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Abstract This study investigates the influence of gravitational settling of
droplets on turbulent clustering and the radar reflectivity factor. A three-
dimensional direct numerical simulation (DNS) of particle-laden isotropic tur-
bulence is performed to obtain turbulent droplet clustering data. The turbulent
clustering data are then used to calculate the power spectrum of droplet num-
ber density fluctuations. The results show that the gravitational settling modu-
lates the power spectrum more significantly as the settling becomes larger. The
gravitational settling weakens the intensity of clustering at large wavenumbers
for St ≤ 1, whereas it significantly enlarges the intensity for St > 1. The depen-
dence on the Taylor-microscale-based Reynolds number is also investigated to
discuss the contribution of large-scale eddies to the settling influence. The re-
sults show that large-scale eddies modulate the small scale clustering structure
of large St droplets. The increment of radar reflectivity factor due to turbulent
clustering is estimated from the power spectrum for the case of St = 1.0. The
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result shows that the influence of gravitational settling on the radar reflectivity
factor can be significant for the case of large settling velocity droplets.

Keywords Isotropic turbulence · Direct numerical simulation · Particle-laden
flows · Radar observation

1 Introduction

Radar remote sensing is one of the powerful tools for meteorological obser-
vations since it can provide two- or three-dimensional estimates of cloud mi-
crophysical properties over a large domain [24,31,11]. In radar observations,
microwave is transmitted from an antenna toward a target cloud and the
reflected microwave is received and analyzed. The relation between the trans-
mitted microwave power, Pt, and the received microwave power, Pr, are given
by the following radar equation:

Pr =
PtG

2k2m|K|2V
45R4

Z, (1)

where G is the antenna gain, km the microwave wavenumber, K the dielectric
coefficient, V the measurement volume, R the distance between the antenna
and the clouds, and Z the radar reflectivity factor (mm6/m3), which is depen-
dent on the cloud microphysical properties. This implies that cloud properties
can be estimated from Z.

The relation between Z and cloud microphysical properties are parame-
terized based on the assumption of incoherent scattering, which occurs when
the cloud droplets are dispersed randomly and uniformly [4]. On the other
hand, when the cloud droplets are distributed nonuniformly, the scattering is
classified as coherent scattering, which is often referred to as Bragg scatter-
ing. Coherent scattering by discrete particles is more specifically referred to
as “particulate” Bragg scattering [20]. The radar reflectivity factor for the in-
coherent scattering is proportional to the sum of the scattering intensity from
each droplet, while the factor for the coherent scattering is larger than the sum
of the scattering intensity. This is because the nonuniform droplet distribution
causes the interference of scattered microwaves, which increases the scattered
microwave intensity. An important difference between incoherent and coherent
scattering is the dependence of Z on the microwave frequency, fm: Z for the in-
coherent scattering is independent of fm, while Z for the coherent scattering is
dependent on fm. Most studies assume that particulate Bragg scattering is in-
significant in atmospheric clouds [12]. However, Knight and Miller [18,19] and
Rogers and Brown [29] reported the contradicted observation results. Knight
and Miller [18,19] observed significant difference between the radar reflectivity
factor for two different frequency for the cases of developing cumulus clouds.
Rogers and Brown [29] observed similar frequency dependence for the case of
smoke plume from an industrial fire. Kostinski and Jameson [20] pointed out
that coherent scattering due to turbulent droplet clustering can be a cause of
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the frequency dependence. Turbulent clustering is a nonuniform spatial dis-
tribution of inertial particles in turbulence and it is often referred to as pref-
erential concentration: inertial particles concentrate in low-vorticity and high
strain-rate regions due to the centrifugal motions [22,30,33,7]. Dombrovsky
and Zaichik [10] analytically estimated the influence of turbulent clustering
based on a semi-analytical clustering model and indicated that the turbulent
clustering considerably increases the radar reflectivity factor.

Recently, Matsuda et al. [21] have performed a three-dimensional direct
numerical simulation (DNS) to obtain turbulent droplet clustering data and
revealed that the influence of turbulent clustering can be a cause of signifi-
cant observational errors. They briefly discussed the influence of gravitational
settling, and concluded that the influence of the gravitational settling is in-
significant when the ratio of the terminal velocity to the Kolmogorov velocity
is smaller than 3. However, the ratio can be larger than 3 in a weak turbulent
flow or for the case of large droplets or heavy solid particles, which can be
observed in volcanic ash clouds: the density of volcanic ash particles can be
larger than that of water (e.g., 2,400-2,600 kg/m3) [32,8]. Thus, for the accu-
rate estimate of the influence of turbulent clustering, it is necessary to improve
our understanding of the influence of gravitational settling. It should be noted
that many authors have investigated the influence of gravitational settling on
turbulent clustering, focusing on the turbulence effect on droplet collisions [2,
1,26,34,3,27,15]. They discussed the influence of gravitational settling on the
radial distribution function (RDF) at the scales smaller than the Kolmogorov
scale, which is 0.5-1 mm in cumulus clouds. However, for estimating the influ-
ence on the radar reflectivity factor, Z, it is necessary to clarify the clustering
structure at the scales close to the microwave wavelength, which is 3-100 mm.

Thus, this study investigates the influence of gravitational settling on the
spatial distribution of turbulent clustering droplets and the radar reflectivity
factor. A three-dimensional DNS of particle-laden isotropic turbulence is per-
formed to obtain droplet distribution data. The droplet distribution data are
then used to calculate the power spectrum of droplet number density fluctua-
tions, which gives the increment of the radar reflectivity factor due to turbulent
clustering. In this paper, first, the dependence of the power spectrum on the
gravitational settling velocity is discussed for the case where the Stokes num-
ber, St, is unity (the Stokes number is the representative parameter for the
particle inertia; see section 2.2). Then the Stokes number dependence and the
turbulent Reynolds number dependence of the influence of gravitational set-
tling are discussed. Finally, the influence of gravitational settling on the radar
reflectivity factor is estimated using the power spectrum data.
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2 Computational method

2.1 Air turbulence

The governing equations of the turbulent air flow are the continuity and
Navier-Stokes equations for three-dimensional incompressible flows:

∂ui

∂xi
= 0, (2)

∂ui

∂t
+

∂uiuj

∂xj
= − 1

ρg

∂p

∂xi
+ ν

∂2ui

∂xj∂xj
+ Fi, (3)

where ui is the air velocity in ith direction, p the pressure, ρg the density
of air, ν the kinematic viscosity and Fi the external force in ith direction.
The fourth-order central difference scheme is used for the advection term and
the second-order Runge-Kutta scheme for time integration. The velocity and
pressure are coupled by the Highly Simplified Marker And Cell (HSMAC)
method [16]. Statistically steady turbulence is generated by applying an ex-
ternal force, Fi, using the Reduced-Communication Forcing (RCF) method
[25], which maintains the intensity of large-scale eddies keeping high parallel
efficiency.

2.2 Droplet motions

Droplet motions were tracked by the Lagrangian method. This study assumes
that the droplet size is sufficiently smaller than the Kolmogorov scale and
that the density ratio of the droplet to the surrounding air is much larger than
unity [23,17]. The governing equation is

dvi
dt

= − f

τp
(vi − ui) + gi, (4)

where vi is the droplet velocity in ith direction, gi the gravitational acceleration
in ith direction and τp the droplet relaxation time defined as

τp =
ρp
ρg

d2p
18ν

, (5)

where ρp is the density of water and dp the droplet diameter. f is the correction
factor for the drag force. For the Stokes drag, f is unity, whereas, for the
nonlinear drag, f is given by

f = 1 + 0.15Re0.687p , (6)

where Rep is the particle Reynolds number defined as Rep = dp|v−u|/ν [9]. For
the case of Rep ≪ 1, f is close to unity. Turbulence modulation and collisions
between droplets are neglected since cloud droplets are typically dilute.
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2.3 Computational conditions

The computational domain was set to a cube with edge length of 2πL0, where
L0 is the representative length scale. Periodic boundary conditions were ap-
plied in all three directions. The domain was discretized uniformly in to N3

grid

grid points. The DNS was performed for two turbulent flows with different
values of the Taylor-microscale-based Reynolds number Reλ ≡ u′lλ/ν, where
u′ is the RMS value of the velocity fluctuation and lλ the Taylor microscale:
Reλ = 126 and 204 by settingNgrid = 256 and 512, respectively. The kinematic
viscosity was set to 1.5× 10−5 m2/s.

The number of droplets, Np, was set to 8 × 106 and 1.5 × 107 for Reλ =
126 and 204, respectively. The ratio of the droplet density to the air density,
ρp/ρa, was set to 840. The Stokes number, St, defined as the ratio of τp to the
Kolmogorov time τη ≡ (ν/ϵ)1/2, where ϵ is the energy dissipation rate, was
set to 0.2, 0.5, 1.0, 2.0 and 5.0. The gravitational acceleration, g, was set to
9.8 m/s2 and applied in −x direction; that is, gi = −gδi1. There are several
nondimensional parameters to represent gravitational effect: e.g., the Froude
number Fr ≡ ϵ3/4/(ν1/4g) and the nondimensional terminal velocities Sv ≡
vT/uη and Σv ≡ vT/u

′, where vT is the terminal velocity and uη ≡ (νϵ)1/4

the Kolmogorov velocity [33,14,34,3]. The terminal velocity, vT, is given by
τpg/fT, where fT is the correction factor, f , for the case of |v − u| = vT.
Note that the relation among St, Fr and Sv are given by Sv = St/(fTFr).
Table 1 shows the computational settings. For the case of Re204St1g-L, the
Stokes drag was applied for the droplet motion to eliminate the influence of
the settling velocity on the drag coefficient; i.e., f = fT = 1. The nonlinear
drag was applied for the other cases. For the Stokes linear drag case, vT (as
well as Sv) is larger than that for the nonlinear drag case. This is because
the effective relaxation time, τ∗p ≡ τp/⟨f⟩ ≈ τp/fT, is larger than that of the
nonlinear drag case. Thus, the settling influence observed for the Stokes drag
case can be used to estimate the influence for the nonlinear drag cases with
the same values of Sv and the effective Stokes number, St∗ ≡ τ∗p/τη [33,1]. In
order to obtain the reference data for every cases, this study also performed
DNSs under the absence of gravity, where Fr is infinity and Sv and Σv are
zero.

3 Radar reflectivity factor

The microwave scattering by cloud droplets can be approximated as the Rayleigh
scattering, which is valid for the case where the scattering particle size is suffi-
ciently smaller than the wavelength. Since the intensity of Rayleigh scattering
is proportional to the sixth power of the droplet diameter, dp, the radar reflec-
tivity factor for the randomly- and uniformly-located monodispersed droplets,
Zrandom, is given by

Zrandom = d6pnp, (7)
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Table 1 Computational settings.

Case L0 (m) Reλ St Fr Sv Σv

Re204St1g-L 0.0400 204 1.0 0.731 1.36 0.188
0.0500 0.369 2.68 0.369
0.0682 0.145 6.79 0.936
0.0800 0.0900 11.0 1.51
0.0966 0.0510 19.3 2.66

Re204St02g-NL 0.0682 204 0.20 0.145 1.32 0.182
Re204St05g-NL 0.50 3.17 0.437
Re204St1g-NL 1.0 5.98 0.824
Re204St2g-NL 2.0 10.8 1.49
Re204St5g-NL 5.0 21.6 2.98

Re126St02g-NL 0.0351 126 0.20 0.146 1.33 0.233
Re126St05g-NL 0.50 3.19 0.560
Re126St1g-NL 1.0 6.01 1.05
Re126St2g-NL 2.0 10.8 1.90
Re126St5g-NL 5.0 21.7 3.80

where np is the droplet number density. On the other hand, the radar reflec-
tivity factor for monodispersed clustering droplets, Zcluster, is given by the
following equation [12,21]:

Zcluster = Zrandom +
2π2d6p
κ2

Enp(κ), (8)

where κ is the magnitude of the difference vector between the incident and
scattered wavenumber vectors, kinc and ksca, respectively; that is, κ = |kinc −
ksca|. Since the radar antenna receives backward scattering, κ is given by
2km. The power spectrum of droplet number density fluctuations, Enp(k),
represents the intensity of clustering for wavenumber k. It should be noted
that Eq. (8) assumes isotropy of turbulent clustering. Enp(k) is closely related
to the radial distribution function (RDF), g(r): Enp(k) can be obtained by the
Fourier transform of [g(r)− 1] [21]. Enp(k) can also be obtained directly from
the DNS data: this study adopts this straightforward way.

Enp(k) =
1

∆k

∑
k−∆k/2≤k<k+∆k/2

Φ̃(k), (9)

Φ̃(k) =
1

L3
0

⟨ñp(k)ñp(−k)⟩, (10)

where Φ̃(k) is the spectral density function and k the wavenumber vector which
satisfies k = |k|. The angle brackets represent the ensemble average. ñp(k) is
the Fourier coefficient of the spatial droplet number density distribution np(x),
where np(x) is given by

np(x) =

Np∑
j=1

δ(x− xp,j), (11)
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where xp,j is the position of jth droplet, Np the total number of droplets, and
δ(x) the Dirac delta function. The Fourier coefficients of Eq. (11) are then
given by

ñp(k) =
1

(2π)3

Np∑
j=1

exp(−ik · xp,j). (12)

Substitution of Eq. (12) into Eq. (10) yields the equation for calculating Φ̃(k)

[21]. Enp(k) was obtained by summing the Φ̃(k) values calculated for discrete
wavenumber vectors, k, located between the spherical surfaces with radii of
k −∆k/2 and k +∆k/2, where ∆k was set to 1/L0. It should be noted that
Np × Nk calculations are required for obtaining a power spectrum, Enp(k),
where Nk is the number of discrete wavenumber vectors, k. In order to reduce
the computational cost, we chose 19 representative wavenumbers, giving kL0

values of 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, and
768. These 19 values of k cover the wavenumber range more or less uniformly
on a log scale.

4 Results and discussion

4.1 Turbulent clustering of droplets with St = 1.0

Figure 1 shows the spatial distributions of droplets for the case of St = 1.0
at Reλ = 204 (Re204St1g-L). The droplets in the range of 0 < z < 4lη,
where lη ≡ (ν3/ϵ)1/4 is the Kolmogorov scale, are drawn. Void areas and
fine clustering structure are clearly observed for the case of Sv = 0. The
clustering structure for Sv = 2.68 is similar to that for Sv = 0. For large Sv,
droplet clusters are extended in vertical direction; i.e., the vertical scales of void
scales become larger compared with the horizontal scales as Sv increases. This
vertically-extended clustering is corresponding to the nearly-two-dimensional
“curtain shape” clustering, which was observed by Woittiez [34] and some
other authors [3,27].

Figure 2 shows the power spectra of droplet number density fluctuations,
Enp(k), for the case of Re204St1g-L. The horizontal and vertical axes are nor-
malized by using lη and ⟨np⟩. The arrow indicates the wavenumber range rele-
vant to radar observations, 0.05 < klη < 4.0 [21]. As the gravitational droplet
settling weakens the clustering intensity at large wavenumbers, whereas it
strengthens at small wavenumbers. The weakening at large wavenumbers ac-
cording to the increase of Sv indicates that settling weakens small-scale clus-
tering [2,1,34]. The strengthening at small wavenumbers indicates a stronger
large-scale clustering associated with the enlarged vertical void scales observed
in Figure 1.
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Fig. 1 Spatial droplet distributions for St = 1.0 and (a) Sv = 0, (b) 2.68, (c) 6.79 and
(d) 19.3 at Reλ = 204. Droplets in the range of 0 < z < 4lη are drawn, where lη is the
Kolmogorov scale.

4.2 Stokes number dependence of turbulent clustering

The Stokes number dependence of Enp(k) has been investigated by performing
DNSs for St ranging from 0.2 (Re204St02g-NL) to 0.5 (Re204St5g-NL). Figure
3 shows the spatial distributions of droplets for St = 0.5, 2.0 and 5.0 at
Reλ = 204 under the conditions of Fr = ∞ and 0.145. The droplets located
in the range of 0 < z < 4lη are drawn. Note that these temporal slice of
spatial droplet distributions were obtained at the same time step; i.e., the
background turbulent flow fields were identical. For the case of St = 0.5, the
spatial distribution of droplets for Fr = 0.145 is similar to that for Fr = ∞: the
locations of clusters and void areas for Fr = 0.145 are corresponding to those of
Fr = ∞. For the case of St = 0.2, the spatial distribution for Fr = 0.145 is also
similar to that of Fr = ∞ (not shown). For the cases of St = 2.0 and 5.0, the
clustering structure for Fr = 0.145 is clearly different from that for Fr = ∞:
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Fig. 2 Power spectra of number density fluctuations for turbulent clustering droplets under
the presence of gravity for the case of St = 1 at Reλ = 204.

for Fr = ∞, small-scale clusters and void areas become less clear and large-
scale void areas become more prominent as St increases; on the other hand,
for Fr = 0.145, the clusters become more extended in the vertical direction as
St increases. These influences of gravitational settling are similar to those for
St = 1.0 in Figure 1: e.g., the vertically-extended clustering in Figure 3(d) is
similar to that in Figure 1(d), where the Sv value is close to that of Figure
3(d). However, large-scale void areas in Figure 3(d) are more prominent than
those in Figure 1(d). This difference is attributed to the different St.

Figure 4 shows the power spectrum of number density fluctuations, Enp(k),
for Fr = ∞ and 0.145. The normalization of the horizontal and vertical axes is
identical to that for Figure 2. For the case of St < 1, the power spectrum for
Fr = 0.145 is lower than that for Fr = ∞ at large wavenumbers. The difference
becomes smaller as St decreases, where Sv decreases as well. The decrease of
the spectrum for St ≤ 1.0 is due to the decrease of droplet-turbulence interac-
tion time [2,34]: the gravitational settling reduces the droplet residential time
in an eddy, and decreases the production of clusters. For the case of St > 1,
the power spectrum for Fr = 0.145 is higher than that for Fr = ∞ at large
wavenumbers. This enhancement is clearly observed for the case of St = 5.0:
the power spectrum becomes higher for the wavenumbers larger than the peak
location, showing a gentler slope. For St = 2.0, the settling influence is in-
termediate: the spectrum becomes lower around the peak, whereas it becomes
higher for the lager wavenumbers, where the slope becomes gentler. Similar en-
hancement of turbulent clustering was reported by some research groups [34,3,
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Fig. 3 Spatial droplet distributions in turbulence for (a) St = 0.5 and Sv = 0 (Fr = ∞),
(b) St = 0.5 and Sv = 3.17 (Fr = 0.145), (c) St = 2.0 and Sv = 0 (Fr = ∞), (d) St = 2.0
and Sv = 10.8 (Fr = 0.145), (e) St = 5.0 and Sv = 0 (Fr = ∞), and (f) St = 5.0 and
Sv = 21.6 at Reλ = 204. Droplets in the range of 0 < z < 4lη are drawn.
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Fig. 4 Power spectra of number density fluctuations considering gravitational settling for
the case of (a) St ≤ 1 and (b) St > 1 at Reλ = 204. Black and red lines indicate the spectra
for the cases of Fr = ∞ and 0.145, respectively.

27]. They focused on the scales smaller than lη but, in Figure 4, we can observe
the multiscale feature of the enhancement of turbulent clustering. The St de-
pendence of the spectrum for St > 1.0 can be explained by a framework of the
scale-dependent clustering mechanism [13,35]. Under the absence of gravity,
large-scale eddies preferentially concentrate large St droplets, and small-scale
eddies destroy the droplet concentration by uncorrelated stirring. On the other
hand, under the presence of gravity, large-scale eddies concentrate the droplets
as well, but small-scale eddies do not diffuse the concentrated droplets. This
is because large St droplets have large settling velocities and, thus, they are
insensitive to stirring of small-scale eddies. This scale-dependent mechanism
is supported by the St dependence of the slope of the power spectrum at
large wavenumbers. For Fr = ∞, the slope becomes steeper rapidly as St in-
creases, indicating decorrelation of droplets in small scale. On the other hand,
for Fr = 0.145, the relatively-gentle slope remains against the increase of St,
indicating the insensitivity to the velocity fluctuation in small-scale. The in-
sensitivity of the rapidly-settling particles is also discussed in the recent work
of Gustavsson et al. [15].

In order to discuss the contribution of large-scale eddies to the settling
influence, the power spectra have been calculated from the DNS data for the
cases of Reλ = 126. For these cases, where Fr = 0.146, the energy dissipation
rate (ϵ = 397 cm2/s3) was close to that for the cases of Reλ = 204, where
Fr = 0.145 (ϵ = 395 cm2/s3). Thus, the nondimensional parameters based on
the Kolmogorov-scaling values for Reλ = 126 are close to those for Reλ =
204. Note that we consider the difference of Fr is negligibly small. Figure 5
shows the power spectrum of number density fluctuations, Enp(k), for Fr = ∞
and 0.145 at Reλ = 126 and 204. The normalization of the horizontal and
vertical axes is identical to that for Figure 2. For the case of St < 1.0, the
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Fig. 5 Power spectra of number density fluctuations considering gravitational settling for
the case of (a) St < 1.0, (b) St = 1.0, (c) St = 2.0 and (d) St = 5.0 at Reλ = 126 and 204.

Reλ dependence of the power spectrum is observed for klη < 0.05, where the
settling influence is small. In contrast, the Reλ dependence is small for both Fr
cases for klη > 0.05, where the settling influence is observed; i.e., the settling
influence is not dependent on Σv. For the case of St = 1.0, the Reλ dependence
of the power spectrum for Fr = ∞ is observed for klη < 0.5, whereas the Reλ
dependence for Fr = 0.145 is observed only for klη < 0.03. This indicates
that the Reλ dependence becomes insignificant under the presence of gravity.
The Reλ dependence for St = 2.0 is similar to that for St = 1.0: the Reλ
dependence for Fr = ∞ is observed for whole wavenumber range, whereas that
for Fr = 0.145 is small. For the case of St = 5.0, the power spectrum for Fr = ∞
becomes lower for the whole wavenumber range as Reλ decreases. In contrast,
the power spectrum for Fr = 0.145 becomes higher at large wavenumbers
as Reλ decreases. In addition, the Reλ dependence at small wavenumbers
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is insignificant. These are surprising results because the intensity of large-
scale clustering is not dependent on large-scale eddies, whereas the intensity
of small-scale clustering is strengthened by large-scale eddies. This indicates
that DNSs at increased Reλ and consideration of anisotropy of clustering is
necessary to clarify the settling influence on large St droplets since Reλ of
turbulence in atmospheric clouds (Reλ ∼ 103 − 104) is much higher than the
DNSs in this study. However, for small St droplets, we can evaluate the settling
influence on the increment of the radar reflectivity factor in atmospheric clouds
since the Reλ dependence is insignificant for St ≤ 2.0.

4.3 Estimate of the increment of the radar reflectivity factor

The increments of the radar reflectivity factor, Z, due to turbulent cluster-
ing has been estimated from the power spectra. The increment of the radar
reflectivity factor is given by

ZdB
cluster − ZdB

random = 10 log10

[
1 +

2π2⟨np⟩lη
κ2

S(κlη)

]
, (13)

where ZdB is the value of Z in units of decibels, defined as ZdB(dBZ) =
10 log10 Z(mm6/m3). S(ξ) is the normalized power spectrum given by S(klη) =
Enp(k)/(⟨np⟩2lη), where ξ = klη. For this estimate, the power spectra in Figure
2 (St = 1.0 and Reλ = 204) was used. Since g, ν and ρp/ρg were set to the
same values as the DNS, the dimensional values of ϵ and the droplet radius,
rp, are given by the following equations:

ϵ = ν1/3
(

Stg

fTSv

)4/3

, (14)

rp =

(
9ρg
2ρp

St

)1/2

ν3/4ϵ−1/4. (15)

Thus, the increments of Z for droplets with radius of rp were estimated for
the case of corresponding Sv and St. The increments of Z under the absence
of gravity were also estimated for the same rp for the reference. Note that the
Stokes drag was assumed for these estimates. The volume fraction of cloud
droplets, ϕ, was set to 10−6, which corresponds to the condition in a dense
cloud. The averaged number density, ⟨np⟩, is given by ⟨np⟩ = 3ϕ/(4πr3p). This
study focused on the microwave frequencies, fm, of 2.8, 5.3 and 9.4 GHz,
which are representative frequencies in frequency bands: S, C and X bands,
respectively.

Figure 6 shows the increment of the radar reflectivity factor, ZdB
cluster −

ZdB
random, for the case of St = 1.0. The droplet radius in the figure ranges from

large cloud droplets (20 µm ≲ rp ≲ 40 µm) to small rain droplets (rp ≳
40 µm). ϵ is approximately 100-1000 cm2/s3 in cumulonimbus and cumulus
clouds and 50 cm2/s3 in stratocumulus clouds [28]. Thus, the surveyed range
covers the typical values in the atmospheric turbulent clouds. The calculated



14 Keigo Matsuda et al.

101 102
0

2

4

6

8

10

12

14

16

 

 

ZdB
cl

us
te

r-Z
dB

ra
nd

om
 [d

B
]

rp [ m]

  fm=2.8 GHz
  fm=5.3 GHz
  fm=9.4 GHz

100 101 102 Sv

104 103 102 101 100  [cm2/s3]

Fig. 6 Increment of ZdB for droplets of St = 1.0 at Reλ = 204. Black and open symbols
indicate the cases of g = 0 and 9.8 m/s2, respectively. The droplet volume fraction ϕ is
10−6.

ZdB
cluster−ZdB

random is significantly larger than the observational error level, which
is around 1 dB [5,6]. This means that the turbulent microscale clustering may
lead to significant errors in radar observations [21]. ZdB

cluster −ZdB
random, i.e., the

error due to clustering, increases as fm decreases. For rp smaller than 40 µm,
the droplet gravitational settling tends to enlarge the error due to clustering,
but within 1dB. For larger rp, the settling reduces the error due to clustering
by larger than 1dB. These results indicate that the errors due to clustering
for St = 1.0 reported in Matsuda et al. [21] may be overestimated for the
small rain droplet range. It should be noted that the anisotropy of clustering
can cause the dependence of the clustering influence on the zenith angle of
the microwave transmission. The clustering influence on the radar reflectivity
factor would be more significant for horizontally-transmitted microwaves and
less significant for the vertically-transmitted microwaves.

5 Conclusion

This study has investigated the influence of gravitational settling on the spatial
distribution of turbulent clustering droplets and the radar reflectivity factor by
means of a three-dimensional direct numerical simulation (DNS) of particle-
laden isotropic turbulence. The droplet distribution data obtained by the DNS
have been used to calculate the power spectra of droplet number density fluc-
tuations.

Firstly, the authors have discussed the influence of gravity on turbulent
clustering for the case where the Stokes number, St, is unity. The spatial
droplet distribution clearly shows void areas and fine clustering structure.
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The clusters becomes more extended in the vertical direction as the nondi-
mensional terminal velocity based on the Kolmogorov velocity, Sv, increases.
The power spectrum of droplet number density fluctuations becomes lower
at large wavenumbers and becomes higher at small wavenumbers due to the
gravitational settling. This settling influence increases as Sv increases.

Secondly, the St dependence of the influence of gravitational settling has
been investigated. The spatial droplet distributions for St < 1.0 under the pres-
ence of gravity (the Froude number is Fr = 0.145) is similar to those under
the absence of gravity (Fr = ∞). The spatial droplet distributions for St > 1.0
under the presence of gravity show vertically extended clusters, which are not
observed in the distribution under the absence of gravity. The power spectrum
also shows the St dependence. The gravitational settling weakens the inten-
sity of clustering at large wavenumbers for St ≤ 1.0, whereas it significantly
enlarges the intensity at large wavenumbers for St > 1.0.

The contribution of large-scale eddies to the settling influence on the power
spectra have been also investigated by comparing the cases of two turbulent
flows, where the Taylor-microscale-based Reynolds numbers, Reλ, are different
but the Kolmogorov scaling parameters are the same. For the case of St ≤ 2.0,
the dependence of the power spectrum on large-scale eddies is insignificant
under the presence of gravity. On the other hand, for the case of St = 5.0,
the intensity of large-scale clustering is not dependent on large-scale eddies,
whereas the intensity of small-scale clustering is strengthened by large-scale
eddies.

Finally, the radar reflectivity factors for the radar frequencies of 2.8, 5.3
and 9.4 GHz, which are representative frequencies in S, C and X bands, re-
spectively, are estimated from the power spectrum under the conditions where
St = 1.0 and the droplet volume fraction is 10−6. For droplets smaller than 40
µm, the gravitational settling enlarges the increment of the radar reflectivity
factor due to turbulent clustering within 1 dB, whereas, for larger droplets,
it reduces the increment by larger than 1 dB, which is the unavoidable error
level in radar observations. Thus, the influence of gravitational settling can be
significant under conditions of large gravitational settling velocity; i.e., weak
energy dissipation rate.
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