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The rates, scales, kinds, and combinations of changes occurring now are fundamentally 

different from those at any other time in history; we are changing Earth more rapidly than we 

can understand it. [. . .} In a very real sense, the world is in our hands - and how we handle it 

will determine its composition and dynamics, and our fate. 

P.M Vitousek, HA. Mooney, J. Lubchenco, J.M Melillo (1997) 
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Abstract 

The structure and diversity of marine benthic communities has changed over the last 

decades in the course of increasing eutrophication. Most visibly, mass blooms of opportunistic 

fast-growing macroalgae now occur frequently in eutrophicated coastal waters worldwide. 

These blooms clearly threaten biodiversity and functioning of nearshore ecosystems by 

harming or destroying the perennial vegetation and epi- and endobenthic fauna. Despite 

numerous reports on the occurrence and consequences of macroalgal blooms, a causal 

understanding of this phenomenon is still fragmentary. Although the view of a broad positive 

correlation between macroalgal blooms and nutrient loads is generally accepted, the great 

variability in extent, distribution and composition of these blooms can not be explained or 

predicted with the existing knowledge. The main objective of my study was to provide a 

mechanistic understanding of interacting abiotic and biotic factors that control population 

development and species dominance patterns within macroalgal blooms. 

Most previous studies have focused only on the ecophysiological traits of adult algae in 

relation to increased nutrient loading. In this study, I provide tests of the hypotheses that (I) 

factors controlling early life-cycle stages may be of equal or greater importance than factors 

affecting adult organisms and (II) competition and herbivory, in addition to abiotic conditions, 

are predominant factors controlling the initiation, development, extent, and species 

composition of macroalgal blooms. I focused on two common cosmopolitan macroalgae 

which co-occur in the Baltic Sea (the study area), Pilayella littoralis (Phaeophyceae) and 

Enteromorpha spp. (Chlorophyceae). I studied (1) the phenology of propagules, germlings and 

adults, (2) the initiation of blooms by overwintering and germination of early life stages, (3) 

growth and nutrient kinetics of adult stages, ( 4) the relative effects of four herbivore species 

on early life stages and adult algae. Finally, to provide a conceptual synthesis, I studied (5) the 

combined effects of recruitment, nutrient enrichment, and herbivory on population 

development and competitive interactions in Pilayella and Enteromorpha. 

In field observations from 1995-1998, I found a sharp difference between Enteromorpha 

spp. and Pilayella littoralis populations. Enteromorpha showed a very long and intense 

reproductive period over 7 months with peak densities of 60 million settling propagules m"2d"1 

and continual supply with germlings covering 20-40% of hard substratum from April to 

September. However, adult Enteromorpha achieved only a minor amount of biomass. 
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Pilayella achieved a 10- to 30-fold higher biomass during blooms (up to 15 g DW m-
2

) 

despite a shorter (only 2-3 months) and less intense reproductive period (only 25% peak 

propagule density) than Enteromorpha. In both species, population development originated 

from overwintering microscopic forms in a propagule bank comparable to a terrestrial seed 

bank. Within this propagule bank, Enteromorpha was 10- to 50-fold more abundant (up to 

330 individuals germinating cm-2
) than Pilaye!la. However, germlings and adults of P. 

/ittoralis appeared one month before Enteromorpha spp. in the field. I showed experimentally 

that this difference in timing of population development can be explained by the species­

specific ecophysiological constraints of early life stages. P. littoralis germinated at 5°C 

whereas Enteromorpha spp. required 10° or 15°C for germination. Temperature was the most 

important factor controlling germination in early spring, followed by light intensity and day 

length. In addition, nutrient supply influenced germination rate. Single and combined 

enrichment with nitrate and phosphate increased germination rate in both species, changing 

from P-limitation in early spring to N-limitation in summer. 

Significant differences in the ecophysiology of early life stages of Enteromorpha and 

Pi/aye/la were not observed in adults of the two species. In growth experiments with similar 

designs to germination tests, adult stages of the two species performed very similarly in 

relation to temperature, light, and nutrient enrichment. In addition, no differences in nutrient 

uptake kinetics were observed despite obvious morphological differences. The finely 

branched thallus of Pi/aye/la littoralis has a 10-fold surface area to volume ratio and thus a 

greater metabolically active area compared to the foliose thallus of Enteromorpha intestinalis. 

In both species, uptake of nitrate, ammonium, and phosphate was strongly time dependent 

with highest uptake rates in the first 15-30 min indicating the ability of fast responses to 

nutrient pulses in the environment. 

Taken together, timing and rate of germination and not productivity of adults appeared 

to be the ecophysiological bottleneck for the initiation of macroalgal mass development in 

spring. However, further discrepancies in population development of Enteromorpha and 

Pilayella in the field can not be explained through ecophysiological properties alone. 

Feeding experiments in the laboratory as well as in the field showed that crustacean and 

gastropod mesoherbivores (Idotea chelipes, Gammarus locusta, Littorina saxatilis, L. littorea) 

strongly consumed Enteromorpha and Pi/aye/la as germlings (64-86% reduction of germling 

density cm-2 within 14 d in the field) and adults (8-12% thallus loss d-1 in the field). 



4 Abstract 

Pilayella achieved a 10- to 30-fold higher biomass during blooms (up to 15 g DW m-
2

) 

despite a shorter (only 2-3 months) and less intense reproductive period (only 25% peak 

propagule density) than Enteromorpha. In both species, population development originated 

from overwintering microscopic forms in a propagule bank comparable to a terrestrial seed 

bank. Within this propagule bank, Enteromorpha was 10- to 50-fold more abundant (up to 

330 individuals germinating cm-2
) than Pilaye!la. However, germlings and adults of P. 

/ittoralis appeared one month before Enteromorpha spp. in the field. I showed experimentally 

that this difference in timing of population development can be explained by the species­

specific ecophysiological constraints of early life stages. P. littoralis germinated at 5°C 

whereas Enteromorpha spp. required 10° or 15°C for germination. Temperature was the most 

important factor controlling germination in early spring, followed by light intensity and day 

length. In addition, nutrient supply influenced germination rate. Single and combined 

enrichment with nitrate and phosphate increased germination rate in both species, changing 

from P-limitation in early spring to N-limitation in summer. 

Significant differences in the ecophysiology of early life stages of Enteromorpha and 

Pi/aye/la were not observed in adults of the two species. In growth experiments with similar 

designs to germination tests, adult stages of the two species performed very similarly in 

relation to temperature, light, and nutrient enrichment. In addition, no differences in nutrient 

uptake kinetics were observed despite obvious morphological differences. The finely 

branched thallus of Pi/aye/la littoralis has a 10-fold surface area to volume ratio and thus a 

greater metabolically active area compared to the foliose thallus of Enteromorpha intestinalis. 

In both species, uptake of nitrate, ammonium, and phosphate was strongly time dependent 

with highest uptake rates in the first 15-30 min indicating the ability of fast responses to 

nutrient pulses in the environment. 

Taken together, timing and rate of germination and not productivity of adults appeared 

to be the ecophysiological bottleneck for the initiation of macroalgal mass development in 

spring. However, further discrepancies in population development of Enteromorpha and 

Pilayella in the field can not be explained through ecophysiological properties alone. 

Feeding experiments in the laboratory as well as in the field showed that crustacean and 

gastropod mesoherbivores (Idotea chelipes, Gammarus locusta, Littorina saxatilis, L. littorea) 

strongly consumed Enteromorpha and Pi/aye/la as germlings (64-86% reduction of germling 

density cm-2 within 14 d in the field) and adults (8-12% thallus loss d-1 in the field). 



Abstract 5 

Enteromorpha was the preferred food source over Pi/aye/la at all life stages. Interestingly, the 

relative effects of individual herbivore species varied with algal life stage indicating the 

importance of a diverse herbivore guild for an effective control of bloom-forming algae. Thus, 

in addition to ecophysiological constraints, herbivores, if present, play a decisive role in 

controlling macroalgal mass developments. 

As a synthesis, I performed a factorial field experiment from February to December 

1997 where I studied the combined effects of recruitment from a propagule bank ( dormancy) 

versus recruitment from newly generated propagules (dispersal), herbivory, and nutrient 

enrichment on population development of bloom-forming macroalgae. Complex interactions 

among the treatment factors occurred and clearly determined the outcome of space 

competition between Enteromorpha, Pilayella and other macroalgal species. In early spring, 

initiation of population development was controlled by abiotic factors which determined 

timing and rate of germination out of the propagule bank. Despite the advantage of 

germination at lower temperatures in Pilayella, Enteromorpha first dominated all substrata 

through massive recruitment from the propagule bank. This pattern was drastically altered 

when herbivores became active in late April, indirectly favoring Pilayella and other 

macroalgae by selective consumption of Enteromorpha. In herbivore exclusion plots, 

however, Enteromorpha completely dominated the substratum, preventing all other algae 

from colonizing. When the propagule bank was excluded by sterilization of the substratum, 

recruitment depended on new reproduction which started in May. At this time, herbivores 

were already active, preventing Enteromorpha from colonizing thereby favoring Pilayella 

dominance. Coexistence of both species and other macroalgae occurred if both propagule 

bank and herbivory were left unmanipulated, whereas the propagule bank favored 

Enteromorpha and herbivory favored Pilayella. Continual low-level nutrient enrichment was 

introduced as an additional factor from June to September when ambient nutrient pools were 

largely depleted. Enrichment had minor effects on adult populations. However, new 

recruitment of Enteromorpha and Pilayella in summer was strongly enhanced by nutrient 

enrichment and even overcompensated massive losses by herbivory. Both relative effects of 

nutrients and herbivory on recruitment were more pronounced in Enteromorpha. I conclude 

that herbivores may effectively control mass-blooming macroalgae but that nutrient 

enrichment can override this control mechanism. In summary, abiotic control in early spring 
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shifted to a combined biotic and abiotic control of macroalgal mass blooms in late spring and 

summer, a pattern which is paralleled in plankton and terrestrial plant assemblages. 

In conclusion, the results of my study indicate that the extent of macroalgal blooms and 

species dominance patterns within blooms depend on interactions of abiotic and biotic factors 

controlling early life stages at the beginning of the vegetation period. Tue importance and 

ecological role of a dormant propagule bank as well as the life-stage specific ecophysiological 

and ecological traits of mass-occurring algae were established in this study for the first time. 

My results closely mirror patterns of overwintering of seeds, germination control, seed and 

seedling predation within terrestrial plant communities. I propose that an understanding of 

processes that affect early life stages is indispensable in explaining population dynamics, 

aspects of community structure and important human-induced changes in plant-dominated 

ecosystems. In addition, my results strongly emphasize the importance of herbivore consumer 

diversity for an effective control of mass-occurring macroalgae at different life stages. To 

control macroalgal blooms and related problems it will be necessary to (1) reduce nutrient 

loads and (2) effectively conserve complete nearshore communities with their native food­

web complexity and biodiversity. 
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Zusammenfassung 

Die stetig zunehmende Nahrstoffanreicherung (Eutrophierung) der Gewasser hat 

tiefgreifende Auswirkungen auf die komplexen Lebensgemeinschaften der Klisten und 

Schelfmeere. So wurden im Laufe der letzten Jahrzehnte weltweit Veranderungen in der 

Zusammensetzung mariner Benthosgemeinschaften registriert. Das stark vermehrte Auftreten 

von Massenblliten opportunistischer, schnell wachsender Makroalgen in eutrophierten 

Klistengewassem ist ein besonders problematisches Symptom. In vielen Meeresgebieten 

gefahrden diese Blliten massiv die Biodiversitat und die Funktion klistennaher Okosysteme, 

indem sie die mehrjahrige Vegetation und die epi- und endobenthische Fauna schadigen oder 

zerstoren. Trotz zahlreicher Berichte Uber das Auftreten und die Folgen von 

Makroalgenbltiten ist das kausale Verstandnis dieser Phanomene gering. Es ist zwar allgemein 

akzeptiert, daI3 ein vermehrtes Auftreten von Makroalgenbltiten mit den zunehmenden 

Nahrstofffrachten korreliert ist, jedoch kann die groI3e Variabilitat im AusmaI3, der raumlichen 

und zeitlichen Verteilung und der Artenzusammensetzung dieser Blliten bisher nicht erklart 

oder zuverlassig vorhergesagt werden. Das Hauptanliegen meiner Arbeit war, ein 

grundlegendes Verstandnis der Populationsentwicklung massenbltihender Makroalgen und 

ihrer Dominanzverhaltnisse der Arten zu schaffen. Dabei stand die Frage im Vordergrund, in 

welcher Weise abiotische und biotische Faktoren bei der Steuerung von Massenblliten 

zusammenwirken. 

Die meisten frliheren Studien an massenbllihenden Algen befaI3ten sich allein mit den 

okophysiologischen Ansprlichen adulter Pflanzen. In dieser Arbeit habe ich zusatzlich die 

folgenden, zentralen Hypothesen geprlift: (n frtihe Lebensstadien (Sporen, Keimlinge) und 

Faktoren, welche die Entwicklung frliher Stadien beeinflussen, steuem entscheidend den 

Verlauf von Massenblliten, und (II) zusatzlich zu den abiotischen Umweltbedingungen spielen 

biotische Wechselwirkungen wie Konkurrenz und Herbivorie eine zentrale Rolle fiir die 

Entwicklung, das AusmaI3 und die Artenzusammensetzung von Makroalgenblliten. Ich habe 

mich dabei auf zwei besonders haufige, weltweit verbreitete Makroalgen konzentriert, 

Pi/aye/la littoralis (Phaeophyceae) und Enteromorpha spp. (Chlorophyceae). Diese Arten 

kommen gemeinsam in der Ostsee ( dem Untersuchungsgebiet) vor. Meine Untersuchungen 

umfaI3ten (1) eine quantitative Erfassung des jahreszeitlichen Vorkommens von Sporen, 

Keimlingen und adulten Algen, (2) Experimente zur Entstehung der Algenblilten aus 
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tiberwinternden und auskeimenden friihen Lebensstadien, (3) vergleichende Experimente zum 

Wachstum und zur Nahrstoflkinetik adulter Stadien, (4) Studien zur Konsumption van 

Keimlingen und adulten Algen <lurch vier haufige Herbivore. Als Synthese fiihrte ich (5) ein 

10-monatiges Freilandexperiment <lurch, m dem ich die relative Bedeutung van 

Rekrutierungsprozessen, Herbivorie und der Verfiigbarkeit van Nahrstoffen auf die 

Populationsentwicklung van Pilayella und Enteromorpha und die Wechselwirkungen 

zwischen beiden Arten untersucht habe. 

In Freilanduntersuchungen van 1995-1998 konnte ich deutliche Unterschiede in der 

Populationsentwicklung van Enteromorpha spp. und Pilayella littoralis feststellen. 

Enteromorpha zeigte eine intensive, 7-monatige Reproduktionsperiode mit maximalen 

Siedlungsdichten van 60 Millionen Sporen pro m2 Substrat und Tag und einem daraus 

resultierenden kontinuierlichen Nachschub van Keimlingen, welche van April bis September 

20-40% des verfiigbaren Hartsubstrates bedeckten. Adulte Stadien van Enteromorpha 

erreichten jedoch nur eine geringe Biomasse. Im Gegensatz dazu erlangte Pilayella eine 10-

bis 30-fach hohere Biomasse wahrend der Bltite (bis zu 15 g Trockengewicht pro m2
) trotz 

einer ktirzeren (2-3 Monate) und weniger intensiven Reproduktionsperiode (nur 25% der 

Sporendichte) im Vergleich zu Enteromorpha. Beide Arten waren in ihrer Entwicklung auf 

eine Sporenbank aus tiberwintemden, mikroskopischen Stadien angewiesen. In dieser 

Sporenbank, die funktionell einer terrestrischen Samenbank vergleichbar ist, waren Sporen 

van Enteromorpha 10- bis 50-fach haufiger (bis zu 330 lndividuen keimten pro cm2
) als 

Sporen von Pilayella. Keimlinge und Adulte von P. littoralis traten im Freiland einen Monat 

friiher auf als Enteromorpha spp. In vergleichenden Experimenten konnte ich zeigen, daB 

dieser Unterschied im zeitlichen Verlauf der Populationsentwicklung mit artspezifischen, 

okophysiologischen Ansprtichen der friihen Lebensstadien zu erklaren ist. P. littoralis keimte 

bei 5°C aus, wahrend Enteromorpha spp. 10° bis 15°C zum Auskeimen benotigte. 

Wassertemperatur war der wichtigste Steuerfaktor fiir die Auskeimung zu Beginn des 

Frilhjahrs, gefolgt von Lichtintensitat und Tageslange. Zusatzlich wurde die Auskeimrate van 

der Nahrstoffverfiigbarkeit beeinfluBt. Eine alleinige oder kombinierte Anreicherung mit 

Nitrat und Phosphat steigerte die Auskeimrate beider Arten, wobei eine P-Limitation zu 

Beginn des Frilhjahrs zu einer N-Limitation im Sommer wechselte. 

Interessanterweise konnte ich die deutlichen okophysiologischen Unterschiede zwischen 

fri.ihen Lebensstadien van Enteromorpha und Pilayella nicht zwischen den adulten Stadien 
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beider Arten beobachten. In Wachstumsexperimenten mit analogem Versuchsaufbau zu den 

Keimungsexperimenten verhielten sich die adulten Stadien der beiden Arten sehr ahnlich in 

Bezug auf Temperatur, Licht und Nahrstoffanreicherung. Trotz sehr unterschiedlicher 

Morphologie der Adulten zeigten sich auch beim Vergleich der Nahrstoffkinetiken keine 

Unterschiede. Der feinverzweigte Thallus von Pilayella littoralis hat ein 10-fach groBeres 

Oberflachen : Volumenverhaltnis und damit eine groBere metabolisch aktive Oberflache 

verglichen mit dem flachigen Thallus von Enteromorpha intestinalis. Bei beiden Arten war 

die Aufnahme von Nitrat, Ammonium und Phosphat gleichermaBen zeitabhangig mit 

hochsten Aufnahmeraten in den ersten 15-30 Minuten. Dies ermoglicht beiden Arten eine 

schnelle Reaktion auf kurze Nahrstoffpulse in der Umgebung. 

Zusammenfassend scheinen der saisonale Zeitpunkt der Keimung und die Keimungsrate 

der okophysiologische EngpaB fiir die Entstehung einer Massenbli.ite im Friihjahr zu sein und 

nicht die Produktivitat der adulten Stadien. Die weitere, groBe Diskrepanz in der 

Populationsentwicklung von Enteromorpha und Pilayella im Freiland konnte jedoch nicht 

allein mit okophysiologischen Eigenschaften der Arten erklart werden. 

FraBexperimente im Labor und im Freiland zeigten, daB herbivore Asseln, Flohkrebse 

und Schnecken (Idotea chelipes, Gammarus locusta, Littorina saxatilis, L. littorea) in starkem 

MaBe Keimlinge von Enteromorpha und Pilayella (64-86% Reduktion der Keimlingsdichte 

pro cm2 innerhalb von 14 Tagen im Freiland) und Adulte (8-12% Thallusverlust pro Tag im 

Freiland) konsumierten. Enteromorpha wurde stets bevorzugt gefressen. Dabei wurden die 

verschiedenen Lebensstadien der beiden Algen in unterschiedlichem AusmaB von den 

verschiedenen herbivoren Arten kontrolliert. Aufgrund solcher komplementaren Effekte mag 

eine artenreiche Gilde von Herbivoren eine effektive Kontrolle von massenbltihenden Algen 

erzielen. Somit konnen herbivore Konsumenten, zusatzlich zu abiotischen Umweltfaktoren 

eine entscheidende Rolle in der Kontrolle von Massenentwicklungen von Makroalgen spielen. 

Als Synthese fiihrte ich ein mehrfaktorielles Freilandexperiment <lurch, in dem ich die 

relative Bedeutung der Sporenbank ("dormancy") versus dem Anteil neu produzierter Sporen 

("dispersal"), sowie die Bedeutung von Herbivorie und Nahrstoffanreicherung auf die 

Populationsentwicklung massenbltihender Algen untersuchte. Hierbei traten komplexe 

Wechselwirkungen zwischen den experimentellen Faktoren auf. Diese Wechselwirkungen 

zeigten deutliche Auswirkungen auf das Ergebnis der Konkurrenz zwischen Pilayella, 

Enteromorpha und weiteren Algenarten um das nur limitiert zur Verfiigung stehende Substrat. 
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Im zeitigen Frtihjahr wurde der Beginn der Populationsentwicklung von abiotischen Faktoren 

kontrolliert, welche den Zeitpunkt und die Rate der Auskeimung aus der Sporenbank 

bestimmten. Trotz des Auskeimvorteils von Pi/aye/la bei tieferen Temperaturen dominierte 

zunachst Enteromorpha aufgrund der hohen Abundanz in der Sporenbank das verfiigbare 

Substrat. Dieses Muster wurde Ende April <lurch die zunehmende Aktivitat der Herbivoren 

drastisch verandert. Durch selektiven Wegfral3 von Enteromorpha wurde Pi/aye/la indirekt 

gefordert. Waren Herbivore experimentell ausgeschlossen, dominierte Enteromorpha das 

gesamte Substrat, was die Ansiedlung anderer Algen verhinderte. Wurde die Sporenbank 

<lurch Sterilisation eliminiert, hing die Entwicklung der Algen von der neuen Reproduktion 

ab, welche im Mai begann. Zu diesem Zeitpunkt waren die Herbivoren bereits aktiv, was die 

Ansiedlung von Enteromorpha unterdriickte und dadurch die Dorninanz von Pi/aye/la 

fdrderte. Eine Koexistenz der beiden Arten und weiterer Makroalgen war moglich, wenn 

sowohl die Sporenbank als auch Herbivore unrnanipuliert blieben, wobei die Sporenbank 

Enteromorpha und die Herbivoren Pilayella begilnstigten. Als zusiitzlicher Faktor wurden von 

Juni bis September kontinuierlich Niihrstoffe auf niedrigern Niveau angereichert. In dieser 

Zeit sind die Niihrstoffvorriite in der freien Wassersiiule weitgehend aufgezehrt. Auf die 

adulten Populationen hatte diese Anreicherung nur geringe Auswirkungen. Die Auskeimung 

neu angesiedelter Sporen von Enteromorpha und Pilayella wurde jedoch <lurch die 

Nahrstoffanreicherung deutlich gesteigert, so dal3 massive Verluste <lurch Wegfral3 

kompensiert werden konnten. Dabei zeigten die Niihrstoffanreicherung und Herbivore 

deutlich starkere Effekte auf Enteromorpha. Aus diesen Ergebnissen schliel3e ich, dal3 

herbivore Konsumenten massenbllihende Makroalgen effektiv kontrollieren konnen, dal3 

jedoch eine Erhohung der Niihrstofffrachten diesem Kontrollmechanismus entgegenwirkt. 

Zusammenfassend wurde deutlich, dal3 die abiotische Kontrolle von Makroalgenbltiten zu 

Beginn des Frtihjahrs zu einer kombinierten abiotischen und biotischen Kontrolle im spiiten 

Frlihjahr und im Sommer wechselt, ein Muster, das auch in planktischen und terrestrischen 

Gemeinschaften zu finden ist. 

Die Ergebnisse meiner Arbeit zeigen, dal3 das Ausmal3 von Makroalgenbltiten und die 

Dominanzverhaltnisse der Arten innerhalb einer Bltite entscheidend von Wechselwirkungen 

zwischen abiotischen und biotischen Faktoren abhangen, welche die Verbreitung frliher 

Lebensstadien zu Beginn der Vegetationsperiode kontrollieren. Die Bedeutung und 
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okologische Rolle emer Sporenbank sowie die spezifischen, okophysiologischen und 

okologischen Ansprtiche einzelner Lebensstadien von massenbli.ihenden Algen wurden in 

dieser Studie erstmalig beschrieben. Diese Ergebnisse zeigen gute Obereinstimmungen mit 

analogen Prozessen in terrestrischen Pflanzengemeinschaften (Bedeutung der Samenbank, 

Steuerung der Auskeimung, Fral3 an Samen und Keimlingen). Dies unterstreicht, dal3 ein 

solides Verstandnis von Prozessen, die auf die fiiihen Lebensstadien von Pflanzen einwirken, 

unentbehrlich ist, um wichtige Aspekte der Populationsdynamik und Struktur von 

Pflanzengemeinschaften unter dem Einflul3 anthropogener Storungen zu erklaren und 

vorherzusagen. Aul3erdem weisen meine Ergebnisse darauf hin, wie wichtig die Diversitat 

herbivorer Konsumenten fiir eine effektive Kontrolle von massenbli.ihender Makroalgen auf 

der Ebene verschiedener Lebensstadien ist. Um Makroalgenbltiten und damit verbundene 

Probleme zu kontrollieren, ist es notig (1) die Nahrstofffrachten zu reduzieren und (2) 

komplette, ktistennahe Lebensgemeinschaften in ihrer nattirlichen Komplexitat und 

Biodiversitat zu erhalten. 
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Chapter 1 

General introduction 

PROBLEM 

Although change in community configuration has always been the norm through the 

history of the planet's ecosystems, anthropogenic influences have enormously increased the 

rates and scales of change (Vitousek 1994). In fact, today, most ecosystems of the world are 

human dominated (Vitousek et al. 1997). Global alterations of biogeochemical cycles such as 

those of carbon dioxide and bioavailable nitrogen compounds are widely recognized as 

critical aspects of global change. Today, human activity adds at least as much fixed nitrogen 

to terrestrial ecosystems as do all natural sources combined (Vitousek et al. 1997). Cultural 

eutrophication of aquatic systems, mainly caused by wastewater disposal, atmospheric fallout, 

and fertilizer use (Nixon & Pilson 1983, Larsson et al. 1985, Valiela et al. 1997) has severe 

impacts on marine and freshwater communities worldwide. In coastal regions, the increase of 

nitrogen loads has caused coastal waters to be among the most highly fertilized ecosystems on 

earth (Nixon 1986, Kelly & Levin 1986). 

Coastal marine ecosystems that are dominated and structured by macrophytes with an 

associated high diversity fauna and flora belong to the most productive systems on earth 

comparable to tropical rain forests (Mann 1973). Within the oceans, coastal macrophyte 

communities have key functions in nutrient cycling, erosion control, and habitat building 

providing essential ecosystem services to humanity (Costanza et al. 1997). However, in the 

course of eutrophication, structure and function of coastal communities have changed world­

wide (Ryther & Dunstan 1971, Rosenberg 1985, Raffaelli et al. 1989, Cederwall & Elmgren 

1990, Nixon 1990, Munda 1993, Duarte 1995, Schramm & Nienhuis 1996, Schories et al. 

1997). As a prominent example, in the Baltic Sea, the distributions of large macrophytes such 

as Fucus vesiculosus, Furcellaria lumbricalis and Zostera marina are much more restricted 

than several decades ago (Plinski & Florczyk 1984, Kautsky et al. 1986, Schramm & Nienhuis 

1996), observations which have been attributed to the effects of light limitation and increased 

sedimentation through enhanced phytoplankton blooms (Kautsky et al. 1986, Cederwall & 

Elmgren 1990, Duarte 1995). Concomitantly, there have been marked increases in abundance 

of annual filamentous and foliose macroalgae which have reached alarming proportions 

(Rosenberg 1985, Cederwall & Elmgren 1990, Bonsdorff 1992, Kiirikki & Lehvo 1997). 

Spring blooms of such opportunistic species often develop rapidly into unusual "mass 
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blooms" or "green tides", which in some cases persist over the summer. Thick drifting mats of 

detached algae can cause oxygen deficiency upon decomposition which leads to increasing 

mortality of epi- and endobenthic fauna and perennial flora (Rosenberg 1985, Hull 1987, 

Norkko & Bonsdorff 1996). 

Despite numerous reports and observations of these phenomena around the world 

(Ryther & Dunstan 1971, Rosenberg 1985, Nixon 1990, Schramm & Nienhuis 1996) an 

understanding of the controlling mechanisms of macroalgal blooms is fragmentary (Nixon 

1990). The main objective of this study was to provide such mechanistic understanding for 

two of the most common mass-occurring genera Enteromorpha (Chlorophyceae) and 

Pilayella (Phaeophyceae). 

PREVIOUS WORK AND FURTHER RESEARCH NEEDS 

Macroalgal blooms are generally explained by increased nutrient loads which may 

selectively favor filamentous and foliose macroalgae because of their physiological traits 

(Larsson et al. 1985, Wallentinus 1984, Cederwall & Elmgren 1990, Duarte 1995). These 

opportunistic species are characterized by high rates of nutrient uptake, photosynthesis and 

growth compared to the perennial, late-successional vegetation (Wallentinus 1978, 1984, 

Sand-Jensen & Borum 1991, Duarte 1995). Upon nutrient enrichment, bloom-forming 

macroalgae may gain competitive advantage and overgrow or replace slow-growing 

macrophytes which may suffer from decreased light levels, increased sedimentation of organic 

matter, and oxygen deficiency upon decomposition of macroalgal mats. 

The existing literature on macroalgal blooms is surprisingly uniform in regard to the 

approaches adopted to support this view ( overview in Fletcher 1996, Schramm & Nienhuis 

1996). There is a wealth of information on the distribution and abundance of bloom-forming 

algae. Interpretations of these phenomena are predominantly based on observations, 

descriptive data on species abundance and chemical water parameters, and measurements of 

selected physiological traits. Repeatedly, it has been noted that experimental evidence for the 

mechanisms proposed is often lacking and the predictive power of current concepts on various 

effects of eutrophication is often low (Nixon 1990). 

The overall assumption of a positive correlation between macroalgal blooms and 

eutrophication is generally accepted and substantiated by a still increasing number of records 

of these phenomena around the world. However, the great variability in extent, distribution 

and composition of macroalgal blooms within and between systems can not be explained and 
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thus, based on the existing knowledge reliable predictions on mass occurrences can hardly be 

made (Schories et al. 1997). For example, mass blooms of macroalgae do not occur in all 

eutrophicated areas, implying that some systems are more vulnerable to change than others. 

Also, there is considerable variability within systems. Even when nutrient status remains 

relatively constant over time, the extent of blooms can vary 2-20 fold among years and areas 

in any given system (e.g. North Sea: Schories 1995a, Baltic Sea: Bonsdorff 1992, Schramm et 

al. 1996). Moreover, species dominance pattern can not be explained solely by analysing 

abiotic water parameters and ecophysiological traits of species. Numerous co-occurring 

species often show similar high productivity levels under current abiotic conditions 

(Wallentinus 1978, 1984) and do not explain observed dominance of few or single species out 

of a larger species pool. 

Physiological traits such as nutrient uptake rates, photosynthetic and growth rates have 

been investigated mostly in laboratory experiments using adult plants only. Requirements and 

characteristics of other life-cycle stages are likely to be important in explaining observed 

distribution patterns (reviewed in Santelices 1990, Vadas et al. 1992) but studies regarding 

this topic are largely lacking for bloom-forming macroalgae. For five species of 

Enteromorpha in the North Sea, growth rates of germlings in relation to seasonal change of 

temperature and light explained species dominance patterns in spring but not in summer 

(Lotze 1994). Until now, little knowledge has been gained on the role of species interactions 

in determining composition, timing and distribution of macroalgal blooms. Locally, herbivory 

(Geertz-Hansen et al. 1993), competition (Fong et al. 1993, 1996), and substratum availability 

(Schories & Reise 1993) have been shown to affect macroalgal mass development. 

In many coastal areas, macroalgal blooms are dominated by one or two green algal 

species of the genera Enteromorpha, Ulva or Cladophora (Warwick et al. 1982, Reise 1983, 

Piriou & Menesguen 1992, Lotze 1994, Fong. et al. 1996, Schramm & Nienhuis 1996). In 

contrast to most of the Atlantic and Mediterranean, in many parts of the Baltic Sea the 

filamentous brown alga Pilayella littoralis dominates mass blooms (Plinski & Florczyk 1984, 

Kruk-Dowgiallo 1991, Norkko & Bonsdorff 1996, Kiirikki & Lehvo 1997, this study). In 

addition to P. littoralis, several species of Enteromorpha co-occur in the Baltic (Kautsky 

1982, Wallentinus 1984, Kiirikki & Lehvo 1997) but rarely become dominant. Despite its 

cosmopolitan occurrence (South & Tittley 1986, Clayton 1994 ), blooms dominated by 

Pilayella have been reported rarely from other parts of the world (but see Wilce et al. 1982). 
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To explain the dominance of Pi/aye/la littoralis over Enteromorpha spp. in the Baltic is a 

further goal of this study. 

Taken together, the above observations imply temporal and spatial variability of some 

factors other than nutrient input that may control the extent and composition of macroalgal 

blooms. To enhance our understanding of macroalgal blooms as well as our ability to predict 

the consequences of nutrient input in a variable world Nixon ( 1990) - among others - called 

for an expansion and improvement of experimental work on eutrophication-related 

phenomena, including experimental manipulations in the field. 

QUESTIONS 

In this study, I attempted to answer the following main questions experimentally: 

• Which mechanisms control the initiation, development, extent, and species composition of 

macroalgal blooms? 

• What is the relative importance of abiotic factors (predominantly nutrients, temperature and 

light) versus species interactions such as competition and herbivory? 

• Do early life stages show responses similar to adult algae in relation to abiotic factors and 

herbivory? 

• How is it possible to restrict or reduce mass occurrences and their related problems? 

APPROACH 

To answer these questions I chose an approach integrating the study of physiological 

traits, population processes and species interactions. 

Patterns of species distribution and abundance were first predominantly explained by 

correlation with abiotic parameters and resource availability in the environment in conjunction 

with physiological traits of species (Lewis 1964, Stephenson & Stephenson 1972). When the 

field of community ecology emerged in the 1960s, strong evidence was obtained for the 

importance of species interactions such as competition and predation (Connell 1961, Paine 

1966, Dayton 1971, overview in Diamond & Case 1986). Today, it is accepted that physical 

and biological factors interact in determining population and community structure (Lubchenco 

1980, Keddy 1989, Carpenter 1990, Krebs 1994, Sommer 1994). 

However, in the majority of studies in community ecology, knowledge has been gained 

through investigations of adult organisms only. The importance of factors affecting propagule 
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supply, germination, growth, and survival of early life stages has been often overlooked (Reed 

et al. 1988, Roughgarden et al. 1988, Reed 1990, Fenner 1992, Vadas et al. 1992). In this 

study, I will argue that a knowledge of biotic and abiotic constraints on propagules, germlings 

and adults is required to gain a comprehensive understanding of the ecological control of 

macroalgal blooms. 

OUTLINE OF THESIS 

First, I will describe the phenology of different developmental stages in the life cycle of 

the two mass-occurring macroalgae, Enteromorpha and Pi/aye/la (Chapter 3). In a next step, I 

will provide an understanding of the origin and initiation of macroalgal blooms discussing 

factors that affect overwintering of propagules and their germination in spring (Chapter 4). 

Growth rates, uptake kinetics and species productivity in relation to temperature, light and 

nutrients are treated in Chapter 5. Taken together, Chapter 4 and 5 provide a comparative 

analysis of ecophysiological demands of different life stages in Pi/aye/la and Enteromorpha. 

The response of different life stages to herbivory is compared in Chapter 6. Finally, factorial 

field experiments (Chapter 7) give an overall synthesis including the interactive effects of 

propagule supply, nutrient availability, competition, and herbivory on population development 

of Pilayella and Enteromorpha in the field. General conclusions integrating the results of this 

and other studies and an outlook on further directions are provided in Chapter 8. 
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Chapter 2 

Study site and description of species 

Tue study was carried out in the outer Schlei (54°41' N, 10°0' E), western Baltic Sea, 

Germany (Fig. 2.1). The Schlei is a tideless, 40 km long fjord-like inshore water system of 

glacial origin with an average depth of 2.4 m. The maximum depth of 15 m is reached within 

a deeper central channel. Maasholm Bay, the study site, is the outermost of several shallow 

bays which extend towards both sides of the channel. In this area, wind induced water 

exchanges occur with nutrient rich water from the inner, highly eutrophicated fjord and 

comparatively nutrient poor water from the adjacent Kiel Bight. 
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Fig. 2.1. Map of the study site Maasholm Bay located in the outer Schlei, western Baltic Sea. 
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A biotic environment and water parameters 

In Maasholm Bay, salinity fluctuates with season between 12-18 PSU in summer and 

15-20 PSU in winter. In 1995, biweekly measurements of water temperature at the study site 

showed a maximum of 23.9°C in August and a minimum of -0.7°C in January (Fig. 2.2). In 

1997, sea ice covered the Schlei until the end of January. Measurements from Schleimilnde 

show a more rapid increase of water temperature in early spring of the 1997 season (5 °C 

reached in March) compared to 1995 when 5 °C were reached in April. 
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Fig. 2.2. Water temperature measured (1) biweekly at the study site in Maasholm Bay in 1995 (2) daily in 

Schleimilnde in 1995, and (3) daily in Schleimilnde in 1997. For (2) and (3) I calculated weekly means 

(data (1) from Schramm et al. 1996, (2) and (3) from the meteorological station in Schleswig). 

Light intensity was continually recorded as global flux density (J m-2d-1) at Kiel 

Lighthouse by the meteorological station in Kiel. I transformed weekly means of global flux 

density to photosynthetically active radiation (PAR, 400-700 nm) after Lilning (1990). In 

1995, PAR showed a maximum in the end of June (Fig. 2.3, 66.29 mol photons m-2d- 1
), and a 

minimum in late December (1.77 mol photons m-2d-1). The decrease of light intensity in June 

was correlated with a decrease in temperature. Water temperature changes followed the major 

increase and decrease of photon fluency with a one-month delay. Light attenuation in the 

water column was recorded in 1995 (Schramm et al. 1996). In mid-May, 21 % of surface 



2 Study site and description of species 21 

60 
~ 
~ s 

Ill c: 
0 40 ... 
0 ..s:: 
0... -0 s .......... 20 

~ 
p.. 

0 

J F M A M J J A s 0 N D 

Fig. 2.3. Photosynthetically active radiation {PAR, 400-700 nm) was continually recorded at Kiel 

Lighthouse in 1995 ( calculated weekly means, data from the meteorological station in Kiel). 

photon fluency reached 1.4 m water depth. This value continually decreased to 8% in the 

beginning of June. Afterwards, it oscillated between 4.9 to 15 .1 % until the end of July. 

Phytoplankton and seston loads varied strongly and irregularly with the in- and outflow 

patterns and thus wit~ wind direction (Schramm et al. 1996). In 1995, chlorophyll a fluctuated 

between 1.1-22.5 µg DW r 1
, seston loads varied between 7 .3 and 62.9 mg DW r1

• As a 

measure of productivity in the water, pH-values fluctuated with season from 7.8-8.1 in winter 

and 8.6-9.1 in summer (Schramm et al. 1996). 

In 1995, winter nutrient loads in Maasholm Bay were high and reached maxima of 160 

µmol r 1 nitrate, 12 µmol r 1 ammonium and 2 µmol r 1 phosphate from January to March 1995 

(Fig. 2.4, Schramm et al. 1996). From mid-May to August, nitrate and ammonium were 

depleted and mostly close to zero (0.0-0.3 µmol r1
). Average summer phosphate 

concentrations remained between 0.1 and 0.6 µmol r 1
. In September, ammonium regeneration 

started and concentrations rised rapidly up to 9 µmol r 1 within one month. Nitrate 

concentrations remained low, slightly increasing up to 7 µmol r1 in November and December. 
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Fig. 2.4. Nutrient concentrations in Maasholm Bay in 1995. Calculated means (n=3) of biweekly 

measurements are shown ( data from Schramm et al. 1996). 

Biotic environment 

The bottom at the study site was dominated by sand with scattered rocks and boulders. 

The dominant benthic macrophytes in the study area were Fucus vesiculosus (L.) and 

Potamogeton pectinatus (L.) from 0-1.5 m water depth, and Zostera marina (L.) below 1.2 m 

water depth. In spring and early summer, these macrophytes were overgrown by epiphytic 

Pi/aye/la littoralis ([L.] Kjellm.) (Fig. 2.5, 2.6) and Enteromorpha (L.) spp., which also 

occurred on rocks, boulders and mussel shells. In late spring and summer, mesoherbivores 

were abundant at the site reaching peak densities of a few hundred to thousand individuals m·2 

in the Fucus/Potamogeton zone (Chapter 6, Schramm et al. 1996). The main species were 

isopods: Idotea chelipes (Pallas), /. baltica (Pallas), amphipods: Gammarus spp., mainly G. 

locusta (L.), and periwinkles: Littorina saxatilis (Olivi) and L. littorea (L.). 
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Fig. 2.5. Mass bloom of Pi/aye/la littoralis overgrowing Fucus vesiculosus plants and partly drifting in a 

free-floating stage. 

Fig. 2.6. Mass bloom of Pi/aye/la littoralis drifting and decomposing at the water surface. 
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Species description of Pilayella and Enteromorpha 

In this study, I chose to focus on the two common bloom-forming macroalgae Pilayella 

littoralis and Enteromorpha spp. (Fig. 2.7, 2.8). Enteromorpha and Pilayella are truly 

cosmopolitan genera which can be found abundantly in temperate to polar seas in both 

hemispheres (South & Tittley 1986, Clayton 1994, Clayton et al. 1997). According to the 

functional-form model of Steneck & Dethier (1994), Pilayella belongs to the filamentous 

category and Enteromorpha to the foliose category. Both algae are regarded as opportunistic 

(Littler & Littler 1980) and fast-colonizing forms ("ruderal strategy", Grime 1979). In the 

Baltic Sea, Pilayella littoralis is found in abundance and thrives even under the lowest 

salinities ( <5 PSU) in the Bothnian Bay. E. intestinalis among other species of Enteromorpha 

co-occurs with Pilayella throughout the Baltic Sea up to the Bothnian Bay (Nielsen et al. 

1995). 

Pilayella littoralis (L.) Kjellm. is traditionally placed in the Ectocarpales 

(Phaeophyceae ), but some authors have affiliated it with the Dictyosiphonales or 

Tilopteridales because of the occasional occurrence of longitudinal divisions (Muller & 

Stache 1989 and references therein). Estuarine populations of P. littoralis and populations in 

the brackish Baltic are extremely euryhaline compared to plants from fully marine 

environments (Bolton 1979a, Reed & Barron 1983). The morphology of this epiphytic or 

epilithic species is highly plastic with strong variation among seasonally or spatially separated 

populations (Bolton 1979b ). The filamentous thallus is mostly highly branched, light to dark 

brown and achieves up to 40 cm height (Fig. 2.7). The morphology of Pilayella is easily 

confounded with that of Ectocarpus. P. littoralis can be distinguished from other ectocarpoids 

by the opposite branching pattern of the central axes, the intercalary rows of unilocular and 

plurilocular sporangia, and the occurrence of several discoid plastids in vegetative cells. In 

addition to the most typical attached form, a free-living ball-shaped form was described from 

Nahant Bay, Massachusetts (Wike et al. 1982). 

The life history of P. littoralis is not completely clarified. Usually, an isomorphic and 

heterophasic alternation of a sporophyte and a gametophyte is found in the Ectocarpales. 

However, several deviations from this pattern can occur (Strasburger 1991). In P. littoralis, 

both generations were found to reproduce asexually, and some authors have described a 

diplohaplophasic life history with an alternation of sporophyte and gametophyte, while others 

reported an apomeiotic development (Nygren 1975 and references therein). It is not clear, 
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whether gametophytes are monoecious or dioecious (Kylin 1933). Muller & Stache (1989) 

found no evidence for sexual fusion of zoids released by unilocular and plurilocular sporangia, 

and zoids germinated and developed into plants of the parent type. 

Fig. 2. 7. Adult Pi/aye/la littoralis from the study site (size of the bar= 1 cm). 

I 

Fig. 2.8. Adult Enteromorpha intestinalis from the study site (size of the bar= 1 cm). 
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In the outer Schlei, I identified three co-occurring Enteromorpha species (Ulvales, 

Chlorophyceae) during 1995-1998. In all years, E. intestinalis (L.) Link clearly dominated 

adult biomass (>90%) compared with E. prolifera (O.F. Muell.) J. Agardh and E. clathrata 

(Roth) Grev. Also within the stage of propagules and germlings, E. intestinalis was most 

abundant. However, germlings of E. intestinalis and E. prolifera can only be distinguished 

microscopically on an individual basis. Counting hundreds to thousands of germlings per 

experiment, I usually had to treat these two species together, assuming that they may behave 

similarly during early life stages. Thus, in this thesis, early life stages are not separated into 

species and are treated as Enteromorpha spp. 

The thallus of Enteromorpha intestinalis (Fig. 2.8) is a hollow tube which is composed 

of one cell layer. In E. intestinalis, the thallus is unbranched, tubular and inflated, up to 80 cm 

long and 4 cm wide with a short stipe. Cells are not arranged in rows and contain cap-like 

chloroplasts (Koeman 1985, Lotze 1994). Enteromorpha species generally show an 

isomorphic and diplohaplophasic life history, but both generations are also able to reproduce 

asexually, and gametophytes are dioecious (Koeman 1985). 

Terminology of life-cycle stages 

In this thesis, I use the following terminology (in italics) for different life-cycle stages 

(Fig. 2.9). All unicellular reproductive units (e.g. sexual or asexual zoids) are called 

propagu,les. In Pilayella, propagules show a size of 5-6 µm in longitudinal diameter (Kylin 

1933), and 6-10 µm in Enteromorpha (Koeman 1985). Dispersed propagules which attach to 

the substratum are generally called settlers (Connell 1985). As long as these settlers do not 

further develop into an erect filament I call them settled propagules. These settled propagules 

germinate into rhizoids and erect filaments which are called germlings (Fig. 2.10). Larger 

germlings (>5 mm length) start branching in P. littoralis and E. prolifera, and in E. 

intestinalis the hollow tubular thallus starts to inflate (Kylin 1933, Keeman 1985). After 

germlings exceed a size of 2 cm in Pilayella and 4 cm in Enteromorpha they can become 

fertile (Kylin 1933, Koeman 1985) and thus, they are then called adults. 
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a b c d 

Fig. 2.9. Morphology of different life-cycle stages in Pilayella littoralis (P) and Enteromorpha intestinalis 

(E): (a) propagules, (b) settled propagule, (c) one wk old germling with rhizoids and erect filament (band 

care similar for both species), (d) 3 wk old germlings (altered after Kylin 1933, Koeman 1985, Muller & 

Stache 1989). For adults see Fig. 2.7 and 2.8. Size of bar= 10 µm in a and b, 100 µm in c, and 1 mm in d. 

Fig. 2.10. Germlings of Enteromorpha spp. (E), Pilayella littoralis (P), and Ulvopsis grevillei (U) 

developed on ceramic tiles for 2 wk (size of the bar= 1 mm). 
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Chapter 3 

Phenology of different life stages: 

Pilayella littoralis and Enteromorpha spp. 

3.1. Introduction 

In order to understand the ecological control of mass blooms of opportunistic 

macroalgae, it may be insufficient to only quantify distribution of adult biomass, as it is the 

norm throughout the literature (e.g. Plinski & Florczyk 1984, Lavery et al. 1991, Sfriso et al. 

1992, Munda 1993). One major factor influencing distribution and abundance of species is 

variation in processes that affect recruitment such as propagule supply, settlement, 

germination and survival to the adult stage (Dean et al. 1989, Reed 1990). Many earlier 

studies on community structure have been criticized for not incorporating recruitment 

variability (Underwood & Denley 1984) and a field termed "supply-side ecology" has emerged 

(Underwood & Fairweather 1989). 

In this study, I hypothesized that controlling mechanisms may influence population 

development of bloom-forming macroalgae at earlier life stages. Dispersal of propagules, their 

settlement and survival may be critical processes that potentially reduce actual germling 

density as suggested for some perennial macroalgae (reviewed in Santelices 1990, Vadas et al. 

1992). Quantitative knowledge on propagule supply, germling density and their relative 

importance in population development of annual macroalgae is rare, but first studies exist for 

mass-occurring Enteromorpha in the North Sea (Lotze 1994, Schories 1995a). 

In the Baltic Sea, macroalgal blooms are dominated by the filamentous brown alga 

Pilayel/a littoralis while green algae such as Enteromorpha seem to be of minor importance 

(Chapter 1). In my examination of this unusual dominance of Pi/aye/la over Enteromorpha, I 

first compared the seasonal distribution and abundance of three different life stages: (1) 

propagules, (2) germlings, and (3) adults of both genera at the experimental site. To quantify 

variation between years, I compared the phenology of two vegetation periods, 1995 and 1997. 

Furthermore, since nutrient loads are currently discussed as the main explanation of 

macroalgal blooms, I compared seasonal tissue nutrient concentration in adult Pi/aye/la and 

Enteromorpha to analyze possible differences in nutrient limitation. 
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3.2. :\laterial & methods 

Propagule supply 

3 Phenology of different life stages 

To obtain a relative measure of the amount of viable macroalgal propagules in the water 

column, I sampled propagule settlement on ceramic tiles at 2-4 wk intervals. I used ceramic 

tiles because of their surface structure which is suitable for algal settlement. Settlement on 

tiles may be not the same as on natural rock surfaces, but my objective was to make a relative 

comparison between propagule supply of Enteromorpha and Pi/aye/la and not a demographic 

budget. Six ceramic tiles (IOxlO cm) were vertically hung in the water column 50 cm above 

the sediment surface (water depth was 70 cm) for 4 h (10.00-14.00, after Schories I 995a). 

This method allows settlement of positive phototactic zoids and gametes on their way to the 

water surface and of negative phototactic zygotes on their way back from the water surface. 

After transportation to the laboratory in a cooler, tiles were maintained in 500 ml PES (Starr 

& Zeikus 1987) at constant temperature of I 5°C and constant light intensity of I 00 µmol 

photons m·2s·1 in 14:10 h L:D. Here, I define these temperature and light conditions as 

"standard T/L-conditions", a term which will be used throughout this thesis. Germanium 

dioxide (Ge02) was added to the medium to suppress growth of diatoms in a concentration of 

0.5 mg rt which is the standard concentration used throughout the study. This Ge02-

concentration was rather low but effective within the short cultivation times I used, and was 

sufficiently low to avoid inhibitory effects on Pi/aye/la (Wang 1993). After 7 d of cultivation, 

germlings (>200 µm length) were counted using a dissecting microscope with an integrated 

grid (mean of 10 randomly chosen subsamples of 4x4 mm per tile). This method provides 

only a minimum estimate of propagule supply because of potential mortality during dispersal, 

settlement, and early recruitment. 

Because no propagules of Pi/aye/la littoralis were detected using this method, I slightly 

modified the sampling procedure in 1997. First, assuming that propagule release may vary 

with daytime, I increased the incubation period to 24 h. Second, after germination experiments 

in 1995 I considered the preference of Pilayella for lower germination temperatures. Thus, I 

cultivated tiles at l0°C in 1997. 

Germling density 

In 1995, I determined germling density every 4 wk on 30 randomly collected rocks ( ea. 

5 cm in diameter) from 30 to 70 cm water depth along a 200 m transect at the study site. In 
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contrast to germlings developed from propagules on tiles (method above), germlings on rocks 

were mostly growing too densely to give good estimates of individual numbers. Instead, I 

estimated percent cover of germlings using a dissecting microscope with an integrated grid in 

5 randomly chosen subsamples ( 1Ox10 mm) per rock. Since larger sand grains represent a 

second important substratum for germination of some macroalgae (Schories l 995a) I also 

quantified germling density on sand grains every 4 wk. Therefore, I sampled 10 sediment 

cores (3 cm in diameter) of the upper 5 mm of sediment with a modified plastic syringe. Then 

I spread out these sediment samples in petri dishes (9 cm in diameter) and counted all 

germlings using a dissecting microscope. After May, I had to cease sampling sand grains since 

the sediment surface was covered with thick mats of organic matter. 

Adult biomass and CINIP-content 

Adult algal biomass (mg DW m-2
) was determined monthly at the study site in 1995. 

Within the zone dominated by Fucus vesiculosus and Potamogeton pectinatus (30-150 cm 

water depth), I placed 6 quadrats (25x25 cm) randomly along a 100 m transect line (vertical to 

the coast line) and sampled them with a framed sampling net. I detached all epiphytic and 

epilithic macroalgae from their substratum (most biomass referred to epiphytes on Fucus), 

sorted them by species which were then dried for 48 h at 70°C for dry weight determination. 

Afterwards, C/N-content of dried Enteromorpha and Pi/aye/la was determined in 3 replicates 

using a C/N-Analyzer (Fisons Instruments, NA 1500 N). For the analysis of P-content dried 

algal material was combusted (550°C for 2 h), eluted with 5 ml H20 and 0.1 ml H2S04 (4.5 n) 

and then P04-P was photometrically analyzed with a continuous flow analyzer using the 

methods ofGrasshoffet al. (1986). 

In early spring, I observed high loads of epiphytic diatoms on Pi/aye/la. To quantify 

epiphytic diatom biomass I detached them from their host algae using filtered kiwi (Actinidia 

chinensis) fruit extract (3:1 vol. extract:H20), which dissolves the stalks of settled diatoms 

(Booth 1981). I determined DW of the host Pi/aye/la and their epiphytic diatoms separately as 

described above. This was carried out in February, May and June 1995 with 5 replicates 

respectively. 

For comparison of the extent ofmacroalgal blooms in different years, I determined adult 

algal biomass in 1997 but on Fucus only. I used the same method but samples were taken 

along a 300 m transect line parallel to the coast line at about 50 to 70 cm water depth. 



3.3. Results 

Propagule supply 

3 Phenology of different life stages 

Over the entire vegetation period from March to October 1995, viable propagules of 

Enteromorpha spp. occurred abundantly in the water column (Fig. 3.la). Peak densities were 

found in April at 1.2 million settling propagu!es m·2h·1
• In 1995, I did not detect propagules of 

Pi/aye/la littoralis in any month, sampling between 10.00-14.00. In 1997, with a 24-h 

sampling procedure, propagules of both, Enteromorpha spp. and Pi/aye/la !ittoralis, settled on 

the tiles (Fig. 3.2a). This may indicate that Pi/aye/la released spores into the water column 

significantly earlier than 10.00 or later than 14.00. Both species initiated reproduction in May 

1997 which was one month later than in 1995 for Enteromorpha. The reproductive period of 

Pi/aye/la was short and had ended already in July whereas Enteromorpha propagules were 

present until the end of October. In Pi!ayel/a, there was a maximum of 15 million settling 

propagules m·2d·1
, which was only a quarter of the maximal amount in Enteromorpha (60 

million m"2d" 1
) in July. Assuming that Enteromorpha propagules settle around the day with 

equal density, peak values of 1995 reached 28.8 million settling propagules m"2d" 1 (this 

corresponds to 1.2 million m·2h- 1
) which is in accordance with values found in June 1997. 

Germling density 

At the beginning of the vegetation period in March and April 1995, Pilayella gerrnlings 

occurred earlier at the study site than Enteromorpha gerrnlings (Fig. 3 .I b ). On hard 

substratum (rocks), Pi/aye/la covered up to 80% of space in March but declined rapidly 

towards zero cover in June. In contrast, Enteromorpha gerrnlings appeared in April and 

persisted with 20 to 40% cover on rocks over the entire summer until October. On sand 

grains, density of Enteromorpha gerrnlings (93750 m"2
) was 3 times higher than in Pi/aye/la 

(37500 m"2
) in April (Table 3.1) but, amounts decreased in both species towards June when 

sediment became increasingly covered with organic matter. 
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Fig. 3.1. Occurrence of 3 life stages of Enteromorpha spp. and Pi/aye/la lilloralis at the study site in 

1995: (a) Density of viable propagules settling per h from the water column onto ceramic tiles exposed for 

4 h from I 0.00-14.00. No propagules of P. li1toralis were detected using this method. (b) Percent cover of 

germlings on rocks. (c) Biomass of adults, mainly epiphytically growing on Fucus vesicu/osus. Data are 

means ± l SE (n=6 in a, c and n=30 in b ). 
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Table 3.1. Density of germlings of Enteromorpho spp. and Pi/aye/la lilloralis on sand grains (0-5 mm sediment 

depth) in 1995 in Maasholm Bay (n=IO). 

Month 

March 

April 

May 

June 

Density of germlings [* I 03 m"2
] 

Enteromorpha spp. Pilayel/a littoralis 

Mean SE Mean SE 

0.00 0.00 12.50 8.33 

93.75 

43.75 

0.00 

36.38 

16.27 

0.00 

37.50 

31.25 

0.00 

21.25 

25.09 

0.00 

Adult biomass and C/NIP-content 

In 1995, P. /ittora/is formed a maximal biomass of 15.7 g DW m-2 in April (Fig. 3.lc) 

mainly epiphytically on Fucus vesicu/osus. Later in the year, adult biomass declined steadily, 

and Pi/aye/la disappeared in July. Maximum biomass of Enteromorpha spp. was only 1.4 g 

DW m·2 in July and this species disappeared as an epiphyte on Fucus in August. In February 

and June, almost no epiphytic diatoms grew on Pilayella. Biomass ratio of diatom : Pi/aye/la 

g DW was 0.0:1 in February and 0.09(±0.02):1 in June. In May, high loads of epiphytic 

diatoms with a biomass ratio of 3.17(±0.74): I occurred indicating the spring diatom bloom. 

Hence, Pi/aye/la biomass is compounded with diatoms in spring. In contrast, very few 

epiphytic diatoms were observed on Enteromorpha. 

C/N/P-content of adult tissues in Enteromorpha and Pilayella was highly fluctuating in 

summer 1995 (Table 3.2). N-content varied in a similar fashion in both species, ranging from 

1.6 to 3.3% of DW in Pi/aye/la and 1.4 to 3. I% of DW in Enteromorpha. P-content fluctuated 

greater in Pi/aye Ila (0.09-0.87% of DW) than in Enteromorpha (0.15-0.28% of DW). Overall, 

a trend of decreasing C:N- and N:P-ratios was observed with time. 

In 1997, macroalgal biomass was lower than in 1995 (Fig. 3.2b ). Pilayella first appeared 

in March 1997 with minor amounts of 0.3 g DW m·2 and achieved a maximum biomass in 

June with 6 g DW m·2
• Adult Enteromorpha only appeared in July with a biomass of 0.2 g 

DWm"2
• 
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Fig. 3.2. Occurrence of propagules and adults of Enteromorpha spp. and Pi/aye/la lilloralis in l 997: (a) 

Densities of viable propagules settling per d from the water column onto ceramic tiles exposed for 24 h at 

the study site. (b) Biomass of adults growing epiphytically on Fucus vesiculosus. Data are means± l SE 

(n-6). 
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Table 3.2. Tissue content of C, N, and P of adult thalli of Enteromorpha intestina/i.s and Pi/aye/la litlora/is 

sampled at Maasholm Bay in 1995 (n=3) and calculated atomic ratios of C:N and N:P (data compiled from 

Schramm et al. J 996). 

Date Tissue content [% of D W] Atomic ratios 

c SE N SE p SE C:N N:P 

Pi/ayella /ittora/is 

10.04.95 22.940 0.3/0 2.757 0.020 0.219 0.001 270 28 

10.05.95 17.720 0.559 1.557 0.050 0.086 0.000 535 40 

24.05.95 24.290 0.773 2.810 0.145 0.264 0.001 237 24 

07.06.95 I 7.250 0.923 1.750 0.082 0.136 0.001 327 28 

14.06.95 32.702 1.129 3.309 0.212 0.368 0.012 230 20 

22.06.95 21.080 0.258 2.217 0.029 0.253 0.001 215 19 

06.07.95 14.583 1.184 1.653 0.149 0.869 0.000 43 4 

Enteromorpha intestinalis 

24.05.95 35.547 0.460 3.067 0.041 0.160 0.000 574 42 

14.06.95 28.514 1.059 2.143 0.073 0.198 0.014 373 24 

22.06.95 30.613 0.330 1.440 0.030 0.151 0.009 524 21 

19.07.95 33.487 0.243 1.730 0.010 0.149 0.000 580 26 

15.08.95 27.126 1.372 1.588 0.077 0.281 0.051 250 13 

3.4. Discussion 

Observations on the phenology of mass-occurring macroalgae showed that there is a 

consistent discrepancy in the seasonal distribution and abundance of propagules, germlings 

and adults of Pilayella littoralis (relatively low propagule supply and high adult biomass) and 

Enteromorpha spp. (high propagule supply and low adult biomass). 

Enteromorpha produced huge volumes of propagules over 7 month with extremely high 

peak densities of 60 million settling propagules m·2d·1
• Similar seasonal occurrence and 

densities of settling Enteromorpha propagules in the range of 105 to 107 m'2d- 1 were reported 

from the Wadden Sea (Schories ! 995a). This classifies Enteromorpha as an opportunistic 

macroalgae with a high reproductive output reflected in high abundance of propagules in the 

water column (Littler & Littler 1980, Hoffmann & Ugarte 1985). Pilayella was characterized 

by a smaller supply of propagules (25% peak density of settling propagules) and a shorter 

reproductive period (March to May) compared to Enteromorpha. 

Enteromorpha propagules developed into a dense population of germlings covering 20-

40% of hard substratum from April to September. Surprisingly, these germlings did not 
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develop into a corresponding adult biomass. In Pi/aye/la however, the germling peak in 

March 1995 was followed by a corresponding adult peak one month later with a JO-fold 

higher peak biomass (up to 15 g DW m"2
) than Enteromorpha. Thus, propagule and germling 

supply were not directly coupled with the occurrence of adults in Enteromorpha. Similarly, in 

the German Wadden Sea, the extent of green algal mats was not correlated with the amount of 

viable propagules (Schories l 995a). Obviously, additional factors may affect bloom-forming 

macroalgae before they reach the adult stage which will be explored in the next chapters. 

Adult biomass varied between years with a peak biomass in Pi/aye/la of 15 g OW m·2 in 

1995 and 6 g DW m·
2 

in 1997. In both years, Pi/aye/la dominated with a 10- to 30-fold higher 

biomass than Enteromorpha. This dominance pattern appears to be typical for most of the 

Baltic Sea (Kruk-Dowgiallo 1991, Norkko & Bonsdorff 1996, Schramm et al. 1996). Strong 

and mostly unexplained variation in the extent of macroalgal blooms between years and areas 

is common in eutrophicated coastal waters, e.g. 10-800 g OW m·2 in the Baltic (Bonsdorff 

1992, this study), 20-600 g DW m·2 in the Wadden Sea (Lotze 1994, Reise & Siebert 1994, 

Schories I 995a), 0.2-400 g DW m·2 in coastal waters around Europe (Charlier & Lonhienne 

1996). 

Tissue nutrient concentrations of adult Enteromorpha and Pi/aye/la showed a broad 

trend of increasing N-limitation (N:P < 30:1, Atkinson & Smith 1983) towards late spring and 

summer when ambient nitrogen pools were largely depleted (Chapter 2, Fig. 2.4). However, 

during summer, C/N/P-ratios strongly fluctuated indicating the availability of nutrient pulses 

which may be quickly utilized by the algae (Pickering et al. 1993). From this I raise the 

following questions: (I) Would further nutrient enrichment enhance macroalgal productivity? 

(2) Do Pi/aye/la and Enteromorpha differ in their ability to use short term nutrient pulses 

versus long term nutrient enrichment? (3) Do nutrient concentrations and other potential 

control mechanisms show different effects on various life stages? 
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Chapter 4 

Early life stages: ovenvintering and germination 

4.1. Introduction 

Population development of annual plants in temperate ecosystems strongly depends on 

the availability of a recruitment source in spring and further, on survival and growth of 

germlings into the adult stage. In contrast to terrestrial plant communities for which there is a 

large body of empirical work on seed banks, germination control, and seedling ecology 

(Fenner 1992), similar topics have received little or no attention in marine macroalgae. Only 

recently have banks of microscopic macroalgal propagules been identified (Chapman 1986, 

Santelices et al. 1995) and compared with terrestrial seed banks (Hoffmann & Santelices 

1991). However, knowledge on the functioning of marine propagule banks and their role in 

community recovery and regulation is lacking so far (Hoffmann & Santelices 1991). For some 

selected perennial species, it has been suggested that factors affecting early life stages may be 

of equal or greater importance than factors affecting adult thalli (reviewed in Santelices 1990, 

Vadas et al. 1992). This has been quantified through matrix modeling for a Fucus distichus 

population in western Canada indicating that the absence of a germling bank can reduce yearly 

population growth rate by 83% (Ang & De Wreede 1993). Early life stages such as propagules 

and germlings are very delicate structures, lacking some of the resistance mechanisms ( e.g. 

structural defenses against desiccation or herbivory) found in adult individuals (Lubchenco 

1983, Brawley & Johnson 1991 ). Therefore, they are likely to represent critical phases in the 

life cycle of macroalgae and other organisms (V adas et al. 1992). 

In this chapter, I address differences in the overwintering and germination of early life 

stages of Enteromorpha spp. and Pi/aye/la littora/is in the Baltic. I asked whether species­

speci fie differences occur already at the initiation of algal population development in spring. 

As a first step, I quantified pools of overwintering propagules as sources for the initiation of 

population development of Enteromorpha and Pi/aye/la. I hypothesized that differences in 

seasonal timing of germination may be an important variable controlling species composition 

in macroalgal blooms. Here, I define germination as development of a settled propagule into a 

macroscopic, erect germling. As possible cues for germling development I studied isolated 
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and combined effects of (I) temperature, (2) light intensity, (3) day length, and (4) nutrient 

enrichment on germination of Enteromorpha spp. and Pilayella littora/is. 

4.2. Material & methods 

O,;envintering 

In winter 1994-95, I did not observe any overwintering adult thalli of Enteromorpha 

spp. and Pilayella littoralis. Therefore, I assumed that overwintering occurred in the stage of 

microscopic forms on various substrata. Five different types of substrata were sampled in the 

field in December 1994: (I) dead shells of Mytilus edu/is, (2) sand grains from the sediment 

surface to 5 mm sediment depth, (3) small rocks, (4) thalli of Fucus vesicu/osus, and (5) 

leaves of Zostera marina. Because no germlings or other microscopic forms were visible with 

a dissecting microscope (40x) prior to cultivation in the laboratory, I assumed that propagules 

did not germinate in winter or that they overwintered in the stage of settled propagules or 

small germlings composed only of a few cells. All 5 substrata were cultivated with 6 

replicates in 500 ml PES with Ge02 added at standard T/L-conditions. After 2 wk all 

germlings (>200 µm length) per cm2 area of substratum were counted and germling density 

was determined. 

Germination in relation to temperature and light intensity 

To explain the different temporal pattern of distribution and abundance of 

Enteromorpha spp. and P. littoralis in the field (Chapter 3), I tested whether germination rates 

of the species differ as a function of temperature or light intensity, or a combination of these 

factors. In February 1995, I collected shells of Myti/us edu/is with attached overwintering 

propagules in the field and cultivated them in the laboratory in 500 ml PES with Ge02 added 

at three temperatures (5, JO, 15°C) combined with three light intensities (50, 100, 200 µmol 

photons m·
2
s·

1 
in a 14:10 h L:D) in a completely crossed design (n=5 for each treatment 

combination). The chosen light intensities correspond to daily sums of 2.52, 5.04 and 10.08 

mol photons m
2 

respectively. After 12 d of cultivation, I counted developed germlings (mean 

of 3 subsamples of 4x4 mm per shell) with a dissecting microscope and an integrated grid. 

Two-way ANOVAs (factors: light, temperature, 3x3) on germling densities were performed 

for each species separately. Post-hoe comparisons were done according to Tukey-Kramer 
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procedure. Data were log-transformed to achieve homogeneity of variances. Throughout the 

study, homogeneity of variances was checked by Cochran· s test, and the relative effect size of 

the experimental factors was calculated as omega-squared (co2) for a fixed-factor model and 

transformed to the percentage of explained variance (Howell 1992). 

Germination in relation to day length and light intensity 

The life cycles of many algal species are controlled by photoperiod (Liining 1990). 

Hence, I asked whether light intensity or day length is the key variable that may control timing 

and extent of germination in spring in Enteromorpha spp. and Pilayella littora/is. In the end 

of April 1995, 6 ceramic tiles were incubated for 4 h in the field to allow settlement of 

propagules. I cultivated these tiles at l 5°C in 500 ml PES with Ge02 added at three day 

lengths (8:16, 12:12, 16:8 L:D) combined with three light intensities (50, 100, 200 pmol 

photons m·
2
s-1

) in a completely crossed design (n=5 for each treatment combination). 

Corresponding daily sums of photon fluency are shown in Table 4.1. 

Table 4.1. Daily swns of photon 

fluency in mol photons m·2d·1 

resulting from the combined 

manipulation of day lengths and 

light intensities. 

Day length (h L:D) 

8:16 
12:12 

16:8 

Light intensity (pmol photons m"2s" 1
) 

50 100 200 

1.44 

2.16 
2.88 

2.88 
4.32 

5.76 

5.67 
8.64 

11.52 

After I O d of cultivation, I counted developed germlings (mean of 6 subsamples of 4x4 

mm per tile) with a dissecting microscope and an integrated grid and mean germling density 

per cm
2 

was calculated. Since only Enteromorpha germlings occurred in sufficient amounts to 

allow for statistical analysis, a two-way ANOV A (factors: day length, light intensity, 3x3) was 

performed on germling density for this species only. Data were log-transformed to achieve 

homogeneity of variances. Post- hoe comparisons were done according to Tukey-Kramer and 

with planned mean comparisons (t-Test). 

Germination in relation to nutrient enrichment 

Ambient nutrient concentrations in the water column decline in spnng through 

consumption by phytoplankton spring blooms and annual macroalgal development. I was 

interested to know (I) whether germination rates of Enteromorpha spp. and Pilayella littora/is 
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in early spring and summer could be enhanced by nutrient enrichment, (2) whether 

enhancement differs between the two species, and (3) whether enhancement differs among 

months. Because nutrient levels in the Schlei are highly variable (Chapter 2, Fig. 2.4) and 

characterized by wind driven pulses of high nitrogen concentrations from inside the Schlei, I 

only focused on effects of short-time pulse concentrations in the laboratory in 1995. Effects of 

long-time, low-level enrichment were studied as a part of a factorial field experiment in 1997 

(Chapter 7). 

In February 1995, I collected shells of Mytilus edulis with attached overwintering 

propagules from the field and used them as a source for germination. In April and July, when 

new reproduction had started, I used ceramic tiles which were incubated in the Schlei for 4 h. 

These substrata were then cultivated in the laboratory in 500 ml freshly collected and 0.2 µm 

filtered seawater from the study site at standard T/L-conditions. Background seawater nutrient 

levels were determined with an autoanalyzer using the methods of Grasshoff et al. ( 1986). 

Nutrient pulses were simulated with single enrichments at the beginning of the experiment 

with nitrate/phosphate 0/0, 0/30, 500/0, 500/30 µmol r1
• The levels of 500 µmol r1 nitrate and 

30 µmol r1 phosphate represent high but realistic pulse concentrations which can be found in 

the hypertrophic waters of the inner Schlei fjord (Schramm et al. 1996). Besides, they 

correspond to levels used in the standard PES, which is assumed to provide optimal 

concentrations for macroalgal growth. After 10 d of cultivation, I counted developed 

gerrnlings (mean of 3 subsamples of 4x4 mm per shell, and of 6 subsamples per tile, n=5) 

with a dissecting microscope. Germling density cm-2 and the relative increase in gerrnling 

density caused by different nutrient enrichment treatments was calculated. Two-way 

ANOV As (factors: phosphate, nitrate, 2x2) were performed on germling density for each 

species separately in February because species did not develop independently on shells. In 

April and July, only Enteromorpha gerrnlings developed in sufficient amounts on 

experimental tiles. Data were log- or sqrt(log)-transformed to achieve homogeneity of 

variances. 

4.3. Results 

Overwintering 

In December 1994, both species overwintered in the form of settled propagules on all 

substrata tested, but Enteromorpha propagules consistently exceeded Pilayella propagule 
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densities by 10- to 50-fold (Fig. 4.1 ). I found maximum densities of gennlings developing 

from overwintering propagules on rocks, wruch seemed by far the most suitable substratum 

for settling or overwintering (with up to 330 propagules cm·2 for Enteromorpha, and only up 

to 6.7 propagules cm·2 for Pi/aye/la). Since Fucus vesicu/osus has been growing during 

autumn and winter, germlings developed on older thallus parts only. Propagules of Petalonia 

fascia, Ectocarpus sp., U/othrix sp., and Ulvopsis grevi//ei occurred in minor amounts on the 

substrata tested. 
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Fig. 4.1. Overwintering of settled propagules of Enteromorpha spp. and Pi/aye/la littoralis on different 

substrata collected in the field in December 1994. Densities were determined as developed gerrnlings per 

cm2 after 2 wk cultivation in the laboratory and plotted on a log-scale (means± I SE, n=6). 

'Jermination in relation to temperature and light intensity 

In February 1995, germination rate of P. littoralis in relation to the combined effects of 

emperature and light intensity showed no significant differences among treatments (Fig. 4.2, 
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Table 4.2). Mean germling density averaged over all treatments was 2.91 (±0.85) cm·
2 

(n~45). 

Jn contrast, germination rate of Enteromorpha spp. was significantly affected by temperature 

and light intensity (Fig. 4.2, Table 4.2). A maximum germling density of 190.0 (± 76.31) cm·2 

occurred at I 0°C in combination with 200 µmol photons m·2s·1
• In Enteromorpha spp., post­

hoc comparisons among temperature treatments showed significantly higher (p<O.O I) 

germination rates at 10 and 15°C compared to 5°C. Light intensity positively influenced 

germination rates which were significantly higher (p<0.01) at 200 µmol photons m·2s· 1 

compared to 50 µmol photons m·2s·1
• 

120 Light intensity 
Pilayella littoralis in µmol m·2s·1 - 50 

80 ... _. 100 
.......... 200 

N 

' E 
t.) 40 
.f' 
"' t:: -·..:.:..-. (!) 

"O 
0 -":'""-

tll) 

] 300 

E Enteromorpha spp. 
(!) 

0 
200 

100 
---- I 

--~ ------I ---
0 --

5°C l0°C 15°C 

Temperature 

Fig. 4.2. Gennination of Enteromorpha spp. and Pi/aye/la littora/is at 3 temperatures fully crossed with 3 

light intensities in February 1995. Shells of Mytilus edu/is with attached overwintering propagules were 

used as a source for gennination. Density of developed gennlings was detennined after I O d of cultivation 

(mean± I SE, n=5). Refer to Table 4.2 for statistical analysis. 
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Since both species germinated together on the tiles their development may be not 

independent of each other. As far as comparison is possible, marked differences occurred 

between species. Enteromorpha spp. showed distinctly higher germination rates at I O and 

l5°C combined with 100 and 200 µmol photons m"2s" 1 than P. littoralis. In contrast, at 5°C, P. 

littoralis showed distinctly higher germination rates than Enteromorpha at all light intensities 

with a maximwn of 42.92 (±27.35) germlings cm·2 at 200 µmol photons m·2s·1• Enteromorpha 

spp. reached only 1.25 (±1.25) germlings cm·2 at 5°C. In Enteromorpha, temperature was the 

factor with the greatest effect size (Table 4.2). The results from this laboratory experiment are 

in close agreement with my findings from the field where germlings of P. /ittoralis appeared 

earlier in spring than those of Enteromorpha spp. (Chapter 3, Fig. 3.1 b). 

Table 4.2. Results of two-way ANOV As on germination rate of Enteromorpha spp. and Pi/aye/la /i11oralis in 

relation to temperature and light intensity. Data were log-transformed to meet the assumption of homogeneity of 

variances. The relative effect size is expressed as per cent variance explained. 

Source of variation 

Enteromorpha spp. 
Temperature (T) 

Light intensity (L) 

TxL 
Residual 

Pilayella littoralis 

Temperature (T) 
Light intensity (L) 
TxL 
Residual 

df 

2 
2 
4 

36 

2 
2 

4 

36 

MS 

4.181 
0.827 
0.166 
0.100 

0.363 
0.146 

0.136 
0.196 

F-ratio 

41.737 
8.260 
1.655 

1.851 
0.744 

0.694 

Germination in relation to day length and light intensity 

P-value 

0.0001 
0.0011 
0.1819 

0.1718 
0.4822 

0.6012 

Variance(%) 

56.7 
10.1 

In Enteromorpha spp., day length and light intensity significantly interacted (p=0.0075) 

on germination rate (Fig. 4.3, Table 4.3), whereas in Pilayella germling densities were too low 

to be statistically analyzed. Post-hoe comparisons indicated that germination rate was 

significantly lower (p<0.01) at short days (8:16 h L:D) than at 12:12 h and 16:8 h L:D. 

Similarly, germination rate was significantly lower (p<0.01) at 50 µmol photons m·2s·1 than at 

100 and 200 µmol photons m·2s·1
• Comparing the main factors, light intensity was more 

important explaining 52.8% of total variance than day length (25.6%). 
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Planned mean comparison between treatment combinations with identical daily sums of 

2.88 mol photons m"2d"1 (Table 4.1) showed no differences in germination rates, but at daily 

sums of 5.76 mol photons m·2d·1 germination rate was significantly lower (p=0.0105) at 

8:16/200 than at 16:8/ 100 (L:D/µmol photons m"2s"1 
respectively). 

25 
Light:dark rhythm 

1--~~~~~~~~~~~~~~~---. 

<';le 20 
(.) 

0 
.in 15 
I:: 
0 

"O 

o0 10 .S -§ 
0 

c., 5 

~ 8:16 

- · - 12:12 
..... .. 16:8 --1 --... //t~~:~~~~~~~.-. ··· ······ I 

/ / 

I 
... ·· / 

.·· / 
/ 

/ 

r 
50 100 150 

Light intensity in µmol photons m·2s·1 

200 

Fig. 4.3. Germination of Enteromorpha spp. at three day lengths fully crossed with three light intensities 

in April 1995. Ceramic tiles with settled propagules were used as a source for germination. Density of 

developed germlings was determined after I O d of cultivation (mean ± I SE, n=S). One extreme outlier 

was deleted from the data set. Refer to Table 4.3 for statistical analysis. 

Table 4.3. Results of a two-way ANO VA on germination rate of Enteromorpha spp. in relation to day length and 

light intensity. Data were log-transfonned to meet the assumption of homogeneity of variances. The relative 

effect size is expressed as per cent variance explained. I deleted one extreme outlier from the data set. 

Source of variation df MS F-ratio P-value Variance (%) 

Day length (D) 2 1.046 34.408 0.0001 25.6 
Light intensity (L) 2 2 .129 69.997 0.0001 52.8 
DxL 4 0.126 4.144 0.0075 4.8 
Residual 35 0.030 
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Germination in relation to nutrient enrichment 

In February 1995, germination of Enteromorpha spp. and Pi/aye/la littoralis from 

dormant propagules on mussel shells was significantly enhanced by nutrient enrichment (Fig. 

4.4, Table 4.4). In both species, phosphate enrichment showed a greater effect on germination 

rate than nitrate enrichment and explained 72% and 83% of total variance in P. littoral is and 

Enteromorpha spp. respectively. While phosphate enrichment resulted in an 8-fold increase of 

germling density in Pi/aye/la and an 11-fold increase in Enteromorpha, nitrate enrichment 

increased germling densities only 2-fold in both species. Combined enrichment with both 

nutrients caused a 15-fold increase in Pi/aye/la and a 20-fold increase in Enteromorpha. Since 

background nitrogen levels were rather high in February (50 µmol r1 nitrate, 7 µmol r1 

ammonium), germination occurred without any nutrient enrichment. 

100 

Pi/aye/la 
littoralis 

No 

Phosphate enrichment 
l===:J No c::J:il Yes 

Yes No 

Nitrate enrichment 

Enteromorpha 
spp. 

Yes 

Fig. 4.4. Germination of Enteromorpha spp. and Pi/aye/la littoralis in relation to a single pulse 

enrichment of phosphate (30 µmol r1
) and nitrate (500 µmol r1

) in February 1995. Shells of Mytilus 

edulis with attached overwintering propagules were used as a source for germination. Density of 

developed germlings was determined after 10 d of cultivation and plotted on a log-scale (mean± lSE, 

n=5). BackgroW1d seawater nutrient levels correspond to 50 µmol r1 nitrate, 7 µmol r 1 ammonium, 1 

µmol r1 phosphate. Refer to Table 4.4 for statistical analysis. 
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In April and July, Pi/aye/la only genninated in minor amounts on tiles and data were 

insufficient for analysis. In both months, Enteromorpha showed only small germination rates 

without nutrient enrichment (Fig. 4.5). While phosphate enrichment alone enhanced 

germination rate 11-fold in April, this had no effect at all in July. Nitrate enrichment alone 

resulted in a 50-fold increase in germination rate in April and a 12-fold increase in July. 

Combined enrichment of both nutrients showed an enhancement of germination rate by a 

factor of 556 in April and 1324 in July. Thus, the significant interactions between the two 

nutrient treatments (Table 4.4) became more pronounced in July (p=0.0001) than in April 

(p=0.0373). 
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Fig. 4.5. Gennination of Enteromorpha spp. in relation to a single pulse enrichment of phosphate (30 

µmol r1
) and nitrate (500 µmol r 1

) in April and July 1995. Ceramic tiles with newly settled propagules 

were used as a source for germination. Density of developed germlings was determined after 1 O d of 

cultivation and plotted on a log-scale (mean± l SE, n=5). Background seawater nutrient levels correspond 

to 3.3 µmol r1 
nitrate, 0.9 µmol r1 

ammonium, 0.1 µmol r 1 phosphate in April and 0.5, 0.4, 0.5 in July 

respectively. Refer to Table 4.4 for statistical analysis. 
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Table 4.4 Results of two-way ANOV As on germination rate of Enteromorpha spp. and Pi/aye/la littorali.s in 

relation to nutnent enrichment in February, April, and July 1995. Nutrient treatments were uoenriched or 

enriched with either 30 µmol r• phosphate or 500 µmol r• nitrate or both. Data were log-transformed in 

February, and sqrt(log)-transformcd in April and July to meet the assumption of homogeneity of variances. The 

relative effect size is expressed as per cent variance explained. 

Source of variation df MS F-ratio P-value Variance(%) 

Pi/aye/la littoralis - February 
Phosphate (P) 0.779 66.138 0.0001 71.8 

Nitrate (N) 1 0.069 5.870 0.0276 5.3 

PxN 0.020 1.684 0.2127 

Residual 16 0.012 

Enteromorpha spp. - February 

Phosphate (P) 1 2.663 118.192 0.0001 83.0 
Nitrate (N) 1 0.113 5.032 0.0394 2.8 

PxN 1 0.023 1.010 0.3298 
Residual 16 0.023 

Enteromorpha spp. - April 

Phosphate (P) 1 0.558 36.955 0.0001 19.1 
Nitrate (N) 1.951 129.232 0.0001 68.1 
PxN 1 0.078 5.161 0.0373 2.2 
Residual 16 0.015 

Enteromorpha spp. - July 

Phosphate (P) 1.047 88.748 0.0001 22.3 
Nitrate (N) 2.343 198.697 0.0001 50.3 
PxN 1.047 88.748 0.0001 22.3 
Residual 16 0.012 

4.4. Discussion 

My observations and experiments suggest that early life stages may be of critical 

importance for population dynamics of opportunistic macroalgae in the Baltic Sea. Based on 

my results, I propose that overwintering in a propagule bank and the timing of germination out 

of this bank in early spring may be important processes controlling the initiation of macroalgal 

blooms and species dominance patterns within these blooms. 
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Overwintering ofpropagules (or seeds) is a strategy of surviving unfavorable conditions 

in an environment with pronounced seasonality. In so-called aseasonal annuals (Sears & 

Wike 1975), adult thalli survive in the deeper subtidal zone and act as a source for a new 

generation. In seasonal annuals, recruitment in spring occurs from overwintering adult thalli 

or thallus fragments which persist buried in the sediment of soft bottoms (Fletcher & Callow 

1992, Schories l 995b), from surviving crustose life phases (Liining 1990), or from 

overwintering cryptic microscopic forms which may have analogous functions to terrestrial 

seed banks (Chapman 1986, Hoffinann & Santelices 1991). Investigations of these "banks of 

microscopic forms" are rare. A detailed characterization of such an assemblage of microscopic 

forms, their species composition and turnover, was done for tide pools on a Chilean shoreline 

(Santelices et al. 1995). In these tide pools, both perennial and ephemeral species (a total of 25 

taxa) were present as microscopic forms. The authors suggested that the bank seemed to be 

more important for the survival of perennial species because of their low-colonizing capacity. 

At my study site, both P. littoralis and Enteromorpha spp. were absent as macroscopic thalli 

in winter. I showed that both species overwinter abundantly in the form of cryptic microscopic 

forms (Fig. 4.1 ). These forms, which were not visible under a dissecting microscope, may be 

settled but not germinated propagules, or propagules which have developed into microscopic 

thalli which suspend growth while environmental conditions are unfavorable. Propagules of 

Enteromorpha have been found to build up a solid cell wall immediately after attachment to a 

substratum, and this may provide physical protection (Fletcher & Callow 1992). In the 

majority of macroalgae investigated, germination proceeds within 24 h after attachment with 

no obvious resting stages (Santelices 1990, Fletcher & Callow 1992). However, dormancy has 

been reported in the genus Dictyota after initial establishment of propagules (Richardson 

1979). In the Wadden Sea, large quantities of Enteromorpha propagules have been found to 

overwinter in sediments (Schories l 995b ). Other dormancy strategies involve gametophytes, 

germlings and algal embryos (reviewed by Hoffmann & Santelices 1991). Some of these 

forms may persist for extended periods of time. Settled propagules of Enteromorpha spp. have 

been reported to survive > 10 months in darkness at 5°C and l 5°C but survival rates decreased 

with time and increasing temperature (Schories l 995a). Beside their dark resistance, 

Enteromorpha propagules were able to tolerate low temperatures and even frost (Kylin 1947, 

Schories l 995a). 
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Various substrata can be used for overwintering. I found that rocks supported 50- to 

250-fold higher densities of overwintering propagules than macroph)te substrata (Fucus 

vesiculosus and Zostera marina) and appeared to be the most important substratum for 

overwintering at my study site. On soft bottoms, the shells of the mud snail Hydrobia ulvae 

have been reported to be the most suitable substratum for overwintering of Enteromorpha spp. 

(Schories ! 995b ). 

On five substrata, I found I 0- to 50-fold higher overwintering propagule densities for 

Enteromorpha compared to Pi/aye/la. These high densities may be due to the massive 

reproductive output of Enteromorpha during summer (Chapter 3) which was several times 

higher and lasted longer than in Pi/aye Ila. Given the relatively low densities of overwintering 

propagules and the high cover of germlings observed in early spring, it is likely that Pi/ayella 

initiates reproduction shortly after germination. Indeed, laboratory cultures reproduced within 

<I month after germination (Millier & Stache 1989). In addition, other overwintering 

strategies may occur in Pilayella. In Newfoundland, P. /ittora/is has been found year-round in 

the subtidal, but as a distinct summer annual in the intertidal zone (Steele & Whittick 1991 ). 

Similar distribution patterns, along with a reproductive period in winter has been reported for 

P. /ittoralis in Finland (Kiirikki & Lehvo 1997). In this study, I found no evidence for 

recruitment from overwintering thalli. 

In spring, the timing of germination may be important since the environmental 

conditions become less favorable later in the year. As a regular pattern in the Baltic (and many 

temperate aquatic systems), high winter nutrient concentrations decline steeply in late spring, 

when the phytoplankton bloom begins (Liining 1990). Subsequently, high phytoplankton 

densities attenuate incoming light and light limitation may occur, depending on water depth. 

Moreover, in late spring, mesoherbivores increase in abundance and activity (Chapter 6, 

Schramm et al. 1996). With rising temperature, light intensity and daylength, development of 

spring annuals is initiated, whereas the limiting factor is probably species specific. Favorable 

abiotic and biotic conditions may define a "recruitment window" of optimal germination and 

growth conditions (Deysher & Dean 1986). At my study site, Pi/aye/la occurred earlier in the 

germling stage than Enteromorpha (Chapter 3, Fig. 3.lb). This pattern can be explained by an 

earlier "recruitment window" of Pilayella, which germinated abundantly at 5°C (Fig. 4.2), a 

temperature which was not exceeded in the field until the end of March (Chapter 2, Fig. 2.2). 

Germination of Enteromorpha was largely inhibited at this temperature. In my laboratory 
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experiments, Enteromorpha germinated massively only at I O and l 5°C. This pattern was 

paralleled in the field, when I 0°C was exceeded in the end of April. Thus, Pi/aye/la germlings 

had a time advantage of at least one month before Enteromorpha appeared. Pre-emptive space 

competition may occur among developing Pilayella and Enteromorpha (see Chapter 7). 

Similarly, space pre-emption has been found among other competing macroalgae (Hruby & 

Norton 1979, Sousa 1979, Reed 1990). 

Germination of Enteromorpha spp. and Pi/aye/la littoralis in spnng seems to be 

controlled by abiotic factors, among which temperature rather than light tends to be the 

limiting factor. This is in concordance with terrestrial communities where predominantly 

temperature and to some extent light intensity triggers germination of seeds in spring (Fenner 

1992). Within the factor light, light intensity was more important than day length in affecting 

germination of Enteromorpha. Germination seemed not to be triggered by photoperiod since it 

occurred independently of short or long day conditions. In other algae such as Spyridia 

filamentosa, germination may be suppressed in short day conditions (Provasoli 1965). In my 

study, light intensity and day length showed interacting effects on germination. At low light 

levels (daily sum of2.88 mol photons m·2d·1), additive effects of day length and light intensity 

occurred and thus only total amount of photon fluency was important for germination of 

Enteromorpha spp. In contrast, at higher light levels (daily sums of 5.76 mol photons m·2d-1)_ 

long days (16:8 L:D) combined with I 00 µmol photons m·2s·1 were more advantageous than 

short days (8: 16 L:D) combined with 200 µmol photons m"2s" 1
• Thus, I conclude that germ ling 

development is light saturated above I 00 µmol photons m·2s·1 and further increase in 

germination rate only occurs by an elongation of day length and not by increasing light 

intensity. Since germination rates were similar at 12:12 and 16:8 L:D combined with 100 or 

200 µmol m"2s" 1, I assume that light saturation can occur quite early in the year in March, 

depending on the water depth (Chapter 2, Fig. 2.3). Light saturation at 80 to 120 µmol 

photons m·2s·1 at a temperature of 15°C has also been reported for germlings of several 

Enteromorpha species in the North Sea (Lotze 1994). However, light saturation of 

germination is species dependent and in some algae germination is not affected by the light 

level at all (reviewed in Santelices 1990). 

As soon as temperature and light conditions become favorable in early spring and thus 

open the recruitment window, nutrient concentrations in the water decline (Chapter 2, Fig. 

2.4). In 1995, phosphate concentrations were close to zero from mid March until mid June, 
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nitrate and ammonium were depleted from mid May to the end of July. Germination of 

Pi/aye/la and Enteromorpha occurred under field nutrient concentrations in February, but 

germination rate could potentially be enhanced by further enrichment with phosphate (8- and 

I I-fold), nitrate (2-fold) or both (15- and 20-fold) in Pi/aye/la and Enteromorpha 

respectively. Thus, increasing eutrophication with resulting enhanced winter nutrient 

concentrations may cause a further increase in spring recruitment of annual algae if 

temperature and light conditions are favorable. Nitrogen limitation was evident for 

development of early stages in Enteromorpha in the North Sea (Lotze 1994, Schories 1995a), 

and for the productivity of adult algae in many coastal marine ecosystems (e.g. Ryther & 

Dunstan 1971, Chapman & Craigie 1977, Howarth 1988, Fong et al. 1993). However, 

Hoffmann et al. (1984) described only minor effects of nutrient concentrations on germination 

of Lessonia nigrescens and discussed the use of internal nutrient reserves for germination. In 

my study, the potential P-limitation in February shifted to strong N-limitation in spring and 

summer. Seasonal variation of nutrient limitation caused by seasonal variability of several 

environmental factors has been suggested from physiological experiments ( e.g. Duke et al. 

1986, 1989, Fong et al. 1993). In April and July, germination of Enteromorpha did not occur 

in batch culture with unenriched seawater from the study site. However, in the field, germlings 

of Enteromorpha occurred continually, covering 20-40% of hard substratum. Water motion 

has been shown to enhance nutrient availability (Parker 1981). Moreover, irregular nutrient 

pulses may be used for algal germination in the field. Such pulses can be caused by nutrient 

recycling through the detritus food chain (Pregnall & Miller 1988, Lavery & McComb 1991, 

Hanisak 1993), herbivore excretion (Williams & Carpenter 1988), nutrient flux out of the 

sediment (Christiansen et al. 1992, Brennan & Wilson 1993), wind-driven upwelling (Kiirikki 

& Blomster 1996), or wind-driven nutrient outflow from the inner Schlei fjord (Chapter 2). 

The amount of overwintering propagules as well as high germination rates suggest that 

Enteromorpha has a good potential to form a mass bloom in spring. However, after successful 

germination Enteromorpha still remained largely inhibited at the germling stage, which 

seemed to be a bottleneck in the development of this species. This is in contrast to Pi/aye/la, 

where the germling peak was followed by a large corresponding adult biomass (Chapter 3, 

Fig. 3.lc). I hypothesize that intense consumption of Enteromorpha germlings by abundant 

mesoherbivores may suppress the development of adult Enteromorpha. This is tested in 

Chapter 6. 
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In other areas, temperatures exceeding 24 °C were found to inhibit germination m 

Enteromorpha (Schories 1995a) and temperature from 28-31 °C were reported to be the upper 

survival level of this cosmopolitan species (Bischoff & Wieneke 1993). In comparison, 

summer die back of Ulva lactuca has been explained by reduced productivity at 25°C (Rivers 

& Peckol 1995). However, these temperatures were never reached at my study site and thus, 

summer temperature may not limit Enteromorpha development. In contrast, Pilayella 

appeared to be less resistant towards higher temperatures. At my study site in 1995-1998, 

adults of this species regularly disappeared in July when temperature exceeded 20°C and in 

1995, germination rate decreased already in May and June. Strong reduction of growth at 

20°C compared with 5-15°C and an upper survival limit between 21-25°C was reported for 

this species by Bischoff & Wieneke (1993). Field experiments in 1997 and 1998 showed that 

herbivores and nutrient enrichment had no effect on the sudden disintegration and 

disappearance of Pilayella in July suggesting that temperatures above 20°C are most likely the 

limiting factor for further development of this species (Chapter 7, Worm & Lotze 

unpublished). An additional limiting factor could be elevated irradiance or direct exposure to 

sunlight which was reported to be damaging or lethal to germlings of some macroalgal species 

(Santelices 1990), but may occur rarely in the tideless Baltic Sea. Another possibility causing 

the summer die back of Pilayella may be an epidemic infection by marine fungi or viruses 

(Wilce et al. 1982, Maier et al. in press). 

Overall, the recruitment window of Enteromorpha and Pilayella is limited by abiotic 

(temperature> light) control of macroalgal development in early spring which may shift to a 

combined abiotic (resource control, high temperature) and biotic (herbivory, competition) 

control in late spring and summer. Within this pattern significant differences between early 

life stages of Enteromorpha and Pilayella occurred and are hypothesized to be important for 

competitive abilities and species dominance pattern. 
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Chapter 5 

Comparative ecophysiology of adult stages: growth response and 

nutrient kinetics 

5.1. Introduction 

Ecophysiological traits of species m conjunction with abiotic parameters in the 

environment defme their potential distribution in space and time (fundamental niche, Keddy 

1989). However, their actual distribution and abundance in the environment (realized niche) is 

modified by ecological traits such as competitive abilities and susceptibility to herbivores 

(Lubchenco 1980, Keddy 1989, Carpenter 1990, Krebs 1994). In this chapter, I analyze 

selected ecophysiological traits of co-occurring Enteromorpha and Pi/aye/la to test whether 

differences in physiology can explain the observed dominance of Pilayella over 

Enteromorpha in the Baltic Sea. The most obvious difference comparing the brackish Baltic 

Sea with fully marine areas where macroalgal blooms occur is the low salinity in the former. It 

has been demonstrated however, that productivity levels of Pi/aye/la and Enteromorpha are 

not reduced under brackish salinity conditions in comparison with fully marine sites (Bolton 

l 979a, Reed & Russell 1979). Thus, the unusual dominance of Pi/aye/la can not be explained 

by better adaptation to reduced salinity. 

Some important physiological properties in algae are thought to be coupled to 

morphological attributes such as thallus differentiation and structure (Littler & Littler 1980, 

Steneck & Dethier 1994), SAN-ratio (Rosenberg & Ramus 1984, Nielsen & Sand-Jensen 

1990), and size class (Hein et al. 1995). The results of former studies were synthesized in 

functional-group classifications which have the capacity to explain some aspects in species 

distribution patterns such as zonation or succession (Littler & Littler 1980, Steneck & Dethier 

1994, Hein et al. 1995). On the other hand, there is evidence that species with similar 

morphology can perform very differently. As an example, several Enteromorpha species 

occurring in a seasonal succession within green algal mats in the North Sea had different 

temperature and light optima for growth (Lotze 1994). In addition to such interspecific 

differences, intraspecific differences in productivity levels have been described, mainly in 

algae with a heteromorphic life cycle (Littler & Littler 1980). As a major hypothesis of my 

study, I propose further intraspecific differences on the ecophysiological and ecological level 
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among different life stages of the same species. Here, I test whether interspecific differences 

in ecophysiological demands of Enteromorpha and Pilayella germlings (Chapter 4) are also 

found in adult stages. 

Pilayella with its filamentous, highly branched thalli has a SAN-ratio more than 10-

fold higher than that of the foliose thalli of Enteromorpha intestinalis (Nielsen & Sand-Jensen 

1990, own measurements). Hence, Pilayella has a greater metabolically active surface area 

than Enteromorpha which is generally thought to translate into higher nutrient uptake and 

possibly growth rates (Rosenberg & Ramus 1984, Carpenter 1990). Comparison of literature 

data on nutrient uptake or growth rates for both genera is not possible since productivity 

studies on Pilayella are rare and have not been performed under experimental conditions 

comparable to those used for Enteromorpha. The only comparative nutrient uptake study 

available showed similar uptake rates of nitrogen and phosphorus in Enteromorpha 

ahlneriana and Pilayella littoralis (Wallentinus 1984). However, uptake kinetics of E. 

ahlneriana with its highly branched thallus may not be similar to E. intestinalis, which is the 

most abundant Enteromorpha species at my study site. Moreover, temperature varied among 

the experiments performed by Wallentinus (1984) and time dependency of nutrient uptake 

rates was not considered (Pedersen 1994 ). 

In this chapter, I asked whether the dominance of Pilayella over Enteromorpha may be 

explained by differences in growth rates or nutrient kinetics. Within this framework, I 

compared the ecophysiological demands of adult stages with those of early developmental 

stages (Chapter 4). Towards this goal, I designed tests very similar to the germination 

experiments (Chapter 4) and checked growth rates of adult thalli of E. intestinalis and P. 

littoral is in relation to (I) temperature and light intensity, and (2) nutrient enrichment. 

Nutrient uptake rates were determined at several incubation times. In this way, I searched for 

species-specific differences in fast responses towards short nutrient pulses which are common 

in eutrophic fjords and estuaries such as the study site. 

5.2. Material & methods 

All studies were conducted in June 1995 when both species were abundant in the field 

and the high epiphytic diatom load on Pilayella had disappeared (Chapter 3). Thus, a possible 

confounding with physiological properties of the epiphytic diatoms was avoided. 
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Growth rate in relation to temperature and light intensity 

In the beginning of June, I determined growth rates of Pi/aye/la littoralis and 

Enteromorpha intestina/is at three temperatures (5, 10, 15°C) fully crossed with three light 

intensities (50, 100, 200 µmol photons m·2s·1 in a 14:10 h L:D). Algal material without 

macroscopic epiphytes was freshly collected in the field. Treatments (n=5 for each treatment 

combination) started with a standard algal biomass of 0.1 g WW in 750 ml PES with Ge02 

added. I determined algal wet weight (WW) in a standardized manner with a specially 

constructed centrifuge, operating as a spin drier, removing adherent water for 30 s with 

constant r.p.m. Media were changed every 2 d. After 10 d, algal material was reweighed and 

relative growth rates (RGR = (In w1 - In w2) I (ti - t1), with w = wet weight, t = time) were 

calculated. Statistical analysis was performed by 3-way ANOVA (factors: light, temperature, 

species, 3x3x2) on the dependent variable RGR. Data were log-transformed to achieve 

homogeneity of variances. Post- hoe comparisons were done according to Tukey-Kramer 

procedure. 

Growth rate in relation to nutrient enrichment 

Growth experiments testing nutrient effects on E. intestinalis and P. /ittora/is were 

designed closely to resemble the experiment described above. Levels of nutrient enrichment 

were chosen as high, short-time pulse concentrations which were about 5 times higher than 

maximum concentrations measured in the outer Schlei (Chapter 2). Effects oflong-time, low­

level enrichment were studied as a part of a factorial field experiment in 1997 (Chapter 7). 

In a first trial, thalli of Enteromorpha and Pi/aye/la were exposed to 500 µmol r1 nitrate 

(as NaN03), 50 µmol r1 ammonium (as ~Cl), and 5 µmol r1 urea (CO(NH2)i) separately. 

Treatments with no nitrogen enrichment were run as controls. To prevent P-limitation 30 

µmol r1 phosphate (as KH2P04) was added to all treatments. In a further trial, combined 

enrichments with 30 µmol r1 phosphate and 500 µmol r1 nitrate were performed. Each 

treatment (n=5) was started with a standard weight (described above) of 0.1 g algal WW in 

750 ml freshly collected, 0.2 µm filtered seawater with nutrients with Ge02 added. 

Background seawater levels were 0.09 µmol r1 phosphate, 3.49 µmol r1 nitrate, 0.80 µmol r1 

ammonium, and 0.61 µmol r1 urea. Media were replaced every 2 d. All tests were run at 

standard T /L-conditions. After 10 d, algal material was reweighed and RGR was calculated. 



58 5 Comparative ecophysiology of adult stages 

Statistical analysis was performed by 3-way ANOVA (factors: species, nitrate, 

phosphate, 2x2x2) and 2-way ANOV A (factors: species, nitrogen 2x2) on the dependent 

variable RGR. Untransformed data met the asswnption of homogeneity of variances. 

Nutrient uptake 

In the end of June, I determined uptake rates of nitrate, arnrnoniwn and phosphate of 

Enteromorpha intestinalis and Pi/aye/la littoralis by using a combination of the perturbation 

and the multiple flask method as recommended by Pedersen (1994). While the multiple flask 

incubation with different substrate concentrations and short incubation time is the best method 

for estimation of kinetic parameters in nutrient-limited algae, the combination with the 

perturbation methods provides important information on the time dependency of nutrient 

uptake (Harrison et al. 1989, Pedersen 1994). Time intervals and concentrations used in the 

following experiments were chosen according to the results of a pilot study (unpublished 

data). 

Uptake experiments with nitrate (NaN03) and ammoniwn <:Nl-4CI) were started with 

initial nutrient concentrations of 0, 5, 10, 20, 50, 100, 200, 500 µmol 1'1• Although I found no 

evidence for potential phosphorus limitation of nitrogen uptake in the literature all 

experiments received a precautionary moderate phosphate (KH2P04) addition of 3 µmol !'1 to 

avoid P-shortage. Uptake rate was followed by analysing nitrate concentrations in the media at 

0, 30, 60, 120, 180 min in the nitrate experiment and ammoniwn at 0, 15, 30, 45, 60, 120 min 

in the ammonium experiment. The phosphate uptake experiment was started with initial 

concentrations of 0, 3, 6, 12, 18, 30 µmol 1'1 phosphate and an additional 50 µmol !'1 nitrate 

and 50 µmol 1'1 
ammoniwn and was sampled at 0, 60, 120, 240 min. Uptake rates measured 

with this experimental design represent transient responses to nutrient pulses ( surge uptake) 

and should be distinguished from acclimated ( steady state) uptake rates measured in 

continuous culture. 

Fresh algal material was collected at the study site and stored in filtered seawater from 

the site for I d at standard T/L-conditions until initiation of the experiment. C/N/P analysis 

indicated N-limitation of algal tissue (N:P=I 9 in Pi/aye/la and 21 in Enteromorpha, Chapter 

3, Table 3.2, 22.06.95). For all uptake experiments, I used freshly collected and 0.2 µm 

filtered seawater from the study site with corresponding background nutrient levels of 0.54 

µmol 1'
1 

phosphate, 0.41 µmol 1'1 nitrate, 0.56 µmol r' ammonium. All uptake tests were run 
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at !5°C and 200 µmol m·2s· 1 1ight intensity from 12.00-14.00 or 15.00. Nitrate and ammonium 

uptake rates were determined in I L sterilized glass bottles, phosphate uptake was determined 

in IL sterilized PETG (polyethylene terephthalate copolyester, Nalgene) bottles because of 

phosphate absorption by glass. For adaptation of algae to experimental conditions, I filled 

beakers with I L of 0.2 µm filtered seawater and added I g of algal WW (entire thalli) 2 h in 

advance. Aeration provided continual mixing of the medium. After this adaptive period, I 

removed the algae carefully with a sieve, added nutrients from a concentrated stock solution, 

mixed carefully, took the first nutrient sample (I ml) with an Eppendorf pipette (using I tip 

per sample), and put the algae back into the beaker. The nutrient samples were diluted and 

analyzed immediately with an autoanalyzer using the methods of Grasshoff et al. (1986). After 

the last sampling, algae were dried for 48 h at 70°C for DW determination. In each uptake 

experiment a control without algal material and with addition of I 00 µmol r1 nitrate, 

ammonium or 12 µmol 1"1 phosphate was run. No autogenic changes in substrate 

concentrations were detected over the experimental period. 

Uptake rates (V) were calculated from changes in substrate concentrations during each 

sampling interval as µmol h" 1g" 1 DW: V = ((S0 , vol0) - (S1 , vol1)) I (t , W), where S0 is the 

actual substrate concentration at the beginning and S, at the end of a sampling interval, vol0 is 

the water volume at the beginning and vol1 at the end of a sampling interval, t is the time of 

the sampling interval and W is the algal biomass as g DW. Uptake rates were plotted against 

S0 for each time interval separately and fitted to the Michaelis-Menten equation, V = (V max , 

S0) I (Km + S0), using nonlinear least-squares regression. This provided estimates of V max 

(maximum uptake rate), Km (half-saturation constant), and a (initial slope= V max I Km)-

F or statistical analysis of differences between uptake rates of Pi/aye/la and 

Enteromorpha I performed AN COVA (analysis of covariance) on V max and Km with "species" 

as the main factor and "time interval" as a covariate for each nutrient tested. Homogeneity of 

slopes was tested by analysing the interaction "species x time interval" which was not 

significant (p>0.05) for all three nutrients and thus met the assumptions for ANCOV A. 

Estimated kinetic parameters V max, Km, and a given in the literature were mostly gained 

by lineralization of the Michaelis-Menten equation. For data comparison, I also calculated 

V max and Km by linear regression using DeBoer plot (SN vs. S) and Eadie-Hofstee plot (V vs. 

V/S) which may be the most reliable lineralizations for parameter estimation (Dowd & Riggs 

1965). However, the variables plotted against each other in these linear transformations are 
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not independent which creates a severe artifact. Spurious correlations result because the 

dependent variable in these plots is calculated by incorporating the independent variable (i.e. 

SN contains S). Thus, nonlinear least-squares regression analysis should be preferred (I used 

Marquardt-Levenberg algorithm, the process is iterative). 

5.3. Results 

Growth rate in relation to temperature and light intensity 

Temperature and light intensity significantly (p=0.0141) interacted on growth rate of 

Enteromorpha intestinalis and Pi/aye/la littoralis (Fig. 5.1, Table 5.1). 
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Fig. 5.1. Growth of adult thalli of Enteromorpho intestinalis and Pi/aye/la littoral is at 3 temperatures fully 

crossed with 3 light intensities. Relative growth rate (RGR) d-1 was determined by measuring the relative 

increase in WW (means ± I SE, n=5). Refer to Table 5.1 for statistical analysis. 
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Table 5.1. Results of three-way ANOVA on the effects of temperature and light intensity on gro\\th of adult thalli 

of Enteromorpha intestinalis and Pi/aye/la littoralis (factor "species"). Relative effect size is sho\\n as explained 

variance in o/o. 

Source of variation df MS*!03 F-ratio P-value Variance (%) 

Species (S} 1.038 1.296 0.2587 

Temperature (T} 2 29.679 37.054 0.0001 27.9 
Light intensity (L) 2 31.576 39.422 0.0001 29.7 

SxT 2 1.661 2.074 0.1331 

SxL 2 2.698 3.369 0.0399 1.8 

TxL 4 2.690 3.358 0.0141 3.7 

SxTxL 4 1.396 1.743 0.1500 

Residual 72 0.800 

However, the explained variance of this interaction was low (3.7%) and mainly caused 

by the high enhancement of growth rate in Enteromorpha treatments at l 5°C and I 00 µmol 

m-2s"1
• The two species tested only showed a minor difference indicated by a slight species x 

light intensity interaction (p=0.0399) which explained 1.8% of the total variance. This 

interaction was caused by higher growth rates of Pi/aye/la compared to Enteromorpha at 50 

µmol photons m-2s-t averaged over all temperatures, whereas at 100 and 200 µmol m·2s·t no 

differences between species occurred. Compared to the variance explained by the main factors 

temperature (27.9%) and light intensity (29.7%) the interactions may be less important. 

Growth rate in relation to nutrient enrichment 

In June 1995, ambient nutrient concentrations in the outer Schlei were almost depleted 

(Chapter 2) except for short-time wind-driven pulses of nutrient-rich water out of the inner 

Schlei. In growth experiments, all treatments with nitrogen enrichment significantly increased 

the growth rate of E. intestinalis and P. littoralis but no significant differences between the 

two species were detected (Table 5.2 and AS.I). Nitrate enrichment (500 µmol 1'1) more than 

doubled growth rate in Enteromorpha (2.1-fold) and Pi/aye/la (2.4-fold). Ammonium 

enrichment (50 µmol 1'1) resulted in a 1.7- and 1.4-fold increase, urea enrichment (5 µmol 1'1) 

in a 1.6- and 1.3-fold increase in growth rate of Enteromorpha and Pi/aye/la respectively. 

No interaction between nitrate and phosphate enrichment was detected in a combined 

enrichment experiment (Fig. 5.2, Table 5.3). Nitrate enrichment had the main effect on growth 

rate explaining 45% of variance without a significant difference between species. 
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Table 5.2. Effects of different nitrogen treatments on relative growth rates of adult thalli of Enteromorpha 

intestinalis and Pi/aye/la littora/is (means± lSE, n=5). Phosphate enrichment was 30 µmol rt in all treatments. 

All nitrogen treatments showed significant effects on growth of both species. No significant differences between 

species were found (for complete ANOV A tables see Table A5. l ). 

N-enrichment RGR - E. intestinalis RGR - P. littoralis P-value 

[µmol r'] mean SE mean SE N-enrichment 

0 0.049 0.012 0.052 0.007 

N03- (500) 0.103 0.008 0.123 0.005 0.0001 

NH.i+ (50) 0.087 0.014 0.074 0.010 0.0148 

Urea (5) 0.079 0.012 0.065 0.003 0.0319 

While growth of Enteromorpha was not affected by phosphate enrichment, phosphate 

significantly increased growth of Pi/aye/la, indicated by a species x phosphate interaction 

(p=O.O 148). Combined enrichment of nitrate and phosphate resulted in an increase of growth 

rate by 3.5-times in Pi/aye/la and 1.6-times in Enteromorpha. 
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Fig. 5.2. Growth of adult thalli of Enteromorpha intestinalis and Pi/aye/la littoralis in relation to 

phosphate (30 µmol r1
) and nitrate enrichment (500 µmol rt). RGR d'1 was determined by measuring 

increase of WW (means ± lSE, n=5). Refer to Table 5.2 for statistical analysis. 
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Table 5.3. Results of three-way ANOVA on single and combined effects of phosphate (30 µmol r') and nitrate 

(500 µmol r') enrichment on growth of adult thalli of Enteromorpha intestinalis and P,layella lilloralis (factor 

•species•). Relative effect size is shown as explained variance in%. 

Source of variation 

Species (S) 

Nitrate (N) 
Phosphate (P) 

SxN 

SxP 

NxP 

SxNxP 

Residual 

Nutrient uptake 

df 

1 
1 

1 

32 

MS*103 

0.562 

23.771 

2.243 

0.235 

3.789 

1.920 

0.143 

0.571 

F-ratio P-value Variance(%) 

0.984 0.3287 
41.623 0.0001 45.0 
3.927 0.0562 
0.411 0.5260 

6.634 0.0148 6.3 
3.361 0.0761 

0.251 0.6199 

Responses of Enteromorpha intestinalis and Pilayella littoralis to short-tenn pulses of 

nitrate, ammonium, and phosphate over several time intervals were investigated at the end of 

June 1995. No significant differences between the two species were detected in uptake rates of 

any nutrient tested. However, uptake rates significantly decreased with time (Fig. 5.3, Table 

A5.3) causing strong declines of lower maximum uptake rates (V maJ and lower values of the 

half-saturation constant (Km) with time in all three nutrients. Highest uptake rates were 

achieved during the first 15 min of ammonium uptake with V max of 439 and 467 µmol h-1 g·1 

OW and Km of 66 and 67 µmol r1 in Enteromorpha and Pi/ayel/a respectively (Table A5.2). 

Lowest uptake rates were found in phosphate uptake during the last time interval (120-240 

min) reaching Vmax of 14 and 8 µmol h·1g·1 DW and Km of 8 and 4 µmol r' in Enteromorpha 

and Pilayel/a. The initial slope of uptake curves (a.) did not show a significant trend with time 

in ammonium and nitrate, reaching higher values in ammonium (Table A5.2). In phosphate 

uptake, statistical analysis revealed significantly higher a-values in Pilayel/a compared to 

£nteromorpha (Table A5.3) and a significant decrease with time was detected. However, this 

malysis was based on 3 values per species only and should be interpreted with caution. 

Parameter estimations via linear transformation by DeBoer and Eadie-Hofstee 

;onsistently underestimated V max and Km values (Table A5.4) compared to results of 

1onlinear regression analyses. 
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Fig. 5.3. Nutrient uptake of Pi/aye/la liltoralis and Enleromorpha inleslinalis in relation to substrate 

concentration at different time intervals (symbols are following increasing time interval in the order: 0, D, 

t., V, 0). Regression lines at different time intervals (T) were calculated by nonlinear regression analyses. 

For parameter estimation (V max, Km, a) see Table A5.2, for statistical analyses of species differences see 

Table AS.3. 
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SA. Discussion 

Attributes of opportunistic life style ( e.g. high rates of nutrient uptake, photosynthesis, 

growth) are generally accepted to favor filamentous and foliose species so equipped over 

perennial species with increasing eutrophication (Harlin & Thome-Miller 1981, Wallentinus 

1984, Larsson et al. 1985, Cederwall & Elmgren 1990, Duarte 1995). However, only a few 

studies have compared the physiology of different opportunistic species in order to explain 

dominance patterns within macroalgal blooms. In this chapter, I asked whether the observed 

dominance of Pi/aye/la over Enteromorpha in the Baltic may be explained by differences in 

growth rates or nutrient kinetics between the two species. Unexpectedly, adult stages of both 

algae performed very similarly at various abiotic conditions. Therefore, their ecophysiological 

properties are of no use in predicting the observed dominance pattern in the field. As a 

surprise, marked interspecific differences among germlings of Pi/aye/la and Enteromorpha 

(Chapter 4) are not paralleled in adults. This indicates that some basic ecophysiological 

properties of early life stages can not be predicted from measurements on adult algae. 

Growth of adult Pi/aye/la and Enteromorpha increased with rising temperature 

(5<10<15°C) and light intensity (50<100<200 µmol photons m"2s" 1
) with no major differences 

between species. Only at 50 µmol photons m"2s"1 there was a slight advantage for Pi/aye/la, 

but this light intensity may be only relevant from November to January (Chapter 2, Fig. 2.3). 

Most importantly, no species x temperature interaction was detected, which demonstrates that 

differences in responses to temperature found in germlings (Chapter 4) are not found in adults. 

Thus, the advantage of Pi/aye/la of germinating at lower temperature is not paralleled in adult 

growth. Moreover, Enteromorpha is not able to compensate for the time advantage attained by 

germlings of Pi/aye/la by an increased growth rate during the adult stage. 

Growth rate of Enteromorpha and Pi/aye/la did not increase with light intensity from 

100 to 200 µmol photons m"2s"1
• This may indicate light saturation, as already discussed for 

germination in Chapter 4. This is in concordance with other studies, where light saturation at 

15°C was found above levels of 80-125 µmol m"2s"1 (Kim et al. 1991, Lotze 1994). Light 

saturation at levels of 240 and 559 µmol m·2s·1 at 20 and 28°C respectively has been reported 

for Enteromorpha c/athrata (Shellem & Josselyn 1982, Fitzgerald 1978). This can be 

explained by a positive relationship between levels of light saturation and temperature 

(Geertz-Hansen & Sand-Jensen 1992). 
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Similar to the effects of temperature and light, nitrogen enrichment did not affect growth 

of adult Enteromorpha and Pi/aye/la differently. In both algae, growth rates were significantly 

enhanced by nitrate, ammonium and urea in June when nitrogen concentrations were almost 

depleted in the field (Chapter 2). Only phosphate enrichment resulted in a selective 

fertilization of Pi/aye/la whereas Enteromorpha remained unaffected by this treatment. 

However, this effect can be regarded as less important because it only explained 6.3% of the 

variance in growth rates. In contrast, nitrate enrichment explained 45% of the variance (Table 

5.3) indicating pronounced N-limitation of both species in summer, similar to the effects on 

germination (cf. Chapter 4). Compared with the dramatic effects of simultaneous nitrogen and 

phosphorus enrichment on germination rate of both species (15- to 20-fold increase in 

February up to 500- to !OOO-fold in summer, Chapter 4) the effects of identical treatments on 

growth of adult Enteromorpha and Pi/aye/la (1.6- and 3.5-fold increase) seem weak. Thus, in 

accordance with my initial hypothesis, there is evidence that processes affecting early life 

stages can be of overriding importance for population dynamics in bloom-forming algae. 

Similar growth responses of Enteromorpha intestinalis and Pi/aye/la littora/is tn 

relation to nutrient enrichment are corroborated by the results of nutrient uptake studies. No 

major differences in uptake rates of nitrate, ammonium, and phosphate were detected although 

the two species differ markedly in their morphology and show a more than I 0-fold difference 

in SAN-ratio. For Pi/aye/la /ittoralis the SAN-ratio is 1694 (Nielsen & Sand-Jensen 1990) 

for Enteromorpha intestina/is I determined a SAN-ratio of 140 (20 individuals measured). 

Higher uptake rates have been shown to be associated with higher SAN-ratios when 

comparing algal functional groups (Rosenberg & Ramus 1984). For example, microalgae have 

higher uptake rates than macroalgae (Hein et al. 1995), and filamentous and sheet-like annuals 

perform better than perennials (Wallentinus 1984). However, comparing two armual algae, I 

did not detect differences between the foliose, unbranched Enteromorpha intestinalis and the 

filamentous, finely branched Pi/aye/la /ittoralis, indicating limitations in the use of SAN­

ratios for predicting algal nutrient-uptake capabilities and limited predictive power of the 

functional-form model on physiological traits. 

Species with low Km and high a may have a competitive advantage under nutrient-poor 

conditions due to efficient uptake at low ambient concentrations (Wallentinus 1984, Fujita 

1985). In estuaries and other habitats where frequent nutrient pulses occur, species with high 

V max may be favored particularly if nutrients can be stored to promote growth when ambient 
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concentrations have declined again (Carpenter 1990). Comparatively low Km and high V max 

values favor opportunistic annuals such as Enteromorpha or Pi/aye/la over perennial species 

in spring and summer (Wallentinus 1984). However, perennials such as kelps gain advantage 

due to their ability to grow and take up excess nutrients in winter and store them for later use 

in summer (Chapman & Craigie 1977). Uptake kinetics vary with the nutritional history, 

physiological status, and age of the plants and it has been argued that there is no 

straightforward extrapolation from nutrient uptake kinetics to the relative competitive abilities 

among algal species (Carpenter 1990). For example, Fong et al. (1996) showed in laboratory 

experiments that Enteromorpha intestinalis and U/va expansa directly competed for nutrients 

when starved of nitrogen. In single cultures, both algae showed similar nitrogen uptake and 

growth rates. Yet, in mixed cultures, E. intestina/is was the superior competitor over U. 

expansa. As a further complication to comparative physiological approaches, the available 

data are based on very different experimental designs and conditions. Uptake kinetics depend 

on time course (Thomas & Harrison 1987, Pedersen 1994), abiotic background parameters 

(Duke et al. 1989), water motion (Parker 1981 ), season (Hurd & Dring 1990), method of 

uptake measurement (Rosenberg et al. 1984, Harrison et al. 1989, Pedersen 1994), and on 

methods used for calculation of uptake parameters (Dowd & Riggs 1965, Wallentinus 1984). 

As far as comparison is possible at all, my data fit into the wide range of levels reported in the 

literature (Table 5.4) but seem to be fairly high. This may be partly explained by my method 

of parameter estimation. Parameter estimation through linear transformation according to 

DeBoer (SN vs. S) and Eadie-Hofstee (V vs. V/S) mostly underestimated values ofVmax and 

Km (Table A5.4) and this must be taken into account in comparison with other data. 

Moreover, increasing starvation, rising temperature and decreasing incubation time are all 

known to enhance Vmax and Km (Wallentinus 1984, Fujita 1985, O'Brian & Wheeler 1987, 

this study). Since the algal material I used was starved at least for nitrogen and chosen 

incubation times for the first uptake period were very short, high maximal uptake rates and 

high saturation constants can be expected. 

In my experiments, half-saturation constants (Km) and maximum uptake rates (V max) 

declined with increasing incubation time. Time-dependent uptake may occur because 

intracellular pools become filled and uptake rates become increasingly dependent on internal 

( cell) rather than external (water column) nutrient concentrations (Fujita et al. 1988, Pedersen 

1994). 
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Table 5.4. Comparison of kinetic parameters v _ (µmol h·1g· 1 DW) and K,. (µmol r 1
) resulting from different 

nutrient uptake studies \\ith Enteromorpha species and Pi/aye/la lilloralis using different experimental designs 

and parameter estimation methods. 

Species Vma~ Km oc Time Treatment Estimation Reference 
+ 

NH4 -uptake 

E. prolifera 188 9 I-2h low tissue N nonlinear O'Brian&Wheeler 1987 
E. prolifera 188 13 l-2h med.tissue N nonlinear O'Brian&Wheeler 1987 
E. prolifera 39 3 l-2h high tissue N nonlinear O'Brian&Wheeler 1987 
E. ahlneriana 409 17 13 l-4h in situ SNvs. S Wallentinus 1984 
E. compressa 37 24 14 4d in situ Svs. SN Kautsky 1982 
E. sp. 996 25 20 l-2h starved Vvs. V/S Fujita 1985 

E. sp. 120 4 20 l-2h not starved Vvs. V/S Fujita 1985 
E. intestinalis 439 66 15 T 0-15 min. nonlinear this study* 

E. intestinalis 61 13 15 T 60-120 min. nonlinear this study* 

P. littoralis 32 2 8 l-4h in situ SNvs. S Wallentinus 1984 
P. littoralis 39 5 I l-4h in situ SNvs. S Wallentinus 1984 
P. littoralis 467 67 15 T0-15 min. nonlinear this study* 
P. littoralis 53 10 15 T 60-120 min. non linear this study* 

N03--uptake 

E. sp. 129 17 15 20min V vs. V/S Harlin 1978 
E. prolifera 169 13 l-2h low tissue N nonlinear O'Brian& Wheeler 1987 
E. prolifera 75 2 l-2h med.tissue N nonlinear O'Brian& Wheeler 1987 
E. ahlneriana 28 2 9 l-4h in situ SNvs. S Wallentinus 1984 
E. intestinalis 237 44 15 T 0-30 min. non linear this study* 
E. intestinalis 90 20 15 T 120-180 min. nonlinear this study* 
P. littoralis 33 4 6 l-4h in situ SNvs. S Wallentinus 1984 
P. littoralis 70 14 1 l-4h in situ SNvs. S Wallentinus 1984 
P. littoralis 300 116 15 T 0-30 min. nonlinear this study* 
P. littoralis 34 5 15 T 120-180 min. nonlinear this study* 

P04--uptake 

E. ahlneriana 0.2 2 l-4h in situ SNvs. S Wallentinus 1984 
E. ahlneriana 8 3 12 l-4h in situ SNvs. S Wallentinus 1984 
E. compressa 2 I 14 4d in situ Svs. SN Kautsky 1982 
E. intestinalis 47 17 15 T 0-60 min. nonlinear this study* 
E. intestina/is 14 8 15 T 120-240 min. nonlinear this study* 
P. littoralis 6 4 8 l-4h in situ SNvs. S Wallentinus 1984 
P. littora/is 4 2 l-4h in situ SNvs. S Wallentinus 1984 
P. littoralis 44 15 15 T 0-60 min. nonlinear this study* 
P. littora/is 8 4 15 T 120-240 min. nonlinear this study* 

*) for uptake parameters of further time intervals see Table A5.2. 
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Both species seemed to be starved in summer ( cf. C/N/P-ratios, Chapter 3 ), and thus respond 

quickly to short-term nutrient pulses. Nutrient pulsing may enable growth under low ambient 

nutrient levels. Such pulses may be created by benthic regeneration, herbivore excretion and 

nutrient flux from sediment (discussed in Chapter 4). Frequency of nutrient pulses was shown 

to be more important than pulse concentration in favoring Enteromorpha and Ectocarpus 

because of limits to nutrient storage capacity (Pickering et al. 1993). The nitrogen storage time 

of Enteromorpha was only between 8-10 d (Fujita 1985). Hence, in environments with 

episodic N-supply, species specific N-storage capacities may be an important trait affecting 

algal competitive abilities. This may be a possible but untested difference in Enteromorpha 

and Pi/aye/la. 

In summary, results of growth experiments and nutrient uptake rates of adults do not 

explain the dominance of Pi/aye/la over Enteromorpha in the field. However, taking together 

all results of nutrient enrichment experiments, I can answer the questions I raised in Chapter 

3: (!) Further nutrient enrichment in the course of increasing eutrophication will further 

enhance macroalgal productivity with much stronger effects on early life stages than on adults. 

(2) In the adult stage, Pi/aye/la and Enteromorpha do not differ in their ability to use short­

term nutrient pulses (uptake rates) versus long-term nutrient enrichment (growth rates). (3) 

Nutrient enrichment and other abiotic control mechanisms (temperature, light) showed 

different effects on various life stages. 
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Chapter 6 

Variable and complementary effects of herbivores on different life 

stages of bloom-forming macroalgae 

6.1. Introduction 

As I concluded in Chapter 4 and 5, differences in ecophysiological traits of early life 

stages and of adults are insufficient to explain observed dominance patterns of Pi/aye/la 

littoralis over Enteromorpha spp. in the Baltic Sea. This led me to the hypothesis that, in 

addition to abiotic factors, species interactions such as competition and herbivory must be 

considered as factors controlling species composition, timing and extent of macroalgal 

blooms. 

Variable herbivore pressure has been shown to affect plant species composition, 

distribution and diversity in a wide range of ecosystems and abiotic conditions (Lubchenco & 

Gaines 1981, Davidson 1993, McNaughton et al. 1997). The most detailed and comparative 

evidence comes from macroalgal communities on rocky shores (Underwood 1980, Lubchenco 

& Gaines 1981, Hawkins & Hartnoll 1983, Chapman 1995). However, most studies have 

focused on the effects of herbivory on the perennial vegetation. According to the functional­

form model (Littler & Littler 1980, Steneck & Dethier 1994), opportunistic, fast-growing 

filamentous and foliose algae are more vulnerable to herbivory than perennial species because 

of their reduced investment into structural or chemical defense (Gaines 1985, Hay & Fenical 

1988). On rocky shores, strong herbivore pressure may typically prevent dominance of 

filamentous and foliose algae (Lubchenco 1986). Limited evidence suggests that herbivore 

control may be less effective in soft-bottom habitats (Wilhelmsen & Reise 1994). Studies 

analysing the effects of herbivores on bloom-forming macroalgae are conspicuously rare. 

Biomass accumulation of mass-blooming Ulva lactuca was reduced in the presence of 

invertebrate herbivores in an eutrophic Danish estuary (Geertz-Hansen et al. 1993). Variable 

abundance of crustacean herbivores caused by fish predation was proposed as an explanation 

of irregular development of Enteromorpha blooms on estuarine mud-flats in Southern 

England (Warwick et al. 1982). These isolated studies suggested that effects of herbivores on 

bloom-forming macroalgae have to be considered. However, both studies only consider a 

consumption of adult biomass. I propose that herbivore control of early life stages such as 
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macroalgal propagules and germlings may be equally or more effective than consumption of 

adult biomass. 

It has been suggested that, following the secure attachment of propagules, foraging 

activities by herbivores may constitute the greatest source of mortality to early post-settlement 

stages ofmacroalgae (Vadas et al. 1992). This has been demonstrated in studies of perennial 

brown algae such as fucoids (e.g. Brawley & Johnson 1991, Worm & Chapman 1996, 1998) 

or kelps ( e.g. Chapman 1984, Reed 1990). Strong herbivore effects on early life stages of 

filamentous or foliose algae such as Enteromorpha have been discussed (Lubchenco 1980, 

Hawkins 1981) because intense development of annual algae was commonly observed upon 

herbivore exclusion. However, I know of no previous study that quantified these effects. 

In this chapter, I will present data on the effects of herbivores on different life stages of 

Enteromorpha spp. and Pilayella littoralis. First, I will describe seasonal abundance of 

herbivores at the study site. In laboratory and field tests, herbivore effects are quantified as(!) 

loss of settled propagules, (2) loss ofgermlings, and (3) loss of adult biomass. To analyze the 

importance of herbivore diversity for the control of blooming macroalgae, I performed feeding 

choice experiments on germlings and adults of Pilayella and Enteromorpha using four 

abundant herbivore species. 

6.2. Material & methods 

Seasonal occurrence of herbivores in the field 

In 1997, together with sampling of adult algal biomass, abundance of herbivores was 

estimated at the study site. The sampling method is described in Chapter 3. 

Effects of herbivores on settled propagules 

In June 1995, I investigated the effects of herbivores on settled propagules in a simple 

laboratory experiment. I exposed 18 ceramic tiles to the natural propagule rain in the water 

column at the study site for 4 h from I 0.00 to 14.00 to allow propagule settlement. Individuals 

of the two most abundant crustacean herbivores, ldotea chelipes and Gammarus locusta were 

collected at the same time. Each tile was cultivated in 500 ml of PES with Ge02 added at 

standard T/L-conditions. One ldotea or 2 Gammarus, respectively, were added to the tiles. A 

treatment without herbivores served as a control for autogenic changes. Each treatment was 

run with 6 replicates. After 7 d of cultivation, germlings (>200 µm length) were counted 



6 Variable and complementary effects of herbivores 73 

(mean of I O subsamples of 4x4 mm) on each tile using a dissecting microscope with an 

integrated grid. To determine whether herbivores removed the settled propagules completely 

or only suppressed their germination and growth, all tiles were cultivated for another 7 d in 

new medium without herbivores. Germling density was determined again after this second 

cultivation period. 

Effects of herbivores on new recruitment 

From May to June 1997, I investigated the effects of herbivores on new recruitment 

(settlement, germination and subsequent growth) of propagules in the field. At 70 cm depth, 

48 ceramic tiles were exposed as colonization substratum (5xl0 cm). Tiles were hung up 

within closed cages (I-mm mesh size, exclusion of herbivores > I mm), open cages (free 

access for herbivores), and without cages (cage artifact control). For this experiment, cages 

from a larger experiment were used. Details of the design are described in Chapter 7. Also, 

data on herbivore densities within treatments can be found in Chapter 7. These data, together 

with evidence from this chapter, indicate that open cages had about 40% lower snail densities 

compared to control treatments without a cage (Table 7.2). This was due to the weekly 

brushing of cages to prevent fouling and consequent light limitation. After 14 d of exposure, 

settled and germinated propagules were counted on the tiles using a dissecting microscope 

(25x, mean of 6 subsamples of 4x4 mm). Only germlings of Enteromorpha and Pi/aye/la were 

found. Herbivore effects were analyzed with a paired t-test as recommended in Peterson & 

Renaud (1989) for feeding preference experiments, in which t = (mr-lllc) I ..f(s2/n,+s2/nc), 

with mr= mean of differences between treatments, and Ille= mean of differences between the 

controls, s
2
=variance, n=number of replicates. This analysis tests the null-hypothesis that the 

difference between germling density of Pi/aye/la and Enteromorpha in herbivory treatments 

(open cages) is equal to the difference in germling density of the two algae in control 

treatments ( closed cages). This eliminates the problem of independence. As a cage-artifact 

control, I further analyzed whether the difference in species germling density on open plots is 

similar to that of open cages. Data were log transformed to achieve homogeneity of variances. 

Effects of herbivores on adults 

In May 1997, effects of herbivores on growth of adults were tested in a field assay. In a 

first trial, 48 pieces of Enteromorpha intestinal is thalli of standard width (0.5 cm) and length 
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(6.0 cm) were cut from the middle part of freshly collected thalli and fixed with plastic clothes 

pins. Each piece was then exposed at 15 cm above the substratum in an open cage, closed 

cage or open plot (n=l6) of the larger field experiment (see above, Chapter 7). After 8 d, 

thallus length was measured with a ruler and daily RGR was calculated (RGR = (In 11 - In 12) I 

(t2 - ti), with I= length, t = time). In a following independent assay, bundles of adult Pilayella 

/ittora/is thalli with standard width (0.5 cm) and length (6.0 cm) were used. Statistical analysis 

on the dependent variable RGR was performed with a 2-way ANOV A (factors: herbivory, 

species, 2x2). Untransformed data achieved homogeneity of variances. 

Feeding choice on germlings 

In June 1997, I performed a feeding preference experiment in the laboratory in which I 

compared the effects of the 4 most abundant herbivores at my site (Jdotea chelipes, 

Gammarus /ocusta, Littorina littorea, L. saxatilis) on germling density in Enteromorpha spp. 

and Pi/ayella littoralis. Six ceramic tiles (!Ox!O cm) were exposed in the water column at the 

study site for 24 h. Subsequently, tiles were cultivated separately for 12 d at standard T/L­

conditions in 500 ml PES with Ge02 added. After cultivation, germlings were counted in I O 

subsamples ( 4x4 mm) with a dissecting microscope (25x). Tiles were broken into 4 pieces and 

each piece was offered to a different herbivore species (I individual per piece) for 48 h in a I 

L glass beaker, filled with 300 ml freshly collected seawater. Herbivores were collected I d 

prior to the experiment. After the feeding trial, germling density was determined as described 

above and% reduction of germling density within 48 h was calculated. 

I analyzed differences in germling consumption between Enteromorpha and Pilayella 

within single herbivore species. I did not compare consumption rates between different 

herbivores because of large differences in individual biomass among species. Autogenic 

changes in germling size and density were assumed to be negligible within the experimental 

period of 48 h. Germlings were I 00-400 µm long in the beginning and did not exceed 600 µm 

after 48 h (growth rate of ea. 20% d-1)_ Several earlier experiments revealed that distinct 

changes in germling density only occur every 3-4 wk in the course of new reproduction, 

germination, and mortality. Thus, statistical analysis was performed by a paired I-test, two­

tailed (Peterson & Renaud 1989, Howell 1992) which tests the null-hypothesis that 

consumption rate is equal between Enteromorpha and Pilayella. The dependent variable, % 

reduction of germling density, was arcsin (x) transformed for this analysis. There was 

homogeneity of variances in transformed data. 
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These laboratory experiments give insight in differences between Pi/aye/la and 

Enteromorpha resistance to herbivory, but they do not allow an estimation of true herbivore 

pressure in the field. 

Feeding choice on adults 

In June 1997, I tested feeding preference on adult Enteromorpha intestinalis and 

Pi/aye/la littoralis using those 4 herbivore species tested in the germling preference 

experiment. Petri dishes (9 cm in diameter) were rinsed with freshly collected seawater 

several times and filled with 80 ml seawater. Algal pieces of a standard size (0.2x3.0 cm) 

were from freshly collected material. I used middle parts of 8-10 cm long Enteromorpha 

intestina/is thalli, and similar sized thalli of Pi/aye/la littora/is. One piece of each algal 

species was placed at 6 cm distance within a petri dish. After 30 min, allowing for 

development of a possible chemical gradient, one herbivore individual was added per 

treatment, each species in 20 replicates. Within the feeding trial, I counted completely ( 100%) 

conswned thalli after 5, 19, 27, 42, 48 h. 

6.3. Results 

Seasonal occurrence of herbivores in the field 

In 1997, main herbivores associated with the Fucus vesicu/osus community in the field 

were amphipods, isopods, and littorinid snails. Idotea spp. (>95% I. chelipes, <5% I. balthica) 

and Littorina saxatilis showed strong seasonal trends with a marked increase in abundance in 

late spring reaching up to 120 and 200 individuals m·2 respectively. Gammarus spp. (mainly 

G. /ocusta) and Littorina littorea were less abundant (0 to 20 individuals m·2) throughout the 

vegetation period (Fig. 6.1 ). 
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Fig. 6.1. Seasonal occurrence of main herbivore species associated with the Fucus vesiculosus community 

at the study site in 1997 (mean± 1 SE, n=6). 

Effects of herbivores on settled propagules 

In simple laboratory experiment, ldotea chelipes and Gammarus locusta had distinct 

effects on the density of gennlings developing out of settled propagules (Fig. 6.2). Only in 

Enteromorpha spp., there developed sufficient amounts of gerrnlings. In the presence of 

ldotea, only 4.4% (Gammarus 6.9%) of propagules developed into visible germlings 

compared to the control treatment ( day 1-7). After subsequent cultivation without herbivores 

(day 7-14), the amount of germinated propagules in the control treatment increased 6-fold. 

This may be caused by germination of further settled but not yet germinated propagules on the 

tile (new reproduction occurs after 3 wk at the earliest). Density of germlings in treatments 

with Gammarus increased 8-fold in the second cultivation period, similar to the control. In 

contrast, gennling density in treatments with ldotea increased 30-fold. This second part of the 

experiment suggests that feeding modes may differ among ldotea and Gammarus. Gammarus 

seemed to be effective in reducing germlings or propagules completely by removing them 
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from their substratum and, after removal of Gammarus, only new germination of later 

germinating propagules occurred at a rate comparable to the control. ldotea seemed to 

suppress growth of germlings by consuming the emerging erect filaments but not the basal 

parts. After removal of ldotea, both existing germJings and newly germinating ones grew to 

visible size. 
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Fig. 6.2. Laboratory experiment on herbivore effects of Idotea chelipes and Gammarus locusta on settled 

propagules and their germination. In a first period ( day 1-7) tiles with settled propagules were cultivated 

in the presence of Jdotea, Gammarus, or no herbivores (control), in a second period (day 7-14) cultivation 

occurred without herbivores in order to distinguish whether herbivores removed gennlings or suppressed 

their growth. After each period germling density was determined (means± I SE, n=6). 

Effects of herbivores on new recruitment 

In a field test in May 1997, I studied the effects of the natural herbivore populations on 

the combined processes of settlement of propagules from the water column, germination and 

subsequent growth of gerrnlings (Fig. 6.3). Germling density of both algal species, 

Enteromorpha spp. and Pi/aye/la littora/is, was effectively reduced by herbivores, but 
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Enteromorpha was significantly preferred over Pi/aye/la (p<0.001, Table 6.1) resulting in a 

reversed pattern of abundance when herbivores were present (Fig. 6.3). Consumption rate and 

preference for Enteromorpha was more pronounced in open plots compared to open cages, 

resulting in a significant cage artifact (p<0.05, Tab 6.1 ). This was most likely caused by 

reduced densities of Littorina saxatilis (which heavily consumes germlings, see below) in 

open cages due to weekly brushing (Chapter 7, Table 7.2). 
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Fig. 6.3. Effects of herbivores on new recruitment (settlement, germination and subsequent growth) of 

Enteromorpha spp. compared with Pi/aye/la littoralis in the field. Ceramic tiles as colonization 

substratum were exposed in closed cages (control, no herbivory), open cages (herbivory), and on open 

plots (no cages, control for cage artifacts). After 14 d, developed gennlings were counted (means ± 1 SE, 

n= l6). Herbivore densities within treatments are tabled in Chapter 7, Table 7.2. For statistical analysis see 

Table 6.1. 
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Table 6.1. Statistical analysis of herbivore effects on new recruitment of Enteromorpha spp. and Pi/aye/la 

/inoralis in the field. Shown are results of paired t-tests according to Peterson & Renaud ( 1989) on means of 

differences between gennling density of the two algae (I) between closed and open cages(= herbivory effect), 

and (2) between open cages and open plots (= cage artifact). Tabled test limits {n=l6, k=2) are tcnr.= 2.04 

(p=0.05,*), 2.75 (p=0.01 ,**), 3.65 (p=0.001,***). Log-transformed data achieved homogeneity of variances. 

Treatment Mean of differences Variance s2 n t Conclusion 
between algal species 

Closed cages ( control) 0.0598 0.0559 16 
Open cages -0.1741 0.0287 16 -3.2168 • • (Herb ivory effect) 
Open plots -0.3630 0.0681 16 -2.4276 • (Cage effect) 

Effects of herbivores on adults 

Analysing herbivore pressure on net growth of adult thalli of Enteromorpha intestinalis 

and Pi/aye/la littoralis in the field, a significant herbivory x species interaction (p=0.0003) 

occurred (Table 6.2). This indicates that adult Enteromorpha was significantly preferred as a 
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Fig. 6.4. Herbivore effects on growth of adult Enteromorpha intestinalis and Pi/aye/la littoralis in the 

field in May 1997. Daily RGR was calculated as the relative increase or decrease of thallus length in the 

absence or presence of herbivores (means± I SE, n= l 6). For statistical analysis see Table 6.2. 
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Table 6.2. Results of 2-way ANOVA on effects of herbivores on RGR of adult thalli of Enteromorpha 

intestinalis and Pi/ayella /ittora/is. Relative effect size is shown as explained variance in %. There were no cage 

artifacts (p=0.082) detected in the control experiment. 

Source df MS F-ratio P-value Variance (%) 

Herbivory (H) 0.489 35.719 0.0001 23.5 

Species (S) 1 0.453 31.457 0.0001 21.7 

HxS 1 0.205 14.716 0.0003 9.5 

Block 3 0.021 

Residual 57 0.014 

food source over Pi/aye/la by herbivores present in the field in May 1997. The overall effects 

of herbivores were devastating in Enteromorpha (Fig. 6.4) with relative daily thallus loss of 

29.3%. Despite separate assays for each algal species, herbivores in the field had the choice 

between Enteromorpha, Pi/aye/la and further algae present at the study site. 

Feeding choice and feeding patterns on germlings 

To examine whether various herbivores have different effects on germlings of 

Enteromorpha spp. and Pi/aye/la littoralis, I performed feeding preference tests in the 

laboratory. All 4 herbivore species reduced germling density of Enteromorpha stronger than 

that of Pi/aye/la (Fig. 6.5). These trends were statistically significant in ldotea chelipes 

(p=0.012) and Littorina saxatilis (p=0.007). When I checked germling density after feeding, I 

observed strikingly different grazing patterns. Littorina saxatilis showed distinct feeding trails 

through the germling turf ("bulldozer effect"). In addition, some distinct feeding marks on 

individual Enteromorpha germlings were clearly visible. In Gammarus locusta, I did not find 

such trails but the germling turf was rather thinned than shortened ("picker effect"). Most 

germlings were consumed completely and only a few short stumps of Enteromorpha 

germlings were left over. ldotea chelipes shortened the germling turf as a whole with many 

germling stumps left over ("lawn-mower effect"). In Littorina littorea, no clear feeding 

patterns were recognizable. 
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Fig. 6.5. Feeding choice experiment on gennlings of Enteromorpha spp. and Pi/aye/la littoralis with 4 

main herbivore species in June 1997. Mixed stands of gennJings of both algae were offered to single 

herbivores for 48 h. Shown are % reduction of germling density cm-2 (means ± I SE, n=6). Statistical 

analysis on herbivore preference for the two algae was performed by paired t-tests. 

Feeding choice on adults 

To investigate if feeding patterns of herbivores on germlings are paralleled in adult 

algae, I arranged a similar feeding preference test for adult thalli of Enteromorpha intestinalis 

and Pi/aye/la littoralis in the laboratory. Only ldotea chelipes showed a distinct effect on 

adult thalli with a clear preference for Enteromorpha over Pi/ayel/a after 19 h (Fig. 6.6). 

Gammarus locusta and Littorina littorea had only slight effects with no clear preference for 

one of the two food sources. Littorina saxatilis showed no effect at all, not even feeding 

marks. 
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Fig. 6.6. Feeding choice experiment on adult Enteromorpha intestina/is and Pi/aye/la littoralis with 4 

main herbivore species in June 1997. In 20 replicates, individuals of single herbivore species had the 

choice between thallus pieces of each algae. If one piece was consumed (100%) I terminated the replicate. 

Graphs show single replicate losses over the experimental period of 48 h. 

6.4. Discussion 

In communities with a complex assemblage of herbivores, few microhabitats are free 

from herbivory and most sites harbor numerous herbivore species (Lubchenco & Gaines 

1981 ). Thus, herbivores are likely to have major effects on plant biomass as well as on 

community structure (Lubchenco & Gaines 1981). My results indicate a strong herbivore 

control of the two bloom-forming macroalgae Enteromorpha spp. and Pi/aye/la littoral is in 

the field. This control was highly effective at several life stages. Interestingly, effects of single 

herbivore species varied with life stage in a complementary fashion. This indicates the 

importance of herbivore diversity for the control of annual macroalgae (low redundancy). 

Because of the greater and selective herbivore pressure on all life stages of Enteromorpha 
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compared to Pi/aye/la together with similar productivity rates of the two algae (Chapter 5) I 

propose effects of herbivores on competitive interactions between Enteromorpha and 

Pi/aye/la in the field. A test of this hypothesis will be provided in Chapter 7. 

At my study site, ldotea spp., Gammarus spp., and Littorina spp. represent the main 

herbivores. This herbivore species assemblage is almost identical to that found in Roskilde 

Fjord, Kattegat, Denmark (Geertz-Hansen et al. 1993) and thus, may be typical at least for the 

western parts of the Baltic Sea. All species that I have found are recognized as omnivorous, 

opportunistic species (Hawkins & Hartnoll 1983). Their distribution pattern and abundance is 

affected by predation ( discussed below) and by the seasonality in the environment regulating 

their life cycles (Rees 1975, Salemaa I 987). In the intertidal and shallow subtidal habitats the 

highest abundances and activities are found from spring to autumn whereas in winter, they 

migrate to deeper areas (Petraitis 1983, Salemaa 1987, Steele & Whittick 1991). At my study 

site, the densities of all herbivores varied strongly among seasons and years. Since herbivores 

strongly interact with annual algae this could influence the extent of algal biomass. ldotea spp. 

occurred at densities of 120-1200 m·2, Gammarus spp. in abundances of 20-340 m·2 

(Schramm et al. 1996, this study, see also Chapter 7) which is comparable to abundances 

found in rocky intertidal habitats (Worm & Chapman 1998). Littorina saxatilis reached 

densities of 200-1300 rn·2 at the study site in 1997, whereas maximum abundances of more 

than 4000 individuals m·2 were observed in 1998 (Worm & Lotze, unpublished). In contrast to 

many rocky shores where Littorina littorea is numerically dominant (218-272 m·2, Lubchenco 

1983, Worm & Chapman 1998), this species was rare with 10-12 individuals m·2 at my study 

site in 1995 and 1997. 

In various experiments, Enteromorpha spp. and Pi/aye/la littoralis were heavily 

consumed in the stage of developing propagules, germlings, and adults. Two patterns 

emerged: (I) relative effects on early life stages were common and intense and (2) 

Enteromorpha was the preferred food source over Pi/aye/la in all life stages. Herbivore food 

preference of Enteromorpha over Pi/aye/la may be caused by chemical, structural, 

morphological, or nutritional differences between the two algae which are untested so far. 

Chemical and structural defense against herbivores is common in many perennial seaweeds 

whereas defense mechanisms are low or absent in opportunistic algae (Littler & Littler 1980, 

Hay & Fenical 1988). 
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Strong herbivore control of opportunistic, bloom-forming macroalgae was also reported 

from Roskilde Fjord (Denmark) where herbivores locally prevented macroalgal mass 

accumulation (Geertz-Hansen et al. 1993). In Southern England, consumption of 

Enteromorpha by crustacean herbivores seems responsible for the breakdown of algal mats 

that occur on soft bottoms in summer (Warwick et al. 1982). However, L. lillorea hardly 

affected development of green algal mats on mud flats in the North Sea (Wilhelmsen & Reise 

1994). Field studies of herbivore effects on Pi/aye/la are largely lacking. However, this alga is 

consumed by L. lillorea, G. /awrencianus, and /. balthica (Lubchenco 1978, Shacklock & 

Doyle 1983, Steele & Whittick 1991). 

Effects of herbivores on early life stages have been overlooked for a long time. I have 

quantified such effects for the first time for filamentous and foliose annual algae. Germination 

of settled propagules in Enteromorpha was reduced by 93-95% by ldotea chelipes and 

Gammarus locus/a. Under natural herbivore pressure in the field, germling density of 

Pi/aye/la and Enteromorpha was reduced by 64-86% within 14 days. The paucity or absence 

of Enteromorpha on rocky shores could often be reversed by the removal of herbivores like 

Iittorinid snails (Lubchenco & Menge 1978, Lubchenco 1980). After littorinid exclusion, 

development of Enteromorpha germlings has been observed within 2 weeks (Lein 1980). My 

findings may be further corroborated by indirect evidence from a rocky shore. In New England 

strong herbivore control appears to be most effective at the germling stage since few snails 

prevented Enteromorpha from colonizing, while high snail densities were required to control 

an adult Enteromorpha canopy (Petraitis 1987). 

Relative effects of different herbivore species can vary with algal size and life stage. 

Whereas germlings of Enteromorpha and Pi/aye/la were heavily consumed by all main 

herbivores at my site, L. saxatilis and /. che/ipes had the greatest effects. In contrast, only I. 

chelipes had strong and selective effects on adults of Enteromorpha, whereas L. saxatilis did 

not feed on adults at all. Life-stage specific consumption has also been reported in Fucus 

vesiculosus in which young or small plants are more susceptible to consumption by L. lillorea 

than are adults or large plants (Lubchenco I 983). However, susceptibility to herbivory may be 

species specific also on the juvenile level as observed in Fucus species. While juveniles of F. 

distichus suffered high mortality from herbivores, these had no effects on juveniles of F. 

spira/is (Chapman 1989, I 990). 
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Varying preferences for certain algal life stages may be related to differences in feeding 

modes among herbivore species. Parker et al. ( 1993) showed that littorinid snails can prevent 

the establishment of both micro- and macroalgae at the microscopic level whereas gammarid 

amphipods are ineffective at grazing microalgae and prostrate macroalgae from the 

substratum, but exert a considerable influence on erect macroalgae. These patterns agree with 

the large differences I observed in feeding marks left by the various herbivores in the 

experiments. I characterized L. saxatilis as a "bulldozer" which left distinct feeding trails 

while G. locus/a appeared to pick single germlings out of the turf. In contrast to Parker et al. 

(1993), I found G. locZ1Sta to be an effective herbivore on microscopic Enteromorpha and 

Pilayella recruits. I. chelipes shortened the germling turf ("lawn-mower effect") but did not 

remove recruits completely. Both, isopods and amphipods, use their mandibles to bite off 

small portions of algae, while other mouth parts assist in handling the food items. Littorinids in 

contrast scrape the substratum with their radula (Hawkins & Hartnoll I 983). Thus, after 

exclusion of isopods and amphipods, germlings are able to regrow whereas littorinids leave 

bare substratum. However, even when eaten completely, many algae are able to survive 

digestion. This has been shown for Enteromorpha and Pilayella among other opportunistic 

species consumed by intertidal molluscs (Santelices & Correa I 985) or filter-feeders 

(Santelices & Martinez 1988). Surprisingly high survival rates of 20-90% were described for 

Enteromorpha and Ulva thalli after digestion by different herbivore molluscs (Santelices & 

Ugarte 1987). Thus, mobile herbivores may even have indirect positive effects by acting as 

dispersal agents. 

Differences in the performance of life-cycle stages may also be important in herbivores, 

for example when juveniles depend on different food sources compared to adults. This has 

been discussed for I. balthica in the northern Baltic Sea, where adults live within perennial 

phytobenthic communities (FucllS, Zostera) but juveniles were found to prefer filamentous 

algae in the splash zone as a habitat, and possibly as a food source (Salemaa 1987). Further, 

consumer effects may not only be important among herbivores and algae but also among 

herbivores and their predators with potential cascading effects on primary producers (Power 

1990). Isopods and amphipods are known to be heavily consumed by several fish species 

present at my site, e.g. Spinachia spinachia (fifteen-spined stickleback), Pomatoschistus 

minutes (sand goby), Gadus morhua (cod), Zoarces viviparllS (eelpout) and others 

(Worthrnann 1975, Niemann 1991, H. Thetmeyer pers. corn.). Littorinid snails are consumed 
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by Carcinus (M. Wahl pers. corn.), seastars and seaurchins (Paine 1966, Lubchenco & Menge 

1978). Small littorinids may also be consumed by fish. The balance between crustacean 

mesoherbivores and their fish predators may be responsible for irregular development of 

Enteromorpha blooms in Southern England (Warwick et al. 1982). Whether true trophic 

cascades are important in the regulation of benthic macroalgae is currently under investigation 

(Worm, unpublished data). 
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Chapter 7 

Relative effects of a dormant propagule bank, nutrient 

enrichment and herbivory on population development in two 

mass-occurring macroalgae 

7.1. Introduction 

The actual distribution and abundance of species observed in the field is determined by 

ecophysiological constraints, resource availability, species interactions, disturbance, and 

factors affecting propagule supply (Diamond & Case 1986, Roughgarden et al. 1988, Keddy 

1989, Krebs 1994, Sommer 1994). This has been demonstrated during the last decades by 

experimental studies from which a body of important ecological concepts and theories 

emerged (Paine 1966, Connell 1978, Tilman 1982, Menge & Sutherland 1987, Keddy 1989). 

Benthic hard-bottom communities thereby often served as an important model system for 

mechanisms of community regulation with a focus on perennial macroalgae and sessile 

invertebrates ( e.g. Lubchenco & Menge 1978, Menge & Farrell 1989, Paine 1992, Chapman 

1995, Karez & Chapman 1998). Within this framework, experimental evaluation of nutrient 

effects (Menge 1992) and the role of a propagule bank (Santelices et al. 1995) were largely 

disregarded. Moreover, knowledge on the relative effects of resources (bottom-up) versus 

consumers (top-down) on benthic communities is rare (but see Williams & Ruckelshaus 1993, 

Reusch & Chapman 1997). 

In the previous chapters, I analyzed effects of temperature, light, nutrients, and 

herbivory on the performance of early life stages and adults of Enteromorpha and Pi/aye/la. 

This provides an understanding of the fundamental niches of the two species. However, taken 

all results together, the understanding of the dominance of Pi/aye/la over Enteromorpha is 

still speculative. In this chapter, I analyze potential interactions among overwintering 

propagules, herbivory and nutrient emichment on population development in the field to 

explain the realized distribution and dominance patterns of Pi/aye/la and Enteromorpha. I use 

factorial field experiments in order to generalize upon the importance of selected factors in an 

actual ecosystem. Moreover, combining the effects of several manipulated factors allows 

insights in (I) direct effects of single factors, (2) interactions among factors and indirect 
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effects, and (3) the relative importance of significant single or interacting factors, 

demonstrated by their relative effect size in the analysis (Underwood 1981 ). 

In terms of adult biomass, Pi/aye/la dominates macroalgal blooms (Chapter 3), although 

it has reduced reproductive output (Chapter 3) and fewer overwintering stages in the 

propagule bank (Chapter 4) compared to Enteromorpha. The ability of Pilayella to germinate 

at lower temperatures than Enteromorpha (Chapter 4) may provide a seasonal advantage. This 

could increase pre-emptive space competition by Pi/aye/la and reduce colonization of 

Enteromorpha. Still, Enteromorpha is abundant in the germling stage from spring to fall, 

whereas the Pi/aye/la bloom ceases in July. Similar ecophysiological properties of adults 

(Chapter 5) do not explain this pattern. However, laboratory studies and field experiments 

equally showed that Enteromorpha is heavily consumed by herbivores and preferred over 

Pi/aye/la in the germling and adult stage (Chapter 6). I hypothesize (1) that herbivores may 

play a decisive role in population development of Enteromorpha and to a minor extent of 

Pi/aye/la in the field and (2) that interactions among the two species may be significantly 

modified by the availability of propagules in spring and seasonal patterns of herbivory and 

nutrient availability. It was my aim to explain the dominance of Pilayella over Enteromorpha, 

and I did not attempt a detailed analysis of competitive mechanisms acting between the two 

algae which requires experimental manipulation of the abundance of competing species or 

resources (Olson & Lubchenco 1990). 

7.2. Material & methods 

Experimental design 

From February to December 1997, I performed a 3-factorial field experiment at the 

study site to analyze the combined effects of herbivory, nutrient enrichment and propagule 

supply on annual mass-occurring macroalgae. This experiment was carried out in cooperation 

with B. Worm who investigated the experimental effects on recruitment and growth of Fucus 

vesiculosus (B. Worm, unpublished). 

The 3 experimental factors (herbivory, propagule bank, nutrient enrichment) were 

manipulated in a completely crossed design (2x2x2, Fig. 7 .1) with 48 experimental units 

(plots) and 4 replicates per treatment combination arranged in a "randomized block design" 

(Hurlbert 1984). The experiment was located at 70 cm water depth in the zone dominated by 

Fucus vesiculosus. The experimental units were flat granite rocks (15-20 cm in diameter) 

--
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which were collected in February 1997 at the study site (10-40 cm depth). At that time the 

rocks had no macroscopic vegetation. 

Herbivore presence was manipulated by cages (25x25x25 cm) made of a stainless steel 

frame covered with 1-mm transparent polyethylene mesh. Herbivores >Imm were excluded 

from closed cages while open cages with one side cut open allowed free access to herbivores. 

Plots without cages ( open plots) served as controls for cage artifacts. Cages were brushed 

weekly to prevent fouling. Light measurements (LI-COR underwater quantum sensor LI-

192SA) inside and outside the cages revealed that light intensity was reduced by only 8% due 

to attenuation of the polyethylene mesh which I judged negligible. To determine whether 

herbivore densities were similar in open cages and uncaged plots, I estimated herbivore 

densities within a central lOx 10 cm area on the experimental rocks in the end of July. 

Statistical analysis was performed by ANOVAs for each species separately. 

For manipulation of the propagule bank, half of the experimental rocks were selected at 

random and heat sterilized for 48 h at 100°C killing microscopic stages. The other rocks were 

left untreated. 

Nutrient enrichment was performed on one half of the experimental plots from June to 

September when nutrient pools at the study site were depleted (Chapter 2). Nutrient diffusors 

were pipes (400x25 mm) of 1-mm polyethylene mesh filled with 160 g N-P-K slow-release 

fertilizer (Plantacote, Urania Agrochem, Hamburg). Water ammonium and phosphate 

concentrations were determined on all plots every 3-4 wk after Grasshoff et al. (1986) (Fig. 

A 7 .1 ). Statistical analysis (ANOV A) of these measurements indicated that nitrogen was 

significantly enriched (p<0.05) by the diffusors from late June to the mid of August, and 

phosphorus (p<0.01) from late June to the mid of September. Nutrient enrichment was 

unaffected by cages and the other treatment factors. Pooled over all treatment combinations, 

on average, ammonium enrichment did not exceed 4 µmol rt, and phosphate enrichment did 

not exceed 1.5 µmol rt compared to background nutrient concentrations (n=24, Fig. A 7 .1 ). In 

addition, nitrate was released at a fixed molar ratio of 0.69:1 to ammonium (Urania 

Agrochem, pers. corn.) and may have not exceeded 2.5 µmol r1 due to enrichment. 

Fucus vesiculosus plants (12-18 cm length) were added to all plots to provide a 

substratum for epiphyte settlement, habitat for herbivores and a dispersal source for Fucus 

propagules. Performance of these Fucus plants was analyzed by B. Worm (unpublished data). 
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Since only minor epiphyte settlement occurred on these Fucus plants they were not important 

for my study. 

A. Cage design 
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Fig. 7.1. Cage design (A) and experimental design (B) of the factorial field experiment. 
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Dependent variables and analysis 

I determined % cover of all species developing on rocks in monthly intervals, and 

species canopy height every two months as the dependent variables. For all species, % cover 

was determined with a lOxlO cm plexiglas sheet with 50 random dots (1 dot= 2% cover). 

Canopy height of each species was measured with a ruler. 

Statistical analyses were performed with 2- and 3-way factorial ANOV As for 

randomized block designs on % cover and canopy height of selected months. Homogeneity of 

variances was checked using Cochran's test. Percent cover data were transformed using the 

formula arcsin (sqrt (x + 1)) as recommended by Sokal & Rohlf (1981). I checked for 

correlation among the densities of the main annual species Pi/aye/la littoralis and 

Enteromorpha spp. with a regression analysis on % cover data of both species in the end of 

May. 

To analyze the influence of experimental treatments on all macroalgae that occurred in 

the experiment (>2% cover in any treatment combination) I compared (1) relative 

experimental effects, (2) microrecruit density in the propagule bank, (3) maximum % species 

cover, and (4) period of macroscopic occurrence. Since nutrient enrichment had only minor 

effects on macroscopic algal cover (see results), I only compared treatment effects of the 

propagule bank and herbivory on all algal species. I calculated a simple index I= (CrCc)/Cc, 

with Cr =%cover in the treatment, Cc=% cover in the control (Paine 1992). The% cover 

was pooled over all other experimental factors. This index was calculated for herbivore 

treatments and propagule bank treatments in the one month when the species in question 

reached its maximum overall density. Positive or negative values identify net positive or 

negative effects of herbivore presence or the presence of a propagule bank on experimental 

rocks. Recruit densities of Enteromorpha and Pilayella were estimated on rocks which were 

cultivated for 2 wk at standard T/L-conditions to allow germination of settled propagules in 

the propagule bank (mean, ± lSE, n=6, 10 pooled subsamples per rock). For Fucus 

vesiculosus, germlings were counted in situ on experimental rocks before new reproduction 

occurred (n=8). 

New recruitment 

In the end of June 1997, I studied the combined effects of herbivory, presence of a 

propagule bank and nutrient enrichment on new recruitment of Enteromorpha and Pilayella 
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propagules out of the water colwnn. One ceramic tile (5x10 cm) per plot was hung up in the 

factorial field experiment described above (Fig. 7 .1 ). After 14 d, germling abundance was 

determined with a dissecting microscope (mean of 6 subsamples of 4x4 mm). Enteromorpha 

and Pilayella were the main species settling on the tiles. In addition, I detected a few 

germlings of Ceramium strictum. 

Statistical analyses were performed by 3-way ANOVA (2x2x2) on germling densities 

for Pilayella and Enteromorpha separately, since settlement and germination of the two algae 

on one tile were not independent. Data were log-transformed to achieve homogeneity of 

variances. In addition to tests provided in Chapter 6, I analyzed herbivore food preference 

between the two algae at all treatment combinations in the field. Statistical analysis on food 

preference of herbivores was performed by t-tests after Peterson & Renaud (1989) as 

described in Chapter 6. Again, log-transformed data were used. 

7.3. Results 

Population development of Pilayella littoral is and Enteromorpha spp. 

Populations of Enteromorpha spp. and Pilayella littoralis clearly differed m their 

response to the combined effects ofherbivory and the presence of a propagule bank. Nutrient 

enrichment from June to September had only minor effects on adult populations compared to 

the two other factors. 

Development of Enteromorpha and Pilayella began in early March, if the propagule 

bank was present (Fig. 7.2b). In the absence of this recruitment source, i.e. on sterilized rocks 

(Fig. 7.2a), population development depended on newly dispersed propagules, which first 

occurred in May (Chapter 3). Thus, population development of both species was delayed by 

two month when a propagule bank was absent. This was a major disadvantage considering the 

seasonal decrease of ambient nutrient concentrations in spring (Chapter 2). However, 

advantageous effects of the propagule bank were much stronger in Enteromorpha which 

reached around 30% cover until May. In this month, the propagule bank had a significant 

positive effect (Table 7.1, p=0.0001) explaining 45% of total variance in Enteromorpha cover. 

In contrast, only a few thalli of Pilayella appeared from the propagule bank and this species 

started its main development in May, when new reproduction occurred. 
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Fig. 7 .2. Combined effects of herbivores and propagule bank on population development of 

Enteromorpha spp. and Pi/ayella littora/is. The treatment combinations are indicated as (a) no propagule 

bank (sterilized rocks), (b) propagule bank (natural rocks), and in the legend: herbivory (open cages), no 

herbivory (closed cages). Data were analyzed as% cover (mean± lSE, n=8). 

In May, herbivores, mainly Idotea spp., Gammarus spp., Littorina saxatilis and L. 

littorea (Chapter 6), became active. This was clearly visible in the graph (Fig. 7.2b) by a 

sudden divergence of the curves with herbivory treatments in May indicating strong herbivore 

effects. Herbivores significantly reduced (Table 7 .1, p=0.0001) Enteromorpha cover 

independent of the presence of a propagule bank (Table 7.1, H x P: p=0.6554). In Pilayella, 
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Table 7.1. Results of 2-way ANOVAs on combined effects of herbivores and propagule bank on % cover of 

Enteromorpha spp. and Pi/aye/la littoralis in May. Relative effect size is shown as explained variance in%. Data 

were arcsin (sqrt (x + I)) transformed. Significant cage artifacts (p=0.0020 in Enteromorpha, p=0.0001 in 

Pilayella) occurred in the control experiment caused by reduced herbivore densities in open cages compared to 

open plots. 

Source 

Enteromorpha spp. 

Herbivory (H) 
Propagule bank (P) 
HxP 

Block 
Residual 

Pilayella littoralis 

Herbivory (H) 
Propagule bank (P) 
HxP 
Block 
Residual 

df 

1 
1 
1 
3 
25 

1 

1 

1 

3 
25 

MS 

1.875 
3.386 
0.015 

0.016 
0.076 

0.005 
0.599 
0.339 
0.013 
0.046 

F-ratio P-value Variance (%) 

24.765 0.0001 24.6 

44.711 0.0001 45.3 

0.204 0.6554 

0.118 0.7341 
13.033 0.0013 25.4 
7.379 0.0118 13.5 

effects of herbivores varied depending on the propagule bank treatment, shown by a 

significant herbivore x propagule bank interaction in the analysis (Table 7.1, H x P: 

p=0.0118). If the propagule bank was present and Enteromorpha dominantly covered the 

substratum Pilayella was favored by the presence of herbivores. In contrast, herbivores 

negatively affected Pilayella cover in the absence of the propagule bank. Percent cover of 

Pilayella in May was significantly (p=0.0003, Fig. 7.3) and negatively correlated with % 

cover of Enteromorpha, which in turn depended on the treatment combination (Fig. 7.4). This 

indicates that direct effects of herbivores and propagule bank on Enteromorpha may indirectly 

control Pilayella cover. 

In the end of June, the herbivore effect on % cover of Enteromorpha became more 

important (35% of variance explained) compared to May (21%) whereas the propagule bank 

effect decreased in importance (15% compared to 43% in May, Table 7.1 and Table 7.2). In 

June, nutrient enrichment was introduced as an additional factor but had no effect on% cover 

of Enteromorpha (Table 7.2). However, nutrient enrichment significantly increased canopy 

f. : a; :u:zua c : 
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height of Enteromorpha and this effect was stronger in treatments without propagule bank 

compared to treatments with propagule bank (nutrient enrichment x propagule bank, 

p==0.0466, Table 7.3). In Pilayella, biomass strongly decreased towards the end of June and 

canopy height could not be analyzed. However, herbivores had significant positive (p=0.0069) 

and the propagule bank had significant negative (p=0.0086) effects on % cover in all 

treatments (Table 7 .2). Further, nutrient enrichment had significant negative (p=0.0411) 

effects on% cover of Pilayella. 

Table 7 .2. Results of 3-way ANOV As on combined effects of herbivory, propagule bank and nutrient enrichment 

on % cover of Enteromorpha spp. and Pilayella littoralis in June. Significant cage artifacts (p=0.0001 in 

Enteromorpha, p==0.0503 in Pilayel/a) occurred in the control experiment caused by reduced herbivore densities 

in open cages compared to open plots. Data were arcsin ( sqrt (x + 1)) transformed 

Source df MS F-ratio P-value Variance (%) 

Enteromorpha spp. 
Herbivory (H) 1 1.849 21.105 0.0002 34.8 

Propagule bank (P) 1 0.853 9.739 0.0052 15.2 

Nutrient enrichment (N) 1 0.016 0.181 0.6753 

HxP 1 0.014 0.163 0.6906 

HxN 1 0.005 0.052 0.8216 

PxN 1 0.127 1.447 0.2424 

HxPxN 1 0.268 3.059 0.0949 

Block 3 0.001 
Residual 21 0.088 

Pilayella littoralis 
Herbivory (H) 1 0.194 8.969 0.0069 16.0 

Propagule bank (P) 1 0.181 8.404 0.0086 14.8 

Nutrient enrichment (N) 1 0.102 4.735 0.0411 7.5 

HxP 1 0.020 0.938 0.3438 
HxN 1 0.005 0.220 0.6442 
PxN 1 0.006 0.295 0.5928 
HxPxN 1 0.029 1.356 0.2573 
Block 3 0.020 
Residual 21 0.022 
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Table 7.3. Results of 3-way ANOVA on combined treatment effects on canopy height of Enteromorpha spp. in 

July. A significant cage artifact (p=0.0001) occurred in the control experiment (explained above). Untransformed 

data achieved homogeneity of variances. 

Source df 

Enteromorpha spp. 
Herbivory (H) 1 

Propagule bank (P) 1 

Nutrient enrichment (N) 1 

HxP 1 

HxN 1 

PxN 1 

HxPxN 1 

Block 3 

Residual 21 
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~ 60 ·- 'ii 
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> 40 0 
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~ 
20 
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0 20 

MS 

2178.0 

3321.1 

903.1 

171.1 

231.1 

544.5 

144.5 

77.3 
121.8 

... 

0 

F-ratio P-value Variance (%) 

17.879 0.0004 19.8 

27.262 0.0001 30.8 

7.414 0.0127 7.5 

1.405 0.2492 

1.897 0.1829 

4.470 0.0466 4.1 

1.186 0.2884 

o No herbivory, no propagule bank 
• No herbivory, propagule bank 
" Herb ivory, no propagule bank 
.,. Herbivory, propagule bank 

40 60 80 100 

% cover Enteromorpha 

Fig. 7.3. Linear regression of% cover of Pi/aye/la littoralis versus% cover of Enteromorpha spp. in May. 

Treatment combinations ofherbivory and propagule bank are indicated in the legend. Regression analysis 

revealed the following equation: f(x) = -0.390 x + 44.988; r2 = 0.363; p = 0.0003. 
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Fig. 7.4. Effects of the propagule bank on algal colonization in the absence of herb ivory ( closed cages) in 

May. If the propagule bank is absent, Pi/aye/la dominates the substratum (left), if the propagule bank is 

present, Enteromorpha is the dominant space occupier (right). The rocks are 15-20 cm in diameter. 

In total, Pilayella showed a distinctly shorter period of occurrence which ended in late 

July in comparison with Enteromorpha which occurred until December (Fig. 7.2). 

Herbivore pressure within open cages was reduced compared to plots without cages 

(Table 7.4, for complete ANOV A results see Table A 7 .1 ). This was most probably caused by 

the weekly cleaning procedure which was necessary to prevent fouling of cages. This 

significantly (p<0.0001) reduced the density of slow-moving Littorina saxatilis which is an 

important consumer of algal germlings (Chapter 6). A similar but non-significant trend was 

visible in L. littorea, whereas mobile Idotea seemed to prefer open cages as a habitat 

compared to open plots. These differences in herbivore densities between open cages and 

open plots are assumed to be the main factor causing significant cage artifacts (p-values are 

noted in the legends of ANOVA tables). All cage artifacts resulted in increased performance 

of algae in open cages compared to open plots. This was a consistent observation in 

Enteromorpha which is most susceptible to herbivory and thus, corroborates the assumption 

that cage artifacts are caused by the reduction of herbivore densities. I found no hints for 
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further cage artifacts such as reduced light level, reduced nutrient supply due to reduced water 

motion or enhanced sedimentation rate. All these effects would have decreased algal 

performance within cages in contrast to the observed increase. 

Table 7.4. Herbivore density per m2 of main species in treatment plots of the field experiment in July (means ± 

1 SE, n== 16). Results of statistical analyses of the cage effect on herbivore density are listed below, for complete 

ANOVA tables see Table A7.1. 

Density m-2 Littorina saxatilis Littorina littorea Idotea spp. Gammarus spp. 

Mean SE Mean SE Mean SE Mean SE 

Open plots 1306.4 226.8 12.7 6.3 211.5 18.0 301.9 89.5 

Open cages 446.4 76.8 4.2 4.2 498.6 108.0 338.7 63.2 

P-value 0.0001 n.s. n.s. n.s. 

Because of the reduction of herbivore pressure in open cages compared to open plots, 

herbivore effects were conservatively estimated in the experiment. Control treatments without 

cages may give a more realistic estimate of population development under strong herbivore 

pressure. On all open plots, Enteromorpha and Pilayella strongly suffered from the high 

natural herbivore pressure (Fig. 7.5). Compared to open cages (Fig. 7.2, filled symbols), 

maximal% cover on open plots was decreased by >60% in both species. If the propagule bank 

was available, Enteromorpha achieved 26% cover until April (Fig. 7.5b) which is almost the 

same level as in caged plots (Fig. 7.2b). When herbivores became active in May, they reduced 

Enteromorpha cover continuously. Pilayella only reached a small peak with 14% cover in the 

end of May. Without a propagule bank Enteromorpha only developed into a minor amount of 

1 % cover in June and July (Fig. 7.5a). Pilayella achieved 7% cover in the end of June. 

Compared to Enteromorpha, this was the only treatment with a clear dominance of Pilayella. 



r 

7 Relative effects of propagule bank, nutrients and herbivory 

10 (a) No propagule bank 

/l 6 

8 

····•··· Pilayella 
---.- Enteromorpha 

~ : r ~-----
~ 0 -l-~--r---1 ........ ___ .... _____ ~--e=---+~-ilt---=il----tl----tl--~re----l 
0 
u 

'$. 50 

40 

(b) Propagule bank 

J F M A M J J A s O N D 

99 

Fig. 7 .5. Population development of Enteromorpha spp. and Pi/aye/la littoralis on open control plots (no 

cages, full herbivore pressure) without (a) and with (b) propagule bank. Data were analyzed as% cover 

(mean± lSE, n=8). 

Comparison of treatment effects for all algae 

To determine the importance of the experimental factors for the entire algal community 

I investigated their impact on all abundant algae (>2% cover). In addition to Enteromorpha 

and Pilayella, 5 other macroalgal species occurred over the experimental period but were of 

minor importance except for the perennial brown alga Fucus vesiculosus (Table 7 .5). Fucus 

only recruited in small amounts from the propagule bank (7.75 germlings 100 cm·2). This 

species thus almost completely relied on new recruitment which occurred in April-May. For 
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most species, opposing effects of the propagule bank and herbivores became visible. Species, 

which were highly favored by their investment into the propagule bank ( e.g. Enteromorpha, 

Ulvopsis) were most vulnerable to herbivores. In contrast, herbivores positively affected 

species which showed a net negative effect of the propagule bank (e.g. Ceramium, Fucus). 

The marked effect of the propagule bank on Ulvopsis was caused by the fact that dormant 

propagules were almost the exclusive source of recruitment of this species. Within the three 

dominant species Enteromorpha, Pilayella and Fucus, a distinct trend towards a trade-off 

between the investment into a propagule bank and susceptibility to herbivore consumption 

was visible. 

Table 7.5. Experimental effects of herbivores and propagule bank on macroalgae, recruit density of species in the 

propagule bank, and occurrence period of species during the experiment (see Material & methods for further 

explanation). Maximum % cover is shown for the most beneficial herbivore x propagule treatment combination 

(n=8). 

Species Herbivore Propagule Recruit density Max. %cover Occurrence 

effect effect (100 cm-2 ±lSE) (mean±lSE) period 

Enteromorpha spp. -0.48 0.52 33000 (±3000) 87.25 (±5.82) Mar-Dec 

Ulvopsis grevillei -0.23 27.80 no data 20.75 (±9.13) Mar-Apr 

Polysiphonia fibrillosa -0.21 -0.36 no data 3.50 (±1.92) Nov-Dec 

Pilayella littoralis -0.04 -0.58 667 (±667) 53.00 (±6.85) Mar-Jui 

Cladophora sp. 0.91 -0.69 no data 9.50 (±5.38) Jun-Dec 

Ceramium strictum 1.03 -0.78 no data 13.25 (±5.10) Jun-Sep 

Fucus vesiculosus 1.55 -0.68 7.75 (±3.04) 69.75 (±4.22) Jun-Dec 

New recruitment 

I was interested whether population growth of Enteromorpha and Pilayella in summer 

mainly depends on recruitment in spring or if new recruitment during summer provides a 

significant source of further individuals. New recruitment of algal propagules included 

settlement from the water column, germination and subsequent growth of germlings. These 

processes were strongly controlled by the combined effects of herbivory and nutrient 

enrichment (Fig. 7.6). Nutrient enrichment resulted in a significantly higher abundance of 

visible germlings in both species, Enteromorpha (p=0.0001) and Pilayella (p=0.0062), and 

... 
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was the factor with the greatest relative effect size of 34% and 16% for the two species 

respectively (Table 7.6). 
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Fig. 7 .6. Combined effects of herbivores, propagule bank, and nutrient enrichment on new recruitment of 

Enteromorpha spp. and Pilayella littoralis in June. Recruitment was examined on ceramic tiles which 

were exposed to all treatment plots of the main experiment (see Fig. 7.1). Germling density was analyzed 

after 14 d (means± 1 SE, n=4). For statistical analysis of treatment effects see Table 7.5. 
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However, herbivore consumption balanced the nutrient effect. Herbivores significantly 

reduced recruitment of Enteromorpha (p=0.0041) and Pi/aye/la (p=0.0454) and explained 

14% and 8% of the variance respectively (Table 7.6). In Enteromorpha spp., there was an 

additional effect resulting from manipulations of the propagule bank on rocks enclosed in the 

same cages as the tiles of the recruitment experiment. The propagule bank had a significant 

positive effect (p=0.0378) on new settlement (Table 7.6). This was an indirect effect most 

likely caused by a higher density of adult Enteromorpha thalli (and thus higher propagule 

supply) on rocks with a propagule bank (Fig. 7.2b) indicating that the propagule rain is not 

distributed homogeneously and propagule density can depend on the proximity of the 

propagule source. 

Table 7 .6. Results of 3-way ANOV As on combined effects of herbivory, propagule bank and nutrient enrichment 

on new recruitment of Enteromorpha spp. and Pi/aye/la littora/is in June. Significant cage artifacts (p=0.0001 in 

Enteromorpha, p=0.0503 in Pi/aye/la) occurred in the control experiment caused by reduced herbivore densities 

in open cages compared to open plots. Log-transformed data achieved homogeneity of variances. 

Source df MS F-ratio P-value Variance (%) 

Enteromorpha spp. 
Herbivory (H) 1 1.684 10.350 0.0041 14.0 
Propagule bank (P) 1 0.799 4.914 0.0378 5.8 
Nutrient enrichment (N) 1 3.824 23.505 0.0001 33.6 

HxP 1 0.030 0.187 0.6699 

HxN 1 0.007 0.041 0.8416 

PxN 1 0.178 1.096 0.3070 

HxPxN 1 0.262 1.612 0.2180 

Block 3 0.179 

Residual 21 0.163 

Pi/aye/la littoralis 
Herbivory (H) 1 0.235 4.525 0.0454 8.5 
Propagule bank (P) 1 0.007 0.139 0.7127 
Nutrient enrichment (N) 1 0.482 9.271 0.0062 16.2 
HxP 1 0.003 0.056 0.8158 
HxN 1 0.007 0.140 0.7116 
PxN 1 0.062 1.200 0.2857 
HxPxN 1 0.022 0.418 0.5250 
Block 3 0.095 
Residual 21 0.052 

re 
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In separate statistical tests, I analyzed if feeding preference of herbivores occurred 

within the recruitment experiment. Herbivores significantly preferred Enteromorpha over 

Pilayella in all treatment combinations (Table A 7 .2b-d) except when no propagule bank was 

present and no nutrient enrichment occurred (Table A 7 .2a) which is the treatment with the 

lowest Enteromorpha density. 

7.4. Discussion 

Population development and dominance patterns of the two co-occurring opportunistic 

macroalgae Pilayella littoralis and Enteromorpha spp. were affected by the combined effects 

of a dormant propagule bank, herbivore consumption and nutrient enrichment. The magnitude 

of effects varied with season. As one major result of this study, I could demonstrate the great 

ecological significance of a macroalgal propagule bank. This marine "seed bank" provides an 

important mechanism for overwintering and survival of annual and perennial macroalgal 

populations in the face of environmental variability. Favored by massive recruitment from the 

propagule bank, Enteromorpha spp. was the superior space occupier in spring. Subsequently, 

recruitment of other colonizing algae was largely inhibited if the propagule bank was present. 

Secondly, as the main counteracting factor, a diverse herbivore guild prevented single species 

dominance. By strong and selective consumption of Enteromorpha at all life stages herbivores 

indirectly favored Pilayella littoralis and further algae of the community. As a third important 

result, Enteromorpha could overcompensate strong herbivore pressure when I moderately 

increased nutrient availability in summer. Because of its positive effect on Enteromorpha 

nutrient enrichment negatively affected the performance of Pilayella. Finally, both, herbivore 

and nutrient effects were more pronounced in early life stages compared to adults. 

Many species from microbes to trees invest into banks of dormant propagules or seed 

banks to survive unfavorable conditions and sudden disturbances in a variable environment 

(Hairston & De Stasio 1988, Leck et al. 1989, Hoffmann & Santelices 1991, Fenchel et al. 

1997). With a potential for dormancy periods ranging from weeks to centuries, local recovery 

and persistence of populations after a disturbance is favored by former investment into a seed 

bank, depending on timing, frequency and intensity of the disturbance. Different investment 

into seed banks may be related to species life-history patterns (Grime 1979, Leck et al. 1989). 

The existence of a macroalgal propagule bank or a "bank of microscopic forms" (sensu 
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Chapman 1986) has been only recently established (Chapter 4, Hoffinann & Santelices 1991, 

Santelices et al. 1995). In a first detailed characterization of such a bank of microscopic algal 

forms on a rocky shore in Chile (Hoffinann & Santelices 1995) the bank was judged to be 

more important for the survival of perennial species compared to ephemerals. This is in 

contrast to terrestrial ecosystems, where fast-growing opportunistic annuals invest orders of 

magnitude more propagules into soil seed banks than slow-growing late successional species 

(Grime 1979, Leck et al. 1989). My findings are in concordance with the terrestrial systems. 

Recruitment of annual Pi/aye/la and Enteromorpha from the propagule bank was increased by . 

two to three orders of magnitude compared with perennial Fucus vesiculosus (Table 7 .5). I 

found population development of Enteromorpha spp. and Ulvopsis grevillei to depend 

strongly on recruitment from the propagule bank. Since perennials (e.g. Fucus vesiculosus) 

occur year-round, and some annuals ( e.g. Ceramium strictum) overwinter as adults in the 

deeper subtidal (discussed in Chapter 4) survival in a propagule bank may not be vital in their 

life cycles but may act as an insurance against local extinction following disturbance. 

Furthermore, the propagule bank can provide a storage of genetic diversity (De Stasio 1989). 

It is unknown so far, if in addition to a transient propagule bank (<1 year old) also a persistent 

(> 1 year old) bank exists for macroalgae as reported for many land plants (Grime 1979, Leck 

et al. 1989). 

Despite their ubiquity the ecological role of a propagule bank or seed bank in modifying 

mechanisms of community regulation such as competition and herbivory has not yet been 

examined. My results indicate that the propagule bank (1) provides a 2-month escape from 

herbivory and (2) enables population growth when nutrient supply is still high. Thus, the 

propagule bank can act as an adaptation to seasonal variation in herbivore pressure and 

nutrient availability. This represents a major competitive advantage for opportunistic species 

that use nutrients very effectively but that are suppressed by herbivores (Lubchenco 1978, 

Grime 1979, Littler & Littler 1980). However, not all opportunistic species were favored 

through the propagule bank (Table 7 .5). Within dense stands of growing germlings, 

competition is likely to occur on limiting resources such as space, light and nutrients 

(Carpenter 1990). Competitive interactions in tum are modified by (1) herbivory (Lubchenco 

& Gaines 1981, Menge 1995), (2) nutrient availability (Fong et al. 1996), and (3) propagule 

supply (Roughgarden et al. 1988, Reed 1990). 

In spring, alternating dominance patterns occurred depending on the presence or absence 

of the propagule bank. Among new recruits from the propagule bank, Enteromorpha was the 
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superior space occupier until May. This was in contrast to the previous assumption that 

Pilayella may pre-empt space due to the ability to germinate at lower temperatures. Possibly, 

this may only be an advantage in years when low water temperatures ( <5°C) prevail until late 

spring as in 1995 (Chapter 2). The much higher investment of Enteromorpha into the 

propagule bank compared to Pilayella may explain this dominance. But, it does not explain 

why recruitment of Pilayella from the propagule bank is almost totally suppressed (Fig. 7.2b). 

Moreover, despite higher propagule supply in Enteromorpha (Chapter 3), Pilayella dominated 

space in the course of new recruitment on sterilized substrata from May to June. These 

different dominance patterns may be caused by shifts in competitive abilities with seasonal 

nutrient availability. Competitive dominance can be reached by higher rates of resource 

capture followed by faster growth and subsequent shading or sweeping effects (Carpenter 

1990, Santelices 1990, Vadas et al. 1992). In my experiment, new recruitment in 

Enteromorpha was more enhanced by nutrient enrichment (4.4- to 7.3-fold) than in Pilayella 

(1.6- to 2.5-fold, Table 7.6, Fig. 7.6). This is an advantage in nutrient-high conditions as in 

early spring possibly leading to the observed Enteromorpha dominance then. In contrast, in 

unenriched low-nutrient summer conditions, recruitment in Enteromorpha was smaller than in 

Pi/aye/la (Fig. 7 .6). Pi/aye/la germlings may use nutrients more efficiently at low 

concentrations outcompeting Enteromorpha in the course of new recruitment on sterilized 

substrata from May to June. Thus, shifting dominance between Enteromorpha and Pilayella 

depends on the recruitment source and on seasonal nutrient availability. 

Herbivores became abundant and active in May and strongly altered these dominance 

patterns. Both algal species were heavily consumed yet, effects were stronger on 

Enteromorpha which was the preferred food source in all life stages (this chapter, Chapter 6). 

Dominance of Enteromorpha on rocks with propagule bank was reduced by herbivores 

resulting in an indirect positive herbivore effect on other species including Pilayella. Selective 

consumption of a superior competitor is known to modify competitive interactions (Menge 

1995). However, if Enteromorpha was not abundant (as on sterilized plots) herbivores also 

negatively affected Pilayella. Net herbivore effect on Pilayella thus depended on the relative 

abundance of Enteromorpha as an alternative food source and thus, on the absence or 

presence of the propagule bank. Herbivore consumption of both annuals, Enteromorpha and 

Pilayella, highly favored further algae and, importantly, enabled recruitment of perennial 

Fucus vesiculosus (Table 7.5, B. Worm, unpublished). Compared to the two annual algae, 
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Fucus is well-defended against herbivory by polyphenolic feeding deterrents (Hay & Fenical 

1988) and structural defenses. But, this species highly suffered from the propagule bank 

treatment (Table 7.5) because here, an established turf of Enteromorpha drastically inhibited 

new settlement and recruitment of Fucus vesiculosus during its reproductive period in May 

(B. Worm, unpublished). Algal turfs or canopies are well documented to act as a barrier 

preventing new settlement and recruitment of annual (Hruby & Norton 1979) or perennial 

propagules (Deysher & Norton 1982, Chapman 1984, Dayton et al. 1984, Worm & Chapman 

1998). Mediating effects of herbivores on competition between annuals and perennials have 

also been described from rocky shores. Among other annuals, Enteromorpha inhibited 

perennial Fucus vesiculosus by faster growth when herbivores were rare or inactive but, this 

pattern was reversed when herbivores were dense and active (Lubchenco 1978, 1983). 

Clearly, herbivores can play a key role in maintaining species diversity by consuming a 

dominant space occupier such as Enteromorpha. In my experiments however, a diverse 

herbivore guild rather than a single "keystone species" (Paine 1966, 1995) prevented 

Enteromorpha dominance. Such "diffuse predation" ( effect shared by several species of 

similar potential importance) in contrast to "keystone predation" (large effects of one 

important predator) is important in some rocky shore communities (Robles & Robb 1993, 

Menge et al. 1994). 

Nutrient enrichment during summer had only slight effects on the established algal 

canopy and did not increase occurrence period or% cover of any species. However, nutrient 

enrichment significantly increased growth and thus canopy height of Enteromorpha which had 

some negative effect on growth of recruiting Fucus germlings (B. Worm, unpublished). Still, 

the overall nutrient effect on adult populations was small compared to the other treatment 

effects (herbivory, propagule bank). Greater importance of herbivore effects over nutrient 

enrichment was also reported for epiphyte growth on seagrass (Zostera marina) in 

experimental mesocosms (Neckles et al. 1993). However, I can only generalize upon 

processes that occur in response to summer nutrient enrichment. In the course of further 

eutrophication, nutrients may be enriched during all seasons compared to pristine systems. 

Effects of nutrients on the community may be much larger when nutrient enrichment occurs 

during the critical period of algal recruitment in spring. In accordance with this notion, 

moderate nutrient enrichment had large effects on new recruitment of Enteromorpha and 

Pilayella in summer that even exceeded effects of herbivory (Table 7.6). This strong nutrient 

limitation of recruitment during summer corroborates results from laboratory results (Chapter 
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4 ). Furthermore, nutrient enrichment allowed mainly Enteromorpha to compensate for losses 

caused by herbivory. Such a partial compensation of consumer control (Asterias rubens) by 

enhanced productivity under eutrophic conditions was also suggested for the mussel Mytilus 

edulis in Kiel Fjord (Reusch & Chapman 1997). My results again demonstrate the greater 

sensibility and different reactivity of early life stages towards environmental variability 

compared to adult stages. 

Within my experimental units, no "algal bloom" such as overcrowding or free floating 

algal masses developed. This led me to propose a possible niche differentiation in 

Enteromorpha and Pi/aye/la. While main population growth of Enteromorpha occurred on 

rocks which naturally bear a propagule bank (Fig. 7 .Sb), population growth of Pi/aye/la 

mainly occurred on bare substrata without a propagule bank (Fig. 7.5a). In the study area, 

most of the available surface without a dense propagule bank may be provided by Fucus 

plants on which only a few propagules overwintered (Chapter 4, Fig. 4.1). After initial low 

recruitment from the propagule bank on rocks, Pi/aye/la may reproduce quickly and recruit 

epiphytically on Fucus and other bare surfaces. Here, it dominates relative to Enteromorpha 

under natural herbivore pressure. In my experiment, cover of Pi/aye/la was rather low and 

checked by intense herbivory on the sterilized rocks without cages (Fig. 7.5a). However, the 

distribution pattern of Pi/aye/la relative to Enteromorpha on these plots closely resembled the 

seasonal abundance of adult biomass that occurs epiphytically on Fucus (Chapter 3, Fig. 3.lc, 

3 .2b ). A further possibility in Pi/aye/la to avoid Enteromorpha dominance on rocks is to 

occur as a free-floating stage. I observed that Pi/aye/la thalli were usually tom off from the 

substratum once they exceeded >5 cm length. These unattached filaments became interwoven 

in dense carpets which drifted around and accumulated in areas of low current velocities. 

Free-floating life at the water surface is common in bloom-forming macroalgae like 

Enteromorpha, Ulva and Pi/aye/la (Wilce et al. 1982, Bonsdorff 1992, Fletcher 1996) but was 

rarely observed in Enteromorpha intestinalis at the study site. A drifting adult stage may be 

generally advantageous for avoiding space competition with other macroalgae and preventing 

shading by phytoplankton blooms which are common in eutrophicated waters (Sand-Jensen & 

Borum 1991). 

In summary, algal recruitment in spring was the critical period for population development 

and decisive for the establishment of dominance patterns of the co-occurring macroalgae 

Pi/aye/la littoralis and Enteromorpha spp. Under actual environmental conditions in the field, 
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coexistence of Enteromorpha and Pi/aye/la and of further algae was possible if both, the 

propagule bank and herbivores were present. This is the natural situation at my study site. 

However, the balance between these two counteracting factors may be disturbed by (1) the 

reduction of herbivory, (2) the enhancement of nutrient availability, (3) the loss of perennial 

vegetation. These points are all identified as problems that are closely related to 

eutrophication. Important positive feed-back mechanisms can occur and will be discussed in 

the following chapter. 
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Chapter 8 

General discussion and conclusions 

Changing structure and functioning of coastal ecosystems in the course of increasing 

eutrophication has been well documented (Chapter 1). Blooms of annual macroalgae as one 

major problem linked to eutrophication cause severe damage in coastal ecosystems worldwide 

(reviewed by Fletcher 1996). Despite their increasing importance and impact, a causal 

understanding of mechanisms controlling macroalgal blooms is fragmentary. In this study, I 

provide a conceptual model that attempts to synthesize abiotic and biotic factors that control 

population development and species dominance patterns in macroalgal blooms (Fig. 8.1 and 

8.2). 

My observations and experiments unequivocally demonstrate that early life stages are of 

critical importance for population dynamics of bloom-forming macroalgae in the Baltic Sea. 

This has been proposed before for seaweeds on rocky shores (Hruby & Norton 1979, 

Lubchenco 1983, Vadas et al. 1992) and on soft bottoms (Lotze 1994, Schories 1995a), but 

experimental evidence was lacking for bloom-forming algae. The bottleneck character of early 

life stages may indeed be a very general phenomenon, not only restricted to algae, and has 

been similarly proposed for marine invertebrates (Roughgarden et al. 1988, Underwood & 

Fairweather 1989), fish (Fairweather 1991) and terrestrial plants (Leck et al. 1989, Fenner 

1992). In this study, early life stages were more sensitive to environmental change than adults. 

Their overall response to variation of important factors such as nutrient enrichment or 

herbivory was usually more pronounced compared to adult plants. Moreover, some important 

differences between the early life stages of different species were not paralleled between the 

adult stages of the same species (Chapter 4, 5). Taken together, this may indicate that 

ecophysiological and ecological traits of early life stages can be of greater importance than 

those of adults in determining population development and species dominance pattern. 

A suite of factors controlling the development of early stages in the beginning of the 

vegetation period define a species-specific recruitment window (sensu Deysher & Dean 1986) 

of optimal conditions for recruitment of early stages into the macrobenthos (Fig. 8.1). I 

suggest that the length of this period may be a predominant variable that controls the extent, 

timing and species dominance patterns of macroalgal blooms. In early spring, rising 

temperature and light climate ( day length and light intensity) opened the recruitment window 
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for Enteromorpha and Pilayella among other algae (Fig. 8.1). Potentially, successful 

recruitment of Pilayella in the study area could occur until June or July when temperatures 

exceeded 20°C, whereas Enteromorpha was able to recruit continually until late autumn when 

decreasing temperature and light climate became inhibitory. I will call this period of potential 

recruitment which was defined by abiotic environmental conditions the "fundamental 

recruitment window" (equivalent to a fundamental niche, Keddy 1989). The actual temporal 

distribution of species, their "realized recruitment window" (realized niche, Keddy 1989) was 

controlled in late spring and summer by increasing herbivore pressure in combination with 

increasing nutrient limitation (Fig. 8.1). Finally, recruiting and growing algae competed for 

space and resources. The dominant space occupier inhibited new recruitment of further algae. 

The relative importance of these factors was species specific and shifted with time and life 

stage. Two ecological traits appear to be predominantly important: (1) investment into a 

overwintering propagule bank and (2) susceptibility to herbivores. 
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Fig. 8.1. A recruitment window (bold line and dots) of annual, bloom-forming macroalgae. Rising 

temperature and irradiance open this period of optimal conditions for recruitment in early spring. Towards 

late spring and summer, increasing herbivore pressure and decreasing nutrient availability control actual 

species distribution and limit the recruitment window. The actual length of the recruitment window is 

species specific and may vary among years and regions as a function of climatic variation, changes in 

herbivore populations and nutrient loading. 
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The initiation of algal recruitment in early spnng originated from overwintering 

propagules (Fig. 8.2). These propagules were produced in the previous vegetation period, 

when they settled on various substrata, preferentially on rocks (Chapter 4), but did not recruit 

into erect germlings. High densities of overwintering propagules were found in opportunistic 

annuals, whereas perennial Fucus vesiculosus was rare in the propagule bank. Abundance in 

the propagule bank was related to the total reproductive output and was in accordance with the 

functional-form model of Littler & Littler (1980), that predicts higher rates of propagule 

production for opportunistic than for late successional perennial forms. After settlement, the 

propagules or microscopic stages remained in the propagule bank until environmental 

conditions became favorable for recruitment in next spring. Whereas such an overwintering 

pattern in the form of seeds or bulbs is the rule for annual land plants ( Grime 1979, Leck et al. 

1989) its role for annual macroalgae is only emerging (Hoffmann & Santelices 1990, 

Santelices et al. 1995, Schories 1995b ). 

Timing and rate of germination appeared to be the ecophysiological bottleneck for the 

initiation of mass spring development (Fig. 8.2). This step was mainly controlled by 

temperature and to some extent by light similar to patterns found in terrestrial plants (Fenner 

1992). Further population development into adults and the potential for forming a mass bloom 

depended on the relative impact of nutrients and losses to herbivory in germlings and adults. If 

nutrients were elevated through experimental enrichment, high capacities of growth and 

nutrient uptake enabled fast-growing opportunistic annuals to overcompensate high losses to 

herbivory. Despite nutrient depletion in summer, fast initial responses towards nutrient pulses 

enabled opportunistic species to use patchily available resources effectively. This is highly 

advantageous compared to slow responses of perennial species (Wallentinus 1984 ). Potential 

P-limitation of germination in early spring shifted to increasing N-limitation of recruitment 

and growth towards summer. Seasonal variation of nutrient limitation caused by seasonal 

alteration of environmental conditions has also been proposed in other marine systems (Duke 

et al. 1989, Fong et al. 1993). The main factor counteracting nutrient enrichment was 

herbivory (Fig. 8.2). From April onwards, the realized extent of mass blooms was strongly 

influenced by an abundant and diverse herbivore guild (Idotea spp., Gammarus spp., Littorina 

spp.). In all life stages, Enteromorpha was the preferred food source over Pilayella. Yet, 

effects of individual herbivore species varied with life stage. If Enteromorpha was rare, 

Pilayella was heavily consumed as well. "Diffuse consumption" by several herbivore species 
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Fig. 8.2. Conceptual model of main mechanisms that control population development and species 

dominance pattern of Enteromorpha spp. and Pi/aye/la littoralis in macroalgal blooms at the study site. 

The box size represents the relative abundance of each life stage. Solid arrows indicate direct effects and 

transitions from one life stage into another. The thickness of arrows represents the relative importance of 

effects, +, - the character of direct effects. Dotted arrows indicate modifying indirect effects of herbivory 

and nutrient concentrations on competitive interactions. Depending on the season, herbivory and nutrients 

can also have strong effects on the development of propagules into germlings which is not indicated in this 

figure. For further details refer to the text. 

feeding on different algal life stages (Robles & Robb 1993, Menge et al. 1994) in contrast to 

"keystone consumption" (sensu Paine 1966) appeared important for an effective herbivore 

control. However, herbivore pressure was more severe on early life stages compared to adults, 

which again demonstrates the vulnerability of early stages as proposed by Vadas et al. (1992). 
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Despite herbivore food preferences, species dominance patterns within macroalgal blooms 

were further controlled by competitive abilities of the algae. The ability to occupy space for 

recruitment and growth depended on the availability of the propagule bank (dormancy, 

favoring Enteromorpha) or dispersal (favoring Pi/aye/la) as a recruitment source. Further, it 

depended on the effectiveness of resource capture in mixed stands under variable levels of 

nutrient availability. When Enteromorpha and Pi/aye/la recruited together, nutrient 

enrichment favored Enteromorpha whereas Pi/aye/la seemed to be able to use small resource 

supply more efficiently. As a consequence, under nutrient enrichment, Enteromorpha was 

able to overcompensate its higher losses through herbivory. Thus, while herbivores can 

potentially control mass-blooming macroalgae, nutrient enrichment may override this control 

mechanism. The balance between bottom-up (resource) and top-down (herbivore) control is 

highly important for the extent of macroalgal blooms. 

In conclusion, the relative importance of abiotic factors (predominantly nutrients, 

temperature and light) versus species interactions such as competition and herbivory varies 

with season. An abiotic control of the initiation of macroalgal blooms in early spring switches 

to biotic control in later spring (competition, herbivory), and combined abiotic (nutrient 

limitation, high temperature) and biotic (herbivory) control in summer. This pattern is 

paralleled in other food webs, e.g. during plankton succession in temperate lakes and marine 

systems (Sommer 1989) or in the development of spring annuals in terrestrial ecosystems 

(Fenner 1992). 

One important goal of ecological research is to increase our ability to predict changes in 

the natural environment upon changes in environmental parameters (Peters 1991). Following 

my results, prediction of occurrence and extent of macroalgal blooms will have to combine 

knowledge about the trophic structure of the system, the availability of substratum with a 

propagule bank, and the combined impact of herbivores. The response of coastal macrophyte 

communities to variation in these factors should be investigated in further locations to reveal 

how systems differ in their ability to absorb increased nutrient loading. The goal should be a 

predictive model that can be translated to other systems for use in coastal management 

(Valiela et al. 1997). 

Predicting species composition and dominance patterns may be more complex than 

predicting aggregate parameters like total biomass and requires some additional information 
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on the ecophysiological and ecological traits of species on different life-stage levels. 

Knowledge on the fundamental recruitment windows (or niches) may be gained by laboratory 

studies on germination and growth in relation to abiotic parameters. To predict realized 

occurrence however, field experiments are necessary to determine competitive abilities and 

susceptibility to herbivory under the actual environmental conditions. In this study, I was able 

to answer why Pilayella dominates macroalgal blooms over Enteromorpha in the Baltic Sea. 

High herbivore pressure, moderately high nutrient concentrations, and the availability of 

perennial Fucus as substratum without a propagule bank favors Pi/aye/la over Enteromorpha. 

But, why does Enteromorpha (and similar green algae) dominate mass blooms in most other 

coastal waters around the world? Many coastal lagoons or bays where macroalgal blooms 

were observed are dominated by soft bottoms and perennial vegetation is rare, e.g. in the 

Wadden Sea, Germany (Lotze 1994, Schories 1995a), Veerse Meer, Netherlands, Langstone 

harbor, England, Bay of Lannion, France, Venice lagoon, Italy (Rijstenbil et al. 1996, 

Schramm & Nienhuis 1996). Sand grains provide substratum for propagule settlement and 

germination for green algae but probably not for other species. In addition, some typical 

species of the soft bottom fauna like the mud snail Hydrobia ulvae, and tubes of Lanice 

conchilega can serve as substrata (Schories 1995a, b, Schories et al. 1997). On these substrata, 

herbivore pressure is reduced because littorinid snails can hardly forage on sand or mud 

(Wilhelmsen & Reise 1994) and foraging time for all mesoherbivores is reduced due to the 

tides. Moreover, perennial vegetation which is an important habitat for crustacean herbivores 

(Salemaa 1987) is rare. Thus, several factors favor the green alga Enteromorpha and possibly 

also other common Chlorophyta such as Ulva, Cladophora and Chaetomorpha. 

Coexistence of species such as Enteromorpha spp., Pi/aye/la littoralis and Fucus 

vesiculosus in the Baltic Sea was possible because each algal genus was favored by at least 

one important environmental variable. An abundant propagule bank favored Enteromorpha 

whereas herbivores favored Pilayella and the perennial vegetation. Nutrient supply did usually 

not allow overcompensation of losses through herbivore consumption. However, this balance 

between counteracting processes may be disturbed. Increasing loads of nitrogen and 

phosphorus will continue to favor bloom-forming algae which then threaten biodiversity and 

sustainability of coastal ecosystems (Vitousek et al. 1997). Despite the necessity and efforts 

towards stabilizing nutrient loads, no substantial decrease of N- and P-loads have been 

observed in long-time series of nutrient concentrations in the Baltic (Nehring 1991) and in the 
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North Sea (Martens 1989, Hickel et al. 1993). The importance of herbivores as a major 

counteracting factor against macroalgal blooms was not recognized until now. A potential die 

back or decline of herbivores would release opportunistic, bloom-forming macroalgae from 

consumption similar to effects in exclusion experiments (Chapter 6, 7). Herbivores may be 

threatened by several factors, some of which are either eutrophication- or pollution-related 

problems. For example, enhanced sedimentation as a consequence of increasing 

phytoplankton blooms may deteriorate the living conditions of snails foraging mainly on hard 

substratum (Wilhelmsen & Reise 1994). Further threats come from increasing concentrations 

of synthetic organic chemicals that accumulate in marine organisms from planktonic algae to 

whales (e.g. insecticides such as DDT, polychlorinated biphenyls (PCBs), Schulz-Bull & 

Duinker 1996, Vitousek et al. 1997). Some common toxins such as TBT (tributyltin, an 

antifouling agent) can cause physiological and morphological alterations of invertebrates and 

can cause the loss of reproductive ability, e.g. in Hydrobia ulvae and Littorina littorea 

(Schulte-Oehlmann et al. 1996). Moreover, the decline of the perennial vegetation which is 

often observed following eutrophication (Chapter 1) leads to a habitat loss for herbivores 

which are typically closely associated to the perennial canopy (Salemaa 1987). These factors 

may create positive feed-back mechanisms. Higher nutrient loads favor annual algae (mainly 

Enteromorpha, Pilayella) which massively recruit out of the propagule bank and inhibit 

perennial recruitment (B. Worm, unpublished). In addition, increasing epiphytic loads 

enhance the drag on the perennial plants (Lubchenco 1983). The loss of perennial cover will 

be accompanied by the decline of herbivores which prefer these plants as a habitat ( e.g. 

Jdotea, Gammarus). Subsequently, herbivore pressure will be reduced resulting in an 

acceleration of macroalgal blooms. The perennial vegetation will gradually be replaced by 

monocultures of opportunistic annuals as observed in various parts of the Baltic (Kangas et al. 

1982, Vogt & Schramm 1991). This decline of perennial vegetation will consequently lead to 

a severe loss of biodiversity which is associated to the Fucus community (Kautsky et al. 

1992). The loss of biodiversity in tum can decrease ecosystem stability ( e.g. Tilman 1996, 

Naeem & Li 1997). Thus, herbivores stabilize the community by favoring the persistence of 

perennial macrophytes (Lubchenco 1983) whereas nutrient enrichment may destabilize the 

community by creating positive feed-back mechanisms. Control and reduction of nutrient 

loads must be a prime goal of coastal and terrestrial management efforts (Valiela et al. 1997). 

Further, an effective conservation of the perennial vegetation may help to maintain an 
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abundant and diverse herbivore guild as a natural balancing factor on bloom-forming 

macroalgae. The recommended establishment of Baltic Sea protected areas (BSPA, 1-IELCOM 

1994) on coasts around the Baltic Sea may be a promising first step. Protection of whole 

ecosystems often represents the most effective way to sustain genetic, population, and species 

diversity (Vitousek et al. 1997). This is important for the long-term maintenance of critical 

ecosystem processes which are commonly under biotic control (Chapin et al. 1997) . 
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Appendix I 

Appendix 

Chapter 5 

Table A5. l. Results of two-way ANOV As on the effects of different nitrogen enrichments on growth of adult 

thalli of Enteromorpha intestinalis and Pi/aye/la littoralis (factor "species"). Phosphate was enriched with 30 

µmol r1 in all treatments. 

Source of variation df MS*103 F-ratio P-value 

Species 1 0.716 2.037 0.1727 
Nitrate (500 µmol r1

) 1 19.600 55.740 0.0001 
Species x nitrate 1 0.372 1.059 0.3187 
Residual 16 0.352 

Species 1 0.133 0.223 0.6432 

Ammonium (50 µmol r1
) 1 4.458 7.463 0.0148 

Species x ammonium 1 0.361 0.605 0.4481 

Residual 16 0.597 

Species 1 0.145 0.342 0.5671 

Urea (5 µmol r1
) 1 2.341 5.527 0.0319 

Species x urea 1 0.380 0.897 0.3576 
Residual 16 0.424 



II Appendix 

Table A5.2. Maximum uptake rate (Vmax in µmol h-1g"1 DW), half-saturation constant (Km in µmol 1" 1
), and 

initial slope ( a = V max I Km) of nutrient uptake of Pi/aye/la littoral is and Enteromorpha intestinal is at different 

time intervals. Data were fitted to the Michaelis-Menten equation using nonlinear least-squares regression. 

Shown are means of estimated kinetic parameters(± I SE, n=7 for nitrate, ammonium, n=5 for phosphate). 

Time Enteromorpha intestinalis Pilayella littoralis 

Vmax SE Km SE a 

I 

Vmax SE Km SE a 

N03 - - uptake N03-- uptake 

0-30 237.30 30.29 43.71 18.50 5.43 I 300.13 43.39 116.43 45.99 2.58 
I 

30-60 172.76 24.04 26.89 13.44 6.43 j 166.51 16.00 54.50 17.14 3.06 

60-120 ' 135.67 17.56 21.39 10.29 6.34 , 65.78 1.49 19.88 1.78 3.31 

90.06 4.15 3.67 
I 

33.64 2.52 5.18 1.92 6.49 120-180 20.35 4.43 I 
+ NHi - uptake 

+ NHi - uptake 

0-15 439.13 33.74 66.39 16.25 6.61 466.68 43.22 66.59 19.12 7.01 

15-30 286.94 20.08 37.69 9.56 7.61 351.35 56.17 42.29 22.96 8.31 

30-45 156.01 15.95 17.67 7.60 8.83 257.49 51.81 53.07 34.90 4.85 

45-60 107.45 6.27 13.30 3.47 8.08 181.62 27.25 58.21 28.51 3.12 

60-120 60.68 5.53 12.82 5.38 4.73 52.56 8.08 10.08 6.59 5.21 

P04-- uptake P04- - uptake 

0-60 46.86 13.54 17.33 10.63 2.71 44.21 17.69 15.44 13.90 2.86 

60-120 35.93 14.43 17.13 13.84 2.10 30.97 9.42 11.61 8.00 2.67 

120-240 13.88 3.92 8.12 5.75 1.11 I 8.22 1.78 3.72 2.47 2.21 



Appendix III 

Table A5.3. Results of one-way ANCOVAs on estimated kinetic parameters (V max, Km, a) of nutrient uptake of 

Pi/aye/la and Enteromorpha (factor "species"). Time interval of nutrient uptake was added as a covariate in these 

analyses. The assumption of homogeneity of slopes was fulfilled in all analyses. 

Source of Vmax Km a 

variation df MS F p MS F p MS F p 

N03-- uptake 

Species 1 608 0.29 0.615 875 1.33 0.300 6.46 3.14 0.137 

Time 1 44211 20.93 0.006 4415 6.73 0.049 1.85 0.90 0.386 

Residual 5 2122 656 2.06 

+ NHi - uptake 

Species 1 7660 1.35 0.283 716 3.55 0.102 5.26 1.92 0.209 

Time 1 154735 27.32 0.012 2623 12.99 0.009 6.95 2.53 0.156 

Residual 7 5663 202 2.74 

P04-- uptake 

Species 1 29.3 2.32 0.225 23.2 4.03 0.138 0.25 15.44 0.029 

Time 1 1189.5 94.19 0.002 109.6 19.01 0.022 0.68 41.40 0.008 

Residual 3 12.6 5.8 0.02 

Table A5.4. Comparison of estimated parameters ofMichaelis-Menten kinetic (Vmax in µmol h-1g-1 DW and Km 

in µmol r1
) calculated by (1) nonlinear regression analysis and (2) linear regression analysis after plotting 

according to DeBoer (SN vs. S) and Eadie-Hofstee (V vs. V/S). 

I 
Nutrient and \ Enteromorpha intestinalis Pi/aye/la littoralis Parameter estimation 

time interval [ Vmax Km Vmax Km method 

N03-(0-30) 237.3 43.7 300.1 116.4 nonlinear regression 

228.2 73.0 270.7 97.7 De Boer 

187.6 41.7 231.1 72.7 Eadie-Hofstee 

Nlii + (0-15) '. 439.1 66.4 466.7 66.6 nonlinear regression 

409.8 53.7 435.7 64.1 De Boer 

404.5 52.8 482.0 79.7 Eadie-Hofstee 

P04- (0-60) 46.9 17.3 44.2 15.4 nonlinear regression 

66.7 37.3 26.5 6.3 DeBoer 

66.7 43.3 5.2 10.6 Eadie-Hofstee 
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Chapter 7 
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Fig. A 7 .1. Seawater nutrient concentrations in enriched and unenriched (background) treatments of the factorial 

field experiment. Water samples were taken 10 cm above the installed nutrient diffusors and experimental rocks. 

Nutrient enrichment was unaffected by cages and treatment factors (herbivory, propagule bank) and therefore 

pooled over all treatment combinations (means ± lSE, n=24). Significant enrichments are indicated as: 

*=p<0.05, **=p<0.01, ns.=not significant. 



Appendix v 

Tab. A 7 .1. Complete ANOV A tables of cage effects on herbivore density in the main experiment separated by 

herbivore species. Untransformed data achieved homogeneity of variances. 

Source df MS F-ratio P-value 

Littorina saxatilis 
Cage 1 6050.0 23.641 0.0001 

Block 3 484.6 

Residual 27 255.9 

ldotea spp. 

Cage 1 63.28 1.714 0.2016 

Block 3 19.28 

Residual 27 36.93 

Gammarus spp. 

Cage 1 63.28 1.340 0.2571 

Block 3 132.6 

Residual 27 47.2 

Littorina littorea 
Cage 1 0.781 2.039 0.1647 

Block 3 0.115 

Residual 27 0.383 
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Tab. A7.2. Results of paired t-tests after Peterson & Renaud (1989) on herbivore preference between new 

recruits of Enteromorpha spp. and Pi/aye/la littoralis under different treatments of nutrient enrichment and 

propagule battle Shown are means of differences between germling densities of the two algae in closed cages 

(control), open cages, and on open plots. A positive mean indicates that Pi/aye/la was more abundant, a negative 

mean indicates that Enteromorpha was more abundant. It was tested (1) whether the mean of differences in open 

cages was significant different from that in closed cages (= herbivore effect), and (2) whether the mean of 

differences in open plots differed from that in open cages (= cage effect). Tabled test limits (n=4, k=2) are 

p=0.001(***): tcrit=5.959, p=0.01(**): tcrit=3.707, p=0.05(*): tcrit=2.447, (ns.): not significant. Data were log 

transformed to achieve homogeneity of variances. 

Treatment Mean of differences Variance s2 n t Conclusion 

a) No propagule bank, no nutrient enrichment 

Closed cages ( control) 0.573 0.0555 4 

Open cages 0.652 0.0049 4 0.6428 ns. Herbivore effect 

Open plots 0.357 0.0104 4 -4.7798 ** Cage effect 

b) No propagule bank, nutrient enrichment 

Control -0.061 0.0055 4 

Open cages 0.273 0.0462 4 2.9380 * Herbivore effect 
Open plots 0.144 0.0088 4 -1.0996 ns. Cage effect 

c) Propagule bank, no nutrient enrichment 

Control -0.044 0.0132 4 

Open cages 0.455 0.0095 4 6.6191 *** Herbivore effect 
Op.en plots 0.534 0.0070 4 1.2434 ns. Cage effect 

d) Propagule bank, nutrient enrichment 

Control -0.298 0.0050 4 
Open cages -0.061 0.0196 4 3.0304 * Herbivore effect 
Open plots 0.227 0.0104 4 3.3210 * Cage effect 
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