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studies with JSBACH show, that during the last 6000 years the boreal wetland :

emissions increased by app. two TgCH4 yr! (Schuldt et al., 2012). Using a model U
setup such as CLIMBER-JSBACH gives the possibilities to resolve heterogeneous and carbon flux to atmosphere
sub-scale processes within the biosphere and perform simulations on long time
scales.

Transient simulations will be performed to fill the gap between the time slices to
understand the underlying dynamics of the carbon storage. Experiments including

different landuse scenarios during the Holocene will provide a range of uncertainty

A new climate-carbon cycle model is used, which is the asynchronously coupled
EMIC (Earth System Model of Intermediate Complexity) CLIMBER-2 (Ganopolski
et al., 2001) and the land component JSBACH of the Max-Planck Earth System
Model (MPI-ESM) described by Raddatz et al. (2007).
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