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1. Cruise Summary/Zusammenfassung 

 

The ASTRA-OMZ SO243 cruise on board the R/V Sonne took place between the 5th and 22nd 

October 2015 from Guayaquil, Ecuador to Antofagasta, Chile. Scientists from Germany, the 

U.S.A, and Norway participated, spanning chemical, biological, and physical oceanography, 

as well as atmospheric science. The main goal of the cruise was to determine the impact of 

low oxygen conditions on trace element cycling and distributions, as well as to determine 

how air-sea exchange of trace elements is influenced by high productivity conditions. The 

subsequent impact of trace element ocean-atmosphere exchange on atmospheric chemistry 

and climate will be determined.   

 

A summary of the main preliminary results is below: 

 a strong source of nitrous oxide (N2O) and carbon dioxide (CO2) was detected from 

surface waters in the Peruvian upwelling, particularly in the near-coastal area 

between 9°S and 18°S  

 generally, surface N2O during the SO-243 cruise was lower than previously observed, 

probably due to the reduced extent of upwelling events because of El Niño conditions  

 less dimethyl sulphide (DMS) (< 2nmol L-1)  and isoprene (at 20-30 pmol L-1) than on 

board previous cruises in the coastal upwelling region (8°-12°S) were detected, likely 

due to suppressed upwelling off of Peru because of the El Niño conditions 

 a strong source for atmospheric carbonyl sulphide (OCS) was observed, as well as a 

strong correlation with oxygen. OCS decreased below the detection limit in oxygen 

depleted zones. 

 a strong contrast between normal and El Niño conditions were detected for the 

halocarbon compounds. Both surface and deeper water was characterized by much 

larger concentrations of bromocarbons than of iodocarbons during ASTRA-OMZ, 

which stands in contrast to the previous M91 cruise during neutral conditions. 

 it appears that the direct flux eddy covariance method was successful for sea-to-air 

flux measurements of N2O (for the first time) 

 a pronounced atmospheric inversion layer at approximately 1 km altitude was striking, 

which was accompanied by an accumulation of high relative humidity and moderate 

to fresh southerly winds below this inversion. Convective activity was limited and very 

few precipitation events were detected. Tropospheric ozone levels reveal distinct 

fluctuations within 9.5°S and 16.5°S latitude. 

 the oxygen distribution measured at about 9°S showed that the upwelling in October 

2015 was very weak. Low oxygen water with less than 5 µmol kg-1 was located only 

below 250 m in October 2015 

 higher oxygen distribution in 2015, as well as the changes in water temperature, 

salinity and density indicate the influence of El Niño. We have already published our 

first paper related to El Niño during SO243 (Stramma et al. 2016). 
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Die Sonne Fahrt SO243 (ASTRA-OMZ) fand zwischen dem 5. und 22. Oktober 2015 statt 

und führte von Guayaquil/Ecuador nach Antofagasta/Chile. An Bord waren deutsche, 

amerikanische und norwegische Wissenschaftler, die sowohl Themen der biologischen, 

chemischen und physikalischen Ozeanographie bearbeiteten als auch atmosphärische 

Messungen durchführten. Der Schwerpunkt dieser Reise war es, den Einfluss von niedrigen 

Sauerstoffkonzentrationen im Ozean auf den Kreislauf von Spurenelementen und deren 

Verteilung zu untersuchen. Weiterhin galt es zu untersuchen, wie der Austausch von 

Spurenelementen zwischen Ozean und Atmosphäre durch die hochproduktiven 

Bedingungen vor Ort beeinflusst werden und welchen Einfluss dies auf die Chemie der 

Atmosphäre und das Klima haben kann. 

 

Im Folgenden sind die vorläufigen Ergebnisse stickpunktartig aufgelistet: 

 Das Auftriebsgebiet vor Peru wurde als Quelle für Lachgas (N2O) und Kohlendioxid 

(CO2) identifiziert, vor allem nahe der Küste zwischen 9°S und 18°S. 

 Allgemein waren die N2O Konzentrationen im Oberflächenwasser geringer als bei 

vorherigen Fahrten, was vermutlich auf den reduzierten Auftrieb durch die El Niño-

Bedingungen zurückzuführen ist. 

 Ebenfalls aufgrund des reduzierten Auftriebs wurden im Vergleich zu 

vorhergehenden Fahrten reduzierte Konzentrationen von Dimethylsulfid (DMS, <2 

µmol L-1) und Isopren (20-30 µmol L-1) beobachtet. 

 Die Forschungsregion war eine starke Quelle für Carbonylsulfid (OCS), welches stark 

mit der Sauerstoffkonzentration korrelierte. In sauerstofffreien Wassermassen sank 

die Konzentration von OCS unter das Detektionslimit. 

 Für Halogenverbindungen wurde ein starker Unterschied zwischen normalen und El 

Niño-Bedingungen beobachtet. Sowohl im Oberflächen- als auch das Tiefenwasser 

wurden signifikant höhere Konzentrationen an bromierten und iodierten 

Kohlenstoffverbindungen gefunden. Dies steht in starkem Kontrast zu früheren 

Messungen während M91.  

 Es wurden zum ersten Mal erfolgreich Direktflussmessungen von N2O mit der Eddy-

Kovarianz-Methode durchgeführt.  

 Auffällig war eine ausgeprägte atmosphärische Inversionsschicht in etwa 1 km Höhe, 

die von erhöhter Luftfeuchtigkeit und mäßigem bis frischem Südwind begleitet wurde. 

Es wurde nur in beschränktem Maße Konvektion beobachtet und es gab auch nur 

wenig Niederschlag. Die Ozonwerte in der Troposphäre zeigten deutliche 

Schwankungen zwischen 9.5°S und 16.5°S. 

 Auch die gemessenen Sauerstoffwerte zeigen, dass der Auftrieb im Oktober 2015 nur 

sehr schwach war. Sauerstoffwerte unter 5 µmol L-1 wurden nur in Wassermassen 

unterhalb von 250 m beobachtet. 

 Sowohl die hohen Sauerstoffkonzentrationen in 2015 als auch veränderten 

Wassertemperaturen, Salzgehalt und Dichte deuten auf den Einfluss von El Niño hin. 

Über die beobachteten Bedingungen mit Bezug auf El Niño wurde schon die erste 

Arbeit veröffentlicht (Stramma et al. 2016).  
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2. Participants 

 

1. Christa Marandino Chief Scientist GEOMAR  

2. Damian Grundle Co-Chief Scientist GEOMAR 

3. Tobias Steinhoff  Co-PI, Carbon cycle GEOMAR 

4. Damian Arevalo       Scientist C, N cycles GEOMAR 

5. Dennis Booge           PhD Trace gases GEOMAR 

6. Astrid Bracher         Scientist Biological oceanography AWI 

7. Tom Browning        Scientist Biogeochemistry GEOMAR 

8. Hanna Campen        Student helper Oxygen GEOMAR 

9. Anne Cruz               Scientist Nitrogen cycle UMass                           

10. Sonja Endres       Scientist Biological oceanography GEOMAR 

11. Alina Fiehn            PhD Atmospheric physics GEOMAR 

12. Tim Fischer              Scientist Physical oceanography GEOMAR 

13. Martha Gledhill        Scientist Biogeochemistry GEOMAR 

14. Helmke Hepach        Scientist Halogenated gases GEOMAR 

15. Kirstin Krüger       Scientist Atmospheric physics UIO 

16. Fred Lemoigne        Scientist Biological oceanography GEOMAR 

17. Sinikka Lennartz       PhD Halogen and S gases GEOMAR 

18. Rudolph Link            Technician CTD GEOMAR 

19. Martina Lohmann   Technician Nutrients and oxygen  GEOMAR 

20. Mike Lomas              Scientist Biological oceanography Bigelow 

21. Mario Müller            Engineer OTIS/CTD GEOMAR 

22. Gert Petrick               Scientist Halogenated gases GEOMAR 

23. Andreas Pinck           Engineer OTIS/CTD GEOMAR 

24. Birgit Quack              Scientist Halogenated gases GEOMAR 

25. Insa Rapp               PhD Trace metals GEOMAR 

26. Jon Roa          Techn. Biological oceanography GEOMAR 

27. Rüdiger Röttgers     Scientist Biological oceanography HZG 

28. Christian Schlosser   Scientist Trace metals GEOMAR 

29. Cathleen Schlundt              Scientist Trace gases  GEOMAR 

30. Karen Stange             Techn. Chemical oceanography GEOMAR 

31. Tim Stöven             Scientist Oceanic tracers GEOMAR 

32. Lothar Stramma        Scientist Physical oceanography GEOMAR 

33. Sun Mingshuan           PhD Nitrogen cycle GEOMAR 

34. Toste Tanhua          Scientist Oceanic tracers GEOMAR 

35. Xiao Ma PhD Nitrogen Cycle GEOMAR 

36. Birthe Zäncker       PhD Biological oceanography GEOMAR 

37. Alex Zavarsky               PhD Eddy covariance GEOMAR 

38. Wilson C. Bernabe      Observer Peru IMARPE 

39. Geovanny Z. Castillo  Observer Ecuador Ecuadorian Navy 
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Figure 2.1. Participants of ASTRA-OMZ SO243. 

 

3. Narrative of the cruise 

The R/V SONNE left the port of Guayaquil in the morning of 05th October 2015. Around 15:00 

local time we left coastal waters and the water pump for underway sampling of surface 

waters was started. While the ship was heading northwest to our first set of stations, the 

underway measurements for continuous monitoring of the surface water for N2O, CO2, O2, 

OCS, total dissolved gases, sea surface temperature, salinity, and chlorophyll began.  Most 

groups on board began discrete sampling in a 3 hourly rhythm from the underway pumping 

system. This included samples for nutrients, gases (dissolved O2, CO2, N2O, DMS, 

halocarbons, isoprene, etc.) and biological parameters. In addition to the water samples, 

atmospheric samples and radio-/ozonsonde deployments took place with similar timing. 

During the transit to the first station the eddy covariance (direct flux) measurements of DMS, 

N2O and CO2 were started at the front of the ship. 

 

On the evening of the 06th October we reached the first station in open ocean waters at 1° N, 

85.5°W. This was the beginning of a three station repeat ADCP transit. Here we completed 

two CTD casts (a shallow one of about 100 m and a deeper one of 1000 m), lowered the 

RAMSES (a light measurement device), and performed microstructure measurements (small 

scale turbulence in the upper 200 m of the water column). This was a test station; we had to 

serve the water needs of many gas and biological sampling groups and stretch a new Kevlar 

wire to be used for trace metal water sampling with Go-Flo bottles. The protocols for CTD 

casts, depths, and sampling order were finalized and three different types of biological and 

chemical incubation experiments were started.  

 

After a 10 hour transect southwards along 85.5°W we reached the second station. Here we 

added the Zodiac for microlayer samples and a continuously sampling profile pump for 

continuous O2 and trace gas depth profiles (to 150 m) to the deployment rotation. 

Furthermore, the trace metal group started sampling the water column using their Go-Flow 

bottles attached to the new Kevlar wire. Moving further south, after another 12 hour transect, 



 
6 

 

we came to station 3, where we performed our normal station work and added the first of 

three particle pump tests. The pumps were attached to the CTD wire at three different depths 

and pumped for about two hours in order to collect particles on the inserted filters for later 

analysis. Unfortunately, this test was not successful. We finished station 3 in the afternoon of 

07th October and began our transect to the coast.  

 

On our way to the coast, we performed a hunt for a mode water eddy. Eddies are rotating 

mesoscale structures in the ocean that contain different water properties than their 

surroundings. Recently, eddies have been identified as low oxygen natural laboratories, in 

which we can investigate how the biogeochemistry is different from the surrounding waters 

(Karstensen et al. 2008). In the morning of the 10th October we arrived at the approximate 

location of the predicted eddy and did a first CTD cast. Heading to the center of the eddy, we 

made a CTD cast approximately every 5 nm in order to find the core. The core was located 

at approximately 10°S, 82°W, but the eddy was, unfortunately, a normal anticyclonic eddy. 

We resumed with our transect to the coast with the extensive station work at three stations 

off the Peruvian coast (one on the boundary of the eddy, one in shelf water outside the eddy, 

and one at the coast). Near the coast we found signs of upwelling (enhanced values for CO2 

and N2O and decreased temperature). But the upwelling signal was less pronounced than 

expected, which may have been caused by the El Niño conditions we encountered during the 

cruise.  

 

Our cruise track led us further south along the coast, always staying in upwelled water 

masses, until station 9 where the first water mass tracer deployment took place. Here the 

Ocean tracer injection system (OTIS) was deployed. The OTIS is designed to be towed 

behind the ship at a set density surface. However, this time we wanted a tracer release very 

close to the bottom, so the OTIS was equipped with “legs” and “feet” so that we could deploy 

the OTIS on the bottom of the ocean and release the tracer there. The reason for the close-

to-bottom release is that we wanted to mimic release of nutrients from anoxic sediments, and 

qualitatively understand where ocean currents and mixing processes distribute the nutrients 

(i.e. the tracer) over a longer time-period. Anoxic sediments are known to release nutrients, 

such as phosphate and reduced iron, both of which have the potential to enhance 

productivity in the region – and initiate a positive feed-back loop (Bohlen et al. 2011; Scholz 

et al. 2014). At this time we were faced with a problem regarding our measurements: the 

liquid nitrogen generator broke down and we ran out of liquid nitrogen. Given that 

approximately 1/3 of the cruise participants depended in some way on measurements made 

with liquid nitrogen, plus others use liquid nitrogen to flash freeze samples, this was a serious 

concern. It was a hard call, but we decided to risk our schedule and go to port in Chimbote, 

Peru to buy 140 L of liquid nitrogen. This took approximately 1.75 days to accomplish, which 

required that we adjust our cruise plan in order to save time but still accomplish our major 

goals.  

 

The last set of stations, 10-18, were designed to obtain contrasting measurements between 

strong upwelling and open ocean conditions (on shore/off shore transects). At station 11 and 

station 15, the OTIS and particle pumps were deployed simultaneously. These last particle 

pump deployments were successful. At station 12, a NAVIS float containing dissolved 

oxygen, temperature, and salinity sensors was successfully deployed. The float is currently in 

communication with researchers at GEOMAR and Villefranche, sending valid data every 10 

days. Unfortunately, between stations 12 and 13, the trace metal tow fish was lost, but the 
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trace metal group was able to maintain most of their sampling program. Strong upwelling 

was detected around station 15, which was slightly further south than anticipated. After 

station 15, we had to divert our course again due to the presence of a Peruvian nature 

reserve, but arrived at our revised station 16 with enough time to include high resolution CTD 

casts in the sampling program for the first time. At our last station, station 18, we performed 

our longest program, during which time we deployed all instruments and included several 

high resolution casts. It was between this station and station 17 that we detected the 

strongest upwelling signal over the entire cruise track. 

 

The R/V Sonne arrived at the pilot station at 8:00 on 22nd October, after 2 days of underway 

measurements in Chilean waters. Despite our challenges at sea and our shortened science 

schedule, we were able to accomplish most of our goals. This is clearly owed to the fantastic 

team work of the captain and crew onboard the R/V Sonne, the dedicated and patient work 

of the 37 ASTRA-OMZ scientists, and also to the much valued help of the two observers.   

 

 
Figure 3.1. Cruise Track ASTRA-OMZ SO243 beginning in Guayaquil, Ecuador and ending 

in Antofagasta, Chile from 5. October to 22. October, 2015. Circles represent CTD stations 

and stars represent OTIS stations (see appendix for station list). 
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4. Aims of the Cruise 

Dissolved oxygen (DO) concentrations in oceanic regions are declining due to global climate 

change, resulting in an expansion of oxygen minimum zones (OMZs) and DO decreases in 

existing OMZs (Keeling et al. 2010). As a principle determinant of redox state, DO availability 

plays a key role in regulating biogeochemical processes and nutrient cycles. The availability 

of redox sensitive trace metals important for various biological production pathways, such as 

those that lead to trace gas production, are also impacted by low DO conditions. The 

ASTRA-OMZ cruise, from Guayaquil to Antofagasta, provided an ideal opportunity to 

examine 1) the impact of DO in regulating trace gas distributions, and 2) how different 

biological (e.g. phytoplankton derived surfactants) and physical (e.g. upwelling) variables 

influence sea-to-air gas exchange. Processes within the shallow OMZ in the eastern tropical 

south Pacific (ETSP), which is connected to the Peruvian upwelling system and is 

characterized by high productivity, contribute to enhanced cycling of numerous biogenic 

trace gases and elevated concentrations of sea-surface surfactants, both of which directly 

influence atmospheric chemistry and climate. The subsequent impact of trace gases on 

atmospheric chemistry (e.g. oxidative processes, ozone formation/destruction) and climate 

(aerosol and cloud formation) will be determined. We expect that OMZs and the ETSP will 

enhance the production of certain compounds, such as iodocarbons, DMS, and N2O, and 

perhaps lead to greater drawdown of CO2. The combined effects of higher seawater 

concentrations of both trace gases and surfactants will have a confounding impact on trace 

gas fluxes. 
 

We tested three hypotheses:  

H1 – Trace element cycling will change as DO concentrations decrease;  

H2 - The relative importance of the different N2O production pathways will change as 

DO concentrations decrease; our results will support recent indications that archaea, 

as well as bacteria, produce N2O via NH4
+ oxidation, and we hypothesize that the 

relative importance of archaea vs. bacteria will increase as DO decreases; 

H3 - Sea-to-air fluxes of trace gases will change with decreasing DO, especially in 

regions overlying shallow OMZs, and these fluxes will be modulated by 

biogeochemical/physical factors not currently included in flux calculations (e.g. 

surfactants). 

 
Figure 4.1. Surface Ocean Lower Atmosphere Study conceptual diagram outlining the main 
constituents and processes identified as important in eastern boundary upwelling systems 
and oxygen minimum zone re-search. These topics are all addressed by the ASTRA-OMZ 
cruise. 
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5. Agenda of the cruise 

The ASTRA-OMZ cruise was a unique platform for a highly multidisciplinary approach. In 

addition to chemical oceanographers and atmospheric scientists, biological and physical 

oceanographers participated, providing us with ancillary measurements which are critical to 

helping us identify and unravel the key biological and physical processes which affect trace 

gas distributions. For example, phytoplankton influence trace gas cycling in the surface 

ocean (e.g. CO2 uptake, and sulphur and halocarbon release) and phytoplankton 

composition and productivity work by the biological oceanographers will enable us to 

investigate how phytoplankton dynamics influence trace gas processes in the surface waters 

and in the underlying OMZ regions. From the physical standpoint, changes to circulation 

processes in the ocean have been proposed as one of the possible drivers of DO losses. To 

assess this requires an understanding of the mean circulation and the current bands which 

supply DO to OMZ regions. The goal of the hydrographic measurements is to derive the 

current band transports along the cruise track from continuous acoustic Doppler current 

profiler (ADCP) measurements. ADCP data from the R/V Sonne in October 2015 was 

compared to ADCP data from March 1993 (WOCE cruise), February 2009 (Meteor M77/4) 

and November 2012 (METEOR M90), to address unknown seasonal variations of the 

equatorial undercurrent east of the Galapagos Islands. ADCP and microstructure profiling 

work will also allow us to determine how different physical processes (diffusive vs. advective) 

contribute to gas transport from the OMZs to the ventilated surface waters. In addition, we 

performed a tracer release experiment on the Peruvian shelf (PESTRE) to quantify the rate 

of exchange and mixing, and advective pathways of bottom water over the time span of 

several months. This tracer release experiment will provide important information on the 

effective diapycnal diffusivity off the bottom boundary layer, and will allow for better 

understanding and knowledge of the integrated transport processes for the water in the 

bottom boundary layer.  

 

Of course, determining the impact that an increase in climate relevant trace gas production 

will have for atmospheric chemistry requires an accurate understanding of the factors which 

affect sea-to-air gas exchange. Recent work has demonstrated that higher concentrations of 

surfactants at the sea-surface, which occur when phytoplankton biomass increases, may 

suppress gas transfer velocities (Kock et al. 2012). If this is the case, a major re-evaluation of 

gas transfer velocity parameters will be necessary, because conventional gas transfer 

velocity parameters do not take surfactants into account. Understanding the role of upwelling 

in transporting trace gases from intermediate depths to surface layer waters is also 

important, especially when these regimes are connected to OMZs, since atmospherically 

relevant trace gases (Bakker et al. 2014), as well as toxic gases, such as hydrogen sulphide 

(Schunck et al. 2013), may be rapidly transported into the mixed layer. Understanding the 

role that OMZs play in the formation of trace gases, as well as the factors that regulate their 

air-sea exchange, is critical if we are to accurately estimate the supply of trace gases to the 

atmosphere and begin to predict how this supply may change under future oceanic DO 

scenarios.  

 

We used conventional methods, such as purge and trap gas chromatography coupled to 

various sensors, as well as more advanced continuous sampling instrumentation, such as 

ROS, to measure a suite of climate active trace gas cycling in the surface ocean. Isotope 

techniques were used to probe more deeply the sources and sinks of these gases. Surface 
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and atmospheric measurements of trace gas concentrations, along with physical structure 

(i.e. ozone- and radiosondes) and direct fluxes will be used to quantify emissions and 

investigate the processes that control their air-sea exchange and atmospheric distribution. 

State of the art techniques were employed to investigate the role of surfactants on air-sea 

trace gas exchange. The effects of DO, T and pH on trace metal speciation will be assessed. 

Additionally we will determine the fluxes of micronutrients (e.g. Fe, Co, Mn) and 

macronutrients (P, N, Si) to the surface ocean and their consequences for ocean productivity 

and trace gas production/consumption. 

 

The following parameters were measured during SO243 (see appendix for station plan): 

 Trace gases – Nitrogen compounds, methane, carbon compounds, sulphur-

containing and halogen-containing compounds, non-methane hydrocarbons 

 Isotope signatures of dissolved nitrogen species. 

 Nutrient and oxygen concentrations 

 Trace metals – Mn, Co, Ni, Cu, Zn, Cd, Pb; the speciation of Mn, Cu; iodide/iodate; 

Fe(II); Markers for lithogenic origin; ROS-, H2O2, superoxide, DOM 

 Gas exchange between atmosphere and ocean – Eddy covariance fluxes, 

atmospheric structure, surface films (microlayer) 

 Physical measurements – Tracer release, diapycnal and advective fluxes 

 Biological measurements - Biooptical parameters, flow cytometry, identification of 

phytoplankton, phytoplankton group specific nutrient stoichiometry and rates of 

production 

6. Settings of the working area 

The Eastern Tropical South Pacific (ETSP) contains DO concentrations in the core of the 

OMZ are much lower (<5 μmol L-1) than are often observed in oceanic OMZs (Karstensen et 

al. 2008). As such, the ETSP OMZ serves as an ideal natural laboratory which can be used 

to provide insight into how biogeochemical conditions may change under future DO 

scenarios. For example the OMZ off of Peru is likely to be an N2O production hotspot. A 

SOPRAN cruise (M91) showed that N2O concentrations in the surface waters overlying the 

OMZ were often >300 nmol L-1, and at times were >900 nmol L-1 (>100 times atmospheric 

concentrations; Arévalo-Martínez et al. 2015). Secondly, the work area is an Eastern 

Boundary Upwelling System (EBUS), which is characterized by high productivity (Chavez & 

Messié 2009) and corresponds to enhanced cycling of numerous biogenic trace gases and 

elevated sea-surface surfactants (Ẑutić et al. 1981). The EBUS off of Peru exhibits a range of 

different biological and physical regimes that will be assessed for their impact on trace gas 

production and air-sea gas exchange. Furthermore, since the ETSP OMZ is connected to 

upwelling, we will be able to assess how trace gas transport from intermediate depths to 

surface waters may directly impact the atmosphere. Understanding how these types of 

physical and biological regimes impact the supply of trace gases to the surface waters, and 

then ventilation to the atmosphere, is central to determining how future formations of OMZs 

in different oceanic regions will contribute to atmospheric trace gas concentrations. Finally, 

one of the strongest El Niños on record began in 2015.Our cruise trace happened to pass 

right through one of the regions that is strongly impacted, however, we were there too early 

to observe the full influence of this strong El Niño. We did detect the transition to El Niño 

conditions, for example in the decreased upwelling off the coast of Peru (Stramma et al. 

2016).  
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7. Work details and first results 

7.1 Dissolved Nitrous Oxide Distributions and Production 

Damian Grundle, Damian L. Arévalo-Martínez, Xiao Ma, Sun Mingshuang, Karen Stange 

Objective 

To understand how dissolved oxygen concentrations regulate the distribution, the production, 

and the production pathways of nitrous oxide in the ocean. Results from this work will help us 

to understand how the production of this greenhouse and ozone destroying gas may 

increase under future oxygen conditions in the ocean. To achieve these objectives we 

conducted discrete vertical profile sampling to measure dissolved N2O concentrations and 

isotope signatures (15N, 18O and 15N site-preference). In addition, at select depths, samples 

were also collected to measure N2O production via the oxidation of NH4
+ and the reduction of 

NO2
- and NO3

- using 15N tracer techniques.  

Methods 

At every sampling station, replicate samples were collected from CTD-Niskin bottles which 

were fired at approximately 10-20 depths spanning the range of oxygen concentrations 

observed for the purpose of measuring N2O concentrations and isotope signatures. All 

samples were collected following standard dissolved gas sampling techniques. N2O 

concentrations were measured using a gas chromatograph with attached electron capture 

detector following the techniques outlined in the subsequent section (section 7.2). N2O 

isotope signatures are currently being measured by isotope ratio mass spectrometry.  

At approximately 3-5 sampling depths 4 sets of duplicate 160 ml samples were also collected 

following standard gas sampling techniques for the purpose of measuring N2O production 

rates via each of the different production pathways. Following collection, the first three sets of 

duplicates were amended with 15N-labeled NH4
+ (N2O production via NH4

+ oxidation), NO2
- 

(N2O production via NO2
- reduction), and NO3

- (N2O production via NO3
- reduction), while the 

fourth set remained un-amended and served as controls. Samples were then incubated in 

the dark at near in situ temperature for a period of 24 hours, after which poisoning with 

mercuric chloride terminated the incubations. The final atom% 15N in the product pool (i.e. 

N2O will be measured by isotope ration mass spectrometry. 

Preliminary and Expected Results 

A preliminary analysis of the N2O concentration data (range shown in Fig. 7.1.1) shows that 

the N2O concentrations during our cruise were within the range of many of the highest values 

previously reported for oceanic N2O ‘hotspots’ in the eastern tropical Pacific and Open 

Arabian Sea (S W A Naqvi et al. 1998; S. W. A. Naqvi et al. 1998). Furthermore, the N2O vs. 

O2 relationship (Fig. 7.1.1) shows that N2O concentrations are inversely related to O2 

concentrations until O2 becomes very low (less that approx. 5 μmol L-1), at which point N2O 

concentrations decrease, suggesting a switch from net N2O production to net N2O 

consumption. We expect that further analyses will show that the relationship between N2O 

and O2 will differ between offshore and coastal stations. Furthermore, the natural abundance 
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isotope data will provide us with insight into how the different N2O production pathways (i.e. 

NH4
+ oxidation, NO2

- reduction and NO3
- reduction) contribute to bulk N2O concentrations 

under different O2 conditions, and we expect that as O2 decreases NO2
- reduction, and 

eventually NO3
- reduction will become more important sources of N2O. The N2O production 

experiments will provide us with critical insight, for the first time in the eastern tropical South 

Pacific, into how overall rates of N2O production and the rates of N2O formation via the 

different production pathways vary as O2 concentrations change. These results will allow us 

to identify the O2 threshold which induces a substantial increase in N2O production in this 

region, and this will allow us to better understand how N2O production may change under 

future O2 conditions.  

 

 
Figure 7.1.1. N2O vs. O2 concentrations (all data from discrete vertical measurements 

pooled) during SO243.  

7.2 Oceanic greenhouse gases 

Continous measurements: Damian L. Arévalo-Martínez and Tobias Steinhoff 

Discrete samples: Damian L. Arévalo-Martínez, Xiao Ma, Sun Mingshuang, Karen Stange, 

Dennis Booge, Tim Fischer, Tobias Steinhoff 

 

Objective/Intro 

Given the climatic relevance of marine-derived greenhouse gases, the investigation of their 

distribution and emissions from key oceanic regions is a crucial need in our efforts to better 

understand potential responses of the ocean and the overlying atmosphere to environmental 

changes, such as warming and deoxygenation. Our main goal during the SO243 cruise was 

to perform a comprehensive survey of different trace gases both at the surface and in the 

water column within the coastal upwelling system and the associated oxygen minimum zone 

(OMZ) off Peru. In order to achieve this, we used a combination of continuous and discrete 
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measuring methods which are listed below, together with the most important preliminary 

results.  

 

Methods 

Surface oceanic and atmospheric measurements of N2O, CO and CO2 were performed by 

means of a continuous system based upon the off-axis integrated cavity output spectroscopy 

technique (DLT-100 N2O/CO Analyzer, Los Gatos research Inc.) coupled to a CO2 system 

based upon non-dispersive infrared detection from General Oceanics Inc. (Fig. 7.2.1) 

described in detail in Pierrot et al. (2009). Water was drawn on board by using a submersible 

pump installed in the ship’s moonpool at 6 m depth and was subsequently conducted at a 

rate of about 3 L min-1 through the equilibrator. Sample air from the headspace of the 

equilibrator was continuously pumped through the instruments and then back to the 

equilibration chamber forming a closed loop. The air stream was dried before being injected 

into the analyzers in order to diminish interferences due to the water vapor content of the 

sample. In order to correct for potential warming of the seawater between intake and 

equilibrator the water temperature at the equilibrator was constantly monitored by means of a 

high accuracy digital thermometer (FLUKE 1523) and at the intake by a Seabird SBE37 high 

precision thermosalinograph. Ambient air measurements were accomplished by drawing air 

into the system from a suction point located at the ships mast at about 30 m high. Control 

measurements and calibration procedures were performed every ~6 and 24 h respectively, 

by means of 4 standard gas mixtures bracketing the expected seawater concentrations of 

N2O, CO2 and CO.  

 

 

Figure 7.2.1. Schematic view of the analytical setup used for continuous measurements 

of N2O, CO and CO2 during the SO243 cruise. 

 

Underway measurements of surface water O2 and gas tension were carried out in a flow-

through-box. The box was connected to the same water supply as the system above and the 

water flow was adjusted to approximately 20 L min-1. The following instruments were 

implemented: Aanderaa Oxygen Optode and a Pro Oceanus Gas tension device. The gas 

tension device physically measures the total pressure of all dissolved gases, i.e, pN2, pO2, 

pH2O, and pAr as well as minor trace gases below the instrument’s accuracy. As water 

vapour (pH2O) is a function of temperature and salinity, Argon pAr is constant, and Oxygen 
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pO2 is measured by the oxygen optode, it effectively gives the pN2, which is a prime indicator 

of physical processes of gas exchange, such as bubble processes, and unaffected by 

biology. It thus helps to separate biological and physical contributions to air-sea gas 

exchange of O2. This is complemented by the biology-dominated pCO2 measurements in 

water and air. In combination with information about the mixed layer from the CTD, the 

continuous underway measurements thus yield insight into major physical and biological 

processes at play in the surface ocean.  

 

Discrete samples for N2O, CO and CO2 measurements were carried out in 12 h (N2O, CO2) 

or 6 h (CO) intervals by sampling from the same water stream that fed the continuous setup 

(see above). For N2O, bubble-free triplicate samples were collected and immediately sealed 

by means of butyl stoppers and aluminum crimps.  Subsequently a 10 mL headspace of 

helium and 50 µL of a saturated mercuric chloride (HgCl2) solution were added. After an 

equilibration period of at least 2 hours the headspace sample was measured by means of a 

gas chromatograph equipped with an electron capture detector (GC/ECD). The GC was 

calibrated on a daily basis using dilutions of two standard gas mixtures. DIC/TA samples 

were collected in 500 mL glass bottles, preserved with HgCl2 and then stored to be measured 

at the Chemical Oceanography Department of GEOMAR in Kiel (CH-Kiel). DIC/TA data 

together with ancillary parameters and the measured pCO2 data will help to understand the 

carbonate system in the study area. These data will also be useful to interpret the air-sea flux 

data of CO2 obtained by the eddy-covariance method (see section 7.8). CO samples were 

treated with 100 µL of a saturated HgCl2 solution and then were stored in the dark. These 

samples will be measured at the CH-Kiel by means of a ta3000r GC/RGD (reduction gas 

detector) system which was recently established at GEOMAR. Fig. 7.2.2 shows an overview 

of the locations of the underway trace gas sampling during the cruise. 

 

 
Figure 7.2.2. Sampling locations for underway N2O, CO and DIC/TA measurements (left, red 

circles) and high resolution profiles of N2O using the continuous pump profiler (CPP, left, 

green diamonds). The right panel shows a depth profile obtained with OA-ICOS and the CPP 

at 0°N, 85°W (not shown in the map). For further details on the CPP see section 7.4. 
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Preliminary Results 

Preliminary results from continuous measurements show a strong source of N2O and CO2 

from surface waters in the Peruvian upwelling, particularly in the near-coastal area between 

9°S and 18°S where seawater values surpassed atmospheric equilibrium (~326 ppb) by one 

order of magnitude (Fig. 7.2.3, 7.2.4). In agreement with a recent survey which took place 

during the M91 cruise (December 2012), the highest N2O values were consistent with the 

location of the upwelling centres off Chimbote, Callao, Pisco and San Juan, although in 

general surface N2O during the SO243 cruise was lower, probably due to reduced extent of 

the upwelling events. Similarly, coastal waters during SO243 were a source of CO to the 

atmosphere, although in this case the diurnal variability is the most relevant signal (Fig. 

7.2.3). Hence, as expected, enhanced/decreased CO values could be found during day-

time/night-time.  
 

CO and CH4 (vertical N2O sampling is described in the previous section) sampling were 

performed in conjunction with several biological parameters and incubation work from other 

groups as well as with microstructure measurements. Samples were drawn directly from the 

CTD into glass vials of 20 - 100 mL and were processed as explained in the first section of 

this report. CO and CH4 samples were preserved and stored for posterior analysis in Kiel. 

CH4 analysis will be carried out by means of an analytical system similar to that used for N2O 

during the cruise, but using a flame ionization detector (FID) instead of an ECD. DIC/TA 

samples were collected in 250 mL glass bottles, preserved with HgCl2 and then stored to be 

measured at the Chemical Oceanography Department of GEOMAR in Kiel (CH-Kiel).   
 

In addition to the rosette-CTD sampling, depth profiles of N2O, and CO2 were obtained in 

selected stations (Fig. 7.2.2) by using a continuous pump profiler developed by S. Lennartz 

(see section 7.4). This profiler was coupled to our OA-ICOS/NDIR N2O/CO/CO2 setup during 

the stations and allowed us to measure by the first time these three gases with such a high 

resolution. Preliminary results from one of the profiles in the northern part of the cruise track 

are shown in Fig. 7.2.2.  

 
Figure 7.2.3. Preliminary data from along-track N2O (left) and CO (right) measurements du-

ring the SO243 cruise expressed as gas molar fractions reported by the OA-ICOS analyser. 
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Figure 7.2.4. Preliminary results from along-track pCO2 (left) and SST (right) 

measurements during the SO243 cruise. 

 

In order to investigate near-surface gradients of N2O off the coast of Peru, three detailed 

surveys of the upper 10 m of the water column were carried out in selected stations on board 

of a Zodiac. Sampling was carried out as for the conventional depth profiles but by using 

either a single niskin bottle or a small submersible pump which could be lowered to the upper 

15 - 150 cm of the water column. Preliminary results from the first zodiac sampling carried 

out during the cruise are shown in Fig. 7.2.5. Although a fairly large scatter between upper 

and lower samples of the profiles could be observed, the final concentration values are 

expected to be within the range of uncertainty of the measurement method (GC/ECD). 

Stations closer to the coast (such as off Callao and San Juan Bay), where the gradients tend 

to be higher, are yet to be analyzed.  

 
Figure 7.2.5. Preliminary results from the first near-surface N2O sampling on board of the 

Zodiac. The numbers next to the blue symbols indicate the sampling depths. 

 



 
17 

 

During station 18, we performed nearly simultaneous sampling of N2O from different 

platforms including continuous measurements with OA-ICOS both using the CPP and the 

pump installed at the ship’s moonpool, discrete samples during the CPP deployment and 

Zodiac sampling. This, together with direct measurements of sea-air fluxes of N2O by using 

an eddy covariance setup (see section 7.8) will help to reconcile the large uncertainties 

observed in the computed surface fluxes of this gas.   

 

Expected results 

Further calibration and data quality control are needed in order to compute the final CO2, N2O 

and CO seawater concentrations and this task will be carried out during the following 

months. 

7.3 Dissolved isoprene and sulphur-containing gases (DMS/P/O, CS2)  

Cathleen Schlundt, Dennis Booge, Christa Marandino 

 

Objective/Intro 

Despite the low concentrations of short-lived trace gases in the atmosphere, their impact on 

local and global climate is crucial.  Short-lived trace gases, for example isoprene and 

dimethylsulphide (DMS), are important precursors of secondary organic aerosol and cloud 

condensation nuclei in the remote marine boundary layer. These gases are produced by a 

complex interplay of bacteria and phytoplankton in the surface oceans and their emissions to 

the atmosphere are critically controlled by biotic activities and physical factors which are 

poorly quantified. The Peruvian shelf is of particular interest for trace gases due to the 

seasonal occurrence of upwelling and the oxygen minimum zone (OMZ). The upwelling 

transports nutrient rich deep water to the surface that initiate a strong phytoplankton bloom, 

most likely leading to elevated production of  DMS and isoprene.  In contrast, the activity of 

bacteria and phytoplankton might be reduced or changed in the OMZ, which might change 

the DMS and isoprene production. Our goal onthis cruise is to better understand the 

biological pathways of these gases, especially in these special marine regions, as well as 

monitoring their concentrations in the surface ocean, to evaluate their air-sea flux and finally 

their importance for the chemistry in the atmosphere. 

 

Methods 

We sampled surface seawater (5m) each hour or every three hours to analyse DMS/P/O, 

isoprene and CS2. Additionally, we collected samples from different depths (microlayer to 

1000 m) to obtain depth profiles of the trace gases. We sampled from the surface microlayer 

to 10 m depth in a high resolution (0.5 to 1 m steps) at three different stations. Furthermore, 

we collected samples in a high resolution (5 to 10 m steps) along the oxycline from oxic to 

suboxic water masses at two stations. Either the water was sampled by using Niskin bottles 

attached to a CTD or from a Niskin bottle submerged into the water from a Zodiac. All 

samples were directly measured on board by using a purge and trap system attached to a 

gas chromatograph and mass spectrometer (GC-MS) (Fig. 7.3.1). After trace gas analyses 

we prepared and stored the samples to analyse dimethylsulphoniopropionate (DMSP), the 

precursor of DMS and dimethylsulphoxide (DMSO) the oxidation product of DMS. Both 

compounds will be measured in the laboratory at our home institute, GEOMAR. 
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Figure 7.3.1. Purge and trap GC-MS on board R/V Sonne. 

 

Preliminary results 

Surprisingly, we detected less DMS (< 2nmol/L) in the coastal upwelling region (8°-12°S) 

than in the other parts of the cruise (Fig. 7.3.2). Highest surface concentrations could be 

detected while crossing the equator. In contrast, isoprene concentrations peaked in the 

upwelling region (8°-12°S). However, concentrations did not exceed 80 pmol/L. Mean 

concentrations outside the upwelling stayed very low, at 20-30 pmol/L. Both results show that 

the Peruvian upwelling is suppressed due to El Niño.  

 

 
Figure 7.3.2. Hourly to 3 hourly underway measurements of DMS (left) und isoprene (right). 

 

Expected results 

We suppose elevated DMS and isoprene concentrations within the centre and/or at the 

edges of the upwelling were due to elevated productivity of phytoplankton and bacteria. It 

might be possible that we can observe a concentration gradient of the trace gases in the 
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surface seawater from eutrophic to oligotrophic regions. Furthermore, we assume a change 

in the concentrations of especially DMS and DMSO from oxic to anoxic water. It might be 

possible that DMSO is used as an oxygen donator and get be reduced to DMS in the OMZ 

by facultative anaerobic bacteria. 

 

We observed in eastern Atlantic Ocean a close relationship between DMS and isoprene in 

nitrate depleted water. We suggested that certain microbes might be able to produce both 

DMS and isoprene under nitrate limitation. We hope to find the same relationship also in the 

eastern Pacific Ocean. 

 

7.4 Underway measurements of carbonyl sulphide 

CASCADE – Carbonyl Sulphide Cycling in Aphotic Depths (continuous pump) 

Sinikka Lennartz, Christa Marandino 

 

Objective/Intro 

Carbonyl sulphide (OCS) is the most abundant sulphur gas in the atmosphere, and the 

ocean is thought to contribute the dominant part to its atmospheric budget. In the 

atmosphere, OCS acts as a greenhouse gas, but the warming effect is currently cancelled 

out by its contribution to aerosol formation in the stratospheric Junge layer, which increases 

the albedo of the planet. Recently, the potential of tropospheric OCS to constrain terrestrial 

gross primary production is discussed. OCS is taking up by plants during photosynthesis, but 

is not – as CO2 – emitted by respiration. With a well explained atmospheric OCS budget, 

OCS can be used to quantify terrestrial gross primary production. However, the atmospheric 

budget of OCS is currently not well understood. A large missing source is assumed to be 

located in the tropical oceans. Our objective is thus to quantify air-sea gas exchange of OCS 

in the Peruvian upwelling region. By correlation with other parameters such as pigments, 

nutrients, temperature, dissolved organic sulphur (DOS) and fluorescent dissolved organic 

matter (FDOM), spatial and temporal variations will be analysed.  

 

Another open question is the light-independent production of OCS. Within the project 

CASCADE (Carbonyl Sulphide Cycling in Aphotic Depths), continuous depth profiles of OCS 

were measured for the first time in an upwelling region. The objective here was to assess the 

correlation to other parameters such as light, oxygen, nutrients, pigments and CS2 to better 

understand the light-independent cycling of carbonyl sulphide. 

 

Methods 

Underway sampling: OA-ICOS 

Continuous (e.g. minutely) OCS mole fractions of OCS were measured in both surface water 

(5m, inlet in moon pool, 50 minutes per hour) and the marine boundary layer (ca. 30m, 

monkey deck, 10 minutes per hour). Therefore, water was pumped from the moon pool into a 

Weiss-type equilibrator, where the OCS concentration from the water equilibrates with the 

gas phase in the equilibrator. This equilibrated air was then circulated to the instrument and 

the mole fraction measured. The measurement principle is off-axis integrated cavity output 

spectroscopy (OA-ICOS). Together with simultaneously logged temperature, the 

concentration of OCS in the water can then be calculated using Henry’s law.  
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Figure 7.4.1. Deployment of the continuous profiling pump. 

 

Underway sampling of additional parameter: DOS/DOC, FDOM 

In addition to the continuous OCS measurements, the underway system was sampled every 

3-12 hours for DOS and FDOM. FDOM samples were measured directly after filtration (0.2 

µm) onboard using a Fluorescence Spectrometer. DOS samples were filtered, acidified, 

extracted to PPL cartridges via solid phase extraction (SPE) and deep frozen. The samples 

will be measured at the Alfred-Wegener-Institute (K. Ksionzek, B. Koch). DOC samples were 

filtered and deep frozen for further analysis after the cruise. 

 

Depth profiles: Continuous pump 

For the depth profiles, the same equilibrator/OA-ICOS set-up is used, but the water supply 

came from a submersible pump lowered down to 135 m (Fig. 7.4.1). The pump was deployed 

at 4 stations (stations 2, 4, 7, and 18). The submersible pump was connected to 150 m of 

Teflon tubing to avoid contamination. Water was continuously pumped through the 

equilibrator at a flow rate of ca. 5 L per minute during the up- and the downcast. Additional 

sampling using the pumped water included DOS, FDOM, N2O and O2. Next to the pump, 

additional devices, such as a temperature-depth-logger and an oxygen optode, were 

connected to also obtain in-situ profiles. 
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Preliminary results 

Underway measurements 

The spatial distribution of OCS along the cruise track shows the highest concentrations at the 

coastal areas (Fig. 7.4.2). OCS showed a strong diurnal variation in the surface water, which 

coincides with global radiation and thus indicates the known photochemical production. OCS 

mole fractions in the seawater equilibrated air were higher than the atmospheric background 

mole fraction, which suggests that the cruise region is a strong source region for atmospheric 

OCS. OCS was supersaturated in the surface water and thus emitted to the atmosphere for, 

by far, most of the time of the cruise. This suggests that the role of upwelling areas should be 

considered in more detail in global budgets of OCS. 

 

 
Figure 7.4.2.: OCS in with seawater equilibrated air during SO243 ASTRA-OMZ. Note 

diurnal variations and higher concentrations towards the coast. 

 

Continuous depth profiles 

The submersible pump connected to a Weiss-type equilibrator to measure OCS in an 

upwelling region with oxygen depleted waters was successfully deployed for the first time. 

OCS concentration correlated strongly with oxygen and decreased below detection limit in 

oxygen depleted zones. 

 

Expected results 

Underway measurements 

OCS concentrations will be calculated out of the measured mole fractions. Together with the 

atmospheric measurements, the air-sea exchange of OCS will be calculated. The data will 

also be used in a 0D-box model to quantify production and consumption rates of the source 

and sink processes of oceanic OCS. Finally, global ocean climatologies of OCS will be 

validated using a database of OCS measurements, of which these measurements will be 

part. 
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Continuous depth profiles 

The data for the continuous depth profiles will provide continuous information on OCS, O2 

(optode) and temperature, and discrete sampled of FDOM, DOS and O2 with depth. From a 

corresponding CTD cast, samples of CS2 and other biological, physical and chemical 

parameters were taken. To investigate the role of factors influencing OCS concentrations, 

the covariation with depth to these parameters will be investigated. The results will help to 

better constrain and parametrize light-independent production of OCS, which will be used to 

develop more skilful biogeochemical OCS models. 

 

7.5 Halocarbons 

Helmke Hepach, Sonja Endres, Gert Petrick, Birgit Quack 

 

Objective/Intro 

Halocarbons, short-chain hydrocarbons with one or more halogen atoms, are produced 

naturally in the ocean by biological and chemical processes. Highly productive ocean regions 

such as upwelling systems, where cool water rich in nutrients is brought up to the surface, 

have been identified as source regions for these compounds (Quack et al. 2007; Hepach et 

al. 2015). Microbial production and removal processes in the surface ocean are affecting the 

sea-air fluxes of the halocarbons, but the underlying processes and magnitude of the 

biogenic sources and sinks in the tropical East Pacific are poorly known. The brominated 

compounds bromoform (CHBr3) and dibromomethane (CH2Br2) are considered as the main 

carriers of organic bromine into the atmosphere from the ocean, while the iodinated methyl 

iodide (CH3I), chloroiodomethane (CH2ClI), and diiodomethane (CH2I2) may carry significant 

amounts of iodine into the troposphere. Once these compounds reach the atmosphere, they 

can be degraded very rapidly and take part in numerous chemical processes in the 

troposphere such as the formation of aerosol and ultra-fine particles, HOx and NOx chemistry, 

and ozone chemistry. The tropics are of particular interest, since tropical deep convection 

can lift surface air rapidly into the stratosphere. This is   especially important for the longer 

lived CHBr3 (atmospheric lifetime of 24 days) and CH2Br2 (atmospheric lifetime of 120 days), 

which are involved in ozone destructing cycles, once they reach the stratosphere.  

 

The Peruvian upwelling is one of the strongest upwelling systems in the world. During the 

M91 cruise from Callao to Callao in December 2012, we characterized the region for the first 

time with respect to halocarbons. Surprisingly, the strong upwelling was only a moderate 

source for CHBr3 and CH2Br2, which have previously often been found as major halocarbons 

in the Atlantic upwelling systems. In contrast, very large concentrations of CH3I, CH2ClI and 

CH2I2 were observed, despite their shorter lifetimes in sea water. These led to high 

iodocarbon emissions, which contributed significantly to the tropospheric iodine loading 

above the tropical East Pacific. In contrast to M91, a strong El Niño occurred in 2015. It is 

unknown how this affects halocarbon production and emissions in the region. One goal of the 

ASTRA-OMZ cruise is therefore to characterize the upwelling system in different El Niño 

Southern Oscillation conditions with regard to halocarbons.  
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Methods 

Halocarbons from underway and deep water samples were measured on two purge and trap 

systems during the cruise, each attached to a gas chromatograph and a mass spectrometric 

detector (Fig. 7.5.1). About 50 mL of the sample were purged for 40 to 45 minutes using a 

stream of helium of 30 mL min-1 with concurrent heating to 70 °C. The trace gases were 

trapped on stainless steel tubing in liquid nitrogen. After the purging time, the sample was 

desorbed at 100 °C and injected into the GCs. Underway samples were measured using a 

gas chromatograph equipped with an ECD (electron capture detector), while CTD and 

incubation samples were measured using GC-MS (combined gas chromatography and mass 

spectrometry). In total, 120 underway samples and about 90 samples were measured from 

the CTD and surface gradient stations. In cooperation with Sonja Endres, deuterated 

dibromomethane and carbon 13 labelled bromoform was measured in addition to the natural 

compounds in 80 samples to determine bromocarbon cycling. At four selected stations along 

the cruise track, seawater was incubated with 13C- and D-labelled substrate to study the 

microbial degradation of brominated halocarbons. The unfiltered seawater was amended 

with the substrate and incubated at 20°C in the dark for up to 10 days. Glucose, phosphate, 

and treated ship wastewater were added to some bottles to stimulate microbial growth. 

Samples were collected regularly for bacterial and phytoplankton abundance, nutrients, 

bacterial community composition, bromocarbons, carbohydrate, amino acid and dissolved 

organic matter concentrations. Control incubations included seawater only and artificial 

seawater or ultrapure water with 13C-labelled substrate. Experimental data are compared to 

measured depth profiles of microbial biomass, as well as bromocarbon and organic matter 

concentrations. In total, 105 incubation bottles were sampled in four experiments and the 

bromocarbons were measured during the cruise. All biological parameters will be analyzed in 

the home laboratory at GEOMAR in Kiel. 

 

 
Figure 7.5.1. Halocarbon GC-MS system on board ASTRA-OMZ SO243. 
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Preliminary results 

First evaluation of the data shows very different results than M91 (Fig. 7.5.2). While the most 

intense upwelling was observed in the north, strongest upwelling cells during ASTRA-OMZ 

occurred in the southern part of Peruvian waters. Both surface and deeper water was 

characterized by much larger concentrations of bromocarbons than of iodocarbons during 

ASTRA-OMZ, which stands in contrast to the previous M91 cruise. Many CTD stations 

appeared to be well mixed with respect to the upper water column with much less halocarbon 

concentrations in the lower, oxygen depleted water masses. However, in contrast to M91, not 

all OMZs were completely depleted in halocarbons. The very surface of the water column 

was in two out of three surface gradient profiles completely mixed, indicating no influence of 

surface production/depletion of halocarbons at these stations. These were also characterized 

by comparatively high wind speeds. During low wind speeds at the last station, station 18, 

the surface gradient profile showed varying concentrations in the upper 5m of the water 

column with maxima at 2 to 3 m depth, which show that high productivity may strongly 

influence the very upper water column. These data will be further evaluated at GEOMAR. In 

the incubation experiments  a sligth conversion of 13C-labelled bromoform to 

dibromomethane was observed in some experiments over the course of some days,  which 

may yield an in situ  conversion rate for the Peruvian upwelling.  

 

 
Figure 7.5.2. Comparisson of M91 (blue) and ASTRA-OMZ (black) halocarbon data, left) 

surface ocean concentrations; middle) sea-to-air fluxes; right) atmospheric mixing ratios. 

 

Expected results 

Our results will be compared to several other biogeochemical and physical parameters 

including DOM (dissolved organic matter) measurements, phytoplankton species 

composition, nutrients, oxygen and physical parameters, such as sea surface temperature 

and salinity. This will help to identify possible source organisms and processes related to 

halocarbon production and their oceanic emissions. The water column distribution of 

halocarbons along with metadata will help interpret the surface water distributions. Emissions 

will be calculated using the results of the surface water measurements in conjunction with the 

atmospheric data, which were sampled in parallel every three hours along the cruise track. 
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We expect higher bromocarbon emissions during ASTRA-OMZ than during the previous M91 

cruise and potentially much lower emissions for CH3I, CH2ClI and CH2I2. The data from the 

incubation experiments will be used to determine bromocarbon cycling in the tropical East 

Pacific. 

7.6 Trace elements 

Christian Schlosser, Insa Rapp, Thomas Browning and Martha Gledhill 

 

Objective/Intro 

Trace metals such as iron (Fe), cobalt (Co) and manganese (Mn) are essential elements for 

all organisms and therefore play a pivotal role in the functioning and structure of marine 

ecosystems and the oceanic fixation of carbon and nitrogen (Boyd & Ellwood 2010). The 

important role of trace elements is due to their obligatory requirement in enzymes required to 

drive the biological carbon and nitrogen cycles (Falkowski et al. 2008). In the Eastern 

Tropical South Pacific (ETSP) the main of source of trace metals to the ocean are the shelf 

and slope sediments, with enhanced concentrations of trace metals often associated with the 

oxygen minimum zone (Loescher et al. 2014; Chever et al. 2015; Dale et al. 2015). Although 

inputs can be high from the shelf, concentrations of metals are known to decrease rapidly 

offshore (Bruland et al. 2005) so that productivity in waters adjacent to the OMZ can be 

limited by Fe or possibly other trace nutrients, such as Co. The mechanisms controlling the 

loss of trace metals from the upwelled low oxygen waters of the ETSP are not well 

constrained. The objectives of our work on the ASTRA-OMZ cruise were, therefore, to 

understand processes controlling the loss/retention of trace metals (particularly Fe) in near 

shore waters of the ETSP, to investigate the phytoplankton community response to gradients 

in trace metal (particularly Fe and Co) distributions, and to investigate the distribution of 

biologically produced Fe compounds (heme b and siderophores) in the ETSP. 

 

This part of the cruise is a contribution to the second phase of the SFB754 project “Climate - 

Biogeochemistry Interactions in the Tropical Ocean”.  

 

Methods 

Samples for trace metal analysis were collected to depths of up to 1200 m using trace metal 

clean sampling equipment comprising a set of 12 GoFlo (General Oceanics) mounted on a 

Kevlar wire (Fig. 7.6.1). Underway samples were collected using a tow fish equipped with 

trace metal clean tubing and a Teflon bellows pump for transferring a constant supply of 

water to the clean container. Samples were processed in a class 1000 clean container.  
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Figure 7.6.1. Deployment of a GoFlo bottle at the Kevlar wire. 

 

Particulate, dissolved and soluble trace metals 

Underway samples for trace metal analysis were collected every 1.5 hours from the tow fish 

deployed at 2-3 m water depth. Dissolved samples (DFe) were filtered by an 0.8/0.2 µm 

Acropak 1000 cartridge filter and transferred into 125 mL acid washed low density 

polyethylene (LDPE) bottles. Total dissolvable (unfiltered) samples (TDFe) collected every 3 

hours were stored in 125 mL LDPE bottles and acidified similarly with 140 µL HCl (UpA 

grade Romil) to pH 1.9.  Dissolved water samples from the water column were filtered by an 

0.8/0.2 µm Acropak 500 cartridge filter and transferred into 125 mL acid washed low density 

polyethylene (LDPE) bottles. Total dissolvable (unfiltered) samples were stored in 125 ml 

bottles.  Soluble samples were filtered through a 0.02 µm Whatman filter and filled in 60 mL 

acid washed LDPE bottles. All water samples were acidified to pH1.9 using UpA grade HCl 

from Romil, Iodate and iodide samples (I-) from the water column were stored in 100 ml 

opaque Nalgene bottles and stored frozen at -20°C.  The particulate fraction of ~ 4 L was 

collected on 0.2 µm 25mm polyether sulphone (PES) filters using 0.2 bar N2 overpressure 

and then stored frozen for later analysis at -20°C.  Unfiltered surface and water column 

samples for Fe(II) and hydrogenperoxide (H2O2) analyses (Fe(II)/H2O2) were collected and 

analysed immediately on board by luminol chemoluminescence using a flow injection 

analyser and a method outlined by Croot and Laan (2002).  For nano molar nutrient analysis 

(nuts), 60 mL of 0.2 µm filtered surface seawater collected by the tow fish, were stored in 15 

mL vials and shipped frozen to the GEOMAR, Kiel, for later analysis in the lab. Table 11.3.1 
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(see appendix) shows all collected samples from the 51 tow fish stations. Table 11.3.2 (see 

appendix) all samples retrieved from the 13 Go-Flo deployments. 

 

Phytoplankton chlorophyll-a biomass, community composition and nutrient stress status 

Sample collection for this suite of measurements was carried out every ~1.5 hours of 

steaming time or between CTD stations. 3 hour time points matched up with the coordinated 

moon pool sampling strategy of the various working groups on the cruise (see master 

sampling sheet for times/locations/Bedford numbers). The total number of sampling points is 

117. 

 

- Chlorophyll-a concentrations: 100 mL samples were filtered onto Macherey-Nagel GFF filter 

pads and extracted for 12-24 hours in 10 mL 90% acetone in a -20 °C freezer in the dark 

before measurement on a Turner Designs trilogy fluorometer following the method of 

Welschmeyer (1994). 

 

- Analytical flow cytometry: 1.87mL of seawater was mixed with 0.125mL 16% 

paraformaldehyde yielding a final paraformaldehyde concentration of 1%. Mixing was carried 

out using vortex, after which samples were left for 10 minutes at room temperature in the 

dark before transfer to a -80 °C freezer. Samples will be analysed on a FACSort flow 

cytometer (Beckton-Dickinson, UK) following the method of e.g. Davey et al. (2008), with the 

intention of analysing for nanophytoplankton, picophytoplankton, Synechococcus, 

Prochlorococcus and total bacterial cell counts. 

 

- Fast Repetition Rate fluorometry (FRRf): A FASTOcean fluorometer (Sensor ID: 14-9740-

003) with integrated FASTact laboratory system (both Chelsea Technologies LTD., UK) was 

used to measure in vitro variable fluorescence of phytoplankton samples after a 30 minute 

dark acclimation period (with temperature maintained by submersion in continuously flowing 

water from the ship’s underway system). Fluorescence light curves were also ran following a 

protocol of progressively increasing light intensities between 20 and 2000 µmol photons m-2 

s-1 (as described in Browning et al. (2014). Blank filtrates (0.2 µm filtrates) were measured for 

virtually all samples. All FRRf data will be blank-corrected and fluorescence parameters 

recalculated upon return to GEOMAR. 

 

- Incubation experiments: Five 48 hour duration on-deck incubation experiments were carried 

out in 1L trace-metal-clean polycarbonate bottles. Seawater was collected at night time using 

the trace-metal-clean towed-fish described previously. Filling times were approximately ~30 

minutes for 1L bottle experiments (total volume = 18L). Bottled seawater was spiked with the 

following combination of nutrients/trace metals: Fe, Co, Fe+Co, Fe+ vitamin B12 

 

Final incubation concentrations of Fe and Co were 2 nM and 100 pM vitamin B12. Initial 

conditions were sampled in 1L bottles for all experiments at 3 time points throughout the 

bottle filling procedure. Triplicate control bottles (1L) with no nutrients added were also 

collected alongside all treatment experiments.  

 

Bottles were placed in on-deck incubators connected to the ships underway flow-through 

system to continuously maintain temperatures at that of sea surface waters. Incubators were 

screened with Blue Lagoon screening (Lee Filters), which maintained irradiance at ~30% of 
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that of the surface. After 48 hours incubation, experiments were taken down and 

measurements made for: 

 

Chlorophyll-a concentrations (1 replicate per treatment bottle), FRRf (single acquisitions for 

each triplicate bottle; fluorescence light curves for pooled treated samples), analytical flow 

cytometry, particulate B12 concentrations (pooled treatments), protein analysis (control and 

Fe-treated samples only). 

 

Heme b concentrations in the ETSP 

Heme b was sampled at three hourly intervals whilst the ship was underway (see appendix 

Tab. 11.3.3 and 11.3.4). One to 1.5 liters were filtered onto glass fiber filters (25mm). Filters 

were frozen at -70°C for later analysis. Filters for POC/PON analysis were also collected on 

precombusted GF/F filters (25mm) and frozen at -20°C. Samples were collected from the 

ship board underway seawater system. At stations, depth profiles from the surface 100 m 

were obtained from the in situ pump in the moon pool (5 m) and from the shallow CTD cast 

(> 5m). Heme b is detected in particulate material collected on glass fibre filters (nominal cut 

off 0.7 µm; (Gledhill et al. 2013; Gledhill 2014) Samples were frozen at -80 °C and will be 

analysed in the laboratory at GEOMAR by high performance liquid chromatography - 

electrospray ionisation – mass spectrometry (HPLC-ESI-MS; Gledhill 2014). 

 

Siderophore distributions in the ETSP   

Extraction and preconcentration of dissolved and particulate siderophores: Seawater (20 L) 

was collected from a high volume continuous pumping system at three depths – surface, the 

chlorophyll maximum and from within the oxycline (see appendix Tab. 11.3.5). Samples were 

filtered and particles collected using 0.2 µm CellTrap membrane filters. Particles were eluted 

from the filters and frozen at -80 C for later analysis of particulate siderophores after 

extraction into ethanol. Dissolved hydroxamate siderophores were concentrated onto 

polystyrene divinyl benzene polymeric resin (ISOLUTE ENV+ solid phase extraction 

cartridge), dissolved catecholate and mixed ligand siderophores onto modified hydrophilic 

cartridges (HLB, Waters Oasis) and were frozen at -20 C. Siderophores will be quantified by 

high performance liquid chromatography – inductively coupled plasma – mass spectrometry 

(HPLC-ICP-MS) and identified HPLC – ESI-MS (Mawji, Gledhill, Milton, et al. 2008).  

 

Remineralisation incubations: An incubation experiment was carried out using seawater 

collected from the trace metal clean towfish on the 9th October 2015 at 19:15 UTC. Seawater 

was sampled into trace metal clean gas tight bags, enriched with dead isotopically labelled 

(54Fe and 57Fe) Emiliania huxleyii cells and incubated for 5 days in the dark at ambient 

surface water temperatures. Unenriched seawater served as a control. Incubations were 

sampled for siderophores, particulate iron and dissolved iron after 5 days. Siderophores in 

the incubations will be quantified by high performance liquid chromatography – inductively 

coupled plasma – mass spectrometry (HPLC-ICP-MS) and identified and characterized by 

HPLC - electrospray ionization – mass spectrometry (ESI-MS) (Mawji, Gledhill, Milton, et al. 

2008; Mawji, Gledhill, Worsfold, et al. 2008). Iron concentrations will determined by ICP-MS 

following digestion and/or preconcentration.  
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Preliminary results 

Preliminary results of H2O2 and Fe(II) indicate the photoreductive production of both 

compounds in the upper water column (Fig. 7.6.2).  The outflow of Fe(II) containing sediment 

porewaters represent a secondary Fe source. 

 

 
Figure 7.6.2. Hydrogen peroxide and Fe(II) concentration in the water column of Station 8 

 

Expected results 

Heme b 

Heme b is an iron containing prosthetic group of hemoproteins which are ubiquitous to life 

and essential to photosynthesis, respiration and many redox processes within the cell. 

Investigations of heme b concentrations in particulate material from the field indicate that 

both the absolute abundance and the abundance relative to biomass indicators such as 

particulate organic carbon and chlorophyll a are related to ambient iron concentrations in 

surface ocean waters (Gledhill et al. 2013; Honey et al. 2013). This is the first study of heme 

b distributions undertaken in the Pacific Ocean, and the first to investigate heme b in a region 

influenced by upwelling and strong gradients in iron concentrations arising from oxygen 

depletion in the water column. There is thus potential for variability in heme b distributions 

connected with gradients in iron concentrations and also possibly with changes in iron 

demands for microbial metabolism within oxygen depleted waters. 

 

Siderophores 

Siderophores are produced by bacteria as part of a high affinity iron uptake mechanism. 

Siderophores are the only characterised fraction of the dissolved iron pool, and they appear 

to be present at low to undetectable concentrations in seawater. The exact role of 

siderophores in bacterial iron uptake is not fully known, but it is likely that bacteria produce 

siderophores when they are iron, but not carbon limited. They are thus likely to play an 

important role in influencing bacterial community composition and possibly also be involved 

in an “arms race” for iron in productive regions. To date there have been relatively few 

studies of siderophore concentrations in the ocean. Picomolar concentrations have been 

measured in the surface waters of the Atlantic Ocean, and concentrations were observed to 

increase in equatorial regions, where bacterial numbers and POC concentrations were 

higher (Mawji, Gledhill, Milton, et al. 2008). No studies in upwelling regions or in the South 

Eastern Pacific have yet been reported and little is known of how siderophore concentrations 

might vary with depth. On SO243, we will therefore undertake the first survey of siderophores 
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in the Peruvian upwelling regime. In addition, we have taken large volume samples from 3 

depths in order to investigate siderophore abundance in relation to chlorophyll distributions in 

the water column. Siderophore production in the remineralisation experiment will be used to 

aid the identification of siderophores in seawater samples. 

7.7 Nutrients and Oxygen 

Martina Lohmann, Hanna Campen and Damian Grundle 

 

Objective/Intro 

Dissolved nutrients (i.e. nitrate, nitrite, silicate and phosphate) and oxygen were measured 

on-board SO243 for the purpose of understanding vertical and horizontal nutrient and oxygen 

distributions distributions. The availability of nutrients and oxygen play a key role in 

regulating a number of the biogeochemical processes that were measured during the cruise, 

so these were critical ancillary measurements that will be used in the interpretation of results 

from many of the core projects conducted during SO243. 

 

Methods 

Nutrients: Samples for the measurement of dissolved nutrients were collected at all stations 

during SO243, and at times during multiple CTD casts at a station. Samples were also 

collected from the underway system. In total, 450 samples were collected from CTD casts 

and 120 samples were collected from the underway system, for a total of 570 nutrient 

samples collected during the cruise. With the exception of the last 13 underway samples, 

which were frozen and measured upon returning to GEOMAR, all nutrient samples were 

measured fresh at sea with a QuAAtro auto-analyzer from SEAL Analytical. Nitrite was 

measured following reaction with sulphanilamide to form a diazo compound. Nitrate was 

measured as nitrite following reduction on a cadmium coil. Phosphate was measured after 

reaction with molybdate and antimony ions. Silicate was measured by forming a silico-

molybdate complex which was subsequently reduced to molybdenum blue. Based on the 

measurement of 59 triplicate samples, the precision of the nutrient measurements was 

calculated to be ±0.03 μmol L-1, ±0.13 μmol L-1, ±0.01 μmol L-1 and ±0.13 μmol L-1, for nitrite, 

nitrate, phosphate and silicate, respectively.  

 

Oxygen: Samples for the measurement of dissolved oxygen concentrations were collected 

from CTD-Niskin bottles at all stations and from the underway sampling system using the 

overflow technique. Following collection and fixation, samples were stored in the dark before 

being measured by manual end-point determination within 10 hours following the protocol 

outlined by Hansen (1999).  Based on the measurements of 48 replicate (duplicates and 

triplicates) samples, the precision of the dissolved oxygen measurements was calculated to 

be ±0.24 μmol L-1. 

 

Preliminary results 

Dissolved nutrient and oxygen concentration data are currently being used in the 

interpretation of findings from many of the core projects conducted during SO243, and a full 

description of the nutrient and oxygen results is beyond the scope of the cruise results. 

Interestingly, however, while the vertical distribution of dissolved nutrients and oxygen 

concentrations were similar to those reported from previous work in the ETSP, the overall 

bulk nutrient and oxygen concentrations were noticeably different at times. For example, as 

reported in Stramma et al., (2016), near surface oxygen concentrations were at times higher 
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during SO243 than during previous cruises. Strong upwelling along the Peruvian coastline 

typically brings very low oxygen waters from the core of the OMZ up to the near surface 

waters, however, during SO243 upwelling was reduced due to developing El Niño conditions 

and this led to less low oxygen water being mixed into the near surface waters (Stramma et 

al. 2016). Likewise, nitrate concentrations and N:P ratios were also higher at times in the 

near surface waters during SO243 when compared to previous cruises in the same region 

(Stramma et al. 2016). Again, strong upwelling usually brings low nitrate water characterized 

by low N:P ratios from the core of the OMZ (low nitrate and N:P due to denitrification in the 

OMZ) into the near surface waters. The reduction in upwelling as a result of the developing 

El Niño during SO243 suppressed the upward flux of low nitrate and low N:P waters, 

however, and these results highlight the potential biogeochemical implications of El Niño 

conditions in the near surface waters of the coast of Peru (Stramma et al. 2016). 

 
Figure 7.7.1. Oxygen section (color; in μmol kg-1; same color scale in both frames) at ~9°S 

off the Peruvian shelf for December 2012 (a) and October 2015 (b). Three selected 

isopycnals are included as white dashed lines. Please note that the section in October 2015 

reaches further west than in December 2012 (figure from Stramma et al. 2016). 

7.8 Eddy covariance 

Alex Zavarsky, Tobias Steinhoff, Damian Arevalo and Christa Marandino 

 

Objective/Intro 

In order to investigate the ocean’s role in the atmospheric budget of climate active trace 

gases, we deployed an eddy covariance (EC) direct flux measurement system onboard R/V 

Sonne. EC can be used to perform emission/deposition measurements without the typical 

pitfalls associated with bulk flux calculations, as well as to constrain the main forcing on air-

sea gas exchange. Using the direct flux (F) from EC, 𝐹 = 𝜌 <𝑤′𝑐′>, we can attempt to improve 

the gas transfer parameterization (k) used in bulk formulas, 𝐹 = (𝐻𝐶𝑤 – 𝐶𝑎), where 𝜌 is 

density, 𝑤′ are the fast fluctuations in vertical wind speed, 𝑐′ are the fast fluctuations in 

atmospheric gas concentrations (brackets denote time average), Cw and Ca are water and air 

concentrations, respectively, and H is the Henry’s law solubility constant. Our goal was to 

measure dimethylsulphide (DMS), isoprene, acetone, CO2 and N2O flux. Measurements 

started with favorable wind conditions after Station 1. For the first time ever direct N2O fluxes 

were measured in the marine environment. 
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Methods 

Atmospheric levels of DMS, isoprene and acetone were measured using an atmospheric 

pressure chemical ionization mass spectrometer (AP-CIMS). Additionally CO2 and N2O 

measurements were taken using optical measurement techniques at a frequency of 5 Hz. 

Air was sampled through a ½” tube from a mast welded to the bow (approximately 14 m 

above the sea surface) at a flow rate of 40 l min-1. To obtain turbulent wind speed 

measurements and sensible heat flux, a sonic anemometer was placed at the bow mast. A 

GPS and inertial navigation system (INS) was used for motion correction (Fig. 7.8.1).  

 

 
Figure 7.8.1. Eddy covariance mast on the bow of R/V Sonne in the port of Guayaquil. 

 

Preliminary results 

Due to the high presence of ammonia in the air, the sensitivity of the AP-CIMS was at its 

limits for eddy covariance flux measurements. Still with home post-processing it will be 

possible to obtain flux measurements. For N2O and CO2 first data quality checks exceeded 

the expectations and soon direct flux data, for the first time for N2O, will be available (Fig. 

7.8.2). 

 
Figure 7.8.2. N2O power spectra. Left: Data from a period with large sea to air gradient. 

Right: Data from a period with a small sea to air gradient. The red line indicates the inertial 

subrange from Kaimal et al., (1972). 
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Expected results 

It will be interesting to see if the predicted high fluxes of N2O can be reproduced by a direct 

flux measurement. The fluxes of CO2 and DMS will be used to investigate the influence of 

solubility on the gas exchange processes. If there should be high discrepancies between 

various flux measurement methods, we will try to find reasons by comparing our results to 

those from the other working groups on the ship. Especially, the work of Birthe Zäncker 

(section 7.14) will be used to understand how the presence or absence of the sea surface 

microlayer influences gas exchange.  

7.9 Atmospheric physics 

Kirstin Krüger, Alina Fiehn, Birgit Quack and Elliot Atlas 

 

Objective/Intro 

The Peruvian upwelling area is a known source for very short lived halocarbons like 

bromoform, dibromomethane and methyl iodide. They play an important role for the 

tropospheric and stratospheric halogen burden and ozone budget. Here we are interested in 

how meteorological conditions and in particular El Niño affect the halocarbon abundance in 

the marine atmospheric boundary layer (MABL) and what their contribution to the free 

troposphere and stratosphere is. 

 

Methods 

Regular radio- and ozonesonde launches have been carried out to monitor the atmospheric 

structure and composition along the cruise track in order to compare with marine trace gas 

abundance above the Peruvian upwelling (Fig. 7.9.1). The radiosonde profiles were delivered 

to the Global Telecommunication System in real time to improve the weather and 

meteorological reanalyses products, which will later be used to calculate the air mass origin 

and transport with high resolution Lagrangian transport modelling of various marine trace 

gases. For this, regular air canister samples have been taken to determine more than 50 

different trace gases concentrations. Available meteorological instruments on board of the 

R/V SONNE (DSHIP data) are accompanied by continuous precipitation and irregular 

aerosol optical depth (AOD) measurements. 66 radiosondes were launched on standard 

WMO times (00, 06, 12, 18 UTC). Additionally, 4 ozonsondes were started above the 

Humboldt Current and the Peruvian upwelling. 140 air canisters were filled with air (40 psi) 

along the cruise track at 3 hourly resolution. For precipitation measurements an ODM470 

disdrometer from University of Hamburg, which was employed on the radar deck of RV 

SONNE, was available. Whenever sunny and cloud free, AOD was measured with the 

Microtops instruments from NASA Goddard.  
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Figure 7.9.1. Preparation to launch a radiosonde from the aft deck of R/V Sonne. 

 

Preliminary results 

The radiosondes launches illustrate a tropical atmosphere (Fig. 7.9.2) with the surface trade 

wind system, trade inversion layer, westerly wind of the Hadley cell in the upper troposphere, 

a high and cold tropopause and the quasi –biennial oscillation (QBO) of the inner tropical 

stratospheric zonal wind. A pronounced inversion layer at approximate 1 km altitude is 

striking, which is accompanied with an accumulation of high relative humidity and moderate 

to fresh southerly winds below this inversion. Convective activity was limited and very few 

precipitation events were detected on 15th October and 20th October.  Figure 7.9.3 displays 

the preliminary ozonesonde profiles launched within the Humboldt Current and Peruvian 

upwelling. The profile on 10th October 2015 reveals tropical high ozone levels whereas the 

following three ozone launches show lower subtropical ozone all four profiles maximizing at 

around 27 km altitude. Tropospheric ozone levels reveal distinct fluctuations within 9.5°S and 

16.5°S latitude, which will be further analysed together with halocarbon measurements and 

trajectory calculations. Back in the home laboratories we will revise the radiosonde and 

ozonesonde data and analyse the MABL and trade inversion layers (height and 
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characteristic) as well as the tropopause heights. The air canisters will be shipped back to 

RSMAS/ University of Miami where they will be analysed for more than 50 trace gases. 

 

 

 
Figure 7.9.2. Temperature (deg C), relative humidity (in %), zonal wind (m/s) and meridional 

wind (m/s). Radiosonde launches along ASTRA-OMZ cruise were centred on 00, 06, 12, 18 

UTC. The white gap marks the radiosonde launch break at Chimbote harbour. 

 
Figure 7.9.3. Ozone mixing ratios [in mPa] for the troposphere (to 17 km altitude) and the 

stratosphere (above 17 km altitude) launched within the Humboldt Current and Peruvian 

upwelling at 12 UTC on 10th, 15th, 18th, and 20th October 2015. 
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Expected results 

Finally, we will analyse the air mass origin and flow for the marine trace gases, including a 

characterisation of the typical atmospheric regimes during ASTRA-OMZ impacting the trace 

gas distribution. For this we will compare the SO243 cruise during October 2015 with the 

M91 December 2012 cruise, thus also focussing on the current El Niño versus normal 

conditions. We will also analyse the halocarbon transport from the ocean surface taking their 

derived sea-to-air fluxes based on surface water and atmospheric measurements from the 

halocarbon group and calculate their contribution to the troposphere and stratosphere (see 

section 7.5). The ozonesonde profiles will be analysed and related to the observed 

halocarbon abundances. Marine trace gas concentrations will be analysed along the cruise 

track, including major anthropogenic and natural components.  

7.10 Deliberate tracer release with the OTIS and transient tracers 

T. Tanhua, T. Stöven, M. Müller, A. Pinck 

 

Objective/Intro:  

This part of the cruise is a contribution to the proposed 3rd phase of the project SFB754, 

Climate - Biogeochemistry Interactions in the Tropical Ocean. Previous research efforts 

conducted during SFB754 in the Peruvian shelf Oxygen Minimum Zone (OMZ) region have 

demonstrated that sediment-ocean interface processes are potentially very important for the 

biogeochemistry of the OMZ and possibly for the development of the OMZ itself. The anoxic 

sediments of the OMZs have the potential to release significant amounts of reactive nitrogen, 

phosphorous, reduced iron (Fe2+) and silicate to the benthic boundary layer. These 

substances, if brought to the photic zone, exert a significant positive feedback mechanism on 

surface water primary production with the potential to maintain, or increase, the extent of 

suboxic waters. Fluxes from the sediment and the surface/interior ocean hold the potential to 

be important for the development of the OMZs, and quantification of these fluxes are 

important for the overall oxygen/nutrient budget of the OMZs. However, the mixing and 

pathways of the water from the benthic boundary layer and how it connects with the interior 

ocean in the OMZ or to the surface ocean above the OMZ are poorly characterized. Existing 

regional models show divergent solutions and direct observations of some of the regional 

scale exchange mechanisms, time scales and rates would help to evaluate choices of 

resolution and sub-grid-scale parameterization. To address this, we are conducting a tracer 

release experiment on the Peruvian shelf. Transient tracers in the water column, such as 

CFCs, are also measured to understand the physical mixing processes in the region. 

 

Methods: 

For the tracer release we used the Ocean Tracer Injection System (OTIS) of GEOMAR. This 

system has been successfully used for 3 previous tracer release experiments by the 

GEOMAR group. Whereas the OTIS in normally towed behind the research vessel at a set 

density level (in order to quantify diapycnal and isopycnal dispersion), for this experiment the 

OTIS was deployed in a different mode of operation; the OTIS was deployed on the bottom 

and released the tracer on a fixed position during each release. For this purpose the 

buoyancy devices on the OTIS was removed (to provide negative buoyancy) and the OTIS 

was equipped with four “legs”, each of them with two 50×55 cm plates to prevent the OTIS 
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from sinking into the sediment. This way the OTIS should sit 60 cm above the bottom during 

release.  

 
Figure 7.10.1. Deployment of the OTIS from the A-frame. 

 

The inert gas CF3SF5 was used as tracer; this was loaded on three cylinders on the OTIS 

prior to deployment, a fourth cylinder was loaded with a primer that was pumped through the 

system during deployment and recovery. The tracer/primer was pumped through two dual-

head HPLC pumps, typically set to ~3200 psi pressure, to a set of six 25 µm ID orifices on 

each pump (i.e. a total of 12 orifices). Due to the fine-tip of the orifices, a fraction of the 

orifices usually clogged during injection, and was the rate-limiting factor during releases.  

 

The OTIS was deployed at three positions during the cruise (Tab. 7.10.1). During each of 

those, the ship was directed to a water depth of 250 meters after reaching the approximate 

release positions; releasing at the same depth during on all three sites was important. During 

the OTIS stations, the OTIS was lowered to the bottom from the A-frame on the 18 mm 

conducting cable. Six 10L buoyancy balls were attached to the wire between ~15 and 35 m 

above the OTIS to provide positive buoyancy for the lower part of the cable. Once the OTIS 

reached the bottom an additional 20 meters of wire was paid out. Following this the ship 

moved 50 meters forward, in 10 meter increments, at the same time as the wire was paid 

out. This way enough slack was provided in the wire to prevent any movement to the OTIS 

during deployment; the buoyancy on the wire effectively prevented kinks in the wire from 

developing. All three deployments were successful. A CTD station was always performed 

immediately before the OTIS deployment.  
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Table 7.10.1. Information on the three tracer release sites. The timing refers to time when 

tracer was pumped.  

Position Start Time 

(UTC)  

Duration Amount CTD# 

10°42.9’S 78°14.1’W Oct 13, 01:15 10h 48min 25 kg 19 

12°21.8’S 77°26.2’W Oct 15, 21:48 8h 16min 28 kg 22 

14° 02.2’S 76°31.7’W Oct 18, 01:13 7h 55min 15.5 kg 30 

  
 

The CTD on the OTIS recorded salinity, temperature and oxygen (and pressure) for the 

duration of the tracer releases. Significant variability in potential density (σϴ) over time is 

evident for all three sites, with a general trend of slowly decreasing density interrupted by 

rapid increases, Figure 7.11.1. These events of rapidly changing densities are also visible on 

the sADCP data with east setting currents rising to over 0.1 ms-1 (from close to zero zonal 

velocity) during these events.  

 
Figure 7.10.2. Left panels: density and oxygen profiles from the OTIS “downcast”. Right 

panels: potential density during the OTIS deployment. Preliminary calibrated data 

 
For the transient tracer measurements, water samples for the determination of 

dichluorodifluoromethane (CFC-12) and sulphur hexafluoride (SF6) concentrations were 

collected from the Niskin bottles using 300 ml glass ampules. The ampules were directly 

attached to the Niskin bottles with a stainless steel tubing system to prevent contact with the 

atmosphere during the sampling process (e.g. Stöven, 2011). The ampules were flushed with 

3 times the volume during sampling. The samples were cooled in a water bath at ~0°C to 

prevent outgassing of the trace gases before they were flame sealed and stored in aluminum 

boxes during the cruise; flame sealing was always performed immediately after sampling. 
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The measurements of the samples were conducted onshore in the tracer lab at GEOMAR 

Helmholtz Centre for Ocean Research Kiel. The two transient tracers were simultaneously 

analyzed using a purge and trap GC-ECD system as described in Stöven (2011). In total 110 

samples from six stations were taken (see appendix Tab. 11.3.6). 

7.11 Hydrographic observations (CTD and salinity measurements) 

Lothar Stramma, Tim Fischer, Rudolf Link 

 

Objective/Intro 

 

There is increasing concern today that climate change will lead to decreasing dissolved 

oxygen (DO) levels in the ocean with large impact on marine habitat and ecosystems. 

Volumes of the interior ocean that are relatively poor in oxygen are often called oxygen 

minimum zones (OMZs). Climate model runs over centuries predict an overall decline in 

oxygen concentration and a consequent expansion of the mid-depth OMZ’s under global 

warming conditions. These OMZs cover the upper ocean from about 100 to 900 m depth in 

the eastern Pacific. The recently reported expansion of OMZs in the World Ocean has major 

implications for biogeochemical cycles. 

 

In the Pacific near the equator, the Equatorial Undercurrent, Northern and Southern 

Subsurface Countercurrents and the Northern and Southern Intermediate Countercurrents all 

carry water that is oxygen richer than adjacent westwards flows, thereby providing a net 

oxygen supply to the eastern Pacific OMZs. To investigate circulation changes and related 

oxygen changes first the mean circulation especially of the current bands which supply 

oxygen to the OMZ need to be understood. A comprehensive observational data set suitable 

for describing the structure and pathways of the EUC east of the Galapagos Islands (~92°W) 

does not exist.  

 

In earlier investigations we could show that in most regions of the tropical Pacific the oxygen 

content in the 200-700 dbar layer has declined.  An investigation of the Meteor M77/4 data 

from February 2009 indicated that the decreasing oxygen trend in the equatorial channel 

became stagnant.  

 

The goal of the CTD-O2 measurements combined with the ADCP data on Sonne 243 was to 

investigate the water mass and oxygen transport in the zonal equatorial current bands to 

understand the supply paths of the OMZ. In addition the CTD-O2 data will be used to extend 

the investigation of long-term (~ 50 years) oxygen trends into present time and determine 

whether the recently observed stagnation in deoxygenation is continuous. Off Peru the CTD-

O2 measurements will be used to investigate upwelling on the shelf. As an El Niño developed 

during 2015 a new aim added was to investigate a possible weakening of the upwelling due 

to the El Niño (Stramma et al. 2016). 

 

Methods 

CTD-calibration 

During SO243 a total of 39 CTD-profiles on 18 stations were collected, often with 2 profiles at 

one location to cover the amount of water needed from the rosette by the different scientific 

groups (Fig. 7.11.1). On the first 2 deep stations (1200 and 1000 m depth) below 500 m 
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depth the bottles could be release, however no confirmation was received from the CTD 

deck unit. The problem could be resolved and did not appear again on later stations.  

 

 
Figure 7.11.1. Sampling the Niskin bottles of the CTD rosette. 

 

Data acquisition was done using Seabird Seasave software version 7.23.1. The CTD was 

mounted on the GO3 rosette frame with a 24 bottle rosette sampling system with 10 l bottles. 

Only the CTD SBE02 was used (Tab. 7.11.1). In addition the SBE07 was shipped to R/V 

Sonne as backup, but was never used. The final calibration of the CTD data was done using 

the primary set of sensors.  

 

Table 7.11.1. Sensors used for the SBE 02 CTD.  

Device Model number Serial number 

CTD deck unit SBE 11 plus SN 11P25213-0581 

CTD underwater unit SBE 9 plus  (SBE02) SN 09P24785-0612 

Pressure Sensor Digiquarz SN 80024 

Pump, primary SBE 5T SN 3851 

Pump, second SBE 5T SN 1991 

Temperature, primary SBE 3 SN 2463 

Temperature, second SBE 3 SN 5806 

Conductivity, primary SBE 4 SN 3373 

Conductivity, second SBE 4 SN 3379 

Oxygen, primary SBE 43 SN 1312 

Oxygen, second SBE 43 SN 2591 

Fluorescence  Wetlabs, ECO CDOM SN 2687 

Altimeter Valeport VA500 SN 48832 

Fluorescence Dr.  Haardt SN % 

Fluorescence Trios MicroFlu SN 1145 
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The GEOMAR Guildline Autosal salinometer #8 (operated by L. Stramma) was used for CTD 

conductivity cell calibration. The Guildline Autosal salinometer #4 was available as backup, 

but had not been used for measurements on this cruise. Calibration during operation was 

done in two ways: IAPSO Standard Seawater (P157, K15=0.99985) was measured at the 

beginning of the salinometer use and 3 times at the end of the measurements. In addition, a 

so called “substandard” (essentially a large volume of water with constant but unknown 

salinity), obtained from deep bottles from the first deep CTD cast was used to track the 

stability of the system. The standard water and the substandard measurements showed that 

no drift appeared during the measurements. Hence the AS8 was stable during the entire 

measurement time as well as from one measurement day to the next.  

 

The preliminary conductivity calibration at the end of the cruise of the downcast data was 

performed using a linear fit with respect to conductivity, temperature, and pressure. For the 

CTD profiles the calibration was: C_corrected = C_observed -0.001962 + 1.5113e-07 * P – 

1.927e-05 * T + 5.8152e-04 * C). Using 67% of the 102 samples for calibration a r.m.s. of 

0.0011 PSU for salinity was found for the downcast.  

 

Samples for the determination of dissolved oxygen after Winkler (1888) were taken from a 

total of 28 CTD casts to calibrate the oxygen sensors (SBE 43) and to support chemical and 

biological CTD data (see section 7.7). On most CTD casts on several depths samples for 

dissolved oxygen were taken yielding a total of 155 samples for the entire cruise. The CTD 

oxygen sensor calibration was performed similarly to the conductivity calibration. The 

resulting calibration correction for the oxygen sensor was: :  o_corrected = o_observed (μmol 

kg-1) + 0.10713 + 0.0024487 * P + 0.12363 * T + 0.020098  * O. Using 67% of the 155 

samples for calibration a r.m.s. of 0.8 µmol O2 kg-1 was determined as uncertainty of the 

calibration. 

 

Preliminary results 

As a strong El Niño developed in 2015 it was of special interest to investigate whether the 

upwelling off Peru has weakened or even terminated. The comparison of the oxygen 

distribution measured at about 9°S on the RV Sonne cruise in October 2015 with the oxygen 

distribution from the RV Meteor cruise M91 in December 2012 (Fig. 7.11.2) showed that the 

upwelling in October 2015 was very weak. Low oxygen water with less than 5 µmol kg-1 was 

located below about 50 m depth in December 2012 while it was located only below 250 m in 

October 2015. 

 



 
42 

 

 
Figure 7.11.2. Oxygen distribution at about 9°S in October 2015 (left) and December 2012 

(right) with the same color scale for oxygen. Selected density contours are included as 

dashed white lines.  

 

Further south in October 2015 the upwelling signal was still strong. At the section at about 

12°S the oxygen with less than 5 µmol kg-1 reached up to 50 m depth at the near-coastal 

station. However, the oxygen depth was observed to move up and down by wave influence. 

On the easternmost station of the ~16°S section the oxycline depths shifted upward by about 

20 m between the downcast and the upcast.  

 

Earlier observations showed higher oxygen values in the eastern and equatorial Pacific in the 

upper 300 to 350 m at times of El Niño conditions. The comparison of the oxygen profiles at 

the equator in October 2015 at El Niño conditions showed higher oxygen in the upper 300 m 

compared to February 2009 and in the upper 130 m compared to November 2012 (Figure 

7.11.3). The potential temperature in October 2015 was higher in the entire upper 300 m 

compared to the two earlier cruises. Salinity was lower in the upper 40 m, but higher between 

40 m and 300 m in October 2015. Except for the upper 10 m the density was lower to 250 m 

depth in October 2015. The higher oxygen distribution in 2015 as well as the changes in 

water temperature, salinity and density indicate the influence of El Niño, however it appears 

we were there during the onset (Stramma et al. 2016). 
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Figure 7.11.3. Pressure profiles in February 2009 (blue lines), in November 2012 (red lines) 

and in October 2015 (black lines) for oxygen (in µmol/kg), for temperature, salinity and 

density.  

7.12 Microstructure and current measurements 

T. Fischer, R. Link, L. Stramma 

 

A MSS90-D microstructure profiler (#026) of Sea and Sun Technology (Fig. 7.12.1) was used 

to infer turbulent dissipation rate and diapycnal diffusivity, aiming at calculating diapycnal 

fluxes of several solutes including oxygen and nitrous oxide (N2O). The loosely tethered 

profiler was equipped with 3 airfoil shear sensors and a fast thermistor, as well as with a 

pressure, a conductivity, and a temperature sensor. Profiler sink velocity was adjusted to 0.6 

m s-1. In total 43 profiles to usually 300m depth were recorded at 14 ship stations, generally 3 

microstructure profiles following a CTD cast. The system worked well throughout the cruise 

and there were no technical issues beyond maintenance. 
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Figure 7.12.1. Deployment of microstructure sonde of the aft deck. 

 

For properly operating the system and smooth deployment and recovery of the 

microstructure probe, the winch was fixed at the port side aft railing close to the corner, 

making it necessary to unmount parts of the wire frame first. The railing is broader and 

thicker than on other research vessels, which forced some constructive adaptations of the 

winch mounting. 
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Figure 7.12.2. Current velocities when crossing the equator, from the 75kHz Ocean 

Surveyor. 

 

Shipboard current measurements 

Two vessel mounted Acoustic Doppler Current Profilers (ADCP) continuously recorded 

vertical profiles of current velocities: a 75kHz RDI Ocean Surveyor (OS75) and a 38kHz RDI 

Ocean Surveyor (OS38) mounted in the ship’s hull (Fig. 7.12.2). The two instruments are 

closely located and each aligned to zero degrees, which caused some interference, but 

nevertheless did not much deteriorate the velocity data after post-processing. Each of the 

two instruments was run in the more robust narrowband mode. The two configurations were: 

OS75) 100 bins of 8m, pinging at 25 per minute, range 650m; OS38) 55 bins of 32m, pinging 

at 20 per minute, range 1300m. During the entire cruise the navigation data was of high 

quality. Acoustic interference from navigational acoustic devices could not be detected. The 

only other scientific acoustic device working was the 12 kHz multibeam echosounder, which 

also did not interfere. The bow thruster operating on stations only rarely deteriorated the 

ADCP performance, contrary to the experience from other research vessels. 

7.13 Biological Control of the Ocean’s C:N:P ratio 

Mike Lomas 

 

Support for participation in this cruise comes from “Biological Control of the Ocean’s C:N:P 

ratio”  NSF Climate Research Investigations Award Nbr. 1045966.  Scientists ashore, beside 

M. Lomas, who will be involved in the analysis of the samples/data are Steven Baer and 

LeAnn Whitney (Bigelow Laboratory) and Adam Martiny (University of California at Irvine). 

 

Objective/Intro 
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One of the fundamental patterns of ocean biogeochemistry is the Redfield ratio. Redfield 

identified the similarity between the N:P ratio of plankton living in the surface ocean and that 

of dissolved nitrate and phosphate in the deep ocean. He hypothesized that the deep ocean 

nutrient concentrations were controlled by the elemental requirements of the surface 

plankton. This concept has been extended to include other elements like carbon (C) and 

remains a central tenet for our understanding of ocean biogeochemistry. 

 

Despite this importance, there is no obvious mechanism for the globally consistent C:N:P 

ratio of 106:16:1 (i.e. Redfield ratio), and there is substantial elemental variation among 

ocean taxa. Although the data are sparse, recent field surveys of plankton C:N:P ratios 

furthermore indicate significant deviations in different ocean regions. These observations 

suggest that on local/regional and perhaps seasonal scales, the planktonic C:N:P ratio is not 

constant in the ocean and can increase or decrease depending on the biodiversity of ocean 

plankton across biogeographic conditions. This has at least two important implications. First, 

on the global scale, Broecker and Henderson (1998) have proposed that an increased 

plankton C:N:P ratio and thus increased CO2 uptake in the ocean could explain the glacial to 

inter-glacial variation in atmospheric CO2 concentration. Second, geochemical estimates of 

N2 fixation are critically dependent upon an assumed N:P ratio (specifically the Redfield 

ratio). Recently, it has been argued that our understanding (or lack thereof) of cellular 

elemental stoichiometry has a large influence on our ability to estimate the global N budget. 

Thus, knowing how biodiversity regulates the elemental composition of the ocean (C:N:P) is 

important for understanding Earth’s climate – in the past, present, and future.  

 

The following conceptual model guides the research in which the samples collected on this 

cruise are framed (Fig 7.13.1): 

 
1. The C:N:P ratio of a cell is constrained by the broad taxonomic group to which it belongs, 

which affects whether it has an outer shell, its size, functional metabolism, membrane lipid 

composition, etc. 

2. Within a taxon, there is a high genetic diversity. Some of this genetic diversity is potentially 

laterally transferred or can be lost within taxa and confers various functional abilities (organic 

phosphate assimilation, nitrate assimilation, photoheterotrophy, etc.). This functional diversity 

provides further flexibility to a cell to respond to varying nutrient supply rates/ratios and 

affects a cell’s C:N:P ratio. 

3. Given these taxonomic and genetic constraints, a cell is physiologically plastic and 

modifies how it allocates cellular resources in response to nutrient supply rates and ratios in 

the environment. 

4. The microbial diversity (taxonomic, genetic, and functional) of the surface ocean varies 

over time and space, driven by many factors in addition to nutrients. The sum of this mixture 

composes the ecosystem C:N:P, the ratio that Redfield describes. 
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Figure 7.13.1. Predicted integrated role of ocean taxonomic (here defined as broad 

phylogenetic groups), genetic, and functional biodiversity on ocean C:N:P ratios. Number 

refers to our four questions and associated objectives. Parts of the figure are inspired by 

Arrigo. 

 

Based upon this conceptual model we have the following science questions: 

Q1:  How does ocean taxonomic biodiversity impact C:N:P ratios? 

Q2:  What is the range of gene content diversity within taxa and how does this diversity 

impact C:N:P ratios? 

Q3:  Given taxonomic, genetic, and functional constraints, how do cells physiologically 

adjust their cellular C:N:P ratio in response to nutrient supply rates andratios? 

Q4:  What is the integrated effect of biodiversity and environmental variation on the 

ecosystem C:N:P ratio? 

 

Methods 

Methods related to the analysis of samples collected on the cruise are given below: 

 

Bulk Particulate organic carbon (POC), nitrogen (PON), and phosphorus (PPhos). Bulk 

POC/PON and PPhos samples are filtered onto precombusted (450oC, 5 hours) Whatman 

GF/F glass fiber filters, as separate samples, and stored frozen (-20oC). POC/PON samples 
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are analyzed according to standard JGOFS protocols, while PPhos samples are analyzed as 

in Lomas et al., (2009).   

 

Population-specific POC, PON, PP. We will measure the C:N:P ratios of specific plankton 

groups (i.e., Prochlorococcus, Synechococcus, picoeukaryotes, heterotrophic bacteria, N2-

fixing bacteria, diatoms, and, Coccolithophores) in the field. For pico- and nanoplankton 

populations, heterotrophs and autotrophs, samples are concentrated and flow cytometrically 

sorted.  Populations are filtered onto precombusted GF-75 filters (nominal pore size 0.3 µm), 

treated with oxalate rinse, and analyzed for C:N:P. 

 

RNA preparation and transcriptome sequencing. Approximately 1.5 L of sample volume was 

gently filtered over 5 µm, 47 mm polycarbonate filter and then through a Sterivex 0.2 µm.  

Filters were stored in lysis buffer, flash frozen, and stored at -80°C until analyzed.  Total RNA 

will be extracted using the Qiagen RNeasy Mini Kit (Venlo, Netherlands) according to the 

manufacturer’s protocol, with the following exceptions:  cells will be lysed using 0.5 mm 

zirconia/silica beads (BioSpec, Bartlesville, OK, USA) mixed with the lysis buffer and 

vortexed until the solution looked homogenous.  The lysis solution will be then put over 

Qiashredder columns (Qiagen) to remove any large cell material that could clog the spin 

columns. To aid in the removal of DNA, two DNase digestions are performed.  First, Qiagen’s 

RNase-free DNase Set (an on-column treatment) was used according to the manufacturer’s 

instructions. The RNA samples from within a treatment are then combined.  The second DNA 

removal step is conducted using the Turbo DNA-free kit (Life Technologies) according to the 

manufacturer’s protocol. The RNA is then quantified in duplicate using the Qubit Fluorometer 

(Life Technologies); RNA quality is assessed by gel electrophoresis. 

 

RNA sequencing libraries are generated from 1 ug of RNA with 100 base pair paired-end 

reads sequenced using an Illumina HiSeq 2000.  Reads are analyzed following the JGI 

pipeline.  First, read quality is assessed using BBDuk where artifact sequences were 

detected by kmer matching (kmer=25) and trimmed.  Reads are then quality trimmed using 

the phred trimming method at Q6 and finally, reads under 25 bases removed.  Counts will be 

used to generate gene counts which are subsequently used to evaluate differential 

expression between samples/stations.  DESeq2 will be used to determine differential 

expression; significantly differentially expressed genes are those with a p-value < 0.05 and a 

fold change > 2.   

 

Preliminary results: 

No samples were analysed on board and therefore there are no preliminary results specific 

to this cruise. 

 

Expected results 

Samples for bulk and taxon-resolved particulate organic matter were collected at 4 depths at 

every CTD station.  In addition, RNA/DNA samples were collected from the near surface 

(CTD or underway system) and the subsurface chlorophyll maximum depth.  From these we 

expect to present a spatial and profile map of ecosystem and phytoplankton stoichiometry for 

this cruise.  In addition, at several stations we conducted 15N incubation experiments in 

collaboration with Damian Grundle (section 7.1).  From these incubations we will be able to 
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quantify rates of nitrification (through isotope dilution in the final fluid sample).  These data 

will also be used in the estimation of efficiency of N2O production in conjunction with 

Damian’s incubation experiments.  All data will be permanently archived as the Biological 

and Chemical Oceanography Data Management Office in the US, as this project was a US 

NSF funded project.  However, all data will be made freely available to other cruise 

participants, should they wish, in efforts to provide a more robust dataset for the cruise 

7.14 Biogenic characterization of the sea surface microlayer  

Birthe Zäncker and Jon Roa 

 

Objective/Intro 

The Sea Surface Microlayer (SML) occurs on all water bodies and covers approximately 

70 % of the Earth's surface. It is the boundary layer between the ocean and the atmosphere 

with a gel-like structure containing carbohydrates, amino acids and proteinacous, as well as 

polysaccharidic, gels. 

 

The position of the SML directly at the boundary between the ocean and the atmosphere 

makes it a potentially important factor in air-sea exchange processes. Previous studies have 

found that surfactants in the SML can affect the gas transport (section 7.8). The composition 

of sea spray aerosols (SSA) emitted from the ocean is influenced by the organic constitution 

of the SML. Gel particles provide a habitat for microorganisms, potentially favoring biofilm-

forming bacteria and thus making the microbial community in the SML distinct from the 

community in the underlying water. 

 

Methods 

A total of 11 stations were sampled during the cruise. A Zodiac was used to sample the sea 

surface microlayer with a hydrophilic glass plate and the bulk water at 20 cm (Fig. 7.14.1). 

Furthermore 3 depths from the CTD (surface (~5m), deep chlorophyll a maximum and 

oxygen minimum zone) were sampled. 
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Figure 7.14.1. Microlayer sampling on the zodiac. 

 

Cell abundances and DNA extraction 

At each Zodiac station, samples were collected from the surface microlayer, the underlying 

water and from the Niskin rosette for the analyses of bacterial and phytoplankton cell 

abundance via flow cytometry. Therefore, 4 ml sample were fixed with 200µl 25% 

glutardlutadialdehyde (GDA). These data will enable a detailed description of the vertical 

distribution of those organisms. 

 

Furthermore, samples for bacterial DNA (400 ml seawater filtered onto a 0.2 µm Durapore 

membrane filter) were taken. 

 

Dissolved organic matter 

Carbohydrates and amino acids are valuable tracers of biological production and 

decomposition processes. Highly sensitive IC- and HPLC-techniques will be applied to 

analyze concentrations and compositions of amino acids (AA) and carbohydrates (CHO) in 

DOM. Furthermore, total and dissolved organic carbon (T/DOC) were analyzed. All 

parameters for DOM were size-fractionated: 100 kDa, 1000 kDa and 0.45 µm for DOC, 

10 kDa, 100 kDa, 1000 kDa and 0.45 µm for AA and CHO. 

 

Gel particles 

Gel particles represent important microbial habitats and comprise significant fractions of 

extracellular carbon and nitrogen. Transparent exopolymer particles (TEP) and Coomassie-

stainable particles (CSP) will be determined colorimetrically and microscopically using semi-

automated image analysis. 

 

FISH, cLSM and live/dead staining 

Samples were fixed with 1 % formaldehyde for 1 h and filtered onto Whatman polycarbonate 

filters (47 mm diameter, 0.2 µm pore size) and stored at -20°C for analysis using 

Fluorescence in situ hybridization (FISH). Samples for analysis with confocal laser scanning 
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microscopy (cLSM) were filtered onto black Whatman polycarbonate filters (25 mm diameter, 

0.2 µm pore size) and stored at -20°C. 

 

The ThermoFisher Scientific live/dead BacLight kit was used according to the manufacturer’s 

instructions to determine the amount of living cells in the samples. 

 

Overview of biogeochemical parameters measured: 

 dissolved organic carbon (DOC) 

 dissolved organic nitrogen (DON) 

 transparent exopolymer particles (TEP) 

 Coomassie stainable particles (CSP) 

 dissolved hydrolysable amino acids 

 total and dissolved carbohydrates 

 overview of biological parameters 

 phytoplankton and bacterial cell numbers by flow cytometry 

 genetic analyses of bacterial community 

 fluorescence in situ hybridization (FISH) 

 live/dead staining 

 

Preliminary results 

No samples were analyzed during the cruise and therefore there are no preliminary results. 

 

Expected results 

We will analyze the DOM composition and the microbial community of the SML as compared 

to the directly underlying water (20 cm) and the deeper water (5 m and deeper). 

Furthermore, we will look at the spatial distribution patterns of DOM and bacteria between 

different stations. We will also compare our data to the data collected during the Meteor M91 

cruise in December 2012. 

 

In addition, we will look at the SML using cLSM and epifluorescence microscopy and 

different staining techniques (live/dead staining, FISH) to analyse the distribution patterns. 

7.15 Optical properties of phytoplankton, particulate and dissolved organic matter 

Astrid Bracher and Rüdiger Röttgers 

 

Objective/Intro 

Marine phytoplankton is the basis of the marine food web and also a main driver of 

biogeochemical fluxes, thus, an important source of dissolved and particulate organic 

substances, including volatile organic substances (e.g. DMS, isoprene, halocarbons, 

sections 7.3 and 7.5). On this cruise we broadened our sampling frequency of phytoplankton, 

particulate and chromophoric dissolved organic matter (CDOM) abundance and composition 

by taking continuous optical measurements which directly give information on inherent and 

apparent optical properties (IOPs, and AOPs, respectively). These can later be inverted to 

extract information on the above listed parameters. Additionally, light absorption by CDOM 

can be used to identify specific dissolved pigments in the water column especially in the 
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oxygen minimum layer and the surface microlayer. The specific objectives of our working 

group on the SO243 ASTRA-OMZ cruise were: 1) to collect a high spatially and temporally 

resolved dataset on phytoplankton (total and composition) and its degradation products at 

the surface and the full euphotic zone using continuous optical observations during the cruise 

and from ocean colour remote sensing develop; 2) validate (global and regional) algorithms 

and associated radiative transfer models in accordance to the previous objective by using 

discrete water samples for pigment analysis and absorption measurements; 3) to identify bio-

physical-chemical coupling with cooperation partners from ASTRA by using this 

comprehensive data sets to detect shifts in phytoplankton community biomass and 

composition and the factors driving the variability and changes in phytoplankton community 

and CDOM absorption; 4) link to oceanic emissions of trace gases (mainly DMS, isoprene, 

halocarbons); 5) measure CDOM absorption in the water column from the surface microlayer 

through the euphotic zone down to the oxygen minimum and to collect DOM extracts from 

the deeper waters for identification of specific dissolved pigments. 

 

Methods 

Methods to obtain quantity and composition of phytoplankton, other particulates and 

chromophoric dissolved organic matter (CDOM) 

 

Continuous and discrete measurements of inherent optical properties (IOPs) with a 

hyperspectral spectrophotometer: For the continuous underway surface sampling an in-situ–

spectrophotometer (AC-S; Wetlabs) was operated in flow-through mode to obtain total and 

particulate matter attenuation and absorption of surface water. The instrument was mounted 

to a seawater supply taking water from about 5m depth from the ship’s moonpool.  

A second AC-S instrument was mounted on a steel frame together with a depth sensor (and 

a set of radiometers) and operated during 14 CTD stations (all but except station 3, 4, 9 and 

11). The frame was lowered down to maximally 90 m with a continuous speed of 0.1 m/s or 

during daylight with additionally stops at 2, 4, 6, 8, 10, 12.5, 15, 20, 25 and 30 m. to allow a 

better collection of radiometric data. 
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Figure 7.15.1. Set-up of portable lab unit of phytoplankton and particulate absorption 

measurements using a QFT-ICAM (Quantitative Filtration Technique Integrative Cavitiy 

Absorption Measurements) from Röttgers et al. (2016). 

 

Discrete measurements of IOPs (absorption) at water samples were performed 1) for 

samples from the underway surface sampling (as for the AC-s flow-through system at 5 m 

depth sampled by a pump through the ship’s moonpool) at an interval of 3 hours, 2) for 

samples from the CTD sampling at 6 to 7 depths within the top 100 m at 17 stations (all 

stations except Station 4), and 3) for samples from the surface microlayer sampling at 11 

stations. The light absorption coefficient of the sum of particulate and dissolved matter was 

determined onboard using a Point-Source Integrating-Cavity Absorption Measurement 

Device (PSICAM) developed by Röttgers et al. (2005) according to the method by Röttgers 

et al. (2007). Water samples for CDOM absorption analysis were filtered through 0.2 µm 

filters and analyzed onboard with a 2.5-m path length liquid waveguide capillary cell system 

(LWCC, WPI). The particulate absorption is later obtained by subtracting LWCC results from 

PSICAM results. In addition, total particulate and phytoplankton absorption coefficients were 

determined with the quantitative filter techniques using sample filtered onto glass-fiber filters 

QFT-ICAM and measuring them in a portable QFT integrating cavity setup following Röttgers 

et al. (in review Ocean Express) (Fig. 7.15.1). Particulate and phytoplankton absorption was 

also determined for Tom Browning’s experiments (a total of 5) where the influence of iron 

limitation was investigated (section 7.6). 

 

Samples for determination of phytoplankton pigment concentrations and composition were 

taken at a 3-hourly interval from the underway-sampling system, and from 6-7 depths at 17 

(all stations except Station 4) CTD-stations. These water samples were filtered on board 

immediately after sampling and the filters were thermally shocked in liquid nitrogen and then 

stored in the -80°C freezer. The samples were sent back to AWI with a dry shipper and then 
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wanalyzed within the next three months by High Performance Liquid Chromatography 

Technique (HPLC) at AWI following Taylor et al. (2011). 

 

Radiometric measurements to obtain apparent optical properties: At the 10 daylight stations 

(except for station 3) we measured continuously hyperspectral upwelling radiance and 

downwelling irradiance down to maximally 90 m with 1-min. stops at 2, 4, 6, 8, 10, 12.5, 15, 

20, 25 and 30 m to improve data quality. TRIOS Ramses radiance and irradiance sensors 

were mounted on the same steel frame (in addition to the AC-s in situ spectrophotometer) in 

downward and upward 90° direction, respectively. The data will be corrected by changes in 

solar irradiance, which was measured continuously during the cruise on the ship’s helicopter 

deck where measurements can be taken without shading by the ship. 

 

DOM extracts were collected at some stations from depths of the oxygen minimum or close 

to the maximum depths at coastal stations. Therefore 25 L of water was run through 1g PPL 

cartridges following the procedure of (Dittmar et al. 2008). The cartridges were dried with 

nitrogen and frozen at - 20 °C. 

 

Algorithms (following e.g. Bracher et al., 2008, 2015; Chase et al., 2014; Hansell et al., 2012; 

Kostadinov et al., 2009), to extract later from the IOPs and AOPs the particulate composition, 

including a characterization of the phytoplankton community structure and status on 

photoacclimation, will be adapted to the region and maybe further developed by using the 

discrete water sample measurements (also for validation). 

 

Preliminary results 

On board we sampled, filtered, and keep at -80°C 180 pigment samples. 207, 217 and 349 

measurements of total absorption, of phytoplankton absorption, and of CDOM absorption 

were directly measured on board. We took DOM extracts at 9 stations from the depth around 

the OMZ and measured continuous profiles of IOPs and of AOPs at 14 and 10 CTD stations, 

respectively. At 11 stations the SML was sampled and the particulate and CDOM absorption 

coefficient was determined for the SML and the underlying water. Solar irradiance was 

measured continuously from 4th October to 21st October and surface IOPs from 4th October 

afternoon to 14th October afternoon and from 15th afternoon to 22nd morning.  

 

Expected results 

We expect to obtain from the continuous IOPs information on phytoplankton and other 

particulates, but also to some respect in the profiles from the AOPs determined from the 

radiometric data. In addition the AOPs of reflectance and diffuse attenuation coefficient will 

be used for validating ocean color remote sensing data (probably from MODIS and VIIRS). 

Those validated datasets, using the discrete sample detailed measurements, will help to 

identify changes in phytoplankton community and its degradation products and elucidate thes 

link to biogeochemical fluxes, especially regarding the volatile organic compounds emissions 

to the atmosphere. The DOM extracts will be used to identify a specific pigment found in the 

OMZ. 
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7.16 Transfer and remineralization of biogenic elements in OMZs 

Frederic Le Moigne 

 

Objective/Intro 

Climate models predict a decline in dissolved oxygen concentration and a consequent 

expansion of the Oxygen Minimum Zones (OMZ) in the future ocean. One crucial 

biogeochemical mechanism is the process by which of carbon is transferred into the deep 

ocean, the biological carbon pump (BCP). There is currently little consensus on the fate of 

sinking OM and the efficiency of the BCP in OMZ areas. Previous particles flux studies have 

shown that the BCP is more efficient in suboxic zones relative to surrounding well 

oxygenated waters. However, incubations performed on sinking material collected in oxic 

and suboxic areas have observed similar remineralisation rate in both conditions, suggesting 

that suboxic conditions do not enhance the transfer of sinking OM through the mesopelagic 

zone. This project will assess how different oxygen conditions and surface productivity 

impact C:N:P remineralization rate of sinking particles. 

 

Methods 

Sampling 

Three free in situ pump deployments were performed at station 3, 11, 15 (see appendix Fig. 

7.16.1). Pumps were deployed with OTIS except at station 3. Deployments dates, depths 

and splits for subsequent analysis/experiments are given in Table 11.3.7. 

 

 
Figure 7.16.1. Deployment of particle in-situ pumps off the A-frame above the OTIS. 
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Incubations 

Two distinct incubations were performed using material from stations 11 and 15 described 

above (Fig. 7.16.2). After splitting, pump material was incubated in 1.2L gas tight bottles 

fixed on a rotating plankton wheel (2 rpm) at constant temperature (22°C). Oxygen 

concentrations in some of the bottles were manipulated and lowered using a gas mix of 

0.1283% CO2 in pure N2. Oxygen treatments, time steps for both incubations are 

summarized in Table 11.3.8 (appendix).  

 

 
Figure 7.16.2. Incubation bottle (left) showing collected particles (middle) and rotating 

plankton wheel (right). 

 

Expected results 

Particles were incubated for several days and the evolution of various remineralisation 

parameters as well as the stoichiometry (C:N:P) of the particulate organic, the dissolved 

organic and the dissolved inorganic pools will be monitored. For instance, the evolution of 

nitrate and phosphate will provide results of the net C:N:P remineralisation rate. In addition, 

degradation index (amino-acids and sugars) will be monitored in order to quantify the rate at 

which N rich OM is consumed relative to C rich OM. 
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10.   Abbreviations 

 

 

AA Amino acids 

ADCP Acoustic Doppler current profiler 

AOD Aerosol optical depth  

AOP Apparent optical properties 

AP-CIMS Atmospheric pressure chemical ionization mass spectrometer 

ASTRA-OMZ Air Sea Interaction of Trace Elements in Oxygen Minimum Zones 

BCP Biological carbon pump  

BMBF  Federal Ministry of Education and Research 

C Conductivity 

c' Fast fluctuations in atmospheric gas concentrations  

Ca  Concentration in air 

CASCADE  Carbonyl Sulphide Cycling in Aphotic Depths 

Cd Cadmium 

CDOM Chromophoric dissolved organic matter 

CFC-12 Dichlorodifluoromethane 

CH2Br2 Dibromomethane  

CH2I2 Diiodomethane  

CH2I2 Diiodomethane  

CH3I Methyl iodide  

CH4 Methane 

CHBr3 Bromoform 

CHO Carbohydrates 

cLSM Confocal laser scanning microscopy 

Co Cobalt 

CO Carbon monoxide 

CO2 Carbon dioxide 

CPP Continous pump profiler 

CS2 Carbonyl sulphide 

CSP Coomassie-stainable particles  

CTD Conductivity-temperature-depth-sonde 

Cu Copper 

Cw Concentration in water 

DFe Dissolved iron 

DFG German Research Foundation 

DIC Dissolved inorganic carbon 

DMS Dimethyl sulphide 

DMSO Dimethylsulphoxide  

DMSP Dimethylsulphoniopropionate  
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DNA  Deoxyribonucleic acid 

DO Dissolved oxygen 

DOC Dissolved organic carbon 

DOM Dissolved organic matter 

DOS Ddissolved organic sulphur  

EBUS Eastern boundary upwelling systems 

EC  Eddy covariance 

ECD Electron capture detector 

ESI Electrospray ionization 

ETSP Eastern tropical south Pacific 

EUC  Equatorial undercurrent 

F Flux 

FDOM  Fluorescent dissolved organic matter 

Fe Iron 

FID Flame ionization detector 

FISH Fluorescence in situ hybridization  

FRRF Fast Repetition Rate fluorometry  

GC Gas chromatograpg 

GDA Glutardlutadialdehyde  

H Henty's law solubility constant 

H2O2 Hydrogen peroxide 

HCl Hydrochloric acid 

HgCl2 Mercury chloride 

HOx Hydrogen oxide radicals 

HPLC High performance liquid chromatography 

ICP Inductively coupled plasma 

INS Inertial navigation system 

IOP Inherent optical properties 

k Gas tranfer coefficient 

LDPE Low density polyethylene  

LWCC Liquid waveguide capillary cell 

MABL Marine atmospheric boundary layer 

Mn Manganese 

MS Mass spectrometer 

N Nitrogen 

N2O Nitrous oxide 

NDIR Non dispersive infra-red 

NH4
+ Ammonium 

Ni Nickel 

NO2
- Nitrite 

NO3
- Nitrate 

NOx Mono-nitrogen radicals 

O2 Oxygen 

OA-ICOS Off-axis integrated cavity output spectroscopy 

OCS Carbonyl sulphide 
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OMZ Oxygen minimum zone 

OMZ Organic matter 

OTIS Ocean tracer injection system 

P Phosphor 

pAr Partial pressure of argon 

Pb Lead 

pCO2 Partial pressure of carbon dioxide 

PES Polyether sulphone  

PESTRE Peruvian shelf tracer release experiment 

pH2O Partial pressure of water 

pN2 Partial pressure of nitrogen 

pO2 Partial pressure of ogygen 

POC Particulate organic carbon 

PON Particulate organic nitrogen 

Pphos Particulate organic phosphorus 

PSICAM Point-Source Integrating-Cavity Absorption Measurement Device 

QBO Quasi –biennial oscillation  

QFT-ICAM  Quantitative Filtration Technique Integrative Cavitiy Absorption 

Measurements 

RAMSES Hyperspectral Radiance and Irradiance Sensor 

RGD Reduction gas detector 

RNA  Ribonucleic acid 

ROS Reactive oxygen species 

SF6 Sulfur hexafluoride 

Si Silicate 

SML Surface micro layer 

SOLAS Surface Ocean Lower Atmosphere Study 

SPE Solid phase extraction  

TA Total alkalinity 

TDFe Total dissolfed iron 

TEP Transparent exopolymer particles 

TOC Total organic carbon 

UTC Universal Time Coordinated 

w' Fast fluctuation in wind speed 

WMO World meteorological organization 

WOCE  World ocean circulation experiment 

Zn Zink 

𝜌  Density 
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11.    Appendices  

11.1 Participating Institutions  

 

GEOMAR GEOMAR Helmholtz Centre for Ocean research Kiel, Germany 

AWI Alfred-Wegener-Institute for Polar Research, Bremerhaven, Germany 

HZG Helmholtz Centre Geesthacht, Centre for Materials and Coastal Research, 

Geesthacht, Germany 

UiO University of Oslo, Oslo, Norway 

Bigelow Bigelow Laboratory for Ocean Sciences, East Boothbay, USA 

UMass University of Massachusetts, Dartmouth, USA 

Miami Rosenstiel School of Marine & Atmospheric Science, Miami, USA 

IMARPE Intituto del Mar del Peru, Callao, Peru 
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11.2 Station list  

 

Leg 
 

Station/ 
event 

Time  
[UTC] 

Latitude 
[°N] 

Longitude 
[°E] 

Gear 
 

Notes 
 

SO243 1-1 
2015-10-07 
00:39:00.0 -0.9998 -85.5003 CTD 

 
SO243 1-2 

2015-10-07 
01:15:00.0 1.0000 -85.5000 Light meter 

 
SO243 1-3 

2015-10-07 
02:16:00.0 1.0000 -85.5001 CTD 

 
SO243 1-4 

2015-10-07 
04:17:00.0 1.0001 -85.5001 Microstructure | MSS 

 
SO243 2-1 

2015-10-07 
14:56:00.0 0.0001 -85.5001 Pump 

continous 
profiling pump 

SO243 2-1 
2015-10-07 
17:49:00.0 0.0001 -85.5001 Pump 

 
SO243 2-2 

2015-10-07 
17:56:00.0 -0.0001 -85.5001 Microstructure | MSS 

 
SO243 2-3 

2015-10-07 
19:22:00.0 0.0000 -85.5001 CTD 

 
SO243 2-4 

2015-10-07 
22:04:00.0 0.0000 -85.5000 Light meter 

 
SO243 2-5 

2015-10-07 
22:55:00.0 0.0000 -85.5001 CTD 

 
SO243 2-6 

2015-10-08 
01:06:00.0 -0.0001 -85.5001 

water sampler | WS 
[Wasserschoe…] 

 
SO243 2 

2015-10-07 
15:06:00.0 0.0000 -85.5001 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 3-1 

2015-10-08 
16:14:00.0 -2.5000 -85.5000 CTD 

 
SO243 3-1 

2015-10-08 
16:48:00.0 -2.5000 -85.5000 CTD 

 
SO243 3-2 

2015-10-08 
18:09:00.0 -2.5000 -85.4999 Pump Particle pump 

SO243 3 
2015-10-08 
16:24:00.0 -2.5000 -85.5000 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 4-1 

2015-10-10 
12:40:00.0 -9.5947 -81.7528 CTD 

 
SO243 4-2 

2015-10-10 
14:20:00.0 -9.7001 -81.7000 CTD 

 
SO243 4-3 

2015-10-10 
15:28:00.0 -9.7746 -81.6537 CTD 

 
SO243 4-4 

2015-10-10 
17:24:00.0 -10.0443 -81.6591 CTD 

 
SO243 5-1 

2015-10-10 
19:17:00.0 -9.9993 -81.9169 CTD 

 
SO243 5-1 

2015-10-10 
19:29:00.0 -9.9995 -81.9167 CTD 

 
SO243 5-2 

2015-10-10 
19:52:00.0 -9.9995 -81.9168 Light meter 

 
SO243 5-3 

2015-10-10 
20:51:00.0 -9.9995 -81.9167 CTD 

 
SO243 5-4 

2015-10-10 
22:08:00.0 -9.9994 -81.9168 Microstructure | MSS 

 
SO243 5-5 

2015-10-10 
23:37:00.0 -10.0000 -81.9171 Go-Flo Bottles | GoFlo 

 
SO243 5-6 

2015-10-11 
02:27:00.0 -10.0000 -81.9167 Pump 
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Leg 
 

Station/ 
event 

Time 
[UTC] 

Latitude 
[°N] 

Longitude 
[°E] 

Gear 
 

Notes 
 

SO243 5 
2015-10-10 
19:27:00.0 -9.9993 -81.9169 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 6-1 

2015-10-11 
13:08:00.0 -9.5134 -80.3076 CTD 

 
SO243 6-2 

2015-10-11 
13:41:00.0 -9.5133 -80.3074 Light meter 

 
SO243 6-3 

2015-10-11 
14:48:00.0 -9.5132 -80.3074 CTD 

 
SO243 6-4 

2015-10-11 
16:00:00.0 -9.5133 -80.3073 Microstructure | MSS 

 
SO243 6-5 

2015-10-11 
17:29:00.0 -9.5128 -80.3076 Go-Flo Bottles | GoFlo 

 
SO243 7-1 

2015-10-12 
01:05:00.0 -9.1828 -79.4632 CTD 

 
SO243 7-2 

2015-10-12 
01:42:00.0 -9.1835 -79.4639 Light meter 

 
SO243 7-3 

2015-10-12 
02:04:00.0 -9.1835 -79.4638 CTD 

 
SO243 7-4 

2015-10-12 
03:07:00.0 -9.1835 -79.4638 CTD 

 
SO243 7-5 

2015-10-12 
03:41:00.0 -9.1834 -79.4638 Microstructure | MSS 

 
SO243 7-6 

2015-10-12 
04:40:00.0 -9.1834 -79.4639 Go-Flo Bottles | GoFlo 

 
SO243 7-7 

2015-10-12 
05:27:00.0 -9.1835 -79.4638 Pump 

continous 
profiling pump 

SO243 8-1 
2015-10-12 
10:47:00.0 -9.0000 -78.9000 CTD 

 
SO243 8-1 

2015-10-12 
11:01:00.0 -9.0000 -78.9001 CTD 

 
SO243 8-2 

2015-10-12 
11:16:00.0 -9.0000 -78.9001 Microstructure | MSS 

 
SO243 8-3 

2015-10-12 
12:12:00.0 -9.0000 -78.9000 CTD 

 
SO243 8-4 

2015-10-12 
12:52:00.0 -9.0001 -78.9000 Go-Flo Bottles | GoFlo 

 
SO243 8-5 

2015-10-12 
13:19:00.0 -9.0000 -78.9000 Light meter 

 
SO243 8 

2015-10-12 
10:57:00.0 -9.0000 -78.9000 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 9-1 

2015-10-12 
23:50:00.0 -10.7151 -78.2352 CTD 

 

SO243 9-2 
2015-10-13 
00:42:00.0 -10.7153 -78.2349 

Ocean Tracer 
Injection System | 
OTIS  

 
SO243 10-1 

2015-10-15 
15:50:00.0 -12.2537 -77.0773 CTD 

 
SO243 10-1 

2015-10-15 
16:05:00.0 -12.2535 -77.0774 CTD 

 
SO243 10-2 

2015-10-15 
16:17:00.0 -12.2535 -77.0774 Light meter 

 
SO243 10-3 

2015-10-15 
16:48:00.0 -12.2535 -77.0774 Go-Flo Bottles | GoFlo 

 
SO243 10-4 

2015-10-15 
17:35:00.0 -12.2535 -77.0774 CTD 

 
SO243 10-5 

2015-10-15 
18:05:00.0 -12.2535 -77.0774 Microstructure | MSS 
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Leg 
 

Station/ 
event 

Time 
[UTC] 

Latitude 
[°N] 

Longitude 
[°E] 

Gear 
 

Notes 
 

SO243 10 
2015-10-15 
16:01:00.0 -12.2537 -77.0773 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 11-1 

2015-10-15 
20:27:00.0 -12.3640 -77.4375 CTD 

 
 

SO243 11-1 
2015-10-15 
21:02:00.0 -12.3640 -77.4375 CTD 

 

SO243 11-2 
2015-10-15 
21:04:00.0 -12.3639 -77.4376 

Ocean Tracer 
Injection System | 
OTIS 

 
SO243 11 

2015-10-15 
20:37:00.0 -12.3640 -77.4375 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 11 

2015-10-15 
21:05:00.0 -12.3639 -77.4376 Pump Particle Pump 

SO243 12-1 
2015-10-16 
11:40:00.0 -12.8926 -78.2722 CTD 

 
SO243 12-2 

2015-10-16 
12:58:00.0 -12.8927 -78.2720 Go-Flo Bottles | GoFlo 

 
SO243 12-3 

2015-10-16 
15:05:00.0 -12.8927 -78.2720 CTD 

 
SO243 12-4 

2015-10-16 
15:37:00.0 -12.8928 -78.2720 Light meter 

 
SO243 12-5 

2015-10-16 
16:16:00.0 -12.8927 -78.2720 Microstructure | MSS 

 
SO243 12-6 

2015-10-16 
17:15:00.0 -12.9024 -78.2674 Float 

 
SO243 13-1 

2015-10-17 
02:44:00.0 -14.6266 -77.7468 CTD 

 
SO243 13-1 

2015-10-17 
05:22:00.0 -14.6497 -77.7341 CTD 

 
SO243 13-2 

2015-10-17 
03:14:00.0 -14.6265 -77.7468 Microstructure | MSS 

 
SO243 13-3 

2015-10-17 
04:38:00.0 -14.6490 -77.7345 Light meter 

 
SO243 13-4 

2015-10-17 
06:34:00.0 -14.6497 -77.7341 Go-Flo Bottles | GoFlo 

 
SO243 13-5 

2015-10-17 
08:43:00.0 -14.6496 -77.7340 CTD 

 
SO243 14-1 

2015-10-17 
12:00:00.0 -14.4032 -77.2811 CTD 

 
SO243 14-1 

2015-10-17 
12:47:00.0 -14.4033 -77.2812 CTD 

 
SO243 14-2 

2015-10-17 
13:24:00.0 -14.4033 -77.2811 Light meter 

 
SO243 14-3 

2015-10-17 
14:17:00.0 -14.4033 -77.2812 CTD 

 
SO243 14-4 

2015-10-17 
14:48:00.0 -14.4033 -77.2812 Go-Flo Bottles | GoFlo 

 
SO243 14-4 

2015-10-17 
17:58:00.0 -14.4036 -77.2809 

water sampler | WS 
[Wasserschoe…] 

 
SO243 14-5 

2015-10-17 
17:00:00.0 -14.4035 -77.2810 Microstructure | MSS 

 
SO243 14 

2015-10-17 
12:10:00.0 -14.4032 -77.2811 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 15-1 

2015-10-17 
22:00:00.0 -14.0360 -76.5278 CTD 

 
SO243 15-2 

2015-10-17 
22:31:00.0 -14.0361 -76.5278 Light meter 
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Leg 
 

Station/ 
event 

Time 
[UTC] 

Latitude 
[°N] 

Longitude 
[°E] 

Gear 
 

Notes 
 

SO243 15-3 
2015-10-17 
23:03:00.0 -14.0360 -76.5277 CTD 

 
SO243 15-4 

2015-10-17 
23:38:00.0 -14.0361 -76.5278 Go-Flo Bottles | GoFlo 

 

SO243 15-5 
2015-10-18 
00:38:00.0 -14.0361 -76.5278 

Ocean Tracer 
Injection System | 
OTIS 

 
SO243 15 

2015-10-17 
21:10:00.0 -14.0360 -76.5278 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 15 

2015-10-18 
00:39:00.0 -14.0361 -76.5278 Pump Particle Pump 

SO243 16-1 
2015-10-18 
19:03:00.0 -16.0748 -76.5789 CTD 

 
SO243 16-1 

2015-10-18 
19:15:00.0 -16.0750 -76.5790 CTD 

 
SO243 16-2 

2015-10-18 
19:34:00.0 -16.0750 -76.5790 Light meter 

 
SO243 16-3 

2015-10-18 
20:17:00.0 -16.0751 -76.5790 CTD 

 
SO243 16-4 

2015-10-18 
21:32:00.0 -16.0751 -76.5789 Go-Flo Bottles | GoFlo 

 
SO243 16-5 

2015-10-18 
23:57:00.0 -16.0751 -76.5790 CTD 

 
SO243 16-6 

2015-10-19 
01:36:00.0 -16.0751 -76.5788 Microstructure | MSS 

 
SO243 16 

2015-10-18 
19:13:00.0 -16.0748 -76.5789 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 17-1 

2015-10-19 
06:52:00.0 -15.6737 -75.8951 CTD 

 
SO243 17-2 

2015-10-19 
08:05:00.0 -15.6737 -75.8951 Light meter 

 
SO243 17-3 

2015-10-19 
08:57:00.0 -15.6737 -75.8950 CTD 

 
SO243 17-4 

2015-10-19 
09:34:00.0 -15.6737 -75.8950 Go-Flo Bottles | GoFlo 

 
SO243 17-5 

2015-10-19 
12:04:00.0 -15.6681 -75.8987 Microstructure | MSS 

 
SO243 17-5 

2015-10-19 
12:51:00.0 -15.6769 -75.8932 Microstructure | MSS 

 
SO243 17 

2015-10-19 
12:14:00.0 -15.6681 -75.8987 

Rubber boat, Zodiak | 
ZODIAK 

 
SO243 18-1 

2015-10-19 
17:43:00.0 -15.3186 -75.2746 CTD 

 
SO243 18-1 

2015-10-19 
18:08:00.0 -15.3184 -75.2745 CTD 

 
SO243 18-2 

2015-10-19 
18:11:00.0 -15.3184 -75.2744 Light meter 

 
SO243 18-3 

2015-10-19 
18:52:00.0 -15.3184 -75.2745 CTD 

 
SO243 18-4 

2015-10-19 
19:26:00.0 -15.3185 -75.2745 Pump 

continous profile 
pump 

SO243 18-5 
2015-10-19 
21:54:00.0 -15.3185 -75.2745 CTD 

 
SO243 18-6 

2015-10-19 
23:20:00.0 -15.3185 -75.2745 Go-Flo Bottles | GoFlo 

 
SO243 18-7 

2015-10-20 
00:34:00.0 -15.3184 -75.2745 CTD 
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Leg 
 

Station/ 
event 

Time 
[UTC] 

Latitude 
[°N] 

Longitude 
[°E] 

Gear 
 

Notes 
 

SO243 18-8 
2015-10-20 
01:11:00.0 -15.3184 -75.2745 Microstructure | MSS 

 
SO243 18 

2015-10-19 
17:53:00.0 -15.3186 -75.2746 

Rubber boat, Zodiak | 
ZODIAK 
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11.3 List of selected samples 

 

Table 11.3.1. Trace metal clean surface samples collected by the tow fish 

ID Betford # Date 
Time 
(UTC) DFe  TDFe  Nuts Fe(II)/H2O2 

1 259052 05.10.2015 23:00 X X X   
1,5   06.10.2015 00:30 X   X   

2 259053 06.10.2015 02:00 X X X X 
2,5   06.10.2015 03:30 X   X X 

3 259054 06.10.2015 05:00 X X X   
3,5   06.10.2015 06:30 X   X   

4 259055 06.10.2015 08:00 X X X   
4,5   06.10.2015 09:30 X   X   

5 259056 06.10.2015 11:00 X X X   
5,5   06.10.2015 12:30 X   X   

6 259057 06.10.2015 14:05 X X X   
6,5   06.10.2015 15:40 X   X X 

7 259058 06.10.2015 16:55 X X X   
7,5   06.10.2015 18:35 X   X   

8 259059 06.10.2015 20:05 X X X X 
8,5   06.10.2015 21:30 X   X   

9 259060 06.10.2015 23:00 X X X X 
9,5   07.10.2015 00:20 X X X X 
10 259064 07.10.2015 11:01 X X X   

10,5   07.10.2015 12:30 X X X   
11 259065 07.10.2015 14:00 X X X   

11,5   08.10.2015 06:47 X   X   
12 259071 08.10.2015 08:50 X X X X 

12,5   08.10.2015 09:50 X   X   
13 259072 08.10.2015 11:00 X X X   

13,5   08.10.2015 12:30 X   X   
15 259073 08.10.2015 14:00 X X X   

15,5   08.10.2015 15:30 X   X   
16 259076 08.10.2015 21:30 X   X X 
17   08.10.2015 23:10 X X X X 

17,5   09.10.2015 00:35 X   X X 
18 259077 09.10.2015 02:00 X X X X 

18,5   09.10.2015 15:25 X X X   
19 259082 09.10.2015 17:00 X X X X 

19,5   09.10.2015 18:30 X   X X 
24 259083 09.10.2015 20:05 X X X X 

24,5   09.10.2015 21:30 X   X   
25 259084 09.10.2015 23:00 X X X X 

25,5   10.10.2015 00:30 X   X X 
26 259085 10.10.2015 02:00 X X X X 

26,5   10.10.2015 03:33 X   X X 
27 259086 10.10.2015 05:00 X X X X 

27,5   10.10.2015 06:30 X   X   
28 259087 10.10.2015 08:00 X X X   
29   10.10.2015 11:00 X X X   

29,5   10.10.2015 12:30 X X X   
30   10.10.2015 13:56 X X X   

30,5   10.10.2015 15:17 X X X X 
31   10.10.2015 17:10 X X X   
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ID Betford # Date 
Time 
(UTC) DFe  TDFe  Nuts Fe(II)/H2O2 

31,5   10.10.2015 18:35 X   X X 
32 Station 10.10.2015 Stn 6 X X X X 

41,5   15.10.2015 00:31 X X X   
42   15.10.2015 02:00 X X X   

42,5   15.10.2015 03:30 X   X   
43   15.10.2015 05:00 X X X   

43,5   15.10.2015 06:35 X   X   
44   15.10.2015 07:55 X X X   

44,5   15.10.2015 09:27 X   X   
45   15.10.2015 11:00 X X X   

45,5   15.10.2015 12:30 X   X   
46   15.10.2015 14:00 X X X   

46,25   15.10.2015 14:38 X X X X 
46,5 Station 15.10.2015 15:30 X X X X 

47   15.10.2015 20:00 X X X X 
48   16.10.2015 08:00 X X X   

48,5   16.10.2015 09:25 X   X   
49 Station 16.10.2015 11:05 X X X X 

49,5   16.10.2015 18:35 X   X   
50   16.10.2015 20:05 X X X X 

50,5   16.10.2015 21:30 X   X   
51   16.10.2015 23:00 X X X X 
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Table 11.3.2. Shows the volume in mL of trace metal clean water column samples collected 

at the 13 different sites for dissolved (DFe), total dissolvable (TDFe), soluble (SFe), 

iodite/iodate (IO3/I), and Fe(II)/H2O2. The water volume passed through the 0.2 µm PES 

filters for the particulate trace metal fraction are shown in litre (L). 

Station Date Lat 
Long 

 
~Depth DFe TDFe SFe PFe IO3/I Fe(II) 

   

 

 
(mL) (mL) (mL) (L) (mL) (mL) 

243-2 08.10.2015 0,00 
-

85,50 22 125 125 60 2 30 100 

    
35 125 125 60 4 30 100 

    
50 125 125 60 2,9 30 100 

    
105 125 125 60 4,1 30 100 

    
200 125 125 60 3,85 30 100 

    
300 125 125 60 2,3 30 100 

    
350 125 125 60 0,8 30 100 

    
420 125 125 60 1,1 30 100 

    
600 125 125 60 1,2 30 100 

    
800 125 125 60 3 30 100 

    
1000 125 125 60 3,9 30 100 

    
1200 125 125 60 1,1 30 100 

243_5 10.10.2015 
-

10,00 
-

81,92 20 125 125 60 1,84 30 100 

    
40 125 125 60 3 30 100 

    
80 125 125 60 4 30 100 

    
150 125 125 60 4 30 100 

    
200 125 125 60 4 30 100 

    
240 125 125 60 3,1 30 100 

    
300 125 125 60 2,7 30 100 

    
400 125 125 60 2,95 30 100 

    
600 125 125 60 4 30 100 

    
800 125 125 60 4 30 100 

    
1000 125 125 60 3,95 30 100 

243_6 11.10.2015 -9,51 
-

80,31 20 125 125 60 1,45 30 100 

    
100 125 125 60 2,8 30 100 

    
150 125 125 60 4 30 100 

    
200 125 125 60 4 30 100 

    
250 125 125 60 3,1 30 100 

    
300 125 125 60 3,5 30 100 

    
400 125 125 60 2,6 30 100 

    
500 125 125 60 2,9 30 100 

    
600 125 125 60 4,5 30 100 

    
800 125 125 60 3,1 30 100 

    
1000 125 125 60 4 30 100 

243_7 12.10.2015 -9,51 
-

80,31 10 125 125 60 4,05 30 100 

    
30 125 125 60 4 30 100 

    
50 125 125 60 4 30 100 
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Station Date Lat 
Long 

 
~Depth DFe TDFe SFe PFe IO3/I Fe(II) 

    
75 125 125 60 4 30 100 

    
100 125 125 60 1,5 30 100 

    
120 125 125 60 1,9 30 100 

243_8 12.10.2015 -9,00 
-

78,90 15 125 125 60 4,05 30 100 

    
30 125 125 60 4 30 100 

    
50 125 125 60 4 30 100 

    
70 125 125 60 4 30 100 

243_10 12.10.2015 
-

12,25 
-

77,08 5 125 125 60 2 30 100 

    
15 125 125 60 4,3 30 100 

    
25 125 125 60 2,5 30 100 

    
35 125 125 60 4,2 30 100 

    
50 125 125 60 3,55 30 100 

    
65 125 125 60 3,8 30 100 

243_12 16.10.2015 
-

12,89 
-

78,27 15 125 125 60 3,95 30 100 

    
30 125 125 60 2,65 30 100 

    
45 125 125 60 3,7 30 100 

    
60 125 125 60 4,45 30 100 

    
100 125 125 60 3,55 30 100 

    
150 125 125 60 3,4 30 100 

    
200 125 125 60 2 30 100 

    
300 125 125 60 3 30 100 

    
400 125 125 60 2,7 30 100 

    
500 125 125 60 4,8 30 100 

    
750 125 125 60 4,2 30 100 

    
1000 125 125 60 4 30 100 

243_13 17.10.2015 
-

14,65 
-

77,73 20 125 125 60 1,6 30 100 

    
40 125 125 60 2,1 30 100 

    
70 125 125 60 2,7 30 100 

    
100 125 125 60 3,1 30 100 

    
150 125 125 60 2,1 30 100 

    
250 125 125 60 2,9 30 100 

    
350 125 125 60 3,4 30 100 

    
475 125 125 60 3,2 30 100 

    
600 125 125 60 2,3 30 100 

    
700 125 125 60 4,1 30 100 

    
850 125 125 60 4 30 100 

    
1000 125 125 60 4,5 30 100 

243_14 17.10.2015 
-

14,40 
-

77,28 10 125 125 60 2,55 30 100 

    
30 125 125 60 3,4 30 100 

    
50 125 125 60 4 30 100 

    
70 125 125 60 3,9 30 100 
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Station Date Lat 
Long 

 
~Depth DFe TDFe SFe PFe IO3/I Fe(II) 

    
115 125 125 60 4,2 30 100 

    
140 125 125 60 3,4 30 100 

    
200 125 125 60 3,2 30 100 

    
300 125 125 60 3 30 100 

    
400 125 125 60 2,95 30 100 

    
500 125 125 60 5,4 30 100 

    
750 125 125 60 4,3 30 100 

    
1000 125 125 60 3,36 30 100 

243_15 17.10.2015 
-

14,04 
-

76,53 10 125 125 60 4 30 100 

    
50 125 125 60 4,1 30 100 

    
100 125 125 60 3,7 30 100 

    
150 125 125 60 3,2 30 100 

    
220 125 125 60 3,4 30 100 

243_16 18.10.2015 
-

16,08 
-

76,58 5 125 125 60 1,5 30 100 

    
15 125 125 60 3,2 30 100 

    
30 125 125 60 2,9 30 100 

    
62 125 125 60 4 30 100 

    
80 125 125 60 2,03 30 100 

    
140 125 125 60 3 30 100 

    
200 125 125 60 3,15 30 100 

    
300 125 125 60 3,3 30 100 

    
400 125 125 60 4 30 100 

    
500 125 125 60 3,1 30 100 

    
750 125 125 60 4 30 100 

    
1000 125 125 60 4 30 100 

243_17 19.10.2015 
-

16,08 
-

76,58 15 125 125 60 1,6 30 100 

    
50 125 125 60 2,85 30 100 

    
100 125 125 60 2,9 30 100 

    
200 125 125 60 3,6 30 100 

    
310 125 125 60 3 30 100 

    
380 125 125 60 3,2 30 100 

    
480 125 125 60 3,8 30 100 

    
580 125 125 60 1,1 30 100 

    
750 125 125 60 2,7 30 100 

    
1000 125 125 60 4,3 30 100 

243_18 19.10.2015 
-

15,32 
-

75,27 10 125 125 60 1,65 30 100 

    
20 125 125 60 1,75 30 100 

    
30 125 125 60 4,4 30 100 

    
50 125 125 60 3,4 30 100 

    
75 125 125 60 2,6 30 100 

    
105 125 125 60 2,6 30 100 
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Table 11.3.3. Time and depths of underway samples obtained for heme b and POC analysis 

Date and Time 
(Local) 

Date and time 
(UTC) 

Bedford 
number 

Depth 
(m) 

Heme b 
(volume 
filtered, 

L) 

POC/N 
(volume 
filtered, 

L) 

05.10.2015 18:00 05.10.2015 23:00 259052 6 2 2 

05.10.2015 21:00 06.10.2015 02:00 259053 6 1 0.5 

06.10.2015 00:00 06.10.2015 05:00 259054 6 1 0.5 

06.10.2015 03:00 06.10.2015 08:00 259055 6 1.5 0.5 

06.10.2015 06:00 06.10.2015 11:00 259056 6 1 0.5 

06.10.2015 09:00 06.10.2015 14:00 259057 6 1 0.5 

06.10.2015 12:00 06.10.2015 17:00 259058 6 1.5 0.5 

06.10.2015 15:00 06.10.2015 20:00 259059 6 1.5 0.5 

06.10.2015 18:00 06.10.2015 23:00 259060 6 1.5 0.5 

07.10.2015 06:00 07.10.2015 11:00 259064 6 1.5 0.5 

07.10.2015 09:00 07.10.2015 14:00 259065 6 
 

0.5 

08.10.2015 00:00 08.10.2015 05:00 259070 6 1.5 0.5 

08.10.2015 03:00 08.10.2015 08:00 259071 6 1.5 0.5 

08.10.2015 06:00 08.10.2015 11:00 259072 6 1.5 0.5 

08.10.2015 09:00 08.10.2015 14:00 259073 6 1.5 0.5 

08.10.2015 18:00 09.10.2015 02:00 259076 6 1.26 0.5 

08.10.2015 21:00 09.10.2015 05:00 259077 6 1.45 0.5 

09.10.2015 00:00 09.10.2015 08:00 259078 6 1.5 0.5 

09.10.2015 03:00 09.10.2015 11:00 259079 6 1.5 0.5 

09.10.2015 06:00 09.10.2015 14:00 259080 6 1.5 0.5 

09.10.2015 09:00 09.10.2015 17:00 259081 6 1.5 0.5 

09.10.2015 12:00 09.10.2015 20:00 259082 6 1.5 0.5 

09.10.2015 15:00 09.10.2015 23:00 259083 6 1.5 0.5 

09.10.2015 18:00 10.10.2015 02:00 259084 6 1.5 0.5 

09.10.2015 21:00 10.10.2015 05:00 259085 6 1.5 0.5 

09.10.2015 00:20 10.10.2015 08:00 259086 6 1.5 0.5 

09.10.2015 03:40 10.10.2015 11:00 259087 6 1.5 0.5 

09.10.2015 07:00 10.10.2015 14:00 259088 6 1.5 0.5 

09.10.2015 10:00 10.10.2015 17:00 259089 6 1.5 0.5 

11.10.2015 04:00 11.10.2015 11:00 259095 6 1.5 0.5 

11.10.2015 07:00 11.10.2015 14:00 259096 6 1.5 0.5 

11.10.2015 19:00 11.10.2015 23:00 259100 6 1.5 0.5 

12.10.2015 13:00 12.10.2015 17:00 259106 6 1 0.2 

12.10.2015 16:00 12.10.2015 20:00 259107 6 1 0.2 

12.10.2015 19:00 12.10.2015 23:00 259108 6 1 0.2 

13.10.2015 10:00 13.10.2015 14:00 259113 6 1 0.2 

13.10.2015 13:00 13.10.2015 17:00 259114 6 1 0.2 

13.10.2015 16:00 13.10.2015 20:00 259115 6 1 0.2 

14.10.2015 22:00 15.10.2015 02:00 259125 6 1 0.2 

15.10.2015 01:00 15.10.2015 05:00 259126 6 1 0.2 

15.10.2015 04:00 15.10.2015 08:00 259127 6 1 0.2 

15.10.2015 07:00 15.10.2015 11:00 259128 6 1 0.2 
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Date and Time 
(Local) 

Date and time 
(UTC) 

Bedford 
number 

Depth 
(m) 

Heme b 
(volume 
filtered, 

L) 

POC/N 
(volume 
filtered, 

L) 

15.10.2015 10:00 15.10.2015 14:00 259129 6 1 0.3 

15.10.2015 16:00 15.10.2015 20:00 259131 6 1 0.2 

16.10.2015 04:00 16.10.2015 08:00 259135 6 1 0.4 

16.10.2015 07:00 16.10.2015 11:00 259136 6 1.5 0.5 

16.10.2015 16:00 16.10.2015 20:00 259139 6 1.5 0.4 

16.10.2015 19:00 16.10.2015 23:00 259140 6 1.5 0.5 

17.10.2015 08:30 15.10.2015 12:30 
 

6 1 0.5 

18.10.2015 10:00 18.10.2015 14:00 259145 6 1 0.5 

18.10.2015 13:00 18.10.2015 17:00 259146 6 1 0.5 

19.10.2015 22:00 20.10.2015 02:00 259165 6 1.45 0.5 

20.10.2015 00.20 20.10.2015 05:00 259166 6 1.5 0.5 

20.10.2015 05:00 20.10.2015 08:00 259167 6 1.5 0.5 

20.10.2015 08:00 20.10.2015 11:00 259168 6 1.5 0.5 

20.10.2015 11:00 20.10.2015 14:00 259169 6 1.5 0.5 
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Table 11.3.4. Location and depths of CTD samples obtained for heme b and POC analysis 

Latitude 
°N 

Longitude 
°W 

Bedford 
number 

Target 
depth 
(m) 

Heme b (volume 
filtered, L) 

POC/N (volume 
filtered, L) 

1.00 85.50 258001 100 1.5 0.5 

1.00 85.50 258007 50 1.5 0.5 

1.00 85.50 258011 40 1.5 0.5 

1.00 85.50 258013 35 1.5 0.5 

1.00 85.50 258017 20 1.5 0.5 

1.00 85.50 258020 5 1.5 0.5 

0.00 85.50 258076 100 1.86 NAN 

0.00 85.50 258078 50 2 NAN 

0.00 85.50 258082 40 1.98 NAN 

0.00 85.50 258085 35 1.95 NAN 

0.00 85.50 258089 20 1.94 NAN 

0.00 85.50 258092 5 2 NAN 

-2.50 85.50 258118 20 1.5 NAN 

-2.5 85.5 258115 45 1.5 NAN 

-2.5 85.5 Moon pool 5 1.5 NAN 

-10 81.55 258164 75 1.5 0.5 

-10 81.55 258168 60 1.5 0.5 

-10 81.55 258126 50 1.5 0.5 

-10 81.55 258136 20 1.5 0.5 

-10 81.55 258141 15 1.5 0.5 

-10 81.55 258144 5 1.5 0.5 

-9.31 80.18 258173 90 1.5 0.5 

-9.31 80.18 258176 75 1.5 0.5 

-9.31 80.18 258179 50 1.5 0.5 

-9.31 80.18 258182 35 1.5 0.5 

-9.31 80.18 258189 15 1.4 0.43 

-9.31 80.18 258192 5 1.5 0.47 

-9.1835 79.4638 258243 100 0.5 NAN 

-9.1835 79.4638 258245 80 1.5 0.5 

-9.1835 79.4638 258249 60 1.5 0.5 

-9.1835 79.4638 258251 40 1.5 0.5 

-9.1835 79.4638 258254 30 1.5 0.5 

-9.1835 79.4638 258258 20 1.5 0.5 

-9.1835 79.4638 258261 12 1.5 0.5 

-9 78.9 258265 80 1.5 0.2 

-9 78.9 258268 50 1.5 0.5 

-9 78.9 258274 30 1.5 0.5 

-9 78.9 258277 20 1.1 0.4 

-9 78.9 258280 15 1.5 0.5 

-9 78.9 258283 10 1 0.2 

-9 78.9 258286 5 1 0.2 

-10.72 78.28 258323 100 1 0.43 
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Latitude 
°N 

Longitude 
°W 

Bedford 
number 

Target 
depth 
(m) 

Heme b (volume 
filtered, L) 

POC/N (volume 
filtered, L) 

-10.72 78.28 258325 75 1 0.43 

-10.72 78.28 258329 40 1 0.3 

-10.72 78.28 258331 25 1 0.3 

-10.72 78.28 258333 15 1 0.3 

-10.72 78.28 258335 5 1 0.3 

-12.25 77.078 258363 70 1 
 -12.25 77.078 258370 50 1 0.3 

-12.25 77.078 258374 30 1 0.4 

-12.25 77.078 258377 25 1.05 0.4 

-12.25 77.078 258380 15 1 0.4 

-12.25 77.078 258382 10 1 0.4 

-12.25 77.078 258384 5 1 NAN 

-12.364 77.4375 258395 75 1 0.5 

-12.364 77.4375 258397 50 1 0.5 

-12.364 77.4375 258400 15 1 0.5 

-12.364 77.4375 258403 10 1 0.32 

-12.364 77.4375 258406 5 0.5 0.3 

-12.253 77.075 258435 100 1.5 0.5 

-12.253 77.075 258438 75 1.5 NAN 

-12.253 77.075 258444 50 1.5 0.47 

-12.253 77.075 258449 30 1.5 0.5 

-12.253 77.075 258452 20 1 0.5 

-12.253 77.075 258456 10 1.5 0.4 

-14.628 77.281 258482 125 1.5 0.5 

-14.628 77.281 258485 100 1.5 0.5 

-14.628 77.281 258489 75 1.5 0.5 

-14.628 77.281 258495 25 1.5 0.5 

-14.628 77.281 258502 10 1.5 0.5 

-14.628 77.281 258504 5 1.5 0.5 

-14.4 77.282 258529 100 1.5 0.4 

-14.4 77.282 258529 75 1.5 0.3 

-14.4 77.282 258529 50 1.5 0.36 

-14.4 77.282 258529 25 1 0.34 

-14.4 77.282 258529 10 1 0.5 

-14.4 77.282 258529 5 1 0.4 

-14.035 76.53 258561 100 1.5 0.5 

-14.035 76.53 258564 75 1.5 0.5 

-14.035 76.53 258565 50 1.5 0.5 

-14.035 76.53 258570 25 1 0.5 

-14.035 76.53 258574 10 1 0.5 

-14.035 76.53 258576 5 1 0.44 

-16.075 76.579 258602 50 1.5 0.4 

-16.075 76.579 258605 100 1.5 0.5 
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Latitude 
°N 

Longitude 
°W 

Bedford 
number 

Target 
depth 
(m) 

Heme b (volume 
filtered, L) 

POC/N (volume 
filtered, L) 

-16.075 76.579 258609 75 1.5 0.5 

-16.075 76.579 258615 25 1 0.3 

-16.075 76.579 258624 5 1 0.3 

-15.67 75.895 258708 40 1.5 0.49 

-15.67 75.895 258699 70 1.5 0.46 

-15.67 75.895 258704 50 1.5 0.5 

-15.67 75.895 258711 20 1 0.5 

-15.67 75.895 258717 10 1 0.5 

-15.67 75.895 258720 5 1 0.5 

-15.318 75.275 258750 90 1.5 0.4 

-15.318 75.275 258753 75 1.5 0.33 

-15.318 75.275 258755 60 1.5 0.46 

-15.318 75.275 258757 40 1.5 0.375 

-15.318 75.275 258760 20 1.5 0.405 

-15.318 75.275 258763 15 1.5 0.45 

-15.318 75.275 258767 5 1.5 0.5 

 

 

  



 
80 

 

Table 11.3.5. Locations where samples for siderophores were collected.  

Date and time 
Ship 

Date and time 
UTC Latitude °N 

Longitude 
°W Sampling method Depth 

07/10/2015 11:00 08/10/2015 17:30 0.00 85.50 cont pump 5 

07/10/2015 11:00 08/10/2015 17:30 0.00 85.50 cont pump 25 

07/10/2015 11:00 08/10/2015 17:30 0.00 85.50 cont pump 50 

09/10/2015 02:15 09/10/2015 19:15 
  

Fish 2 

10/10/2015 10:10 11/10/2015 02:10 
-9.31 80.18 

cont pump 5 

10/10/2015 10:10 11/10/2015 02:10 
-9.31 80.18 

cont pump 15 

10/10/2015 10:10 11/10/2015 02:10 
-9.31 80.18 

cont pump 50 

19/10/2015 
 

-15.318 75.275 
cont pump 5 

19/10/2015 
 

-15.318 75.275 
cont pump 20 

19/10/2015 
 

-15.318 75.275 
cont pump 50 

 

 

 

Table 11.3.6. Number of transient tracer samples at the different stations of the ASTRA-OMZ 

cruise. 

Station Lat / Lon 

Number of 

samples 

SO243_1 1°N / 85°30’W 25 

SO243_2 0°N / 85°30’W 24 

SO243_3 2°30’S / 85°30’W 13 

SO243_5 10°S / 81°55’W 14 

SO243_6 9°30’S / 80°18’W 17 

SO243_7 9°S / 84°W 17 

Total  110 
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Table 11.3.7. Particle pumps depths and parameters analysed. 

Station 3 8 Oct. 
    Depth 25 150  

  Splits failed Failed    

Incubation      

Particulate POC, PON, POP, TAA, TCHO,  

Dissolved Nuts, DOC, DON, DOP, DAA, DCHO, Bact enum 

      Station 11  12 Oct 
    Depth 30 200  

Splits 4 4    

Incubation 4 4    

Particulate POC, PON, POP, TAA, TCHO,  

Dissolved Nuts, DOC, DON, DOP, DAA, DCHO, Bact enum 

 

Station 15 17 Oct. 
    Depth 25 150  

  Splits 4 4    

Incubation 4 4    

Particulate POC, PON, POP, TAA, TCHO,  

Dissolved Nuts, DOC, DON, DOP, DAA, DCHO, Bact enum 

 

 

 

Table 11.3.8. Incubations treatments from particle pumps, dates and O2 concentrations. 

ID Depth O2 treat. set up sampling  

T1 F1 30 Local 16th Oct 16th Oct 

T1 F2 30 Local 16th Oct 17th Oct 

T1 F3 30 Local 16th Oct 19th Oct 

T1 F4 30 Local 16th Oct 21st Oct 

T1 F5 200 Lowered 16th Oct 16th Oct 

T1 F6 200 Lowered 16th Oct 17th Oct 

T1 F7 200 Lowered 16th Oct 19th Oct 

T1 F8 200 Lowered 16th Oct 21st Oct 

T1 F9 25 Local 18th Oct 18th Oct 

T1 F10 25 Local 18th Oct 19th Oct 

T1 F11 25 Local 18th Oct 20th Oct 

T1 F12 25 Local 18th Oct 21st Oct 

T1 F13 150 Lowered 18th Oct 18th Oct 

T1 F14 150 Lowered 18th Oct 19th Oct 

T1 F15 150 Lowered 18th Oct 20th Oct 

T1 F16 150 Lowered 18th Oct 21st Oct 

 

 


