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Abstract 

In Malaysia, many researchers focus on developing speaker independent systems for 

training or articulation therapy or to assist language learners to learn about Malay 

Language or Bahasa Malaysia.  Accuracy, noise robustness and processing time are 

concerns when developing speech therapy systems.  In this study, a Malay word 

pronunciation test application was developed using the first 3 format and fundamental 

frequencies in an effort to improve pronunciation in Malay.  This application was 

developed using Matlab and uses a vowel recognition algorithm classified using MLP 

classification technique. The application was developed and tested on UUM 

undergraduate students. For vowel classification, when fundamental frequency was 

added, 3-format feature vowel classification rate increased by 1.55% for male gender 

and 1.48% for female. When combined both genders, a more significant improvement of 

1.71% was seen. The developed pronunciation application test results showed that the 

pronunciation application can assist in testing and improving their Malay word 

pronunciation.  It was also observed that, vowel /i/, /e/, /o/ and /u/ are often 

mispronounced due to pronunciation habits. 
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1. Introduction 

This article is an extended version of the proceeding article submitted to [1]. Computer 

based speech therapy and assessment is still new in Malaysia, especially using Malay 

language or Bahasa Malaysia.  In this Malaysia language, Malay words are pronounced 

using a combination of consonant and vowel sounds such as “KATIL” represented by 

syllable “KA” and “TIL”.  There are several studies that shows that a speech therapy 

system that uses vowel phonemes can be used to improve Malay word pronunciation.  A 

hearing impaired person can also be trained to speak Bahasa Malaysia properly with a 

good degree of intelligibility in pronouncing given words.  A high degree of standard 

Malay vowel recognition capability is needed in all of these systems.   

Although there are many studies on Malay phoneme recognition, there is still 

significant work needs to be done.  Most of these studies use multiple frame analysis, 

which is a common method employed by most researchers in the area of Speech 

Recognition.  Accuracy, noise robustness and processing time are still concerns when 

developing speech therapy systems, especially using Bahasa Malaysia.  The accuracy 

aspect involves factors such as age and gender.  The size of the vocal tract of different 

gender and age varies which causes their voice to have different fundamental frequencies.  

This motivates this study to have an objective of developing a Malay word pronunciation 

test application in an effort to improve Malay word pronunciation.   
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2. Malay Speech Therapy Systems 

In Malaysia, Universiti Kebangsaan Malaysia (UKM) has two computer-based speech 

therapy systems situated in the Clinic of Audiology and Speech Sciences.  They are the 

Kay Elemtrics VisiPitch and IBM Speech Viewer [2].  These systems are used for voice 

therapy, but not used for training or articulation therapy.  Furthermore, these systems use 

English speech therapy.  There are other applications like OLTK (Optical Logo-Therapy 

Kit) [3] and VATA (Vowel Articulation Training Aid) [4].  These systems have limitations, 

and not robust enough to handle real-time identification of vowels.  In 2007, Tan et. al [5] 

developed a Malay Speech Therapy Assistance Tool (MSTAT) which is used to assists 

therapists in diagnosing children for language disorder and train the children suffering 

from stuttering problem.  It uses speech technologies consisting of speech recognition, 

Malay Talking Head and Malay text-to-speech system. 

A Computer-based Malay Language Articulation Diagnostic System was developed 

using Hidden Markov Model (HMM) and Mel-Frequency Cepstral Coefficients (MFCCs) 

[6].  It was developed using a database of Malay words. In 2012, Tan et.al developed a 

Malay dialect translation and synthesis system, but still at a preliminary stage [7].  The 

speech synthesis system used here is an HMM speech synthesis system (HTS Speech 

Synthesis System) at a sampling rate of 22 kHz.  The results were promising, but the 

system does not test on pronunciation. A research was done in 2014 with the objective of 

developing an ASR system for Malay speaking children [8]. The speech corpus comprises 

of six children uttering a total of 390 sentences. The parameter training is performed using 

the HTK toolkit by utilizing an HMM speech acoustic model of Malay speaking children. 

The system can accurately recognize of up to 76% of test words. Yusof et.al did a study 

about speech intelligibility of deaf children in Malaysia using a Malay Speech 

Intelligibility Test (MSIT) system [9]. Researchers from Universiti Malaysia Sarawak did 

a study on syllabification algorithm based on Malay syllable structure [10].  It was used to 

build the Iban and Bidayuh syllable list and speech corpus. The accuracy, using 

Categorical Estimation (CE), gave a mean score of 3.07 out of 5. 

 

3. Vowel Recognition Process 

The Malay Word Pronunciation Application engine is based on vowel recognition 

process.  It starts with the data acquisition, next are filtering and pre-processing, frame 

selection, speech signal modelling, feature extraction and finally vowel recognition 

processes.   
 

3.1. Data Acquisition 

Data collection process was done and taken from 40 Malay students from Universiti 

Utara Malaysia. The words “ka”, “ke”, “ki”, “ko”, “ku” and “kә” were recorded from 

speakers representing six vowels of /a/, /e/, /i/, /o/, /u/ and /ә/. In this study, 8000 Hz 

sampling frequency was used to sample the vowels and up to 10 recordings were taken 

per speaker depending on situation convenience. 

 

3.2. Feature Extraction 

First three formant features using linear predictive coding (LPC) was one of the feature 

extractions that widely used to classify vowels. Formant values can vary widely from 

person to person, and all voiced phonemes have formants even if they are not as easy to 

recognize.  There are standard algorithms to compute the first three formants as explained 

below.  Formant feature extraction typically has several steps:    

  

 



International Journal of u- and e- Service, Science and Technology 

Vol. 9, No. 1, (2016) 

 

 

Copyright ⓒ 2016 SERSC  223 

Step 1: Get a section of vowel 

sq=0; 

ii=num2str(i); 

openwave=files(i).name; 

[y,fs,bits]=wavread(openwave); 

fs=8000; 

[x]=size(y); 

starter=round(x/5); 

stopper=round(4*x/5); 

sig=y(starter:stopper); 

 

From the coding above, first a section of vowels have to be extracted. The frame size 

chosen was 60% waveform length with the centre frame located at the centre of the 

waveform. 

  

Step 2: Computation of formant candidates for every frame, and  

Step 3: Determination of the formant track, generally using continuity constraints.     

 

For steps 2 and 3 were explained here with the Matlab coding. One way of obtaining 

formant candidates at a frame level is to compute the roots of a p
th
 order LPC polynomial. 

There are standard algorithms to compute the complex roots of a polynomial with real 

coefficients. Each complex root zi can be represented as zi = exp(−pbi + j2pfi ) where fi 

and bi are the formant frequency and bandwidth respectively of the ith root. Real roots are 

discarded and complex roots are sorted by increasing f, discarding negative values. The 

remaining pairs (fi,bi) are the formant candidates. In the experiments, the value for p used 

is 10. LPC coefficients are computed from 250-millisecond Hamming windows, using the 

autocorrelation method. Here, the first four formants were calculated and only three 

formants are used.    

 

t=(0:length(x)-1)/fs;     

ncoeff=2+fs/1000;         

a=lpc(sig,ncoeff); 

r=roots(a);               

r=r(imag(r)>0.01);        

clear ffreq     

ffreq=sort(atan2(imag(r),real(r))*fs/(2*pi)); 

if length(ffreq)<4 

   ffreq(4)=0; 

elseif length(ffreq)<3 

   ffreq(3)=0; 

end 

w1=[w1;ffreq(1) ffreq(2) ffreq(3) ffreq(4)1 1 1 0 0]; 

end 

  

There are slight differences between male and female speaker. The formant frequencies 

of female are higher than male speaker. The results are saved in excel file, as shown in 

Appendix B1 and B2.  

 

3.3. Fundamental Frequency (Fo) 

In this section, fundamental frequency (fo) is obtained. This technique developed for an 

adaptive feature extraction that is more accurate. The algorithm used to obtain the 

fundamental frequency is shown below. 
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sq=0; 

ii=num2str(i); 

openwave=files(i).name; 

[x,fs]=wavread(openwave); 

ms20=fs/50;                 % minimum speech Fx at 50Hz 

r=xcorr(x,ms20,'coeff');     

ms2=fs/500;                 % maximum speech Fx at 500Hz 

ms20=fs/50;                 % minimum speech Fx at 50Hz 

r=r(ms20+1:2*ms20+1); 

[rmax,tx]=max(r(ms2:ms20)); 

Fxval=fs/(ms2+tx-1); 

w1=[w1; Fxval 1 1 0 0 1];   

   Fundamental frequencies of the female speaker are higher than male speaker as shown 

in Fig.1.  The fundamental frequency from this experiment can be compared with the 

theory. From the experiments, ranges of the fundamental frequency obtained are higher 

than the theory. 

Table 1. Fundamental Frequency Ranges and Average 

 Experiment Theory 

Gender Male Female Male Female 

Range  93 - 190 160 – 296 85 – 180 165 – 255 

Average 136 231 120 210 

 

3.4. Multi-layer Perceptron (MLP) 

In this study, an artificial neural network will be used to classify the feature. This 

classifier was chosen based on their popularities in speech recognition researches. The 

features in this study are classified using Multi-layer Perceptron (MLP) tool built-in. 

Multi-layer Perceptron is a feedforward neural network with one or more hidden layers.    

The input and output attributes used in this study was data set of male, female and 

combine that must be normalised. The input variables consist of three for first experiment, 

and four for second experiment and one output variable. The input variables are formant 

1, formant 2, formant 3 and fundamental frequency. The output variable corresponds to 

five Malay vowels. Training and testing data sets will be chosen by doing 10-fold of the 

data to make it random data. Data are partitioned into training, 70% and test, 30%. The 

neural networks are trained using training data. Test data are used to confirm the 

performance of the network. In this study, an accuracy and root mean square (RMS) error 

will be measured. The same data will be used to repeat the experiments that have been 10-

fold cross validation. The best model with highest accuracy and have the lowest error 

rates that will be selected. The process of the MLP will be explained clearly in the rest of 

this chapter. Fig.1 shows the block diagram of multi-layer perceptron process. 

 

Cross validation steps for Neural Network using MLP for 10 folds 

Step 1: Normalize data from 0.1 – 0.9 

The data will be converted into appropriate forms for mining. For example 

attribute data maybe normalized to fall between small ranges such as 0.1 to 0.9. 

Normalize data can be measured using min-max normalization formula as follow: 
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        (1) 

Step 2: Randomize data and save file in .csv delimited 

Step 3: Built MLP model 

A model is built describing a predetermined set of data classes or concepts. The 

model is used for classification.  

Step 4: Insert the data into input development data interface. 

Step 5: Split data into 2 sets 

 Set 1 (70%) – Training Set 

 Set 2 (30%) – Testing Set 

Step 6: Adjust the MLP network depend on the requirement. 

The network consists of three layers: input, hidden and output layer. Each of the 

three activation functions: sigmoid, tanh and linear functions is employed in 

developing the models. Since in this study, continuous data is used, sigmoid 

function is more suitable to use. For each activation function employed, the 

number of hidden nodes are changed subsequently starting with three, four, five 

and six nodes. The hidden nodes can be calculated using equation (2). 

      (2) 

The conjugate gradient and steepest descent are being used for the learning 

algorithm. 

Step 7: Train each classifier model using same training set. 

Step 8: Test model with testing set.  Compute Classification rate. 

The percentage of test set samples that are correctly classified. Accuracy of the 

model based on training sets and test sets. Training set to measure the accuracy of 

the classifier, this estimate would likely be optimistic, because the classifier tends 

to overfit the data (i.e., during learning it may incorporate some particular 

anomalies of the training data that are not present in the general data set overall). 

Therefore, a test set is used, made up of test tuples and their associated class 

labels. These tuples are randomly selected from the general data set. They are 

independent of the training tuples, meaning that they are not used to construct the 

classifier. 

Step 9: Repeat step 1-7 for next run until 10-fold cross validation. 

Step 10: Compute average classification rate.  End 

 

 
 

Figure 1. Overall Process of MLP Building 
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4. Vowel Classification Results 

The features from proposed method are classified using Neural Network which is 

Multi-layer Perceptron (MLP). The reason for choosing this classifier was because it was 

among the most widely used classifiers by speech recognition researchers.  This 

classification results were divided into three parts, which are male, female and combine of 

male and female. The experiments were repeated by adding the fundamental frequency, 

(fo) as another input variable. This classification results were compared between the first 

experiment, without fundamental frequency and the second experiment, with fundamental 

frequency.  

Classifications results were based on cross validation techniques where the database is 

randomly divided into training and testing sets in the ratio of 7:3.  This was done for each 

cross validation run where 70% training set will be used in training the classifier model 

and the other 30% of the data was treated as unseen testing inputs.  A total of 10-fold 

cross validations tests were done and their averaged classification results were computed 

averaged for classifier.  

 

4.1. Result Without Fo 

In this section, the first experiment was done with three inputs of formants 1, 2 and 3 

without the fundamental frequency. Table 2, Fig.2 and Fig.3 shows the result of 

classification rate without the fundamental frequency information. 

 

 

Figure 2. Comparison Average Classification Rate without fo 

Table 2. Average of NN/MLP Formant without fo 

Gender a e i o u CR% 

Male 99.18 88.66 100 65.59 95.84 89.38 

Female 98.47 78.59 98.17 71.14 88.99 86.88 

Combine 99.43 85.81 99.37 57.82 79.36 85.72 
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Figure 3. Comparison of Average NN/MLP Formant Classification Rate 
without fo 

Fig.3 shows the classification rate between male, female and combine of five Standard 

Malay (SM) vowels which are /a/, /e/, /i/, /o/ and /u/. Male gave the best accuracy, 

89.38% followed by female of 86.88% and combine with 85.72%. Classification by 

individual genders is more accurate than the combine of both genders.  

Table 3. Vowel Classification result without fo 

 Best Recognition Performance for 
Vowel 

Worst Recognition Performance 
for Vowel 

Gender Vowel CR% Vowel CR% 

Male /i/ 100 /o/ 65.59 

Female /a/ 98.47 /o/ 71.14 

Combine /a/ 99.43 /o/ 57.82 

Table 3 shows among all the vowel, vowel /i/ was the best classified with 100% 

accuracy for male gender. Meanwhile vowel /a/ also gave best classified for female and 

combine with 98.47% and 99.43% respectively. Vowel /o/ gave the worst classification 

rate for all the gender in which combine gave the worst result of 57.82%.  

 

4.2. Result With Fo 

The second experiment was done with four inputs by adding the fundamental 

frequency and one output.  

Weight initialization, Gaussian distribution 

Data allocation (70/0/30) 
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Table 4. Best Fold CR% with fo 

Gender Learning Algorithms Accuracy 
(%) 

Male Conjugate Gradient 90.93 

Female Conjugate Gradient 88.36 

Combination Conjugate Gradient 87.43 

Table 4 above shows the result for best accuracy of 10-fold dataset. A total of 10-fold 

cross validations tests were done and their averaged classification results were computed 

averaged for classifier. Best fold of male with obtained an overall accuracy of 90.93% 

followed by female as shown in with an overall accuracy of 88.36%. Combination 

between male and female gave 87.43% which was 3.50% and 0.93% lower than the male 

and female results respectively. Fig.4 shows the comparison between these genders in 

graph.  

 

Figure 4. Comparison Average Classification Rate with fo 

 

Figure 5. Average of Adaptive NN/MLP Formant with fo 
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Table 5. Average of Adaptive NN/MLP Formant with fo  

Vowel 

Gender /a/ /e/ /i/ /o/ /u/ CR% 

Male 100 85.82 100 78.50 92.18 90.93 

Female 99.58 78.26 97.54 78.37 90.02 88.36 

Combine 98.39 83.78 99.05 65.61 91.07 87.43 

From the result obtained, the overall results are presented in Fig.5 and Table 5. Fig.5 

shows the classification rate between male, female and combine of five Standard Malay 

(SM) vowels which are /a/, /e/, /i/, /o/ and /u/. Male gave the best accuracy of 90.93% 

followed by female of 88.36% and combine with 87.43%. Classification by gender is 

more accurate than the combine of both genders.  

Table 6. Vowel Classification result with fo  

 Best Recognition Performance for 
Vowel 

Worst Recognition Performance 
for Vowel 

Gender Vowel CR% Vowel CR% 

Male /a/, /i/ 100 /o/ 78.50 

Female /a/ 99.58 /e/ 78.26 

Combine /i/ 99.05 /o/ 65.61 

Table 6 shows among all the vowel, vowel /a/ and /i/ was the best classified with 100% 

accuracy for male gender. Vowel /o/ gave the worst classification rate with 65.61% for 

combine and 78.50% for male. Meanwhile for female, vowel /e/ gave the worst result of 

78.26%.  

 

4.3. Comparison Results With And Without Fo 

In this section, the results obtained are compiled and compared to see the accuracy by 

genders and by using fundamental frequencies as the 4
th
 input. Table 7 shows that there is 

significant increase in classification rate when fundamental frequencies are being used for 

vowel recognition for all categories of genders. 

Table 7. Comparison Average of MLP Formant (f0) 

Gender Without f0 With fo 

Male 89.38 90.93 

Female 86.88 88.36 

Combine 85.72 87.43 
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Figure 6. Comparison of Average Classification Rate by Different Genders 
using Fundamental Frequencies 

Table 8. Overall Vowel Classification Improvement 

Gender Improvement of 
without fo over with fo 

Male 1.55 % 

Female 1.48 % 

Combine 1.71 % 

 

Based on Fig.6 and Table 7, adaptive feature extraction method with fundamental 

frequency (fo) performs better in overall vowel classification than feature extraction 

method. Vowel classification improvement was shown in Table 8. For male gender was 

improved of 1.55% and female of 1.48%. Biggest improvement was seen for combine 

where the improvement was 1.71%. 

 

5. Pronunciation Test Interface 

The test interface was developed using MATLAB where the user may select either 

word based interface which is shown in Fig. 7 and avatar based interface as shown in Fig. 

8.   

 

5.1. Word Based Interface 

For interface 1, the Malay words chosen were 2-syllable words of “katil”, “roti”, 

“lara”, “buncis”, “potong” and “betik” can be selected representing the six vowels of /a/, 

/e/, /i/, /o/, /u/ and /ә/.  For example, the word “KATIL” means bed in English where the 

proper pronunciation requires the vowels /a/ and /i/ to be clearly pronounced.  The 

algorithm calculates the accuracy of pronunciation based on these two vowels and lower 

accuracy will be given if the pronunciation differs.  The lowest accuracy was recorded 

based on the first uttered word in which the speakers are untrained.  Then the speakers are 

trained on how to pronounce the words properly.  Next they will try uttering the words 

again 4 times and the best accuracy result is then taken. 
 

Comparison of Average Classification Rate 
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5.2. Virtual Avatar Interface 

University Virtual Interview Application (UVIA) is a virtual interview application that 

uses a virtual avatar that acts like an agent to interact with users.  In 2013, a working 

prototype was developed by Shahrul Azmi from Universiti Utara Malaysia (UUM) and 

used to prepare students for job interviews.  A study done by Raudhoh in 2014 shows that 

UVIA is able to improve the self confidence level of its users to face real job 

interviews.  Currently, Dr. Shahrul is working on adding more functions such as stress 

level monitoring and automatic scoring.  UVIA has been improved to pronunciation 

accuracy of the users.  The avatar will assist the user to pronounce the given words 

properly by interacting and encouraging the users. 

 

Figure 7. MATLAB Screenshot of Testing Interface 

 

Figure 8. Screenshot of UVIA Testing Interface 

Tolong sebut perkataan 
B E T I K 
Sekali lagi 
B E T I K 
….. 
 
BAGUS.  ANDA BERJAYA MENYEBUT 

DENGAN BETUL. 



International Journal of u- and e- Service, Science and Technology 

Vol. 9, No. 1, (2016) 

 

 

232  Copyright ⓒ 2016 SERSC 

5.3. Pronunciation Application Test Results 

The application is tested on another 40 Malay students from Universiti Utara Malaysia. 

The results of the pronunciation test are shown in Table 10.  The average lowest accuracy 

is the average accuracy of the first trial of each speaker pronunciation the given words. 

Table 10. Pronunciation Test Results 

 Accuracy  

Words 
Average 
Lowest 

Average 
Highest 

Average Tries to 
reach average 

highest 

Katil 56% 86% 4 

Roti 65% 92% 4 

Lara 71% 92% 2 

Buncis 52% 84% 4 

Potong 70% 91% 2 

Betik 58% 88% 3 

 

The first accuracy results were taken based on the first attempt.  Then the speaker will 

be trained on how to pronounce properly and tested again in the next 5 more attempts.   

Based on the results obtained, for the word “katil” or “Ka” and “til” meaning bed, the 

average lowest accuracy were 56% accuracy for the first trial and 86% for after 

improvements were done in subsequent pronunciations.  On the average, 4 times are 

needed to obtain the highest average accuracy.  For this word, the syllable “til” was 

supposed to be pronounced like the word “till” in English, but often pronounced 

inaccurately as “tail” in English.  After the correction in pronunciation, the speakers are 

able to improve their pronunciation and obtained an improved score of 86%.  For the 

word Roti, the speakers often mispronounced “Ro” as “Rue” instead of “Roo”.  For the 

word Lara, not much problem in pronouncing it correctly but the lower initial accuracy 

was due to the speaker spoke the word softly and sounded less confident.  For the word 

“Buncis”, the syllable “cis” was often mispronounced as “cess” instead of “cheese” in 

English.  Not much problem seen when pronouncing the word “potong”.  For the word 

“Betik”, the syllable “tik” was often mispronounced as “take” instead of “tick” in English. 

 

6. Conclusions 

This paper presents a new Malay Word Pronunciation Application. This application 

was developed using Matlab and uses a speech recognition algorithm based on Formant 

features and fundamental frequency (F0) and MLP classification technique. The 

application was developed and tested on UUM undergraduate students. For vowel 

classification, male gender showed an improvement of 1.55% and female of 1.48%. 

Furthermore, the best improvement was seen for combine gender data where the 

improvement was 1.71%.  

For the pronunciation testing, the actual result obtained was significantly lower than 

75% for the first try.  This is because of the lack of emphasizing on proper pronunciation 

on the given words due to daily mispronunciation which is often happening around them. 

The clarity of the pronounced words may lower the accuracy measured by the application 



International Journal of u- and e- Service, Science and Technology 

Vol. 9, No. 1, (2016) 

 

 

Copyright ⓒ 2016 SERSC  233 

which is mostly due to nervousness and lack of confidence. After training, the speakers 

are able to pronounce accurately.  Overall, this application is able to help individuals to 

learn to pronounce Malay words properly and clearly. 

 

Acknowledgments 

The author would like to thank Universiti Utara Malaysia for providing the grant to do 

this study. The author would also like to appreciate all the colleagues and students who 

have supported in giving good insights and suggestions. 

 

References 

[1] M.Y. Shahrul Azmi, “Malay Word Pronunciation Application for Pre-School Children using Vowel 

Recognition”, The 8th International Conference on u- and e- Service, Science and Technology, 

(2015); Jeju Island, South Korea. 

[2] H. Ting, J. Yunus, S. Vandort and L. Wong, “Computer-based Malay articulation training for Malay 

plosives at isolated, syllable and word level”, Joint Conference of the Fourth International Conference 

on Information, Communications and Signal Processing, (2003).  

[3] A. Hatzis, “Optical Logo-Therapy (OLT): Computer-based audio-visual feedback using interactive 

visual displays for speech training, (1999).  

[4] A. Zimmer, “VATA: An improved personal computer-based vowel articulation training aid”, Old 

Dominion University, (2002).  

[5] T. S. Tan, A. K. Ariff, C. M. Ting and S. H. Salleh, “Application of Malay speech technology in Malay 

speech therapy assistance tools”, (2007).  

[6] M. N. Mazenan and Tan, T. S., “Malay Alveolar Vocabulary Design for Malay Speech Therapy 

System”. Recent Advances in Electrical Engineering Series, vol. 11, (2013).  

[7] T. P. Tan, S. S. Goh and Y. M. Khaw, “A Malay Dialect Translation and Synthesis System: Proposal 

and Preliminary System”, International Conference on IEEE Asian Language Processing (IALP), 

November, (2012), pp. 109-112. 

[8] F. D. Rahman, N. Mohamed, M. B. Mustafa and S. S. Salim, “Automatic speech recognition system for 

Malay speaking children”, IEEE Third ICT International Student Project Conference (ICT-ISPC), 

(2014), pp. 79-82. 

[9] Z. M. Yusof, R. Hussain and M. Ahmed, “Malay Speech Intelligibility Test (MSIT) for Deaf Malaysian 

Children”, International Journal of Integrated Engineering, vol. 5, no. 3, (2014) 

[10] S. F. Juan, V. Edwin, C. Y. Cheong, L. J. Choi and A. W. Yeo, “Adopting Malay Syllable Structure for 

Syllable Based Speech Synthesizer for Iban and Bidayuh Languages”, IEEE International Conference on 

Asian Language Processing (IALP), (2011), pp. 216-219. 

[11] Ø. Birkenes, “A Framework for Speech Recognition using Logistic Regression”, Unpublished PhD 

thesis, Norwegian University of Science and Technology, (2007). 

[12] J. Hillenbrand and T. Nearey, “Identification of resynthesized/hVd/utterances: Effects of formant 

contour”, The Journal of the Acoustical Society of America, vol. 105, vol. 6, (1999), pp. 3509-3523.  

[13] So, Y., & Cary, N., “A tutorial on logistic regression”, SAS White Papers, (1995). 

 

Author 
 

M.Y. Shahrul Azmi, He obtained his bachelor degree in Electrical 

Engineering from Missouri University of Science and Technology, 

USA (previously University of Missouri-Rolla) in 1994.  He later 

pursue his MSc. In Information Technologi from Universiti Sains 

Malaysia and obtained his PhD in Mechatronics Engineering from 

Universiti Malaysia Perlis in 2010.  He served as an engineer at 

Robert Bosch and Seagate Company from 1995 until 1999. Currently, 

he is a faculty member at School of Computing in Universiti Utara 

Malaysia. His research interests include Speech Recognition, IT 

Entrepreneurship, Artificial Intelligence and Manufacturing. 



International Journal of u- and e- Service, Science and Technology 

Vol. 9, No. 1, (2016) 

 

 

234  Copyright ⓒ 2016 SERSC 

 

  


