by adding different amounts of nitrate and phosphate. In the first 

experiment, the phosphate supply was changed at constant nitrate supply 

(varied P) in 13 of the 16 units, while in the second experiment the nitrate 

supply was changed at constant phosphate supply (varied N) in 12 of the 16 

units. Each of these nutrient treatments was replicated 3 times. In addition to 

this, “cornerpoints” were chosen, where both the nitrate and phosphate supply 

was changed. The „cornerpoints“ were not replicated. These treatments were 

repeated during both experiments (see Fig. 1 for experimental design). Four 

cornerpoints should have been repeated, but due to erroneous nutrient levels 

in mesocosm 10 during varied N, this mesocosm also was adjusted to the 

center point conditions. Experimental treatments were randomly distributed 

between the four water baths. Initial sampling was carried out immediately 

after filling of the mesocosms on day 1. 
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After nutrient manipulation, sampling was conducted on a daily basis between 

09:00 and 10:30 local time for days 2 to 8. Nutrient levels were set between 2 

and 20  µmol  L-1 for nitrate, 0.25 and 1.75  µmol  L-1 for phosphate and 

15 µmol L-1 for silicic acid. Table S1 gives the target nutrient concentrations 

and corresponding measured concentrations in the  mesocosms.

It has to be noted that no algal bloom developed in mesocosm 5 during 

varied N (target concentrations: 17.65 µmol L-1 NO3
–
, 0.40 µmol L-1 PO4

3–). 

Thus, it was not included in the analysis and data are not presented.

Although we refer to our experimental approach as mesocosm experiment, this 

label might be disputable depending on the definition of the term mesocosm. 

Sometimes, experimental enclosures are only defined by size, where our 

approach would fall into the range of a microcosm experiment (<1  m3; 

Riebesell et al., 2010). Independent of its size, a mesocosm can also be defined 

as a confined body of water, where environmental factors are manipulated at 

the community or ecosystem level (Stewart et al., 2013). In contrast, 

microcosm experiments are often used to manipulate factors at the population 

level and often lack the realism to extrapolate results to natural systems 

(Stewart et al., 2013). Although our experimental enclosures are limited in 

size, we consider it justified using the term mesocosm, as we conducted our 

experiments with natural communities consisting of at least three trophic 

levels (bacteria, phytoplankton, microzooplankton).
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Nutrients

Samples (10 mL) for dissolved inorganic nutrients (NO3
–, NO2

–, PO4
3–, Si(OH)4) 

were taken daily from each mesocosm and measured directly using a QuAAtro 

Autoanalyzer (Seal Analytic) according to Grasshoff et al. (1999). The detection 

limits of nutrient analyses were 0.01 µmol  L-1 for NO2
– and PO4

3–, 

0.03 µmol L-1 for NO3
– and 0.04 µmol L-1 for Si(OH)4.

Chlorophyll a

For chlorophyll a (Chl a) analyses, water samples (0.5–1 L) were vacuum-

filtered (200 mbar) onto Whatman GF/F filters (25 mm, 0.7 µm) before adding 

1 mL of ultrapure water. Filters were immediately stored frozen for at least 24 

hours. 9 mL acetone (100%) was then added to each sample and the 

fluorescence was measured with a Turner Trilogy fluorometer, which was 

calibrated with a Chl a standard dilution series (Anacystis nidulans, Walter 

CMP, Kiel, Germany). Chl a concentrations were determined according to 

Parsons et al. (1984).

Dissolved organic phosphorus

Water samples for analyses were filtered through pre-combusted (450°C, 5 

hours) Whatman GF/F filters (25 mm, 0.7 µm). The filtrate was stored in acid-

clean 60 mL HDPE bottles (5% HCl for at least 12 hours) and frozen at -20°C 

until further analysis. 

Prior to analysis of total dissolved phosphorus (TDP) one metering spoon of the 

oxidizing reagent Oxisolv (Merck) was added to 40 mL of sample, which was 

hereupon autoclaved for 30 minutes. Samples were then analyzed 

spectrophotometrically (Autoanalyzer QuAAtro Seal Analytic), following Bran 

and Luebbe AutoAnalyzer Method No. G-175-96 Rev. 13 (PO4
3–). The detection 

limit was 0.2 μmol L-1 and analytical precision was ±8.3%.

DOP concentrations were calculated as:

 DOP = TDP – PO4
3–          (1)

Particulate organic matter

Particulate organic matter concentrations were determined by filtering 0.5–1 L 

seawater through pre-combusted (450°C for 5 hours) Whatman GF/F filters 

(25 mm, 0.7 µm) under low pressure (200 mbar). 
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Filters were immediately frozen and stored until analysis. 

Prior to analysis, particulate organic carbon (POC) and nitrogen (PON) filters 

were fumed with HCl (37%, for 24 hours) in order to remove inorganic carbon. 

After drying, filters were wrapped in tin cups (8 × 8 × 15 mm) and measured 

according to Sharp (1974) using an elemental analyzer (Euro EA, EuroVector, 

Milan, Italy).

For particulate organic phosphorus (POP) measurements, filters were 

autoclaved with the oxidation reagent Oxisolv (Merck) and 40 mL of ultrapure 

water for 30 min in a pressure cooker. Then, orthophosphate was analyzed 

photometrically according to Hansen and Koroleff (1999).

Relationships of dissolved and particulate organic matter accumulation to the 

inorganic nutrient supply ratios were determined using Model I regression 

analyses (SigmaPlot, Systat).

Molecular methods

Samples for the extraction of DNA/RNA were taken by filtering a volume of 1–

2 L (exact volumes and filtration times were determined and recorded 

continuously) of seawater through 0.2 µm polyethersulfon membrane filters 

(Millipore, Billerica, MA, USA). The filters were frozen and stored at -80°C 

until analysis. Nucleic acid extraction was performed using the Qiagen DNA/

RNA All prep Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

protocol.  The extracted RNA was reverse transcribed to cDNA using the 

Superscript III First Strand synthesis Kit (Invitrogen) following the 

manufacturer’s protocol with primers nifH2 and nifH3 (Langlois et al., 2005; 

Zani et al., 2000). NifH clusters were quantified from DNA and cDNA by 

quantitative Real Time PCRs as previously described by Church et al. (2005) 

and Langlois et al. (2008). TaqMan® qPCRs were set up in 12.5 µl reactions 

and were performed in technical duplicates in an ABI ViiA7 qPCR system (Life 

technologies, Carlsbad, CA, USA). For each primer and probe set, standard 

curves were obtained from dilution series ranging from 107 to 10 gene copies 

per reaction; standards were constructed using plasmids containing the target 

nifH gene. Sequences of primers and probes are given in Table 1. To confirm 

purity of RNA, non-template qPCRs were performed using the corresponding 

RNA.
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15N2 seawater incubations

Seawater incubations were performed in triplicates from each mesocosm on 

day 1 and day 8 of both experiments as previously described by Mohr et al. 

(2010) and Großkopf et al. (2012). Degassed seawater was filled into evacuated 

gas-tight 3  L Tedlar® bags without a headspace. Addition of 15N2 gas was 

(depending on the exact water volume in the Tedlar® bag) around 10 mL 15N2 

per 1 L seawater. Dissolution of the 15N2 gas was achieved by ‘slapping’ the 

bubble with a ruler. After complete dissolution of the added 15N2 gas (15N2-

enriched seawater), an aliquot of the 15N2  enriched water was collected for 

each preparation of enriched seawater and stored in an Exetainer. Seawater 

samples were filled headspace-free; 100 mL of seawater was exchanged with 

previously degassed seawater containing a defined concentration 15N2 and 13C-

NaCO. Incubations were performed in 4.5 L polycarbonate bottles closed with 

Teflon®-coated butyl rubber septum caps. The 15N2 concentration in the 

prepared batches of enriched water was determined to be 250 μmol L-1, which 

translates in an 15N-enrichment of about 2% in the 4.5 L bottle incubations, 

when adding 100 mL enriched seawater (depending on temperature and 

salinity). Water samples were incubated for 24 hours in the mesocosm water 
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Target 
Group

Reverse primer (5’–3’) Forward Primer (5'–3') Probe (5'–3')

Filamentous GCAAATCCACCGCAAAC
AAC

TGGCCGTGGTATTATTA
CTGCTATC

AAGGAGCTTATACAGAT
CTA

UCYN-A TCAGGACCACCGGACTC
AAC

TAGCTGCAGAAAGAGGA
ACTGTAGAAG

TAATTCCTGGCTATAAC
AAC

UCYN-B TCAGGACCACCAGATTC
TACACACT

TGCTGAAATGGGTTCTG
TTGAA

CGAAGACGTAATGCTC

UCYN-C GGTATCCTTCAAGTAGT
ACTTCGTCTAGCT

TCTACCCGTTTGATGCT
ACACACTAA

AAACTACCATTCTTCAC
TTAGCAG

GamAO AACAATGTAGATTTCCT
GAGCCTTATTC

TTATGATGTTCTAGGTG
ATGTG

TTGCAATGCCTATTCG

Het I AATACCACGACCCGCAC
AAC

CGGTTTCCGTGGTGTAC
GTT

TCCGGTGGTCCTGAGCC
TGGTGT

Het II AATGCCGCGACCAGCAC
AAC

TGGTTACCGTGATGTAC
GTT

TCTGGTGGTCCTGAGCC
TGGTGT

Table 1: Primers and probes used in nifH TaqMan qPCR assays.



baths, thus at the same temperature and light regime, followed by a filtration 

on Whatman GF/F filters, which were analyzed using mass spectrometry as 

previously described in Loescher et al. (2014).
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Results

Bloom development and nutrient dynamics in the mesocosms

In both consecutive experiments (varied P and N) a bloom formation was 

observed following nutrient manipulation. Nitrate and phosphate were readily 

taken up by the plankton community and nutrient concentrations thus 

declined until the end of the experiment (Fig. 2). NO3
– was fully depleted in all 

mesocosms at days 6–8 in both runs, except in the mesocosms with highest 

N:P ratios of 48:1 (treatment 12.00N/0.25P in varied P) and 44:1 (treatment 

17.65N/0.40P in varied N). Residual PO4
3– was still detectable at the end of the 

experiments (day 8) in all mesocosms with initial N:P values <10 (treatments 

in varied P: 6.35N/1.10P, 12.00N/1.25P, 12.00N/1.75P; treatments in varied N: 

2.00N/0.75P, 4.00N/0.75P, 6.00N/1.03P) indicating a limitation of primary 

productivity dependent on the N:P ratio.

Although initial Chl a concentrations were slightly higher in varied P than in 

varied N (~0.38 µg L-1 and 0.2 µg L-1, respectively), the increase in Chl a 

concentration was 5–10-fold until days 5/6 in varied P compared to 10–50-fold 

in varied N. After the bloom at days 5 and 6 Chl a declined again to 0.05–

0.7 µg L-1 and 0.6–1.7 µg L-1 in varied P and varied N, respectively (Fig. 2).

Particulate organic matter (POM) accumulation and 

stoichiometry

Temporal dynamics of POM were similar during both experiments. Initial 

concentrations of POC, PON and POP were 10–17 µmol L-1, 1.5–2 µmol L-1 and 

0.05–0.12 µmol L-1, respectively (Fig. 2). In varied P, POC and PON reached a 

maximum on day 6, while POP increased until the end of the experiment. 

In varied N POM accumulation also peaked on day 6 or 7 in most mesocosms, 

but differences between N:P treatments were more pronounced in varied N 

compared to varied P. Our results indicate that POM accumulation was 

independent of the initial nutrient supply ratio in both experiments (Fig. 3). 

We observed a significantly positive regression coefficient between maximum 

POC and PON concentrations (defined as peak POC and PON concentration 

subtracted by the initial (day 1) POC and PON concentration) to the initial 

NO3
– supply (POC: r2 = 0.64, p = 0.0006; PON: r2 = 0.80, p < 0.0001) while POP 

accumulation showed a significantly positive regression coefficient to initial 

PO4
3– supply (r2 = 0.31, p = 0.048). 
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Figure 2: Temporal development of (A) NO3
– and NO2

–, (B) PO4
3–, (C) Chl a, (D) POC, (E) 

PON and (F) POP within all treatments of both experimental runs. Standard deviations 
are depicted as shaded error bands. 



Mean PON:POP ratios during the exponential growth phase appeared to be 

independent of the initial N:P supply ratio in both experimental runs (Fig. 4). 

With ratios between 17 and 23, the PON:POP ratios were above, but close to 

Redfield proportion in all treatments during the first 5 days of the 

experiments, consistent with an observed initial uptake of N:P in Redfield 

proportions in all mesocosms. During the post bloom phase, mean PON:POP 

ratios were positively correlated with the initial nutrient supply ratio (r2 = 

0.73, p < 0.0001). Nevertheless, stoichiometry of POM (N:P between 16 and 32) 

exceeded Redfield proportions, even in treatments with lowest N:P ratios. 
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Figure 3: Maximum POC, PON and POP accumulation as a function of the initial supply of 
NO3

–, PO4
3– and N:P. Maximum δPOM is defined as peak POM concentration subtracted by 

the initial (day 1) POM concentration. Treatments in varied P are depicted as blue circles; 
treatments in varied N are depicted as red diamonds. Error bars denote the standard 
deviation of replicated (n=3) treatments. Regression lines (continuous lines) indicate 
significant linear correlations between the initial nutrient supply and POM accumulation.  



Dissolved organic phosphorus dynamics

Initial DOP concentrations during varied P were 0.14 (±0.009) µmol L-1. In 

most mesocosms, except for the one with lowest initial PO4
3– supply (12.00N/

0.25P), DOP concentrations increased progressively until the end of the 

experiment (Fig. 5). Highest DOP concentrations of around 0.4 µmol L-1 were 

determined in mesocosm 12.00N/0.75P on day 5 and decreased again 

afterwards. Maximum DOP accumulation (defined as described for maximum 

POM accumulation, section 3.2) was significantly correlated to the initial 

PO4
3– supply (Fig. 6; r2 = 0.63, p = 0.0007). 

In varied N initial DOP concentrations in the mesocosms were 

0.2  (±0.038)  µmol  L-1 and increased slightly until day 3. Afterwards DOP 

concentrations remained rather constant, although with considerable 

variability in the data (Fig. 5). 

A simple mass balance (Table S2) showed that part of the phosphorus pool, i.e. 

the sum of PO4
3–, DOP and POP, remained unaccounted for (P poolX) at the 

end of the  experiment (P poolX in varied P ~25% of the initial P pool, P poolX 

in varied N ~14%). This undetermined P pool is most likely due to wall growth, 

which became visible towards the end of the experiment. However, only in two 

mesocosms the difference between P pools sizes on day 2 and day 8 was 

significant. 
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Figure 4: PON:POP stoichiometry during (A) the exponential growth phase and (B) the 
stationary growth phase of the experiment. The grey line visualizes the Redfield Ratio. The 
color code, symbols and lines are the same as in Fig. 3.
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Figure 6: Positive linear correlation between maximum DOP accumulation (defined as peak 
DOP concentration subtracted by the initial DOP concentration) and initial PO4

3– supply 
during varied P (blue circles) and varied N (red diamonds).
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Importance of the Richelia-Rhizosolenia symbiosis for 

diazotrophy

Directly measured rates of N2 fixation showed an increase with time in varied 

P, while no statistically significant increase could be observed in varied N 

(Fig.  7). A molecular screening of the diazotrophic community in the initial 

water batch used for varied P using the nifH gene as functional marker gene 

showed a dominance of filamentous cyanobacterial diazotrophs related to 

Trichodesmium accounting for ~54% of the diazotrophic community (results 

from qPCR), followed by proteobacterial diazotrophs (~36%) in varied P (data 

not shown). 

The high abundance of filamentous cyanobacterial diazotrophs indicated the 

presence of a bloom in the initial water batch in varied P. In varied N, the 

initial community consisted mainly of proteobacterial diazotrophs (~88%), 

followed by UCYN-B (9%) and filamentous cyanobacteria (3%). 

Changes in transcript abundance over time were most intense for Richelia-

Rhizosolenia (Het I) transcripts (Fig. 8). At day 2, Het I transcript abundances 

were higher in varied N conditions compared to varied P. This relation 

changed over the course of the experiments, with a pronounced increase of Het 

I transcript abundances between day 6 and 8 in varied P. Thus, all classical 

nifH clusters (filamentous cyanobacteria, UCYN-A, -B, -C and proteobacteria 

diazotrophs) decreased in abundance of genes and gene transcripts down to the 
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Figure 7: Mean N2 fixation rates measured on day 2 and day 8 of both experiments. Because 
of the high variance between replicates we omitted N2 fixation rates from un-replicated 
treatments. Asterisks indicate a significant difference between day 2 and day 8 (t-test). Error 
bars indicate the standard deviation. 



detection limit in both experiments, whereas diazotrophs of the Richelia-

Rhizosolenia symbiosis were the only diazotrophs that showed an increase in 

nifH transcripts over the course of the experiment, exclusively in varied P (Fig. 

8). During varied N, nifH gene and transcript abundance of the Richelia-

Rhizosolenia cluster was close to the detection limit and DOP accumulation 

was rather negligible. In contrast, we observed an accumulation of DOP in 

varied P. Here, mesocosms with a significant increase in N2 fixation (12.00N/

0.25P and 12.00/0.75P) were also the ones where DOP was used as 

phosphorus-source for biomass build-up after PO4
3– was depleted (Fig. 9). 
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Figure 8: Temporal development of transcript abundances for (A) Richelia-Rhizosolenia (Het 
I) and filamentous cyanobacteria related to Trichodesmium (Fil). Standard deviations are 
depicted as shaded error bands.



In mesocosm 12.00N/0.75P, PO4
3– concentrations were below the detection 

limit after day 5. This coincided with a decrease of DOP after day 5, while POP 

concentrations increased until the end of the experiment. 

In mesocosm 12.00N/0.25P, POP also increased beyond the point of PO4
3– 

depletion and highest POP accumulation exceeded values that could be 

explained by PO4
3– incorporation alone. Thus a potential impact of DOP on 

diazotrophy is hypothesized. In mesocosms without a significant increase in N2 

fixation, POP and DOP concentrations increased until the end of the 

experiment and no apparent uptake of DOP could be observed. 
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Figure 9: Dynamics of PO4
3–, POP and DOP and N2 fixation rates in mesocosms during 

varied P. Because of the high variance between replicates we omitted N2 fixation rates from 
un-replicated treatment.



Discussion

Controls on plankton production

In order to understand potential consequences of changes in nutrient regimes, 

it is necessary to determine the factors that control and limit microbial 

production. In our experiments, amendments of NO3
– significantly increased 

chlorophyll concentrations and enhanced the accumulation of POM, indicating 

the ability of the plankton community to rapidly and intensively react to 

nitrate availability. These results suggest that the ultimate limiting nutrient 

for phytoplankton production in our experiment was NO3
–. N2 fixation was 

measurable in all initial samples, which indicates the presence of a niche for 

diazotrophs in the Cabo Verde region. For the upwelling region as well as for 

the oligotrophic open ocean of the ETNA, nitrate limitation of the 

phytoplankton community has previously been reported (Davey et al., 2008; 

Franz et al., 2012; Moore et al., 2008). Additionally, Moore et al. (2008) 

observed a co-limitation of nitrate and phosphate during nutrient addition 

bioassay experiments in the ETNA. In our experiment, however, only POP 

accumulation was positively affected by PO4
3– supply. This argues against a 

secondary limitation by phosphate, but rather points towards a mechanism of 

accumulating and storing phosphate as polyphosphate within the cell (Geider 

and La Roche, 2002; Martin et al., 2014; Schelske and Sicko-Goad, 1990). 

There is a large difference between the supply ratio of inorganic nutrients and 

the PON:POP ratio of the plankton community in our study. Although initial 

N:P ratios in our mesocosms covered a wide range, PON:POP ratios reached 

maximum values of ~21 in both experiments during the exponential growth 

phase. During stationary growth, maximum PON:POP values of 39 in varied N 

and 22 in varied P were measured. However, during growth phases in both 

experiments PON:POP ratios never fell below 16. Very similar results were 

obtained by Franz et al (2012) off the Peruvian coast. However, two 

experiments conducted by Franz et al. (2012) in the ETNA and off West Africa 

showed a different response of the phytoplankton community. In these two 

cases, N:P supply ratio and PON:POP were highly correlated and PON:POP 

ratios as low as 6.0 (±1.4) were observed in the stagnant phase. This shows 

that the stoichiometry of phytoplankton communities is flexible to a certain 

extent, but does not necessarily reach dimensions observed in laboratory 

experiments (Hecky et al., 1993) and implied by theoretical approaches (e.g. 
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Geider and La Roche, 2002; Klausmeier et al., 2004). This may result from 

differences in the initial community composition if it lacks organisms able to 

assemble a P rich growth machinery (Arrigo, 2005; Klausmeier et al., 2004). It 

has been reported that cellular N content seems relatively inflexible in some 

phytoplankton groups, thus restricting the maintenance of metabolic processes 

at low dissolved inorganic nitrogen concentrations (Moore et al., 2013). In 

contrast, phosphate requirements seem to be comparably flexible, as certain 

cellular components containing P (e.g. phospholipids) can be replaced by non-

phosphorus containing compounds (Moore et al., 2013). This can also be 

deduced from our experiments, where higher N:P ratios lead to increasing 

PON:POP ratios, possibly due to the flexibility to substitute P compounds 

within the biomass. In contrast, lower N:P ratios lead to lower biomass 

accumulation, as the plasticity of PON:POP seems to be constrained by the 

availability of nitrate in our experiments.

The impact of bioavailable N on N2 fixation

The ability of diazotrophs to grow independent of a fixed N source in principle 

gives them an advantage to thrive under conditions where their competitors 

are limited by N availability. At the same time, diazotrophs are considered 

disadvantaged when competing with faster growing non-diazotrophs for 

nutrients under N replete conditions (Tyrrell, 1999; Ward et al., 2013). 

Contrary to this classical view, we could not detect a direct influence of 

reactive N compounds on N2 fixation in our experiments. Despite a wide 

spectrum of applied nitrate concentrations in varied N, no significant 

difference in N2 fixation rates could be detected. Evidence from culture 

experiments also suggests that inorganic N compounds do not always repress 

N2 fixation. While NO3
– addition in Trichodesmium spp. (Holl and Montoya, 

2005; Mulholland et al., 2001) and NH4
+ addition in Crocosphaera watsonii 

(Dekaezemacker and Bonnet, 2011) reduced N2 fixation rates, NO3
– addition 

did not reduce N2 fixation rates in C. watsonii and Nodularia spp. cultures 

(Dekaezemacker and Bonnet, 2011; Sanz-Alférez and del Campo, 1994). 

Moreover, recent field surveys demonstrated the occurrence of N2 fixation in 

nutrient rich water masses of the eastern tropical South Pacific (ETSP) and 

equatorial Atlantic upwelling regions (Fernandez et al., 2011; Loescher et al., 

2014; Subramaniam et al., 2013) and also modeling studies predict high N2 

fixation rates in waters containing measurable amounts of reactive N (Deutsch 

et al., 2012; Weber and Deutsch, 2014). Clearly, the degree of feedback 
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concerning the inhibition of N2 fixation by reactive N compounds is not 

universal and there is evidence that the absence of P and Fe in seawater is a 

stronger indicator for limitation of N2 fixation than the presence of inorganic N 

compounds (Weber and Deutsch, 2014).

The role of excess P and DOP as controls on N2 fixation

Deutsch et al. (2007) suggested that N2 fixation is favored in upwelling 

regions, where N loss in adjacent OMZ waters and P leaching from the 

sediment lead to upwelling of waters enriched in P. This excess P is thought to 

be consumed by diazotrophs, thus replenishing the N-deficit in the vicinity of 

upwelling regions. 

As nutrients were taken up in Redfield or above Redfield proportions in our 

experiments we would have expected excess phosphate in mesocosms with N:P 

supply ratios below Redfield. Instead, excess phosphate was absent and our 

data point towards a channeling of PO4
3– through the particulate pool into 

DOP, as an increase in PO4
3– supply significantly increased the concentration 

of DOP. Why phytoplankton synthesize and excrete higher levels of DOP 

under excess phosphate conditions remains unclear, but enhanced PO4
3– 

uptake (followed by DOP accumulation) is thought to hamper P limitation 

when sudden boosts in N are encountered (Mackey et al., 2012). In accordance 

with our study, mesocosm experiments from the ETNA and eastern tropical 

south Pacific (ETSP) open ocean (Franz et al., 2012) and measurements from 

shelf regions of the ETNA (Reynolds et al., 2014) and Celtic Sea (Davis et al., 

2014) showed the accumulation of DOP under excess phosphate supply. 

Although the composition and bioavailability of the DOP pool needs to be 

further evaluated, DOP may act as a source of P for prokaryotic primary 

producers, either exclusively or in addition to PO4
3– (Björkman and Karl, 2003; 

Dyhrman et al., 2006; Mahaffey et al., 2014; Reynolds et al., 2014). This 

indicates that the ability to utilize DOP may give diazotrophs a competitive 

advantage when bioavailable forms of N are depleted and either PO4
3– or DOP 

concentrations are sufficient. 

In our experiments a significant increase in N2 fixation rates was only detected 

in varied P. In mesocosms with highest N2 fixation rates, PO4
3– was depleted 

after day 5 or 6 while POP increased until the end of the experiment. After 

PO4
3– depletion, DOP concentrations declined, which indicates that DOP 

served as phosphorus source until the end of the experiment. It has to be noted 

that N2 fixation rates were only measured at the beginning and the end of our 
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experiment and possible fluctuations over time cannot be accounted for. 

However, increasing diazotrophic transcript abundances of Richelia 

intracellularis in symbiosis with the diatom Rhizosolenia (Het I) were also 

detected over the course of the varied P experiment. While the diatom 

abundance was probably favored by replete amounts of silicic acid added at the 

beginning of the experiment, no increase in diatom-diazotroph associations 

(DDAs) was detected in the varied N experiment. Measured N2 fixation rates 

and transcript abundances lead us to speculate that DDAs were favored in the 

varied P experiment, where diazotrophs in the mesocosms utilized DOP 

resources in order to supply P to themselves and/or their symbiont. The ability 

to utilize DOP has previously been shown for R. intracellularis (Girault et al., 

2013) and our observations suggest that they may not only provide their 

symbionts with N via N2 fixation but also with P via DOP utilization. 

DDAs in our experiment were favored by replete amounts of silicic acid and 

DOP and were – in contrast to the classical view – not restrained by reactive N 

compounds. These findings suggest that DDAs have the potential to actively 

fix nitrogen in shelf waters of upwelling regions. Therefore, the N-deficit of 

upwelled water-masses could already be replenished locally prior to offshore 

transport. 

A shift within the diazotrophic community towards DDAs could also exert 

controls on carbon export. Grazing, particle aggregation and export likely 

increase when filamentous and proteobacterial cyanobacteria are replaced by 

DDAs (e.g. Berthelot et al., 2015;  Karl and Letelier, 2008; Karl et al., 2012). 

The enhanced strength and efficiency of the biological pump would therefore 

increase the potential for carbon sequestration in the ETNA. 
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Conclusions and future implications for the ETNA

Our findings add to the growing evidence that diminished N:P ratios in 

upwelling waters in the ETNA will either decrease the biomass of non-

diazotrophic primary producers, specifically due to the decline of bioavailable 

N, or lead to a community shift towards primary producers that are able to 

adapt to changing N:P conditions. As a considerable amount of DOP was 

produced under excess phosphate conditions, changes in the N:P ratio of 

waters could exert profound control over DOP production rates in the ETNA. 

Our results indicate that enhanced DOP production in upwelling regions will 

likely fuel N2 fixation, with an advantage for those diazotrophs capable of DOP 

utilization. We propose that N2 fixation in the ETNA might not only be 

restricted to the oligotrophic open ocean but can occur in nutrient-rich 

upwelling regions as previously demonstrated for the tropical Pacific (Löscher 

et al., 2014) and the Atlantic equatorial upwelling (Subramanian et al., 2013), 

as N2 fixation in DDAs seems to be favored by the presence of silicic acid and 

DOP, and not by the absence of fixed N compounds. 
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Table S1: Nominal and measured nutrient concentrations after the addition of nitrate or 
phosphate to the mesocosms in both experimental runs.

Run Treat ID NO3
– nom

[µmol L-1]
PO4

3– nom
[µmol L-1]

SiO2 nom
[µmol L-1]

N : P nom NO3
–

[µmol L-1]
PO4

3–

[µmol L-1]
SiO2

[µmol L-1]
N : P

1 12.0N/0.75P 12 0.75 15 16 11.52 0.73 15.22 15.78

1 12.0N/0.75P 12 0.75 15 16 10.97 0.68 14.97 16.11

1 12.0N/0.75P 12 0.75 15 16 10.63 0.52 15.04 20.47

1 6.35N/1.10P 6.35 1.1 15 5.76 5.66 1.00 15.06 5.66

1 12.0N/1.25P 12 1.25 15 9.6 10.74 1.14 15.01 9.39

1 12.0N/1.25P 12 1.25 15 9.6 11.16 1.12 15.33 9.95

1 12.0N/1.25P 12 1.25 15 9.6 10.89 1.09 15.13 9.97

1 12.0N/1.75P 12 1.75 15 6.86 10.55 1.57 14.97 6.74

1 12.0N/0.75P 12 0.75 15 16 10.82 0.61 15.10 17.64

1 12.0N/1.75P 12 1.75 15 6.86 10.82 1.58 14.90 6.86

1 12.0N/1.75P 12 1.75 15 6.86 11.07 1.53 15.01 7.24

1 12.0N/0.25P 12 0.25 15 48 11.16 0.15 15.12 76.78

1 12.0N/0.25P 12 0.25 15 48 11.18 0.16 15.00 69.80

1 17.65N/1.10P 17.65 1.1 15 16 16.90 1.01 15.27 16.75

1 12.0N/0.25P 12 0.25 15 48 11.33 0.15 15.15 75.77

2 12.0N/0.75P 12 0.75 15 16 12.58 0.47 14.51 27.00

2 12.0N/0.75P 12 0.75 15 16 12.36 0.51 14.18 24.32

2 12.0N/0.75P 12 0.75 15 16 12.61 0.51 14.34 24.72

2 6.35N/0.40P 6.35 0.4 15 15.99 6.91 0.18 14.63 39.35

2 17.65N/1.10P 17.65 1.1 15 16.05 18.43 0.79 14.47 23.45

2 20.0N/0.75P 20 0.75 15 26.67 20.57 0.47 15.09 43.92

2 20.0N/0.75P 20 0.75 15 26.67 20.60 0.45 14.16 45.92

2 20.0N/0.75P 20 0.75 15 26.67 21.90 0.45 15.18 48.81

2 4.00N/0.75P 4 0.75 15 5.33 4.62 0.45 15.33 10.38

2 17.65N/0.40P 17.65 0.4 15 44.46 18.47 0.22 15.36 84.31

2 4.00N/0.75P 4 0.75 15 5.33 4.49 0.47 14.92 9.59

2 4.00N/0.75P 4 0.75 15 5.33 3.99 0.49 15.68 8.17

2 2.00N/0.75P 2 0.75 15 2.67 2.06 0.46 16.39 4.52

2 6.00N/1.03P 6.00 1.03 15 5.77 6.69 0.78 15.46 8.55

2 2.00N/0.75P 2 0.75 15 2.67 1.87 0.56 17.64 3.33

2 2.00N/0.75P 2 0.75 15 2.67 2.71 0.48 15.04 5.60

Run Treat ID Replicates P pool day 2
[µmol L-1]

P pool day 8
[µmol L-1]

P poolX

[µmol L-1]
P poolX

 [%]

1 6.35N/1.10P 1 1.52 1.12 -0.40 26

1 12.0N/0.25P 3 0.53 ± 0.07 0.45 ± 0.03 -0.08 15

1 12.0N/0.75P 4 0.97 ± 0.12 0.71 ± 0.11 -0.26 27

1 12.0N/1.25P 3 1.42 ± 0.06 1.02 ± 0.10 -0.40* 28

1 12.0N/1.75P 3 1.86 ± 0.05 1.42 ± 0.20 -0.44* 24

1 17.65N/1.10P 1 1.34 0.92 -0.42 31

2 2.00N/0.75P 3 0.88 ± 0.11 0.84 ± 0.19 -0.04 5

2 4.00N/0.75P 3 0.89 ± 0.06 0.75 ± 0.12 -0.14 16

2 6.00N/1.03P 1 1.13 0.71 -0.42 37

2 6.35N/0.40P 1 0.56 0.54 -0.02 4

2 12.0N/0.75P 3 0.89 ± 0.07 0.76 ± 0.10 -0.13 15

2 17.65/0.40P 1 0.56 0.48 -0.08 14

2 17.65N/1.10P 1 1.19 1.15 -0.04 3

2 20.0N/0.75P 3 0.88 ± 0.03 0.73 ± 0.10 -0.15 17

Table S2: Mass balance. P pool = PO4
3– + DOP + POP. P poolX = undetermined P pool, 

which represents a combination of measurement errors and wall growth. Statistical 
significance (t-test) between pool sizes on day 2 and day 8 is denoted by asterisks. No t-tests 
were conducted when only one replicate was available.
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Abstract

Water masses influenced by oxygen minimum zones (OMZ) feature low 

inorganic nitrogen (N) to phosphorus (P) ratios. The surplus of P over N is 

thought to favor non-Redfield primary production by phytoplankton species 

adapted to exponential growth. Additionally, excess phosphate (P*) is thought 

to provide a niche for nitrogen fixing organisms. In order to assess the effect of 

low inorganic nutrient ratios on the stoichiometry and composition of primary 

producers, biogeochemical measurements were carried out in 2012 during a 

research cruise in the eastern tropical South Pacific (ETSP). A succession of 

different phytoplankton functional groups was observed along onshore – 

offshore transects with diatoms dominating the productive upwelling region, 

and prymnesiophytes, cryptophytes and Synechococcus prevailing in the 

oligotrophic open ocean. Although inorganic nutrient supply ratios were below 

Redfield proportions throughout the sampling area, the stoichiometry of 

particulate organic nitrogen to phosphorus (PON:POP) generally exceeded 

ratios of 16:1. Despite PON:POP ≥ 16, high P* values in the surface layer (0–

50 m) above the shelf rapidly decreased as water masses were advected beyond 

the shelf. There are three mechanisms which can explain these observations: 

(1)  non-Redfield primary production, where the excess phosphorus in the 

biomass is directly released as dissolved organic phosphorus (DOP), (2) non-

Redfield primary production, which is masked by a particulate organic matter 

pool mainly consisting of P depleted detrital biomass and/or (3)  Redfield 

primary production combined with dinitrogen (N2) fixation. Indirect evidence 

suggests that the three processes occur simultaneously in our study area; 

quantifying the relative importance of each of these mechanisms needs further 

investigation. Therefore, it remains uncertain whether the ETSP is a net sink 

for bioavailable N or whether the N-deficit in this area is replenished locally.
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Introduction

The Humboldt Current system is one of four major eastern boundary 

upwelling systems (EBUS). It is characterized by intense, year-round 

upwelling of nutrient loaded waters that facilitate intense biological 

production in the euphotic zone (Pennington et al., 2006). Closely linked to the 

productive surface layer is an oxygen minimum zone (OMZ), where nitrogen 

(N) loss processes (denitrification and anammox) diminish the amount of 

bioavailable N (Goering, 1968; Hamersley et al., 2007). Hypoxia and anoxia 

induced phosphate (P) release from the sediment (Ingall and Jahnke, 1994; 

Lomnitz et al., 2015; Noffke et al., 2007) results in a surplus of P over N in the 

water column (referred to as P*, after Deutsch et al., 2007). Thus, upwelled 

water masses feature N:P stoichiometries below the Redfield ratio, which 

describes the globally integrated ratio of macronutrients in seawater and in 

organic matter (C:N:P = 106:16:1, Redfield, 1958). The deficit of nitrate over 

phosphate is thought to create an environment beneficial for autotrophic 

nitrogen fixers (Deutsch et al., 2007), suggesting a close spatial coupling of N 

loss and N2 fixation. The presumption is, that phytoplankton in the highly 

productive shelf area consume N and P in Redfield proportions, while not 

altering P* as waters are transported offshore. It has been further proposed 

that high supplies of dissolved organic phosphorus (DOP), which are produced 

under excess P (Meyer et al., 2016; Ruttenberg and Dyhrman, 2012), might 

additionally stimulate growth of N2 fixing diazotrophs (Franz et al., 2012b; 

Somes and Oschlies, 2015), as these organisms are known to use DOP as P 

source either exclusively or in addition to P (Dyhrman et al., 2006; Sohm and 

Capone, 2006). But despite low N:P ratios accompanied by replete amounts of 

P* and DOP in upwelled waters, no evidence for a significant abundance of 

diazotrophic cyanobacteria or autotrophic N2 fixation has yet been found in the 

Peruvian or Chilean upwelling systems (Dekaezemacker et al., 2013; Franz et 

al., 2012a; 2012b). However, N:P ratios in the surface layer are apparently 

restored to Redfield proportions and P* values are reduced as water masses 

are advected offshore (Franz et al., 2012b). Non-Redfield utilization of 

inorganic nutrients has been suggested as an alternative pathway for the 

consumption of P* (Arrigo, 2005; Franz et al., 2012b; Mills and Arrigo, 2010). 

Different N:P utilization ratios in phytoplankton have been confirmed by 

laboratory and field data, which vary with growth rate, taxonomy and nutrient 

availability (e.g. Geider and La Roche, 2002; Moore et al., 2008; Quigg et al., 
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2003). Fast growing phytoplankton, for example, often utilize nutrients at low 

ratios, as they invest in P rich ribosomes required for fast growth (Arrigo, 

2005; Klausmeier et al., 2004b). The deficiency of N over P in upwelled waters 

provides favorable conditions for these organisms, which could reduce the 

presence of excess phosphate via non-Redfield utilization. This mechanism of 

P* reduction was also used to explain the apparent absence of diazotrophic N2 

fixation in the Humboldt upwelling system (Franz et al. 2012b; Mills and 

Arrigo 2010). This hypothesis was challenged by the recent discovery of 

heterotrophic nitrogen fixers in OMZ influenced water masses off Peru and 

Chile (Bonnet et al., 2013; Fernandez et al., 2015; Loescher et al., 2014), which 

may play a role in reducing the N deficit particularly of water masses below 

the oxycline (Loescher et al., 2014).

In this study we analyzed nutrient dynamics and stoichiometries of dissolved 

and particulate organic matter during an expedition in the eastern tropical 

South Pacific (ETNA) in order to elucidate the mechanisms responsible for P* 

consumption and N:P restoration to Redfield proportions in the surface ocean 

layer off Peru. By means of high performance liquid chromatography (HPLC), 

a method to determine phytoplankton pigments, we evaluated how non-

Redfield nutrient stoichiometries affect the spatial distribution and 

community composition of diazotrophic and non-diazotrophic phytoplankton. 
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Materials and Methods

Samples were collected during research expedition M93 on RV Meteor from 

February 07th until March 09th 2013 in the frame of the Collaborative 

Research Centre (SFB) 754: Climate–Biogeochemistry Interactions in the 

Tropical Ocean. In total, 47 stations were sampled between 12°S and 14°S 

(Fig. 1 A). In this study, we will focus on the three northern transects of our 

working area. At each station, samples were collected from 3 to 12 discrete 

depths with either a CTD mounted on a rosette with 24 bottles (10 L) or a 

pump-CTD system (Strady et al., 2008). 

Nutrient concentrations (NO3
–, PO4

3– and Si(OH)4) were determined with a 

QuAAtro autoanalyzer (Seal Analytical) directly onboard following Grasshoff 

et al. (1999). Seawater samples for particulate organic carbon (POC), nitrogen 

(PON), phosphorus (POP), chlorophyll a (Chl a) and HPLC analysis were 

filtered through pre-combusted (5 h at 450°C) 25 mm Whatman GF/F filters 

(0.7  µm pore size, pressure <200 mbar). For biogenic silica (BSi) analysis, 

water samples were filtered through 25 mm cellulose acetate filters (0.65 µm 

pore size, <200 mbar pressure). Filters for POC, PON, POP, BSi and HPLC 

analysis were immediately stored frozen (-20°C for POC, PON, POP, BSi; 

-80°C for HPLC) until later analysis. 

POC and PON analyses were performed using an elemental analyzer (Euro 

EA, EuroVector). Prior to analysis, POC filters were placed in an exsiccator 

containing fuming HCl for 12 h in order to remove particulate inorganic carbon 

and then dried for 12 h at 60°C. POP was determined photometrically (Hansen 

and Koroleff, 1999) after the treatment with Oxisolv® (Merck) in order to 

oxidize all particulate organic phosphorus to orthophosphate. For DOP 

analysis, 60 mL of sample was filtered through pre-combusted (450°C, 5 hours) 

25 mm Whatman GF/F filters (0.7 µm pore size) and stored frozen (-20°C) in 

acid cleaned HDPE bottles. Prior to analysis, the filtrate was autoclaved with 

Oxisolv (Merck) for 30  min. Oxidized organic phosphorus was measured 

spectrophotometically as phosphate on a QuAAtro autoanalyzer (Seal 

Analytical; Hansen and Koroleff, 1999). DOP concentrations were then 

determined as the difference between total dissolved phosphorus and dissolved 

inorganic phosphate. BSi was converted to dissolved silicate while heating the 

filters in 0.1 mol L-1 NaOH at 85°C for 2 h 15 mins. The dissolved silicate was 

then determined spectrophotometrically (Hansen and Koroleff, 1999). 
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Chl a concentrations were determined directly onboard. After overnight 

extraction with 90% acetone, fluorescence was measured with a Turner Trilogy 

fluorometer, which was previously calibrated with a standardized solution 

(Anacystis nidulans, Walter CMP). Chl a was calculated following Parsons et 

al. (1984). 

While Chl a is a proxy of phytoplankton biomass, certain accessory pigments 

(e.g. chlorophylls, carotenoids) are algae-class specific (Trees et al., 2000). 

Thus, the relationship between accessory pigments to Chl a can be used as a 

measure for phytoplankton community composition (e.g. Gieskes et al., 1988; 

Greisberger and Teubner, 2007; Mackey et al., 1998; Wright, 1991). In order to 

extract phytoplankton pigments for HPLC analysis 90% acetone was added to 

the filters, which were then homogenized with glass beads and centrifuged for 

10 min at 5000  rpm. The supernatants were filtered through 0.2  µm Teflon 

filters to remove filter debris and the extracts were immediately stored at 

-80°C. Extracts were later analyzed for pigments via HPLC (Dionex UltiMate® 

3000 LC system equipped with an autosampler, a photodiode array and a 

fluorescence detector, Thermo Scientific), following Barlow et al. (1997). 

Pigments were identified through comparison with the retention times and 

spectral properties of standards (DHI Water & Environment, Denmark). The 

relative contribution of phytoplankton groups to total Chl a was calculated 

using the CHEMTAX matrix factorization software (Mackey et al., 1996). We 

used an initial ratio matrix that was based on ratios developed by DiTullio et 

al. (2005) and Mackey et al. (1996) for the equatorial Pacific and Peruvian 

upwelling region. Slight modifications were made in order to account for the 

presence of the pigment aphanizophyll (Apha), which can only be found in 

cyanobacteria (Hertzberg et al., 1971; Jeffrey et al., 2011) and is regarded a 

potential marker pigment for diazotrophs in fresh water systems (Louda et al., 

2015). Since the ratio of Apha to Chl a in marine cyanobacteria is not given in 

the literature, an approximation based on cultural experiments was used 

(Schluter et al., 2004). Divinyl-chlorophyll a (Div a) concentrations were 

directly used as in index for Prochlorococcus abundances. Hence, zeaxanthin 

(Zeax) attributed to Prochlorococcus had to be accounted for, since it needed to 

be excluded from the CHEMTAX calculations. For that, we first calculated the 

contribution of each algae class to Zeax and subtracted the Prochlorococcus 

Zeax from the initial Zeax concentrations. We further divided our data set into 

different bins for CHEMTAX calculations in order to account for different 
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algae class compositions between surface/chlorophyll maximum, deep 

chlorophyll maximum and mesopelagic zone (see Table 1 for output matrices).
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Results

Hydrographical setting

In February/March 2012, sampling began close to the shore and progressed 

perpendicular to the coast, thereby crossing the continental shelf (width 

~60  km), the shelf break at approximately 77.5°W and the Peru/Chile 

undercurrent over the continental slope (Fig. 1 B). Coastal upwelling of water 

from 50 to 100 m water depth occurred between 12°  and 14°S, with near 

surface temperatures of around 17°C on the shelf and around 23°C further 

offshore (Fig. 2). Mean oxygen (O2) concentrations at the surface were around 

240 µmol kg-1 and decreased rapidly with depth. O2 values <1 µmol kg-1 were 

already observed at around 30 m depth above the shelf, while the oxycline 

deepened further offshore and anoxic waters were encountered at depth 

around 80 m (Thomsen et al., 2015). 
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Figure 1: Map of the study area. (A) Sampled stations during research cruise M93 are 
depicted by black dots. Our analysis focused on the upper three transects of the study area 
(red box) (B) Horizontal zonation of the study area and vertical sampling distribution, 
which is consistent throughout all figures. 



Distribution of dissolved inorganic and organic nutrients

Upwelled water masses featured high concentrations of nitrate, phosphate and 

silicate of around 20 µmol L-1, 2.5 µmol L-1 and 15 µmol L-1, respectively (Fig. 

3  A, B, C). Nitrate concentrations were low near the shelf sediment (0–

3 µmol L-1), at stations closest to the shore (0–1 µmol L-1) and in surface waters 

(0–1 µmol L-1). Highest phosphate and silicate concentrations were observed 

right above the shelf (3.4 µmol L-1 and 30 µmol L-1, respectively) and decreased 

towards the surface and as waters were transported away from shore. Here, 

minimum concentrations of 0.3–0.6 µmol L-1 for phosphate and 0–1 µmol L-1 

for silicate were measured. Throughout the study area, N:P ratios never 

reached Redfield proportions (Fig. 3  D). Maximum values of 12:1 were 

observed right below the surface layer between 20 to 50 m, while lower values 

between 2–5:1 were measured in the upper 20 m of the water column. 

Extremely low values between 0–2 coincided either with the complete absence 

of nitrate (i.e. above the sediment) or both nitrate and phosphate (i.e. in the 

surface layer at offshore stations). A surplus of phosphate over nitrate was 

measured in the whole water column, corresponding to the observations of low 

N:P values in the study area (Fig. 3 E). Maximum P* concentrations were 

measured at near shore stations above the shelf sediment (3 µmol L-1), while 

lowest concentrations of 0.5 µmol  L-1 were found in the upper 40 m of the 

water column. DOP concentrations in the study area were elevated in the 

surface layer (Fig. 3 F). Particularly above the shelf, maximum concentrations 

of up to 0.6 µmol L-1 were measured down to 50 m water depth. Accompanied 
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Figure 2: Measured sea surface temperature (SST) in °C in the eastern tropical South 
Pacific.



by a shoaling of the nutricline, DOP values decreased to 0–0.2 µmol L-1 as 

water masses were transported offshore.
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Figure 3: Cross-shelf transects with interpolated concentrations of (A) nitrate, (B) phosphate, 
(C) silicate, (D) nitrate to phosphate ratio (N:P), (E) excess phosphate (P*) and (F) dissolved 
organic phosphorus (DOP). 

Figure 4: Spatial distribution of (A) particulate organic nitrogen (PON), (B) particulate 
organic phosphorus (POP), (C) PON:POP and (D) chlorophyll a (Chl a) in our study area.



Particulate organic matter dynamics

Elevated concentrations of PON (4–8 µmol L-1) were measured in the upper 

20–30 m (Fig. 4 A), with maximum values (~8 µmol L-1) observed close to the 

surface at near shore and shelf stations. Similar to PON, high POP 

concentrations (0.3–0.6 µmol L-1) were observed in the upper water column 

(Fig. 4 B). Despite very low inorganic N:P ratios in the whole study area, 

PON:POP ratios above Redfield proportions (~24:1) prevailed (Fig. 4 C). Only 

at few stations values of 16:1 or slightly lower were encountered. In general, 

PON:POP ratios of 16–20:1 were observed at near shore and shelf stations 

throughout the water column and between 0–20 m depth as water masses 

were transported offshore. At stations over the continental slope (50–100 km 

distance to shore) we observed high PON:POP values of ~40:1 at depths 

between 40–200 m. 

Phytoplankton biomass and composition

Chlorophyll a concentrations reached highest values (~6 µg L-1) in the upper 

20 m of the near shore and shelf stations (<50m distance to shore; Fig. 4 D), 

associated with a community dominated by diatoms (Fig. 5 A). These findings 

are in agreement with the distribution of biogenic silica (Fig. S1), a mineral 

synthesized by diatoms and therefore a good indicator for the abundance of 

this algae class. In addition to diatoms, cryptophytes were present at the near 

shore stations and high concentrations of prymnesiophytes and prasinophytes 

were found above the shelf (Fig. 5  B–D). Elevated Chl a concentrations 

(~3  µmol L-1) were also observed in the upper 20–30 m over the continental 

slope. In terms of Chl a biomass, diatoms were again the dominant 

phytoplankton group, but also prymnesiophytes, prasinophytes, chrysophytes 

(Fig. 5 E) and the cyanobacteria Synechococcus (Fig. 6 A) reached their highest 

abundances in these areas. At stations further offshore, nutrients were 

depleted in the surface and prymnesiophytes and Synechococcus dominated 

the algae community. At the same stations, a deep-chlorophyll maximum was 

observed between 30–50 m depth and diatoms and cryptophytes were highly 

abundant.  Associated to this offshore deep chlorophyll maximum was also the 

highest abundance of the cyanobacterium Prochlorococcus in the study area 

(Fig. 6 B). This algae group was generally observed at subsurface low-oxygen 

waters between 30–80 m depth. Abundances of other phytoplankton classes 

such as dinoflagellates and chlorophytes were negligible in our study area and 

are therefore not shown. 
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Figure 6: Cross-shelf transects showing the distribution of the cyanobacteria 
(A) Synechococcus and (B) Prochlorococcus.

Figure 5: Cross-shelf distribution of phytoplankton classes in the study area. (A) diatoms, 
(B) cryptophytes, (C) prymnesiophytes, (D) prasinophytes, (E) chrysophytes.



Abundance of diazotrophic cyanobacteria

Aside from pigments indicative for the abundance of Prochlorococcus and 

Synechococcus, evidence for the occurrence of other – possibly diazotrophic – 

cyanobacteria was found in the study area. Colonial cyanobacteria, 

distinguished by their marker pigment myxoxanthophyll, were present in the 

surface layer of the near shore and shelf stations (Fig. 7 A). Lower abundances 

were observed close to the surface at outer shelf stations and in the deep 

chlorophyll maximum at the offshore stations. Diazotrophic cyanobacteria, 

represented by the accessory pigments aphanizophyll, were most abundant in 

the upper 40 m at the near shore stations but also showed higher abundances 

in surface waters of the shelf and above the continental slope (Fig. 7 B). 
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Figure 7: Spatial distribution of (A) colonial and (B) diazotrophic cyanobacteria in our 
study area.



Discussion

Phytoplankton succession and particulate organic matter 

stoichiometry

Upwelling and the associated supply of nutrients to the surface ocean fuelled 

high primary production in the ETSP for the duration of our cruise in austral 

summer 2012. The near shore and shelf Chl a maximum was dominated by 

diatoms, which is characteristic for the Peruvian upwelling system (Chavez et 

al., 1996; Franz et al., 2012b; Pennington et al., 2006). Due to their high 

growth rate (Sarthou et al., 2005) and nutrient storage capacity (Raven, 1997) 

diatoms outcompete other algae groups when nutrients are abundant. Over 

the continental slope, mixtures of different phytoplankton groups were 

present, consisting of diatoms, prymnesiophytes, prasinophytes and 

chrysophytes. As waters were transported offshore, silicate was depleted in the 

surface ocean and the phytoplankton assemblage changed from a diatom 

dominated community to an assemblage of non-siliceous phytoplankton 

groups, where prymnesiophytes and the cyanobacterium Synechococcus 

prevailed. In subsurface waters, elevated PON:POP ratios (~30:1) coincided 

with a high abundance of Prochlorococcus, which are known to exhibit higher 

than Redfield N:P ratios due to their slow growth rates (Bertilsson et al., 2003; 

Biller et al., 2015). Presence of this picophytoplankton group extended below 

the oxycline and prevailed throughout the study area. Low light adapted 

Prochlorococcus strains have been identified in different OMZs (Beman and 

Carolan, 2013; Goericke et al., 2000) including the ETSP (Lavin et al., 2010; 

Ras et al., 2008). Due to their small size and unique pigment composition they 

are highly adapted to low light levels (Moore et al., 1998) and thus can make 

use of the higher nutrient load available at depth. 

A distinct succession of phytoplankton species from onshore to offshore has 

previously been recognized in the Peruvian upwelling system (Franz et al., 

2012b). This study reported that very low inorganic N:P ratios in the water 

column directly translated into low cellular N:P ratios in the microorganisms. 

The authors argued that there is a linear relationship between available and 

cellular N:P ratios and that low nutrient stoichiometries in the water column 

selected for certain algae groups with lower cellular N:P quotas, supporting 

the hypothesis of Arrigo (2005), Klausmeier et al. (2004b) and Sterner and 

Elser (2002). Non-Redfield nutrient utilization by these organisms consumed 
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the excess P in the water column and thereby restored the stoichiometry of 

inorganic nutrients back to Redfield proportions as waters were transported 

offshore.

During our study, a pronounced surplus of P over N was measured in waters 

that were transported to the surface by upwelling, a consequence of N loss 

processes within the Peruvian OMZ (Dalsgaard et al., 2012; Kalvelage et al., 

2013) and high concentrations of P, which were released from the sediment 

under reducing conditions (cf Fig. 3 B; Noffke et al., 2007). However, despite 

very low inorganic N:P ratios of 2.5–10 at the inner shelf stations and the 

surface layer further offshore, PON:POP ratios in these areas were close to or 

even above Redfield proportions, with no indication of non-Redfield nutrient 

uptake. At the same time, high P* values declined relatively fast as waters 

were transported to the surface and away from the coast and N:P draw down 

ratios were low, which conflicts with the apparent absence of non-Redfield 

production. 

The observed deviation of PON:POP ratios from inorganic nutrient 

stoichiometries, accompanied by decreasing P* values, can be explained by 

different mechanisms: (1) non-Redfield nutrient assimilation reduced P*, while 

the surplus of phosphorus in the biomass was released as DOP, (2) the 

particulate organic matter pool had a large detrital component which was 

enriched in N relative to P, resulting in higher PON:POP ratios and/or (3) 

nutrient assimilation was according to Redfield and excess phosphate in the 

water column was reduced by N2 fixation.

Non-Redfield nutrient assimilation

Theoretical and experimental approaches showed that the availability and 

stoichiometry of nutrients in seawater can induce differences in cellular 

composition of phytoplankton (Franz et al., 2012a; Geider and La Roche, 2002; 

Mills and Arrigo, 2010; Moore et al., 2008; 2013). During our study, low 

inorganic nutrient supply ratios, decreasing P* values and low concentrations 

of both nitrate and phosphate in the surface ocean suggest that nutrients were 

assimilated in non-Redfield proportions. We suggest that the surplus of 

phosphorus in the biomass was transferred from the particulate into the 

dissolved organic phosphorus pool, confirmed by the presence of elevated DOP 

concentrations in the surface close to shore. ‘Luxury’ P uptake and subsequent 

DOP release under P replete conditions has been previously observed in 

mesocosm experiments (Meyer et al., 2016; Ruttenberg and Dyhrman, 2012). 
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Mackey et al. (2012) argued that this channeling of P into DOP might be an 

important part of the P cycle in upwelling regions. Instead of P being 

transported out of the euphotic zone by export production, it is retained and 

remains available for phytoplankton.

Non-Redfield production might have further been masked by remineralization 

of phosphorus from particulate organic matter (POM). Large parts of POM in 

our study area do not appear to be freshly produced, as the surface POC:Chl a 

ratio is considerably higher (>100:1; Fig. S2) than previously reported for the 

ETSP upwelling regime (~50:1; Chavez et al., 1996) or as described for diatom-

dominated communities (15:1–75:1; e.g. Sathyendranath et al., 2009; 

Lorenzoni et al., 2015). This implies that the POM we encountered had a large 

detrital component. As organic phosphorus is known to be remineralized more 

rapidly than carbon and nitrogen (Burkhardt et al., 2014; Kolowith et al., 

2001; Loh and Bauer, 2000), elevated PON:POP ratios could be the result of 

selective degradation of POP.

Co-occurrence of P* consumption and diazotroph abundance

It has previously been shown that certain phytoplankton communities and/or 

species do not adjust their internal stoichiometries to match low nutrient 

ratios in the surrounding medium (Hall et al., 2005; Meyer et al., 2016). Other 

studies suggest that phytoplankton nutrient assimilation follows their optimal 

uptake ratio under nutrient replete conditions (Klausmeier et al., 2004a) and 

is more dependent on the growth rate of individual species and algae 

communities (Goldman et al., 1979; Hillebrand et al., 2013) than on the initial 

nutrient supply ratio. Thus, PON:POP ratios close to or higher than Redfield 

proportions during our research cruise might also be explained by 

phytoplankton utilizing nutrients in Redfield proportions. As an excess of 

phosphate over nitrate and/or high concentrations of DOP are thought to 

create a niche for diazotrophic organisms (Björkman and Karl, 2003; Deutsch 

et al., 2007; Mahaffey et al., 2014; Sohm and Capone, 2006), P* might have 

been consumed by N2 fixers. Indeed, we observed highest abundances of 

diazotrophs in areas where we measured elevated DOP and P* concentrations. 

Especially colonial cyanobacteria, represented by the marker pigment 

aphanizophyll, were widely present in surface waters of near shore and shelf 

stations and also occurred at stations further offshore. Aphanizophyll is a 

pigment that can be found in heterocyst forming diazotrophs like 

Aphanizomenon spp. and Anabaena spp., which live in brackish or estuarine 
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waters (Hertzberg and Liaaen-Jensen, 1971) and is indicative for nitrogen 

fixing cyanobacteria in fresh water systems (Donald et al., 2013; Louda et al., 

2015 and references therein). In the oceanic environment, reports of the 

detection of aphanizophyll are extremely scarce. It has, however, been detected 

after the decline of a diatom bloom in mesoscosm experiments off Peru (Hauss 

et al., 2012) and was also attributed to the existence of N2 fixing cyanobacteria. 

At the near shore and shelf stations, we also detected high abundances of 

colonial cyanobacteria, indicated by the marker pigment myxoxanthophyll. 

This carotenoid can be found in marine N2 fixing cyanobacteria (Carpenter et 

al., 1993; Franz et al., 2012b; Schluter et al., 2004), but is regarded a general 

marker for colonial cyanobacteria in fresh water environments, where it can 

also be found in non-diazotrophic cyanobacteria (Louda et al., 2015).  

Although N2 fixation was already suggested to take place in the vicinity of 

upwelling regions (Karl and Letelier, 2008) and in close spatial coupling to 

denitrification (Deutsch et al., 2007), the existence of diazotrophic 

cyanobacteria in nutrient replete surface waters of upwelling regions is 

counterintuitive when considering the classical paradigm that high 

concentrations of reactive nitrogen compounds inhibit diazotrophy (Tyrrell, 

1999; Ward et al., 2013). However, there is growing evidence that N2 fixation 

occurs under N-rich conditions (Dekaezemacker and Bonnet, 2011; Knapp, 

2012; Knapp et al., 2012; Meyer et al., 2016) and even within upwelling 

regions of the Benguela and equatorial Atlantic (Sohm et al., 2011; 

Subramaniam et al., 2013). In the Peruvian upwelling region, the high supply 

of iron and phosphate from the sediment might stimulate growth of 

diazotrophs, thereby allowing them to compete with other phytoplankton 

groups. Further offshore, diminished iron supply limits algae growth 

(Hutchins et al., 2002), consequently also restricting the growth of diazotrophs. 
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Conclusion

During a research expedition to the Humboldt Current system in austral 

summer 2012, we investigated the phytoplankton community composition and 

response to low N:P ratios in water masses influenced by the Peruvian OMZ. 

Our study confirmed that a variety of phytoplankton species coexist in this 

dynamic ecosystem. A considerable portion of excess phosphorus in the surface 

was reduced as water masses were transported away from the shore. The data 

presented here suggest that there are several mechanisms responsible for P* 

removal in the ETSP. While non-Redfield nutrient utilization as one of the 

mechanisms could not be ruled out, evidence for the presence of diazotrophic 

organisms in the area was also detected. The recent discovery of novel 

Trichodesmium phylotypes (Turk-Kubo et al., 2014) and other unknown 

diazotrophs (Sohm et al., 2011) in upwelling regions of the ETSP and Benguela 

and our observations of previously undetected cyanobacterial marker pigments 

in the Peruvian upwelling region add to the growing body of evidence that 

there are still unknown communities of autotrophic and heterotrophic 

diazotrophs (Bonnet et al., 2013; Loescher et al., 2014) that exist in 

environments previously not considered relevant for nitrogen fixation. 

Uncertainties concerning the identity and activity of diazotrophs in the 

Peruvian upwelling regions need to be addressed in future studies in order to 

elucidate sensitivities and constraints of N2 fixation in the ocean.  
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Figure S1: Cross-shelf transect showing the interpolated concentration of biogenic silica 
(BSi).

Figure S2: Particulate organic carbon (POC in µg/L) to chlorophyll a (Chl a in µg/L) ratios 
in the upper 200 m of the eastern tropical South Pacific.
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Abstract

In the coastal upwelling system of the eastern tropical North Atlantic (ETNA), 

dissolved organic phosphorus (DOP) production and its release by 

phytoplankton is increasingly recognized as an important supply mechanism 

for phosphorus (P) to the oligotrophic open ocean. Photoautotrophs and 

dinitrogen (N2) fixing organisms (diazotrophs) are thought to be able to 

consume DOP, thus alleviating P stress in areas with extremely low dissolved 

inorganic phosphate (DIP) concentrations. In the present study, nutrient 

addition bioassay experiments were conducted to investigate the 

bioavailability of different organic and inorganic phosphorus components to 

the phytoplankton community in the ETNA. We specifically examined how 

DIP and DOP amendments affected N2 fixation in that area. Our observations 

showed that phytoplankton growth was primarily limited by nitrogen. 

Moreover, DIP addition resulted in a significant increase in N2 fixation rates 

in almost all experiments relative to control treatments, suggesting that 

diazotrophs were limited by P availability in our study. At very oligotrophic 

sampling stations, all P compounds stimulated N2 fixation rates compared to 

the control. This demonstrated the capability of the diazotrophic community to 

utilize various DOP compounds, especially under P limiting conditions. Our 

findings provide a mechanism explaining how high N2 fixation rates can be 

sustained under extremely low phosphate concentrations in the oligotrophic 

North Atlantic.
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Introduction

Phosphorus (P) is an essential element for life and one of the major nutrients 

supporting ocean primary productivity. In the cell, P is an important 

structural component (RNA, DNA, cell wall) and a central molecule in the 

energy transport system (adenosine triphosphate). The most bioavailable form 

of P in the ocean is dissolved inorganic phosphate (DIP), whereas dissolved 

organic phosphorus (DOP) is not as readily available for primary producers 

(Björkman and Karl, 2003).

Unlike nitrogen (N), iron (Fe) and silica (Si), which are considered the most 

important nutrients limiting phytoplankton growth in the world’s oceans, P is 

often thought to only limit primary production on geological time scales (e.g. 

Redfield, 1958; Tyrrell, 1999). In certain regions, however, surface phosphate 

concentrations are very low. Especially in the subtropical and tropical North 

Atlantic, a deficiency of inorganic P over inorganic N (with reference to the 

canonical Redfield ratio of N:P = 16:1; Redfield, 1958) is often present 

(Ammerman et al., 2003; Capone et al., 2005; Moore et al., 2008) and surface 

DIP concentrations can limit or co-limit primary production (Mills et al., 2004; 

Moore et al., 2013; Wu et al., 2000). Low DIP concentrations in the North 

Atlantic have mainly been attributed to the high abundance of dinitrogen (N2) 

fixing organisms (diazotrophs) (Capone et al., 2005; Mahaffey, 2003; Mather et 

al., 2008) which can grow independently of bioavailable nitrogen forms (i.e. 

ammonium, nitrate and nitrite). The high supply of iron via aeolian dust 

deposition in this region (Jickells et al., 2005) creates favorable conditions for 

diazotrophs, which draw down phosphate in the water column, thereby 

increasing N:P ratios. 

In oligotrophic realms, where DIP concentrations are chronically low, DOP can 

be the main P pool, comprising more than 75% of total dissolved P (Karl and 

Björkman, 2002; Mather et al., 2008; Sohm and Capone, 2010). In the 

subtropical North Atlantic, a major fraction of DOP is produced on the shelf 

(Reynolds et al., 2014), where upwelling of nutrient replete water masses 

supports primary production and an excess of phosphate over nitrate in the 

water column promotes the release of DOP from the particulate organic P pool 

(Davis et al., 2014; Mackey et al., 2012; Meyer et al., 2016). Lateral transport 

from the shelf region subsequently supplies DOP to the oligotrophic subtropics 

(Reynolds et al., 2014). Although DOP is not yet fully characterized, it was 

found to consist of two major component classes: phosphonates and P esters 
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(e.g. Clark et al., 1998; Karl and Yanagi, 1997). P esters are the dominant DOP 

form in the surface ocean and seem to be more readily available for 

microorganisms, whereas phosphonates are thought to cycle more slowly 

(Kolowith et al., 2001; Young and Ingall, 2010). As DOP compounds cannot 

cross the cell membrane, microbes need to hydrolyze them outside the cell. 

Extracellular enzymes bound to the cell-surface, such as alkaline phosphatase 

and C-P lyase, catalyze this reaction, which leads to the release of DIP from 

organic substrates (Cembella et al. 1984).

While phytoplankton have a strong metabolic preference for inorganic P, DOP 

has been increasingly recognized as a substrate supporting primary production 

in oligotrophic regions (Lomas et al., 2010; McLaughlin et al., 2013). In the 

tropical and subtropical North Atlantic, where diazotrophs were shown to be 

limited or co-limited by the availability of DIP (Mills et al., 2004; Moore et al., 

2009; Sohm et al., 2008), N2 fixers are hypothesized to access DOP compounds 

in order to satisfy their P requirements (Dyhrman et al., 2006; Sohm and 

Capone, 2006). Linking to this, results from a recent mesocosm study hint 

towards a possible connection between phosphate limitation, DOP utilization 

and N2 fixation in the eastern tropical North Atlantic (Meyer et al. 2016). 

In order to test whether DOP is available to phytoplankton and diazotrophs, 

nutrient addition bioassays were conducted during a research cruise in the 

eastern tropical North Atlantic. At six stations, surface seawater was 

incubated with either DIP or one of two different DOP sources, both of which 

are largely abundant in the natural P pool (Kolowith et al., 2001). We followed 

the evolution of chlorophyll a (Chl  a) as an indicator for phytoplankton 

biomass and carried out N2 fixation rate measurements to assess whether: (1) 

diazotrophs in the sampling area are limited by P availability, (2) DOP 

enhances N2 fixation and (3) bioavailability differs between DIP and DOP 

compounds.
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Materials and Methods

Experimental set up

In March/April 2014 six bioassay experiments (B1-B6) were carried out during 

RV  Meteor cruise M105 in the eastern tropical North Atlantic (Fig. 1).  For 

each experiment, seawater from 5 m depth was collected from CTD casts and 

directly filled into 24 4.4  L polycarbonate bottles (Nalgene,  Thermo Fisher 

Scientific, USA), which were acid cleaned (10% HCl) and rinsed three times 

with sample water before filling. The bottles were placed into on-deck 

incubators, which were connected to a flow-through seawater system and 

maintained in situ surface temperatures (~21–26°C) throughout the 

experiment. Incubators were shaded with blue lagoon light foil to simulate 

light levels at 5 m water depth. 

Each bioassay ran for three days. Samples for nutrient and chlorophyll 

analyses were taken before the nutrient addition and after 24, 48 and 72 

hours. Duplicate incubation bottles were spiked with either potassium 

dihydrogen phosphate as dissolved inorganic phosphate (DIP) source, 

glucose-6-phosphate (G-6-P) as dissolved organic phosphorus (DOP) source or 

adenosine monophosphate (AMP), which is usually classified as DOP but also 

comprises nitrogen compounds. This treatment will therefore be referred to as 

dissolved organic nitrogen (DON)+DOP treatment. Final nutrient 

concentrations were 2  µmol  L-1 DIP, 1  µmol L-1 DOP and 1  µmol L-1 DON

+DOP. Control incubations (no nutrients additions) were conducted in parallel. 

Nutrient and chlorophyll analyses

Samples (10 mL) for nitrate + nitrite (hereafter referred to as nitrate or NO3
–) 

and phosphate (PO4
3–) analyses were immediately stored frozen (-20°C) after 

sampling and analyzed onshore within 2 months after collection. The analyses 

were conducted using a QuAAtro auto-analyzer (SEAL Analytical) and 

followed the method of Hansen and Koroleff (2007). Triplicate nutrient 

samples were taken to determine the precision of the measurement. Obtained 

precisions were 0.08  µmol  L-1 (nitrate), 0.02  µmol  L-1 (nitrite) and 

0.05  µmol L-1  (phosphate). P* was calculated after Deutsch et al. (2007) as: 

P* =  PO4
3––NO3

–/16.

Samples (0.5–1 L) for Chl a were gently filtered (200 mbar) onto Whatman GF/

F filters (pore size: 0.7  µm) and stored in the dark at -20°C until 
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measurements. For the analysis, 10 mL of 90% acetone was added to the 

filters. Thereafter, filters were homogenized with glass beads for 5 minutes 

and centrifuged at 5500  rpm and 0°C for 10 minutes. The supernatant was 

removed and the fluorescence was measured using a Turner Designs 10-AU 

fluorometer.

 
N2 fixation rates

After 48 hours of incubation, all incubation bottles were amended with 15N-N2-

enriched seawater, following the protocol by Mohr et al. (2010). In detail, 15N-

N2-enriched seawater was prepared from water samples collected from the 

same site as water samples for incubations. The water was filtered through an 

Isopore polycarbonate filter (pore size: 0.22  µm) and pumped through a 

degassing membrane (Membrana, Minimodule) connected to a water-jet pump 

to remove ambient N2. The degassed water was collected in a gas-tight, acid-

cleaned Tedlar® bag and amended with 1 mL of 15N-N2 gas (98  atom% 15N, 

ISOTEC Lot no.: TV  533, Sigma Aldrich Lot no.: SZ 1423V) for every 100 mL 

of water sample. After complete dissolution, 100 mL aliquots of this 15N-N2 

enriched water were added to every incubation bottle without leaving any 

headspace. The incubations were terminated after 24 hours by filtration onto 

pre-combusted (450°C, 5  hours) Whatman GF/F filters (pore size: 0.7  µm) 

under low pressure (<200 mbar). Filters were stored frozen (-20°C) until 

measurements. For isotope analyses, filters were fumed with HCl (37%) for 24 

hours, dried and wrapped into tin cups. Samples were analyzed for particulate 

organic nitrogen (PON) and isotopic composition according to (Sharp, 1974) 

using an elemental analyzer (EuroEA) coupled to an isotope ratio mass 

spectrometer (Thermo Finnigan DeltaPlus XP). N2 fixation rates were 

calculated according to Montoya et al. (1996).

Statistical analysis

For each bioassay, a one-way ANOVA was used to compare mean responses 

between nutrient treatments. Significant differences between means were 

identified using the Tukey-Kramer test (α = 0.05). Due to the small sample 

size (n = 2), the performed statistical tests may not have been powerful enough 

to detect significant differences between treatments even if the means are very 

different from each other (see for example Fig. 4, B1, control vs. DOP). A 

higher number of replicates would have increased the statistical power. 
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Unfortunately expanding the experiment was not possible due to the limited 

capacity of the incubators. 

The relationship between intitial P* and N2 fixation response was determined 

using linear regression analyses (SigmaPlot, Systat).
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Results

Initial conditions

Sea surface temperature in the sampling area showed a latitudinal gradient 

(Fig. 1) with lowest temperatures recorded at the northern stations B1 and B2 

(~21–23°C) and highest temperatures measured at the southern stations B5 

and B6 (~25–26°C). Initial surface nutrient concentrations differed markedly 

among the six bioassay stations (Fig.  2). Concentrations were highest at 

station B2, with nitrate and phosphate levels of 4.0 µmol L-1 and 0.5 µmol L-1, 

respectively. Very oligotrophic conditions were encountered at the 

southernmost stations B5 and B6. Here, surface nitrate concentrations were 

between 0.03-0.04 µmol L-1 and phosphate concentrations were between 

0.01-0.03 µmol L-1. At stations B1, B3 and B4 surface nitrate concentrations of 

0.5 µmol L-1, 0.6 µmol L-1 and 1.0 µmol L-1, respectively, were detected.  

Phosphate levels at these stations were 0.1 µmol L-1 (B1) and ~0.2 µmol L-1 

(B3, B4). P* values also differed between stations, with highest concentrations 

of 0.27  µmol L-1 at station B2, intermediate values between 0.08 and 

0.12 µmol L-1 at stations B1, B3 and B4 and low values of ~0.03 µmol L-1 at 

station B5. At station B6, no excess phosphate was detectable in the upper 

20 m of the water column.DOP concentrations were below the detection limit 

in most of the stations, except for B1 and B6, where low concentrations of 0.2 
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Figure 1: Map of the sampling area in the North Atlantic and location of the six bioassay 
stations on a map showing sea surface temperature (°C) during the time of our study. 



and 0.1 µmol L-1 DOP were measured (Table 1). In contrast, dissolved organic 

nitrogen (DON) concentrations were high at all stations, and values were 

between 3.7 and 6.7 µmol L-1.

Response of the bulk phytoplankton community

Similar Chl a response patterns were observed in all bioassays after the 

nutrient addition (Fig. 3). In all incubations, DON+DOP stimulated Chl a 

accumulation compared to the control treatments. A significant difference 

between the control and DON+DOP treatments was already observed after 24 

hours in B1, B5 and B6 (p < 0.05) and after 48 hours in all other bioassays 
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Figure 2: Vertical distribution (0–100 m) of nitrite+nitrate (NO2
–+NO3

–
), phosphate (PO4

3–) 
and excess phosphate (P* = PO4

3––NO3
–/16) at the sampling stations. Concentrations are 

shown in µmol L-1.

Station DON DOP 

B1 5.6 0.2

B2 3.8 0

B3 3.7 0

B4 3.9 0

B5 6.7 0

B6 6.5 0.1

Table 1: Surface concentrations of DON and DOP (in µmol L-1) at the stations sampled.



amended with DON+DOP. After 72 hours, the Chl a increase was 2–6 fold 

higher in DON+DOP incubations than in the control treatments. No 

significant increase was observed between control bottles and those amended 

with DOP in any of the experiments. This indicates that in DON+DOP 

treatments DON alone was responsible for the strong Chl a response observed 

in the experiments.
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Figure 3: Evolution of chlorophyll a (µg L-1) in the six bioassay experiments after nutrient 
addition and in control treatments. Treatment means and standard deviations are 
displayed. 



The addition of DIP caused a slight but significant increase in Chl a 

concentrations in three of the six experiments (B1, B3, B5). This difference 

between control and DIP treatments was, however, only observed after 24 or 

48 hours, respectively.

Nitrogen fixation rates

In all experiments, N2 fixation was measurable after 72 hours of incubation 

(Fig. 4). In control treatments, lowest N2 fixation rates were measured in 

experiment B2 (~0.2 nmol L-1 h-1), while highest rates of 0.7 nmol L-1 h-1 were 

observed in B5. In 4 experiments amended with DON+DOP (B1-B4) N2 

fixation rates did not differ from the control treatments or significantly 

decreased relative to the control. In experiments B5 and B6 N2 fixation was 

stimulated by the addition of DON+DOP and maximum N2 fixation rates of ~1 

nmol L-1 h-1 were measured.  An increase in N2 fixation of similar proportions 

was observed in experiments B5 and B6 amended with DOP. Although not 

statistically significant, increased N2 fixation rates were observed in 

experiments B1 and B4 amended with DOP, while no response was observed 

in B2 and B3. Amendments with DIP stimulated N2 fixation rates in all but 

one experiment. A significant (p < 0.05) increase was observed in B4, B5 and 

B6. Here, the increase was 1.7-2 fold compared to the unamended control. In 

all treatments, the N2 fixation response to nutrient addition (determined as 

∆N2 fixation = N2 fixationtreatment – N2 fixationcontrol) correlated significantly 

with initial P* values, that were determined at the sampling sites (Fig. 5). The 

strongest correlation was observed for DIP treatments (r2 = 0.76, p < 0.001), 

while a moderate correlation was detected for DOP and DON+DOP treatments 

(DOP: r2 = 0.47, p < 0.05; DON+DOP: r2 = 0.50, p < 0.05). 
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Figure 5: Relationship between the N2 fixation response, calculated as the difference between 
N2 fixation rates of treatment and control, and the surface P* concentration at the stations 
sampled. Regression analyses were statistically significant (p < 0.05) in all treatments. The 
color code is the same as in the other figures.  



Results

124

Figure 4: Nitrogen fixation rates (nmol L-1 h-1) in response to nutrient addition and in 
control treatments. Rates were determined 72 hours after nutrient addition. N2 fixation was 
measured in 24 hour long incubations with 15N-N2 isotope. Shown are means and standard 
deviations. Mean responses were compared using a one-way ANOVA. No significant 
difference (α = 0.05) between treatments means is indicated by the same letter. In B3, there 
was no significant difference between all treatments.



Discussion

Lateral transport of DOP from the productive upwelling region to the open 

ocean is thought to fuel primary productivity and N2 fixation in the 

oligotrophic North Atlantic (Mather et al., 2008; Reynolds et al., 2014). In this 

study, we investigated the availability of different DOP sources to the 

phytoplankton community and examined the effect of DIP and DOP addition 

on N2 fixation through nutrient addition experiments. 

In all six bioassays, the addition of AMP (DON+DOP treatment) considerably 

increased Chl a concentrations in comparison to the control. As this increase 

was not observed in treatments with DIP or DOP, we presume that the N 

containing part of the AMP molecule was the driver for the observed Chl a 

response. In general, nucleotides (including AMP) are known to be highly 

bioavailable for phytoplankton in oligotrophic regions (Björkman and Karl, 

1994; 2003). The hydrolysis of AMP by phytoplankton, while also providing P, 

is thought to mainly supply N from the purine base to the organism (Karl and 

Björkman, 2002). The observed Chl a increase in our experiments exclusively 

under AMP addition confirms this assumption. Our data further show that the 

bulk phytoplankton community from the ETNA is limited by the availability of 

N, which is also suggested by the presence of excess P at five of six 

experimental stations. Thus, results obtained from this study add to the 

growing body of literature indicating that N is the proximate limiting nutrient 

for phytoplankton growth in the subtropical and tropical North Atlantic (e.g. 

Davey et al., 2008; Meyer et al., 2016; Moore et al., 2013). In addition we show 

that this limitation is not only alleviated by inorganic N compounds such as 

nitrate or ammonium, but also by the presence of DON. Interestingly, surface 

DON values at the sampling stations were high (~4–7 µmol L-1) and markedly 

exceeded DON concentrations added during the nutrient treatments. Low 

Chl a concentrations (<0.5  µmol L-1) at the start of the experiments indicate 

that this initial DON pool contained only semi-labile to refractory DON 

compounds, that were not readily available for phytoplankton. This 

observation agrees with previous studies reporting high DON concentrations 

in the ETNA, which appeared to be largely inaccessible for the 

photoautotrophic community (Letscher et al., 2013; Torres-Valdés et al., 2009).

The presence of excess P is classically assumed to provide a niche for 

diazotrophic organisms (Codispoti, 1989; Deutsch et al., 2007). Although the 

oligotrophic North Atlantic is widely characterized by a deficiency of P over N, 

upwelling over the northwest African shelf transports waters with a low N:P 
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signature (originating from benthic N loss) to the surface (Jaeschke et al., 

2010; Schafstall et al., 2010). In this study, different concentrations of P* were 

detected in the surface of the sampling area. In the northeast, P* was high 

whereas no excess phosphate or very low concentrations were detected in the 

south, suggesting a transition from upwelling influenced water masses closer 

to the shelf to oligotrophic conditions further off-shore. This is also supported 

by the contrasting temperature regimes between stations B1 and B5/B6. N2 

fixation was detected at all stations, but was lowest at station B2, where high 

initial concentrations of dissolved inorganic nutrients probably favored the 

growth of non-diazotrophic phytoplankton. Apart from station B2, the addition 

of DIP increased N2 fixation rates in all bioassays, confirming previous results 

of P limitation or co-limitation in diazotrophs from the tropical Atlantic 

(Sañudo-Wilhelmy et al., 2001) and ETNA (Mills et al., 2004). 

In almost all experiments, similar N2 fixation responses were observed in 

treatments amended with DIP and DOP. Especially in bioassays conducted at 

stations with no/low initial P* concentrations, N2 fixation rates increased in  

equal proportions after DIP and DOP addition. This was surprising, as DIP is 

thought to be the preferred (i.e. more bioavailable) substrate for 

photoautotrophs and can be directly assimilated by the cell (Björkman and 

Karl, 2003). However, this seems to be different under P stress, when 

hydrolytic enzymes are already up-regulated. In that case, no difference 

between the availability of DOP and DIP seems to exist – at least not in the 

short time frame of our experiments. 

In amendments with DON+DOP, different N2 fixation responses were 

observed between experiments.  In B1, B2 and B4, N2 fixation rates did not 

change or decreased compared to the control. Here, the DON-fraction within 

the AMP molecule seemed to drive the observed response, either by favoring 

growth of non-diazotrophic photoautotrophs (Tyrrell, 1999) or by suppressing 

N2 fixation (Dekaezemacker and Bonnet, 2011; Holl and Montoya, 2005). 

However, in experiments B3, B5 and B6, DON+DOP addition increased N2 

fixation rates. This suggests that the DOP-fraction within AMP exerted a 

greater control on N2 fixation in experiments where there was stronger P 

limitation of the diazotrophic community. In experiments B5 and B6, where P 

limitation was strongest, no difference was observed in N2 fixation responses 

between DON+DOP and the other treatments. P esters, such as G-6-P, were 

previously shown to be less bioavailable to the phytoplankton community than 

nucleotides (Björkman and Karl, 1994). However, our data indicate that 
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diazotrophs in the ETNA were able to equally utilize both DOP compounds, 

especially under stronger P limitation. This suggests that under changing 

environmental conditions (e.g. varying degrees of P limitation), DOP 

compounds are exploited differently. 
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Conclusion

In this study differences in the bioavailability of selected phosphorus 

compounds to photoautotrophs were investigated in nutrient addition bioassay 

experiments. We found that the bulk phytoplankton community in the ETNA 

is primarily limited by the availability of N, while diazotrophs are limited by P 

availability, confirming previous results obtained in the area. N and P 

limitations were not only alleviated by inorganic nutrient addition but also by 

amendments with dissolved organic compounds. Specifically for phosphorus we 

observed no difference between the bioavailability of DIP and DOP substrates 

used in this study (G-6-P and AMP), most notably in areas where diazotrophs 

were more P limited and hydrolyzing enzymes seemed to be up-regulated.

Our findings highlight the importance of implementing diazotrophic DOP 

utilization into model simulations predicting N2 fixation in the global ocean 

(Landolfi et al., 2015; Somes and Oschlies, 2015). A more accurate estimate of 

the ecological niche occupied by diazotrophs will reduce uncertainties 

concerning input processes of fixed N into the ocean, thus facilitating a more 

realistic assessment of the global fixed N budget.
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Synthesis and future perspectives

In light of expanding oxygen minimum zones and the concomitant alteration of 

nutrient inventories in water masses influenced by oxygen deficiency, the 

presented doctoral dissertation was designed to investigate the influence of 

variable nutrient stoichiometries on primary producers and organic matter 

composition. The overall goal was to assess the potential of phytoplankton to 

modify nutrient supply anomalies and their role in coupling or decoupling 

sources and sinks of fixed N through modification of the P inventory. The 

results obtained in studies presented in Chapters I-III will be synthesized and 

discussed in the following sections. Subsequently, future research perspectives 

will be addressed.

Controls on cellular nutrient stoichiometry 

Based on theoretical considerations by Klausmeier (2004), Mills and Arrigo 

(2010) suggested that non-Redfield production might diminish the excess of 

phosphate in upwelling regions. Results obtained in Chapters I and II suggest 

that this view is too simplistic in a dynamic ecosystem, where mechanisms 

other than species-specific phytoplankton nutrient uptake ratios impact 

nutrient cycling in the surface ocean. 

In mesocosm experiments presented in Chapter I, nutrient utilization and 

incorporation into biomass was strongly dependent on the growth phase of 

primary producers. Previous studies suggested that during exponential growth 

resources are selectively allocated to P rich biomolecules within the assembly 

machinery in phytoplankton resulting in low cellular N:P ratios (Klausmeier 

et al., 2004; Sterner and Elser, 2002). In contrast to these studies, community 

PON:POP ratios were relatively constant during exponential growth and close 

to Redfield proportions over a large range of N:P supply ratios in our 

mesoscosm experiments. These findings are in agreement with culture 

experiments (Goldman et al., 1979) and previous mesoscosm studies from the 

ETNA and ETSP (Franz et al., 2012a) and suggest that phenotypical 

differences in nutrient assimilation and incorporation exist in blooming 

phytoplankton species such as diatoms. This observation can further be 

supported by theoretical work of Loladze and Elser (2011), who argue that fast 

growing primary producers do in fact allocate a lot of resources to the 

production of rRNA. Since rRNA itself is produced by protein biosynthesis, N 
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rich proteins need to be present simultaneously. Thus, the authors suggest 

that cellular stoichiometries of 16:1 can also be found in fast growing 

phytoplankton under nutrient saturation (Loladze and Elser, 2011). However, 

it has to be kept in mind that optimal growth conditions are not the norm in 

the marine environment and nutrient limitation is a widespread phenomenon 

in the surface ocean (Moore et al., 2013). Accordingly, stationary 

phytoplankton growth after nitrate or phosphate depletion was connected to 

more variable cellular stoichiometries that correlated to nutrient supply ratios 

in our mesocosm experiment. However, cellular stoichiometries were again not 

as variable as previously reported (Franz et al., 2012a; Geider and La Roche, 

2002) and predominantly exceeded Redfield proportions even at very low N:P  

ratios. 

The fact that a local balance between phenotypes, species composition and 

remineralization processes may average cellular deviations from Redfield 

proportions within the plankton ecosystem was highlighted during in situ 

measurements off Peru (Chapter II). At the time of the study very low 

inorganic nutrient ratios were encountered and upwelled water masses 

featured high P* concentrations. As previously reported for the Peruvian 

upwelling system, a distinct succession of different phytoplankton groups was 

observed on transects extending perpendicular from the coast to ~150  km 

offshore. Contrary to previous observations determining a correlation between 

phytoplankton functional types and particulate organic matter stoichiometry 

on a transect off Peru (Franz et al., 2012b), the PON:POP ratios in surface 

waters were remarkably constant and close to Redfield proportions. Compared 

to Franz et al. (2012b), nutrient availability was higher during the study 

presented here, resulting in much larger phytoplankton standing stocks. When 

taking observations from Chapter I into account, this might suggest that the 

phytoplankton community (specifically close to shore) encountered nutrient 

replete conditions, thus exhibiting less variable particulate organic matter 

stoichiometries. Moreover, it has to be taken into consideration that POM can 

contain numerous phytoplankton and microzooplankton species and detrital 

particles of mixed origin. It is generally assumed that zooplankton vary much 

less in their elemental stoichiometry than phytoplankton (Touratier et al., 

2001) and that remineralization of detritus can also reduce the stoichiometric 

diversity in particulate organic matter (Frigstad et al., 2011). Thus, part of the 

PON:POP variability that can be observed on the single species level is 

averaged out locally within the ecosystem and is not reflected in particulate 
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organic matter ratios (Fig. 1). This mechanism of ‘ecosystem averaging’ has 

previously been proposed as an explanation for the strong uniformity of 

particulate organic matter ratios (PON:POP) in seawater, despite a wide range 

of cellular stoichiometries in individual plankton species (Weber and Deutsch, 

2010). Based on the results obtained during this dissertation, I propose that 

cellular stoichiometries of phytoplankton species strongly depend on nutrient 

supply, on the growth phase and on intraspecies variations. In the marine 

environment, those differences in phytoplankton N:P can be averaged over 

small spatial scales.
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Figure 1: Conceptual figure depicting the mechanism of ecosystem averaging. The N:P 
variance that exists within phytoplankton species and between taxonomic groups is reduced 
in the overall phytoplankton assemblage. The N:P variance is further reduced in organic 
particles, that also comprise microzooplankton species and detrital particles, botch of which 
vary much less in their elemental stoichiometry. Box plots indicate the 25th and 75th 
percentiles (box), and total range (whiskers). The stars indicate the mean.



The influence of P* on DOP dynamics

The conservation of PON:POP ratios close to Redfield proportions through 

‘ecosystem averaging’ did not explain for the observed decrease of P* in the 

mesocosm experiments and along advection pathways in water masses off 

Peru. This suggested that either N was added to the systems via N2 fixation or 

P was preferentially removed from the inorganic nutrient pools. Observations 

in Chapter I and II clearly demonstrate that a large proportion of P* can be 

channeled through the phytoplankton biomass into the DOP pool. A strong 

correlation between initial PO4
3– concentrations and DOP production was 

observed during mesocosm experiments in the ETNA. Moreover, 

measurements off Peru suggested that net DOP production is enhanced in the 

shelf region, where P* values were highest. Luxury uptake of PO4
3– by 

phytoplankton is commonly observed under P replete conditions (Davis et al., 

2014; Franz et al., 2012a). In upwelling regions, the transfer of PO4
3– to the 

dissolved organic pool may allow P to remain in surface waters instead of 

being exported with particulate organic matter (Mackey et al., 2012). DOP 

generated in shelf regions of upwelling systems is generally suggested to be 

transported laterally to the open ocean (Reynolds et al., 2014). However, 

observations within the Peruvian upwelling system in Chapter II indicate that 

a large fraction of DOP is already utilized close to the shelf because DOP 

concentrations decrease as water masses are transported offshore. Although 

little is known about the composition and bioavailability of DOP, diazotrophs 

were shown to scavenge P from certain organic sources (Dyhrman et al., 2006), 

especially when PO4
3– concentrations are low. Hence, it has been suggested 

that relatively high DOP availability in upwelling regions creates a niche for 

diazotrophs, even if non-Redfield nutrient uptake reduces P* (Franz et al., 

2012a). Results presented in Chapter I and III support this view and will be 

discussed in the next section.

N2 fixation in the vicinity of upwelling regions

The potential spatial coupling of N gain and N loss processes in upwelling 

regions is a critical aspect within the framework of OMZ research. Thus, a 

central goal of this thesis was to assess whether water masses influenced by 

OMZs create a niche for diazotrophs, either by providing an excess of P over N 

or by supplying DOP, which is potentially bioavailable to N2 fixers. The studies 

presented in Chapter I and III were designed to test these assumptions. While 

in mesocosm experiments (Chapter I) N and P supply was manipulated and 
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DOP accumulated naturally during and after the induced phytoplankton 

bloom, different P sources were added during bioassay experiments (Chapter 

III). Results obtained during both studies confirm that diazotrophs can utilize 

a variety of DOP compounds, including nucleotides, P esters and natural DOP 

compounds released by diatom dominated phytoplankton blooms. These 

findings also strengthen the assumption that diazotrophs potentially utilized 

DOP in the Peruvian upwelling region (Chapter II), which is further supported 

by the detection of pigments potentially belonging to diazotrophic 

cyanobacteria off the Peruvian coast. Together, results from all three chapters 

in this dissertation indicate that even if P* concentrations are reduced through 

non-diazotrophic nutrient utilization (Franz et al., 2012b; Mills and Arrigo, 

2010) or via the channeling of PO4
3– into the dissolved organic pool in 

upwelling regions, diazotrophs are able to sustain N2 fixation on organic P 

compounds. In principle, this confirms biogeochemical models predicting that 

OMZ influenced water masses provide a niche for N2 fixers (Deutsch et al., 

2001; 2007). However, it becomes apparent that the concept by Deutsch et al. 

(2007) needs to be extended to include not only P* as a trigger for N2 fixation, 

but also DOP. Indeed results from Chapter III imply that the N2 fixation 

response to DIP and DOP supply can be on the same order of magnitude, 

emphasizing the significance of DOP as a nutrient source to diazotrophs. 

Furthermore, the results of this dissertation demonstrate that N loss and N 

gain processes are even more closely coupled than suggested by Deutsch et al. 

(2007), who argued that N2 fixers only become competitive when bioavailable 

N is depleted by non-diazotrophs in the surface ocean. A closer link between N 

loss and N2 fixation is supported by several observations presented in this 

thesis: 

1) Diazotrophs associated to diatoms (DDAs) were determined to be the 

dominant N2 fixers in the mesocosm experiment (Chapter I). N2 fixation in 

these DDAs was – in contrast to the classical view – not inhibited by 

inorganic N compounds. This suggests that DDAs are potentially able to 

actively perform N2 fixation in shelf waters of upwelling regions. 

2)  Off Peru, marker pigments of diazotrophic cyanobacteria were detected 

right above the shelf in the most productive area of the upwelling region and 

in close coupling to the diatom dominated phytoplankton community 

(Chapter II).

3)  During bioassay experiments in the ETNA (Chapter III), N2 fixation was 

also detected in incubations with high NO3
– + NO2

– concentrations 
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(~4  µmol L-1) and was not exclusively suppressed by the addition of DON 

compounds. 

Other observations from upwelling regions also suggest that diazotrophs are 

competitive under nutrient replete conditions and are able to perform N2 

fixation when reactive N compounds are present. Increased N2 fixation rates 

were determined during the upwelling periods in the eastern equatorial 

Atlantic (Subramaniam et al., 2013), in the Benguela- and Chilean Upwelling 

Systems (Moutin et al., 2008; Sohm et al., 2011) and after deep water addition 

during a mesocosm experiment off Gran Canaria (A. Singh, personal 

communication). In all cases, the excess of P over N was determined as the 

driver of increased N2 fixation rates. In addition, the detection of previously 

unknown Trichodesmium phylotypes in the ETSP (Turk-Kubo et al., 2014) and 

evidence of heterotrophic N2 fixation in subsurface waters of OMZs (Bonnet et 

al., 2013; Dekaezemacker et al., 2013; Loescher et al., 2014) add to the growing 

body of evidence that denitrification/anammox and N2 fixation are closely 

coupled in upwelling regions. These findings may also help to fill the proposed 

disparity between N input and the N loss processes (Codispoti, 2007) and the 

gap between global N2 fixation estimates derived from distribution of 

geochemical tracers and those from actual rate measurements (Mahaffey et 

al., 2005). 

According to recent modeling studies, the tight spatial coupling of N loss and 

N2 fixation, which is implied by results presented in this thesis, suggests to 

lead to a runaway feedback in the marine N cycle (Canfield, 2006; Landolfi et 

al., 2013). The authors argue that increased N2 fixation due to excess P 

availability would increase organic matter export, oxygen consumption and 

subsequently denitrification in subsurface waters. As N2 fixation only produces 

16 moles of N per mole of P, while 120 moles of N are remineralized per mole 

of P during denitrification, a net loss of N would be the consequence. 

Upwelling of this N deficit further stimulates N2 fixation, resulting in a 

positive feedback cycle that eventually lead to a declining N inventory 

(Canfield, 2006; Landolfi et al., 2013). The triggering of this feedback can be 

bypassed, however, if organic matter production and remineralization are 

separated (Landolfi et al., 2013). For example, the aerobic respiration of 

organic matter (Su et al., 2015) or the release of DON by diazotrophs and the 

subsequent offshore transport of DON could uncouple organic matter 

production and denitrification. Whether DON release by diazotrophs is an 
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important mechanism preventing a runaway feedback in the marine N cycle in 

upwelling regions remains to be resolved.

Biogeochemical and ecological consequences of expanding 

OMZs

In many oceanic regions, N and P availability have been shown to co-limit 

primary productivity (reviewed by Elser et al. (2007) and Moore et al. (2013)). 

In upwelling regions, however, nutrient addition experiments determined N to 

be the only limiting nutrient, as the sole supply of N increased primary 

production, while the amendment with P or N+P did not additionally stimulate 

biomass accumulation (Chapter I and III; Franz et al., 2012a; Thomas et al., 

1974). Thus, ongoing deoxygenation and the predicted future increase in N loss 

processes (Capone and Hutchins, 2013; Kalvelage et al., 2011) might result in 

a significant decline in total primary production in upwelling regions as a 

consequence of reduced N supply. In addition to potential phytoplankton 

biomass reduction under decreased N supply, the size structure of the 

phytoplankton community might change. Phytoplankton cell size is a 

functional trait that determines the nutrient diffusion per unit of cell volume 

(Raven, 1998), which means that smaller cells can take up nutrients much 

more efficiently due to their higher surface to volume ratio (Lewis, 1976). 

Nutrient concentration and supply often control phytoplankton cell size and 

low nutrient input into the upper ocean layer often selects for phytoplankton 

communities dominated by picoplankton (Marañón, 2015). Moreover, Cermeño 

et al. (2006) showed that phytoplankton size structure shifted significantly 

between upwelling and downwelling seasons, with pico- and nanoplankton 

dominating the less productive period. In upwelling regions, large 

phytoplankton cells tend to dominate the system, which are grazed by large 

zooplankton, resulting in short food chains and an efficient energy transfer to 

larger consumers (Marañón, 2015; Ryther, 1969). A change towards smaller 

phytoplankton species in upwelling regions would have a cascading negative 

effect on the productivity and size structure of the pelagic food web (Canales 

and Law, 2015; Finkel et al., 2009), which is sustained by high standing stocks 

of phytoplankton species (Dugdale, 1972). 
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Methodological approaches: Combining experiments and field 

studies

During this thesis, three different approaches were used to investigate the 

response of phytoplankton and organic matter composition to variable nutrient 

stoichiometries: field surveys, mesocosm experiments and bioassay 

approaches. Field surveys are helpful tools to investigate the spatial dynamics 

and heterogeneity of ecosystem processes. Natural abundances of major taxa, 

species diversity and community composition can be monitored in situ while 

simultaneously assessing biogeochemical and physical parameters. The 

structure of an ecosystem can be assessed and variability of patterns over 

spatial scales can be observed. Drawbacks are that these observations are 

usually only made at a single point in time or during a brief period and single 

‘snapshots’ of a system are unlikely representative of mean conditions. Thus, 

temporal patterns and seasonal or interannual fluctuations can often not be 

characterized. It can be challenging to identify mechanisms driving observed 

changes in biomass or organic matter composition within the natural system, 

because of the interplay of biotic and abiotic factors. For a better mechanistic 

process understanding, mesocosm experiments are a useful tool, as they 

provide a balance between control and realism. Under close to natural 

conditions, responses of lower trophic levels (bacteria, phytoplankton, 

zooplankton) to certain environmental factors can be studied over longer time 

scales of several days to weeks or months. Mesocosm experiments are useful 

manipulation facilities because they are more representative of the natural 

environment than highly controlled, small-scale laboratory experiments and 

better assessable than in situ field surveys. However, mesocosm experiments 

also have a number of drawbacks. The small size of the experimental facilities 

creates different mixing regimes and can lead to artificial sinking of particles 

(Watts and Bigg, 2001) and wall growth can substantially decrease nutrient 

availability for planktonic organisms in mesocosms (Chen et al., 1997). 

Ecosystem successions during mesocosm experiments may not be fully 

resolved because of the short experimental duration or may not actually 

represent temporal dynamics under natural conditions and could only be 

artifacts of the controlled environment (Duarte et al., 1997). Thus, the 

extrapolation from these artificial systems to complex natural systems needs 

to be made with significant considerations.

Small-scale experiments such as bioassays are commonly used in marine 

ecology and biogeochemistry to determine the effect of one factor (e.g. light, 
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CO2 concentration, nutrient availability) on a species or small community. 

They are relatively easy to set up and carry out, thus enabling a wide variety 

of processes to be investigated under very controlled conditions. As bioassays 

are often conducted on a small scale (mL to L) and under highly artificial 

growth conditions, it has been argued that the observed responses can have 

little to do with the overall ecology of the system in which the experiments are 

conducted (Carpenter, 1996). Thus, generalizations from these experiments 

must be drawn with caution. 

When all these methodological approaches are combined and experimental 

findings are supported by observational studies, a comprehensive picture of 

ecosystem processes and dynamics can be gained. This was nicely illustrated 

in this dissertation: in situ observations off Peru showed that P* was reduced 

in water masses further offshore, whereas DOP seemed to accumulate close to 

the shelf. During the mesocosm experiments it was possible to demonstrate 

that P* concentration and DOP production are positively correlated as 

phytoplankton take up P* and release it as DOP, confirming one of the 

proposed mechanisms of P* consumption. At the same time we found 

indications that diazotrophs were able to utilize DOP in the mesocosms. The 

availability of selected DOP compounds to N2 fixers was then confirmed during 

the bioassay experiments. Hence, combining small-scale experiments, field 

studies and larger-scale in situ observations while interpreting data within the 

context of knowledge of the overall system can facilitate a better 

understanding of the complexity of marine ecosystems.

Future research perspectives 

While results obtained in the course of this dissertation strongly suggest that 

DOP supply supports N2 fixation in the ETNA, only indirect evidence supports 

the assumption that P* and/or DOP consumption are coupled to diazotrophy in 

the ETSP. Moreover, little is known about the magnitude of N2 fixation in this 

area and the proportion of auto-and heterotrophic N2 fixation to the overall N2 

fixation rate. DOM bioavailability, supply and consumption by diazotrophs 

may play a critical role in organic matter turnover and nutrient cycling and 

should be given attention in future studies. The suggested approaches are 

described more in detail in the following.
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Characterization of the dissolved organic matter pool

The bioavailability of dissolved organic nitrogen and phosphorus to 

phytoplankton and nitrogen fixers (Chapter III) sheds new light on our 

understanding of marine primary production and highlight the importance of 

considering both organic and inorganic nutrients as factors regulating 

phytoplankton productivity and nutrient cycling. While inorganic nutrient 

concentrations are commonly determined in the majority of oceanographic 

surveys, dissolved organic nutrients are often disregarded and the systematic 

mapping of DON and DOP distribution in the ocean basins has only been done 

in a few studies (Moutin et al., 2008; Torres-Valdés et al., 2009; Vidal et al., 

1999). Thus, little is known about the global significance and bioavailability of 

dissolved organic nitrogen and phosphorus compounds. For a comprehensive 

understanding of nutrient cycling and its effect on primary productivity, the 

determination of these components should be routinely included in future 

studies. Specifically in upwelling regions, little is known about the composition 

and bioavailability of different organic matter compounds. The chemical 

characterization of DOM could be assessed through Fourier transform ion 

cyclotron resonance mass spectrometry (FT-ICR MS), while the labile fractions 

of DON and DOP could be determined through amino acid and P monoester 

measurements.

The role of diazotrophs in DON and DOP cycling

The release of DON by diazotrophs and the subsequent offshore transport of 

diazotroph-derived DON could uncouple organic matter production and 

denitrification. Hence, the trigger of the runaway feedback in the marine N 

cycle (Canfield, 2006; Landolfi et al., 2013) may be bypassed. While release of 

newly fixed N as amino acids and dissolved inorganic nitrogen has been 

frequently observed in diazotrophic cyanobacteria (Benavides et al., 2013; 

Glibert and Bronk, 1994; Konno et al., 2010), the magnitude of this release is 

highly variable and not well determined (10-80%). Thus, investigating the fate 

of diazotrophic derived fixed N in upwelling regions should be a major focus of 

future research, also with respect to the concomitant underestimation of N2 

fixation rates through DON exudation (Benavides et al., 2013). Following the 

work of a recently conducted mesocosm experiment, this could be done in 15N2-

labelled “diazotrophic-derived nitrogen transfer experiments” in combination 

with the amino acid measurements and high-resolution nanometer scale 

secondary ion mass spectrometry (nanoSIMS) (Berthelot et al., 2016; Bonnet et 
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al., 2015). With the help of enzyme-labeled fluorescence (ELF) incubations, the 

activity of DOP hydrolyzing enzymes (e.g. alkaline phosphatase) can be 

determined at the single cell level (Girault et al., 2012). Complemented with 

diazotroph-derived N transfer experiments, this approach could provide 

valuable information on both the role of DOP as nutrient source for 

diazotrophs and the role of newly fixed N in the ETSP. Combining the 

proposed experiments with large-scale N2 fixation rate measurements and 

assessments of DON and DOP concentrations during field surveys would help 

to get a better understanding of the importance of DOP and DON pools to 

microbial processes in the ETSP.

Impacts on export production

Identifying the consequences of changing N supply through ocean 

deoxygenation is not only crucial for our understanding of possible changes in 

ocean ecosystems, but is also necessary for a more accurate flux estimations in 

the marine carbon cycle (Lachkar and Gruber, 2012). Biomass production and 

cell size are two key factors that modulate export production in plankton 

communities and are both closely linked to nutrient concentration and supply. 

Hence, changing N supply may influence the export efficiency of particulate 

organic matter and the magnitude of carbon transfer from the surface to the 

ocean interior (Muller Karger et al., 2005). Future research should therefore 

not only focus on community composition and stoichiometric changes, but 

should also take into account the role that phytoplankton and particle size 

distribution dynamics play within plankton communities. During experiments, 

field- or long term monitoring studies, the size distribution of phytoplankton 

can be determined with little effort either by size fractionated filtering of Chl a 

samples or via flow cytometry, while the size distribution of larger particles 

and zooplankton can be determined with automated imagine techniques like 

the Underwater Vision Profilers (UVP) and ZooScan.  
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