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Abstract As a result of nutrient upwelling, the Peruvian coastal system is one of the most productive
regions in the ocean. Sluggish ventilation of intermediate waters, characteristic for the Eastern Tropical
South Pacific (ETSP) and microbial degradation of a high organic matter load promotes deoxygenation at
depth. Dissolved organic matter (DOM) plays a key role in microbial respiration and carbon cycling, but little
is known on DOM distribution and cycling in the ETSP. DOM optical properties give important insights on
DOM sources, structure and biogeochemical reactivity. Here, we present data and a conceptual view on dis-
tribution and cycling of chromophoric (CDOM) and fluorescent (FDOM) DOM in and above the oxygen mini-
mum zone (OMZ) off Peru. Five fluorescent components were identified during PARAFAC analysis. Highest
intensities of CDOM and of the amino acid-like fluorescent component (C3) occurred above the OMZ and
coincided with maximum chl a concentrations, suggesting phytoplankton productivity as major source.
High intensities of a marine humic-like fluorescent component (C1), observed in subsurface waters, indicat-
ed in situ microbial reworking of DOM. FDOM release from inner shelf sediment was determined by sea-
water analysis and continuous glider sensor measurement and included a humic-like component (C2) with
a signature typical for terrestrially derived humic acids. Upwelling supplied humic-like substances to the
euphotic zone. Photo-reactions were likely involved in the production of a humic-like fluorescent compo-
nent (C5). Our data show that variable biological and physical processes need to be considered for under-
standing DOM cycling in a highly dynamic coastal upwelling system like the ETSP off Peru.

1. Introduction

The upwelling of cold and nutrient-rich water to the sea-surface stimulates high primary productivity in the
Eastern Tropical South Pacific region (ETSP) [Strub et al., 1998; Pennington et al., 2006], leading to the pro-
duction of labile and semilabile dissolved organic matter (DOM) in the upper water column [Wood and Van
Valen, 1990]. Fresh DOM is used as substrate by heterotrophic communities, which, in turn, release less bio-
available semirefractory or even refractory DOM, thereby modifying the quantity and quality of the bulk
DOM pool [Azam et al., 1983; Ogawa et al., 2001; Jiao et al., 2010]. Heterotrophic respiration of fresh organic
matter and the associated oxygen consumption [Kalvelage et al., 2015] lead to a decrease in oxygen concen-
tration with depth. In the ETSP, a pronounced thermal stratification of the upper water column [Keeling
et al., 2010] and sluggish ventilation [Stramma et al., 2005] inhibit oxygen supply to intermediate waters
[Reid, 1965]. As a result, the Peruvian upwelling system is characterized by an extensive Oxygen Minimum
Zone (OMZ), with oxygen concentrations below 1 pmol O, kg™ [Revsbech et al., 2009; Kalvelage et al., 2013;
Thomsen et al., 2016].

Low concentrations of oxygen were shown to slow down microbial decomposition rates of major organic
matter fractions, such as proteins, lipids and carbohydrates [Harvey and Macko, 1997]. Suboxic or anoxic
conditions may also, eventually, lead to compositional changes in organic matter as the turnover time of
individual compounds was shown to vary with oxygen concentrations [Lee, 1992].

Low oxygen conditions together with high organic matter supply force microbial communities to seek new
sources of energy for redox processes [e.g., Kirchman, 2012], therefore activating nitrogen (N)-loss processes,
such as denitrification and anaerobic ammonia oxidation (anammox) [Strous et al., 2006; Kartal et al., 2007;
Jayakumar et al., 2009; Jetten et al., 2009; Chang et al., 2014]. Those processes result in a lack of bioavailable
N with respect to the classical Redfield ratio [Redfield, 1958]. The changes in bioavailable N concentrations
may not only affect productivity above OMZs, but also influence the quantity and quality of DOM
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[Kramer and Herndl, 2004; Stedmon and Markager, 2005; Biers et al., 2007; Conan et al., 2007; Engel et al.,
2015]. Thus, a decrease in bioavailable inorganic N at constant inorganic phosphorus (P) concentrations
may lead to reduction in an accumulation of dissolved organic carbon (DOC) [Conan et al., 2007; Loginova
et al., 2015] and to substantial decrease in production of the chromophoric (CDOM) and fluorescent (FDOM)
DOM fractions [Stedmon and Markager, 2005; Biers et al., 2007; Loginova et al., 2015]. Furthermore, heterotro-
phic uptake of DOM may be accompanied by consumption of inorganic N in form of nitrate, and therefore,
presence of inorganic N was assumed to be a regulator of microbial DOM availability [Kirchman et al., 1991].

CDOM and FDOM represent optically active DOM fractions and have often been used for estimation of
DOM quantity and quality [Stedmon and Nelson, 2015]. The DOM fraction referred to as CDOM represents
the light absorbing molecules [Coble, 2007], while FDOM is a CDOM fraction, which is able to fluoresce
[Stedmon and Alvarez-Salgado, 2011].

CDOM embodies a mixture of organic compounds of different content and complexity, and therefore it
absorbs light in a wide spectral range (230-750 nm) with no discernible peaks [Del Vecchio and Blough, 2004].
CDOM abundance is commonly expressed as absorption coefficient at chosen wavelength (e.g., 325, 355,
375 nm) [Stedmon and Markager, 2001; Fichot and Benner, 2012; Nelson and Siegel, 2013]. Spectral characteris-
tics of CDOM, such as spectral slopes (S) of CDOM light absorption and the ratio of specific spectral slopes (Sg)
are used as indicators for changes in CDOM molecular weight and photo reactivity [Helms et al., 2008, Zhang
et al, 2009]. S was shown to decrease with increasing DOM molecular weight [De Haan and De Boer, 1987;
Helms et al., 2008; Zhang et al., 2009], and Sg increases as CDOM becomes involved in photoreactions and
decreases as CDOM undergoes microbial reworking [Helms et al., 2008]. In other means, an increase in Sg indi-
cates that CDOM is largely degraded and is dominated by DOM of lower molecular weight.

FDOM measurements may be used to estimate DOM bulk characteristics, and also to discriminate between
DOM pools [Zsolnay et al; 1999; Zsolnay, 2003; Coble, 2007; Mopper et al., 2007; Stedmon and Bro, 2008;
Huguet et al., 2009; Yamashita et al., 2010]. Thus, fluorescence indexes, derived from Excitation and Emission
(Ex/Em) spectra, may be used as proxies for DOM properties. The humification index (HIX) is often calculated
as an estimate of the degree of DOM maturation [Zsolnay et al., 1999; Zsolnay, 2003] and the biological/
autochtonous index (BIX) is used to assess biological modification of DOM [Huguet et al., 2009]. The Ex/Em
spectra of FDOM are used also to identify different DOM pools [Coble, 2007; Mopper et al., 2007; Stedmon
and Bro, 2008; Yamashita et al., 2010]. Compounds that are excited and emit in the UV spectral range com-
monly correspond to labile proteinaceous DOM, and are referred to as amino acid-like (tyrosine- and trypto-
phan-like) FDOM [Coble, 1996]. Substances that are excited in the UV spectral range, but emit in the visible
spectral range were identified as fulvic- and humic-like FDOM components [Coble, 1996; Guéguen and
Kowalczuk, 2013] and have been related to semirefractory or refractory DOM [Coble, 1996].

Optically active DOM may be used for carbon assessment in aquatic systems, where DOM cycling is con-
trolled by conservative mixing. Thus, CDOM absorption has been used to estimate DOC concentrations in
field studies [Fichot and Benner, 2012; Rochelle-Newall et al., 2014]. In remote sensing techniques, light atten-
uation is used by satellites to derive CDOM signal, and, by assuming a direct relationship between CDOM
absorption and DOC concentrations, the distribution of DOC in surface waters [Del Castillo, 2007]. Further-
more, the fluorescence signal of CDOM, measured by in situ fluorometers (e.g., WETStar, TriOS), revealed a
potential for strong relationship to DOC in areas, where the input of terrestrial DOM is considerable [Belzile
et al,, 2006; Saraceno et al., 2009; Kowalczuk et al., 2010]. In the open ocean, however, CDOM absorption
does not reveal a simple linear relationship to DOC [Nelson and Siegel, 2013], as the relationship is driven by
more complex processes than conservative mixing. Some attempts for developing nonlinear relationship
between carbon specific CDOM absorption and spectral slope have been done in coastal regions [Fichot
and Benner, 2012], as well as in mesocosms simulating open ocean conditions [Loginova et al., 2015]. Those
relationships, however, still need to be tested in different ocean regions.

Even though the ETSP was recognized to be an important source of organic matter and its OMZ may be
potentially important for cycling of carbon and other elements, still little is known about the distribution
and cycling of DOM in this region. As CDOM and FDOM may serve as proxies for the quantity and quality of
DOM, we examined the distribution and cycling of optically active DOM in and above the OMZ off the coast
of Peru during M93 research cruise onboard the RV METEOR that took place from 7 February to 9 March
2013.
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We used measurements of CDOM absorption and FDOM excitation emission matrix spectroscopy (EEM) fol-
lowed by PARAFAC analysis as well as measurements by a glider-mounted CDOM fluorometer. The CDOM
absorption and FDOM measurements were compared to salinity, as well as to oxygen, DOC, dissolved
organic nitrogen (DON) and nutrients concentrations in order to identify processes influencing DOM cycling
in and above the OMZ off the coast of Peru.

2. Materials and Methods

2.1. Study Area

This study was conducted as a part of a multiplatform observational experiment in the Peruvian upwelling
system between 12°S and 14°S and 76°W and 79°W (Figure 1). The M93 cruise onboard R/V METEOR took
place from 7 February to 9 March 2013. During the measurements, the study area was affected by moderate
southeasterly winds (1-9 m/s) [Thomsen et al., 2016], resulting in nutrient upwelling. These conditions are,
likely, representative for austral summer season conditions as Oceanic Nino Index revealed very low values
for 2013 (—0.5-0) (according to Null [2016]). In summer season, ETSP is characterized by high water column
stratification, and therefore, the productive mixed layer is limited to 5-70 m depth [Echevin et al., 2008;
Franz et al., 2012]. As a result of upwelling, the oxycline is typically found between 5 m and 70 m depth as
well. Therefore, low oxygen (<1 umol kg~ ") [Revsbech et al., 2009; Kalvelage et al., 2013] and also high con-
centrations of inorganic nutrients (~30 pmol L' [NO3 1, ~3 umol L [PO?[]) [Franz et al., 2012] can be
found just below the mixed layer.

2.2. Discrete Water Sampling and Analysis

Discrete water sampling was accomplished at 22 stations along two parallel transects that were located
between 12°13" and 12°43’ S and 77°10" and 77°49’ W (Figure 1). Seawater was sampled with a GO rosette
equipped with 24 X 10 L bottles at 3 to 8 sampling depths from 2 to 70 m at the most nearshore stations
(~10 km offshore) and from 2 to 200 m at stations offshore (~90 km offshore).

The rosette was equipped with a conductivity, temperature and depth recorder (CTD; Sea-Bird SBE 9-plus,
Sea-Bird Electronics Inc., USA), oxygen optode (Sea-Bird SBE 9-plus, Sea-Bird Electronics Inc., USA), and a

40°wW

14°Sp" ]

S 78°W 30 77°W 76°W
Figure 1. The study area of the M93 RV METEOR cruise. The color shaded areas represent the distribution of chl a (ug L™") and the isolines
depict the temperature distribution at 5 m depth. Sampling stations along two investigated transects, which were combined into one for
illustrating of vertical distribution of different parameters, are indicated by black stars. The glider trajectory is marked with magenta color.
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WETStar chl a fluorometer (WET Labs, USA). The conductivity probe was calibrated with discrete seawater
samples measured with Guildline Autosal 8 model 8400B salinometer. The oxygen optode was calibrated
by a combination of Winkler titration [Winkler, 1888; Grasshoff et al., 1983] and STOX sensor measurements
[Revsbech et al., 2009]. Salinity and oxygen had detection limits (DL) of 0.002 g kg~ ' and ~1 pmol kg™,
respectively. More details on the salinity and oxygen calibrations can be found in Thomsen et al. [2016].

The original calibration of in situ chl a fluorometer, provided by the sensor manufacturer (WET Labs, USA),
was used throughout the cruise, resulting in chl a concentrations expressed in g L™'. Water samples from
night-time CTD casts were filtered and the extracted chl a was determined in the laboratory [J. Meyer, pers.
com.]. The resulting 142 concentration values were compared to the chl a readings from the chl a fluorome-
ter at the time of the bottle closing. A linear regression analysis showed no significant offset and a slope of
1.04 = 0.03 [G. Krahmann, pers. com.]. As the determined slope did not differ significantly from unity, we
refrained from applying the small calibration factor and used the data as given by the fluorometer.

Duplicate samples for inorganic nutrients—[NO5 ], [NO; ], [NH; ], [PO3~]--were collected into sterile 50 mL
falcon tubes and analyzed after Grasshoff et al. [1983], as described in Thomsen et al. [2016]. DL for determi-
nation of [NO3 ], [NO; ], [NH; ], [PO3 ] were 0.05, 0.01, 0.5, and 0.05 pmol L™, respectively.

DOC/DON duplicate samples (20 mL) were filtered through combusted GF/F filters (5 h, 450°C) and collect-
ed in combusted glass ampoules (8 h, 450°C). Samples were acidified with 80 pL of 85% phosphoric acid,
flame sealed and stored at 4°C in the dark until analysis.

DOC samples were analyzed by applying the high-temperature catalytic oxidation method (TOC -VCSH, Shi-
madzu) modified from Sugimura and Suzuki [1988], with DL of 1 umol L™". The calibration and measure-
ments routine is described in more detail in Loginova et al. [2015]. Total dissolved nitrogen (TDN) was
determined simultaneously to DOC with DL of 2 pmol L™ using the TNM-1 detector of a Shimadzu analyzer
[Dickson et al., 2007]. The instrument was calibrated every 8-10 days by analyzing 5 standard solutions of 0,
100, 250, 500, and 800 g N L™, prepared from a potassium nitrate Suprapur® (Merk 105065) solution. DON
concentrations were calculated by subtracting sum of NO3, NO;, and NH; concentrations from concentra-
tion of TDN.

For FDOM, 15mL samples were collected into combusted (450°C, 8 h) amber-glass vials after filtering
through 0.2 um polyethersulfone syringe filters (CHROMAPHIL® Xtra PES-45/25) and then stored frozen
(—20°C). Samples were brought to room temperature before analyses.

Spencer et al. [2007] and Thieme et al. [2016] reported that fluorescence properties of DOM may change at tem-
peratures below 0°C. The change in DOM properties could be caused by bacteria cell rapture during freezing
and/or by flocculation during brine water formation of highly concentrated DOM samples, characteristic for riv-
ers and grassland or forest soils, which were studied in Spencer et al. [2007] and Thieme et al. [2016], respectively.
On the other hand, in studies, where samples were prefiltered (0.2-0.45um) and FDOM concentrations were rel-
atively low, sample-freezing was not found to bias measurements or to add inter-replicate variability [Yamashita
et al, 2010; Murphy et al,, 2013a]. In our study, the freezing of our samples could not be avoided due to logistical
reasons. Since we got rid of most of the bacterial cells during 0.2um filtration, and collected DOM samples were
relatively diluted, we believe that freezing effects on FDOM during our studies were of minor importance.

For the determination of FDOM, 3D-EEM fluorescence spectroscopy was performed using a Cary Eclipse Fluores-
cence Spectrophotometer (Agilent Technologies) equipped with a xenon flash lamp. The fluorescence spectra
for samples were measured in a 4-optical window 1 cm Quartz SUPRASIL® precision cell (HeIIma®AnaIytics).
Blank-3D fluorescence spectra and Water Raman scans were performed daily using an Ultra-Pure Water Standard
sealed cuvette (3/Q/10/WATER; Starna Scientific Ltd). The experimental wavelength range for sample and ultra-
pure water scans was 230 to 455 nm in 5 nm intervals on excitation and 290 to 700 nm in 2 nm intervals on emis-
sion. The Ex/Em scans were later cut to intervals from 260 to 455 nm for excitation and from 300 to 500 nm for
emission in order to reduce potential noise during PARAFAC analysis. Water Raman scans were recorded from
285 to 450 nm at 1 nm intervals for emission at the 275 nm excitation wavelength [Murphy et al,, 2013b]. All fluo-
rescence measurements were conducted at 19°C, controlled by Cary Single Cell Peltier Accessory (VARIAN), PMT
900V, 0.2 s integration times and 5 nm slit width on excitation and emission monochromators.

For CDOM, 35 mL samples were collected into combusted (450°C, 8 h) amber-glass vials after filtering
through 0.2 pm polyethersulfone syringe filters (CHROMAPHIL® Xtra PES-45/25, MACHEREY-NAGEL GmbH &
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Co.KG) and stored at 4°C in the dark pending analyses (1-14 days). Samples were brought to room tempera-
ture (~19°C) before analyses. The CDOM absorbance was measured with Shimadzu® 1800 UV-VIS double-
beam spectrophotometer using 5 cm Quartz SUPRASIL® precision cell (Hellma®Analytics) at 1T nm wave-
lengths intervals from 230 to 750 nm against MilliQ water as a reference. CDOM spectra from 275 to
400 nm were used for recalculation to absorption coefficients (see section 2.4).

2.3. Glider Measurements

A CTD cell and an ECO Triplet FLBBCD-SLK Puck sensor (WETStar CDOM fluorometer) configured for meas-
urements at Excitation/Emission (Ex/Em) 370/460 nm (WETLabs, USA) mounted on Slocum glider (Teledyne
126 Webb Research) were used for high-resolution measurement of salinity and CDOM fluorescence,
respectively, along the transect that is shown in Figure 1.

The EX/Em=370/460 nm is commonly used for CDOM sensor configuration, as fluorescence maximum at those
wavelengths represents a signal of quinine sulfate (QS), which is considered to be a reference substance for
aquatic humic acids. That signal also was shown to have great potential for correlation to DOC at aquatic sites
[Saraceno et al.,, 2009; Conmy et al., 2014]. Therefore, measurements by CDOM fluorometer mounted on a Slo-
cum glider gave an opportunity to receive data of high lateral resolution (~200 m) of fluorescence of humic-like
substances in the area off coast of Peru and to compare those with fluorescence analyses of discrete water
samples.

The Slocum glider (Teledyne 126 Webb Research) was deployed on 7 January 2013, as part of a multiglider
observational experiment and remained in the water autonomously. The glider continuously measured
CDOM fluorescence moving in upper 200 m of the water column along the transect, indicated on Figure 1,
until it was recovered on 1 March 2013. During the full measurement time period it provided 3099 profiles
[Thomsen et al., 2016]. Eight glider profiles were later used for comparison with discrete water samples and
955 glider profiles were used for graphical representation of spatial variability of optically active DOM.

2.4. Data Evaluation

Data from both transects were merged into one plot for each of investigated parameters, as both transects
were located in the vicinity to each other (~13 km). Data for each parameter were plotted against distance
from the coast, calculated separately for each transect before merging. The data were interpolated between
data points by “TriScatterInterp” function (MatLab, 2012b) (The MathWorks Inc.) for graphical representa-
tion. As no extrapolation was done, it resulted in white areas for investigated parameters at depths, where
no samples were taken.

CDOM absorbance spectra were converted to absorption coefficients according to Bricaud et al. [1981]:

 2303A(4)

dcoom(2)= — (M

where acpom(2) is the absorption coefficient at wavelength A (m™"), A(A) is the absorbance value at same
wavelength and L is the effective optical path length (m).

Open ocean waters show only very low absorbance at wavelengths of 400-600 nm. Therefore, absorption at
325 nm (dcpom (325)) was used as a proxy for open ocean CDOM concentrations [Nelson and Siegel, 2013].

Spectral slopes for the intervals 275-295 nm (S,75_295) and 350-400 nm (S3s0_400) Were calculated after
Helms et al. [2008] using log-transform linear regression. The CDOM alteration indicator, slope ratio (Sg), was
calculated after Helms et al. [2008] as the ratio of S,75_595 and S350_400-

The 3D fluorescence spectra were corrected for spectral bias, background signals and inner filter effects
after Murphy et al. [2013b]. Each EEM was normalized to the area of the ultra-pure water Raman peaks, mea-
sured at the same day. EEMs were combined into four-dimensional data array and analyzed by PARAFAC
[Stedmon and Bro, 2008]. The 5-component least square model was developed out of 10 repeat runs; the
model validation was obtained by split-half analysis, using “drEEM toolbox for MATLAB” after Murphy et al.
[2013b]. The 5-component model could be validated only for samples that were taken from upper 50 m of
the water column, below 50 m depth the fluorescence of the fifth component was low (comparable to
instrument noise), and therefore validation of samples that were taken below 50 m depth of the water col-
umn could not be accomplished successfully.
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The humification index (HIX) was calculated as

HIX*H'
L7

)

where H is an area below intensity peak between 434 and 480 nm on emission at 255 nm on excitation and L
is below intensity peak between 300 and 346 nm on emission at 255 nm on excitation [Zsolnay et al., 1999].
Both areas were calculated as an area of trapezoid under the curve [MatLab, 2012b] (The MathWorks Inc.).

The biological/allochtonous index (BIX) was calculated as:

lem=
BIx = Em 380;
Em=430

3)

where, lgm=3g0 is the fluorescence intensity at 380 nm exited at 310 nm, and lgy,—430 is the fluorescence

intensity at 380 nm exited at 310 nm [Huguet et al., 2009].

For comparison of CDOM fluorescence obtained by the glider sensor with FDOM data obtained by EEM at
discrete locations, the glider data were extracted in such way that temporal and spatial gaps between sen-
sor data and water samples were minimal. Then, the data from water samples and extracted glider CDOM

values were tested for covariance by linear regression analysis.

3. Results and Discussion

3.1. Oceanographic Settings on the Transect

Along transects, temperature of the upper mixed layer ranged from approximately 16°C at the most near-
shore stations to >20°C offshore. Below 5 — 60 m, temperatures ranged from 12 to 14°C (Figure 2). Highest
oxygen concentrations (up to 250 pmol kg~ ") occurred near the surface. Below 5 - 50m, oxygen concentra-

tions decreased abruptly, reaching < 1 umol kg~ ' (Figure 2).
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Figure 2. Vertical distributions of temperature, salinity, dissolved oxygen and chl a along the combined transect. The coastal slope is shaded in gray. Black dots represent the locations

of taken samples. White isolines depict potential density distribution.
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Highest salinities of 35.35 g kg~ ' were found near the surface. A high salinity plume (>35.20 g kg~") cen-
tered at 20 m (Figure 2) and was referred to as Subtropical Surface Water (STSW) [Wyrtki, 1967; Fiedler and
Talley, 2006; Silva et al., 2009; Thomsen et al., 2016]. In the water column that was not influenced by STSW,
relatively high salinities could be found near the surface (35.15 - 35.20 g kg~ ). At depth, observed salinities
ranged between 35.05 and 35.15 g kg~ '. Two other water masses, Equatorial Subsurface Water (ESSW)
[Gunther, 1936; Silva et al., 2009; Thomsen et al., 2016] and Eastern South Pacific Intermediate Water (ESPIW)
[Schneider et al., 2003; Silva et al., 2009; Thomsen et al., 2016] might have had an effect on the salinity distri-
bution in deeper waters. Furthermore, the water mass distribution was strongly influenced by mesoscale
along-isopycnal stirring due to the formation of an eddy in the study area [Thomsen et al., 2016].

Highest chl a concentrations (4-20 g L") were observed within upper 5 to 20 m. A second chl @ maximum
(1-2 pg L™") was observed at offshore stations at approximately 60-80 m (Figure 2). Surface water with
high concentrations of chl a and salinities lower than 35.15 g kg™' was defined as “surface salinity mini-
mum” (SSMW) water (supporting information Figure S1).

During the study, a shallow nutricline was observed at ~5 m at the most nearshore stations and
between 30 and 40 m offshore (Figure 3). Nitrate and phosphate were lower in surface waters (below
DL-1.00 pmol L' and 0.50-1.00 pmol L™, respectively) increasing to maximum values of ~25.00 and
2.00 pmol L™, respectively, at depth. Maximum nitrite concentrations of 6.0 umol L~ were observed
below 80 m depth, where nitrate concentrations slightly decreased to ~ 20.00 pumol L.

On the shelf (St. 143, Figure 1 and supporting information Table S1) maximum values of phosphate
(~3 pmol L") and ammonia (up to 4 pmol L™") could be indicated near the sediment (20 - 60 m depth),
while the concentrations of nitrate and nitrite at those depth were below DL (<0.05 pmol L™, Figure 3 and
supporting information Figure S1). This low in inorganic nitrogen (N) and high in inorganic phosphorus (P)
water was referred as “low nitrogen water” (LNW) during this study (supporting information Figure S1).
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Figure 3. Vertical distributions of dissolved nitrate, nitrite, ammonia and phosphate along the combined transect. The coastal slope is shaded in gray. Black dots represent the locations
of taken samples. White isolines represent potential density distribution.
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Part of the investigated transect, that did not include STSW, LNW or SSMW was referred as “high nitrogen
water” (HNW) during this study (supporting information Figure S1), as it contained the highest concentra-
tions of nitrate (~20 pumol L~' on average).

3.2. Characteristics of DOM

DOC concentrations ranged from less than 50 pmol L~" in HNW to more than 120 pmol L™ in SSMW. In
STSW, DOC concentrations were 70-80 pumol L™, At the vicinity to sediments (LNW) DOC was accumulated
up to 80-100 umol L™' (Figure 4). The range of DOC concentrations, obtained during the M93 research
cruise, is in an agreement with previous studies in ETSP, as reported previously values varied from 40 to 300
pmol L~ [Romankevich and Ljutsarev, 1990; Franz et al., 2012; Engel and Galgani, 2015].

Lowest DON concentrations were observed (<3 pmol L™") in HNW, while in LNW, DON concentrations up
to ~4 pmol L™ were determined (Figure 4). Both, SSMW and STSW, contained DON concentrations of
about 4-6 pmol L™". Those concentrations are slightly higher than concentrations reported previously for
the upper 50 m of the water column of eastern subtropical South Pacific (4.3 = 0.5 umol L™ ") [Letscher et al.,
2013]; a slightly higher DON accumulation may be reasoned by higher productivity that is characteristic to
upwelling regimes compared to central ocean basins.
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- . R e —
R S N L ———

— — 100
E -50 P
% 80
@ -100
a
f’ 60
-150 40
-80 -60 -40 -20
DON (umol L™
Cooo B 0 500 6 0.035
. & 5
g 0 4 0.03
£ 3
3
3 -100 2 0.025
1
-150 0.02
-80 -60 -40 -20
Distance to the coast (km)
. 2
E
s
§ 15
1

-80 -60 -40 -20
Distance to the coast (km)

Figure 4. Vertical distributions of DOC, DON, CDOM at 325 nm (acpom (325)), spectral slope (S»75_295) and spectral slope ratio (Sg) along the combined transect. The coastal slope is shad-
ed in gray. Black dots represent the locations of taken samples. White isolines represent potential density distribution.
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Little information is available on optically active DOM in the area off Peru. In the open Pacificc CDOM
absorption at 325 nm (dcpom(325)) was previously reported to vary from 0.005 to 0.25 m~ ' [Swan et dl.,
2009, Nelson and Siegel, 2013] and was reported to be controlled by microbial respiration, due to its signifi-
cant covariance to apparent oxygen utilization in deep waters, and its accumulation with depth [Swan et al.,
2009, Nelson and Siegel, 2013]. However, in our study, acpom(325) was highest in the upper 5-20 m of the
water column with maximal values of ~0.5 m~"' in SSMW. CDOM absorption decreased at STSW, LNW and
HNW up to 0.1 - 0.2 m™ " (Figure 4). This range of absorption values corresponds well to data reported for
the surface microlayer by Galgani and Engel [2015] 2 months earlier at same area. In their study, dcpom(325)
varied from ~0.22 to 0.5 m™~ ' with a few very high values (0.75-1.25 m~ ') at the most nearshore stations.

CDOM spectral slope of 0.032 nm™" was previously reported for the wavelength interval of 320-400 nm for
South Pacific subtropical waters [Nelson and Siegel, 2013]. Off Peru, in the surface microlayer and upper
30 cm of the water column, Sy75 595 ranged between 0.015 and 0.040 nm™ "' [Galgani and Engel, 2015]. The
distribution of S,75_595, in our study, revealed low values in HNW (<0.025 nm~") and higher values
(>0.025 nm™") in SSMW and LNW (Figure 4 and supporting information Figure S1). Offshore, S75 295
revealed a plume-like structure near the surface with highest values centered at 20 m depth, resembling
the salinity plume associated with STSW.

Sg was also higher in STSW (~1.8) in comparison to HNW, where Sg ranged from 0.8 to 1.5. Its maximum val-
ues (>2), however, were found in SSMW and LNW (supporting information Figure S1 and Figure 4.). Previ-
ously, Sg was not reported for the water column off coast of Peru. It is known, however, that in open ocean
waters Sg can vary from 1.5 to 4 [Kowalczuk et al., 2013, Stedmon and Nelson, 2015], while in terrestrially orig-
inated DOM Sg reached values <1 [Stedmon and Nelson, 2015]. For the surface microlayer and first 30 cm of
water column Sg ranged from 0.7 to 5 [Galgani and Engel, 2015]. Hence, Sg results obtained in this study are
in correspondence to previously published values and represent typical signatures of in situ produced
marine DOM.

FDOM components were characterized by fluorescence at following Ex/Em wavelengths (in nm): compo-
nent 1 (C1) — Ex/Em: 315/396-398, component 2 (C2) — Ex/Em: 355-365/420-480, component 3 (C3) — Ex/
Em: 275/314-322, component 4 (C4) - Ex/Em: 290/352 and component 5 (C5) - Ex/Em: 405/490 (Figure 5).

Previous studies assigned Ex/Em characteristics similar to C1 (315/396-398) to humic-like substances pro-
duced in marine environment through microbial or, more generally, biological reworking of labile DOM
(“peak M” in Coble [1996]; “peak " in Parlanti et al. [2000]). Similar, in terms of spectral properties, to C1 fluo-
rescent components were previously reported for the global ocean (“C4" in Jargensen et al. [2011], “C2" in
Catala et al. [2016]). Those components were reported to vary from 0.001 to 0.025 RU in the upper 200 m of
the water column, increasing with depth. Our findings are in agreement with previously reported values, as,
during our study, C1 varied from 0.002 to 0.012 RU, and it was strongly depleted near the surface. Its highest
fluorescence intensities, however, were mainly located at 10-100 m and did not correspond to any of
defined waters (STSW, SSMW, LNW or HNW) (Figure 6).

Ex/Em characteristics (355-365/420-480) determined for C2, have been previously assigned to another
humic-like component, i.e., “peak C” [Coble, 1996] or “o” [Parlanti et al., 2000] and have been referred to
humic acids of terrestrial origin [Parlanti et al., 2000]. However, fluorescence signals similar to C2 were also
found previously in the open ocean (“C1” in Jargensen et al. [2011]; “C1" in Catala et al. [2016]), with values
increasing toward 200 m depth, ranging from 0.001 to 0.025 RU. In our study, C2 fluorescence intensities
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Figure 5. Spectral loadings (Ex/Em) of components C1-C5, identified during PARAFAC analysis.
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Figure 6. Vertical distributions of fluorescent components (C1-C5) along the combined transect. The coastal slope is shaded in gray. Black dots represent the locations of taken samples.
White isolines represent potential density distribution.

varied between 0.005 and 0.010 RU. C2 was depleted within the upper 60 m at offshore stations. Highest C2
fluorescence intensities were determined near the sediments (LNW) and in the upper water column near-
shore (SSMW). C2 intensities were also generally higher in HNW than at the surface STSW, but also yielded
low values of 0.005-0.007 RU (Figure 6).

Ex/Em values of C3 (275/314-322) are characteristic for protein or amino acid-like substances (“peak B” in
Coble [1996] or “y" in Parlanti et al. [2000]). This component was referred to fresh, labile DOM that is pro-
duced at the exponential phase of phytoplankton growth [e.g., Guéguen and Kowalczuk, 2013] and during
denaturation of proteins [Determann et al, 1998]. Ex/Em characteristics similar to C3 were previously
reported to be highest near the surface [Jorgensen et al., 2011; Catala et al,, 2016]. In our study, highest
intensities of C3 were found in the upper euphotic zone (SSMW) (up to 0.02 RU), while at STSW, LNW and
HNW they were less than 0.005 RU (Figure 6). C3 positively correlated to chl a (log(C3) versus log (chl a):
r*=0.40, p<0.001, n=133). Therefore, we refer to C3 as to phytoplankton-derived labile DOM during our
study.

The distribution of C4 fluorescence was highly patchy, it ranged from 0.001 to >0.025 RU (Figure 6). Unlike
(3, high values of C4 were observed near the surface as well as at depth. In the open ocean, similar, in terms
of spectral properties, to C4 components have also been reported to be highly variable (0.001-0.080 RU) in
the upper 200 m of the water column [Jargensen et al., 2011; Catala et al., 2016]. A component with similar
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Figure 7. Vertical distributions of the biological index (BIX), calculated after Huguet et al. [2009] and of the humification index (HIX), calculated after Zsolnay et al. [1999]. The coastal slope
is shaded in gray. Black dots represent the locations of taken samples. White isolines represent potential density distribution.

Ex/Em properties like C4, reported by Catala et al. [2016], was highest at the deep chl a maximum. In our
study, generally, higher C4 intensities (0.005 - 0.025 RU) could be associated to the depth of second
(“deep”) chl @ maximum (50-80 m) as well, however, no strong correlation of C4 with chl a was determined
(log(C4) versus log (chl a): *=0.04, p<0.05, n=133). Therefore, the interpretation of C4 cycling off the coast
of Peru remains speculative.

The spectral characteristics of C5 signify its humic-like structure [Kothawala et al., 2013; Yamashita et al.,
2008, 2013; Guéguen et al, 2014], as it reveals emission in visible wavelengths range. C5 intensities
increased near the surface (up to 0.005 RU), indicating C5 production near the surface. Formation from bio-
genic precursors (see section 3.3), a red shift in the fluorescence of humic-like material after contact with
sunlight, or a terrestrial input [Murphy et al., 2008] may have been potentially responsible for an accumula-
tion of C5. Stedmon and Markager [2005] reported a new component, whose “fingerprint” was similar to Ex/
Em of C5. They observed that in seawater exposed to light the fluorescence intensities of this component
increased in presence of heterotrophic bacteria (“C7" in Stedmon and Markager [2005]). The component
intensities decreased at same light conditions, when bacterial cells were filtered out (“C7” in Stedmon and
Markager [2005]). In Stedmon et al. [2007], a humic-like component with similar spectral properties like C5
accumulated at the beginning of incubations of filtered Baltic Sea samples under light exposure. In the fol-
lowing stages of the incubations, the component was shown to be degraded. Timko et al. [2015] also
reported of a C5-similar component, which was highly susceptible to light. As C2 and C5 occurred indepen-
dently near the surface (Figure 6), and because the 5-component PARAFAC model was stable only for the
upper water column, we speculate that formation and removal of C5 in the water column is induced by sun-
light. However, the terrestrial origin of C5 may not be excluded, as humic-like fluorescence was previously
mainly related to terrestrial sources [Murphy et al., 2008].

Biological/autochtonous index (BIX) values of 1-1.15 were measured between 40 and 60 m depth, while val-
ues < 0.9 were observed in LNW (Figure 7). It has been suggested that an increase in BIX values indicate
organic matter recently reworked by bacteria [Parlanti et al., 2000; Huguet et al., 2009; Wilson and Xenopou-
los, 2009]. High BIX values in subsurface waters off coast of Peru therefore point to an intensive microbial
reworking of DOM.

The humification index (HIX) increases as H/C ratio of the organic matter decrease, e.g., DOM is becoming
“older” [Zsolnay et al., 1999]. During this study, highest HIX values of ~2-3 were measured at the vicinity to
the sediment (LNW) and below the oxycline further offshore, pointing to high abundance of humified DOM.
In contrast, HIX values were <1 in the upper 10-20 m, suggesting that optically active DOM there contained
less humified or “younger” substances (Figure 7).

3.3. Processes Controlling the Distribution of Optically Active DOM

Based on the distribution of optically active DOM components and their properties during our study, we
developed a conceptual model of DOM cycling in the ETSP off coast of Peru (Figure 8). The dimensions of
the scheme correspond to those of the investigated transect (80 km offshore and 155 m deep). Locations of
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In subsurface waters, highest fluorescence intensities of the marine humic-like C1 could be associated to
microbial reworking of labile DOM (Figure 8), as components with spectral properties similar to C1 were pre-
viously shown to accumulate during microbial incubations (e.g., “C3” in Stedmon and Markager [2005];
Lenborg et al. [2010, 2015]; Lanborg and Alvarez-Salgado [2014]). The microbial in situ reworking in subsur-
face waters was also indicated by a presence of highest values of the biological index (BIX) (Figure 7).

Deeper in the water column, more refractory C2 revealed its high intensities (Figure 6). The refractory char-
acter of DOM at those depths is also indicated by increased values of HIX (Figure 7), which was previously
shown to rise with DOM maturation [Zsolnay et al., 1999, Zsolnay, 2003]. Highest intensities of C2 fluores-
cence and HIX values were observed at the vicinity to inner shelf, where sediments were exposed to anoxia,
and where an accumulation of DOC and DON was also recognized (Figure 4). Accumulation of DOC and
DON in anoxic sediments primarily occurs via dissolution of particulate organic matter by biotic and abiotic
processes [Sierra et al., 2001; Deflandre et al., 2002; Burdige and Komada, 2015]. Low molecular weight DOM
obtained by those processes can be released to sediment pore waters [Arnosti, 2004; Burdige and Komada,
2015; Chen and Hur, 2015] and tend to form supramolecular associations via hydrogen or hydrophobic
bonds [Piccolo, 2001] or polymers via reactions of condensation and complexation [e.g., Finke et al., 2007].
Both processes would lead to an increase in the apparent molecular weight of DOM and may explain higher
HIX values observed near the sediment, as HIX values correlate directly with the apparent molecular weight
of DOM [Hur and Kim, 2009]. The suggestion of sediment release is in correspondence to Lomnitz et al.
[2015], who observed high inorganic P release from sediments a month earlier on same transect.

The humic-like, refractory C2 was found also near the surface in our study. We assume that upwelling was
responsible for the transport of refractory DOM, such as C1 and C2, to the euphotic zone (Figure 8), where it
undergoes reactions of photolysis [Sulzberger and Durisch-Kaiser, 2009]. Low fluorescence intensities of
marine humic acids, represented by C1, near the surface could be explained by DOM photo-reactivity
[Kieber et al., 1990; Moran and Zepp, 1997, Sulzberger and Durisch-Kaiser, 2009], as a component similar in
terms of spectral properties to C1, was shown to be removed during photoreactions previously [Chen et al.,
2010]. The presence of DOM modification by photoreactions in SSMW can also be supported by relatively
high values of Sg (~2), as Sg was previously shown to increase, as CDOM is involved in photoreactions
[Helms et al., 2008].
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Intensive irradiation can activate protection mechanisms in microbial communities [Kirchman, 2012]. Heter-
otrophs may release various sunscreens to the water column, which protect microbial cell from damage;
those substances include pigments and peroxidases among others [Kirchman, 2012]. As C5 accumulated
solely within the sunlit surface ocean, it may represent a product of those photoreactions (Figure 8).
Oxidative-polymerization of humic-like substances in the presence of peroxidase [Jee et al., 2010] or photo-
chemical alteration of pigments [Nelson, 1993; Cuny et al.,, 1999] could be possible sources of C5 near the
surface. As C5 was not enriched in STSW, we suggest that C5 undergoes further photo-degradation process-
es near the surface. This is in agreement with those studies, where components, similar to C5, in terms of
spectral properties, were reported to be subject to photo-degradation [Stedmon and Markager, 2005; Sted-
mon et al., 2007; Ishii and Boyer, 2012; Timko et al., 2015].

3.4. Glider CDOM Measurements

The CDOM fluorescence measured by the WETStar fluorometer (WetLabs, USA) mounted onto the glider,
resembled the distribution of C2. This can be explained by similar spectral EX/EM windows of the WETStar
fluorometer (Ex/Em of 370/460 nm) and of C2 (Ex/Em: 355-365/420-480 nm). Highest fluorescence intensi-
ties were observed in the vicinity to sediments and lowest intensities were measured near the surface
(Figure 9). Overall, a weak, but significant relationship was determined between WETStar CDOM measure-
ments and C2 fluorescence intensities (r*=0.32, p<0.001, n=45) (Figure 9).

Between 2 and 26 February, the glider measurements captured the development of a STSW plume, as indi-
cated by high salinity (>35.25 g kg~ ") (Figure 10). The plume was associated with an onshore transport of
very low WETStar CDOM fluorescence (< 1.8 ppb), and is likely caused by horizontal eddy stirring [Thomsen
etal, 2016].

The two intermediate water masses, ESSW and ESPIW that were shown to also influence the study area
[Thomsen et al, 2016] revealed different WETStar CDOM fluorescence signatures. Low salinity ESPIW
(<35.1 g kg™ ") showed slightly higher
fluorescence intensities (~2.6 ppb)

WETStar CDOM fluorescence (ppb) than ESSW (~2.3 ppb) characterized
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—40 5 (Figure 10).
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Figure 9. Distribution of CDOM fluorescence signal measured by the WETStar sen- as Iigands for trace metals (”peak A" in

sor, mounted on (top) a SLOCUM glider, and (bottom) its direct relationship to C2:
The data point in brackets was considered as an outlier and was not included in Wu et al. [2001]). WETStar CDOM fluo-
the analysis. rescence, which is measured at similar
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Figure 10. (left) Distribution of salinity as measured by the CTD sensor and (right) of CDOM fluorescence as measured by the WETStar sen-
sor, mounted on a SLOCUM glider; from the right side the time periods, needed for the glider to complete the transect along its trajectory
in one direction (nearshore-offshore/offshore-nearshore), are depicted. The coastal slope is marked as an area shaded in gray.

wavelengths to C2 “fingerprint,” may, therefore, be helpful for tracing pathways of trace-metal transport in
the ocean, e.g., linking sediment release and surface productivity.

During our study, the correlation of C2 with WETStar CDOM fluorescence was not very strong. This could be
caused by particle scattering effects [Saraceno et al., 2009; Conmy et al., 2014], as higher turbidity (max 1.82
NTU) was measured at the most nearshore locations compared to stations offshore. Furthermore, the
high variability of C2 fluorescence distribution in the water column, e.g.,, caused by the mesoscale eddy
formation in the area [Thomsen et al., 2016], is difficult to capture by discrete sampling. Moreover, glider
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measurements and seawater sampling did not always occur at the same time at same location. Therefore,
the correction to particle-scattering and water sampling of higher resolution, coupled to glider measure-
ments, focusing on smaller spatial area would be needed for deriving a robust relationship between WET-
Star CDOM fluorescence and C2.

4, Conclusions

In this study, the distribution of optically active DOM in and above the OMZ off Peru was described for the
first time and we attempted to understand the underlying processes.

Our observations suggest that the ETSP off the coast of Peru represents a highly dynamic system in terms
of DOM distribution and cycling, which is affected not only by biological processes (phytoplankton release,
microbial reworking), but also by variable physical processes (eddy stirring, water mass transport, upwelling,
sediment release, photoreactions). Optical properties of DOM, such as absorption and specific fluorescence
(CDOM, C1-C5), can help to determine the different sources and modification processes of DOM and may
also hint to its potential bioavailability in and above the OMZ.

Continuous CDOM fluorescence measurements with glider mounted sensors provided high spatial and tem-
poral resolution measurements of humic-like DOM (C2) distribution and indicated a strong sediment-water
column coupling on the shelf. Sampling for COOM and FDOM from pore-water and the benthic boundary
layer along with continuous glider-based measurements above the seabed may be a promising approach
for developing quantitative estimates for DOM release from anoxic sediments. In this respect CDOM fluores-
cence, measured by glider mounted sensors, may be used as a tracer for studying benthic-pelagic coupling
in OMZ regions.
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