
 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10 133

Proposed Algorithm for Scheduling in Computational

Grid using Backfilling and Optimization Techniques

Omar Dakkak, Shahrudin Awang Nor, Suki Arif
InterNetWorks Research Laboratory, School of Computing, Universiti Utara Malaysia, 06010 Kedah Malaysia.

oaldakkak@gmail.com

Abstract—In recent years, the fast evolution in the industry of

computer hardware such as the processors, has led the application

developers to design advanced software's that require massive

computational power. Thus, grid computing has emerged in order

to handle the computational power demands requested by the

applications. Quality of service (QoS) in grid is highly required in

order to provide a high service level to the users of Grid. Several

interactions events are involved in determining the QoS level in

grid such as; allocating the resources for the jobs, monitoring the

performance of the selected resources and the computing

capability of the available resources. To allocate the suitable

resources for the incoming jobs, a scheduling algorithm has to

manage this process. In this paper, we provide a critical review the

recent mechanisms in “grid computing” environment. In addition,

we propose a new scheduling algorithm to minimize the delay for

the end user, Gap Filling policy will be applied to improve the

performance of the priority algorithm. Then, an optimization

algorithm will perform in order to further enhance the initial

result for that obtained from backfilling mechanism. The main

aim of the proposed scheduling mechanism is to improve the QoS

for the end user in a real grid computing environment.

Index Terms—Grid Computing; Scheduling; Backfilling; Meta-

Heuristic.

I. INTRODUCTION

Grid computing is computational technology, which aims to get

the maximum benefits from idle resources, these resources could

be CPU cycles, memory, bandwidth, storage, and so on [1]. The

main idea behind this technology is to connect these idle

resources together into one virtual network, thus a virtual system

will be created and will share and manage the resources

dynamically during operating time. Through the Grid, the grid

system can supply sophisticated quality level services and access

to a massive number of remote recourses to any user anytime.

Unlike the web, which uses Internet Protocol (IP) to gain access

to any content on the internet via Uniform Resource Identifier

(URL), grid computing needs to have access to computational

resources always [1, 2].

Users are enabled to use the resources like: database, hardware

resources for many various devices that diffused everywhere,

via very massive virtual network, in this case this network

known as "Grid Computing ". For instance, suppose we have 20

computers available, half of these computers are busy, while the

rests of them are idle. Therefore, the key idea is to use the CPU

cycle for these idle machines in order to handle a huge task. In

addition, there is a possibility to use some or all the of other pc's

busy CPU, in case that these PC's are not using the whole cycle

of their CPUs, and unify all the aggregate of processing power

to handle such a huge task.

Based on Arora, Das and Biswas in [3], the grid is categorized

into four main classes, which are: computational grid, access

Grid, data grid and data-centric Grid. Computational grid

concerns about providing the user with high computational

power to process high computational power tasks. The resources

in grid computing could be supercomputers, [4-7]. Access grid

[8, 9], provides limited resources for a certain period of time.

Data grid [4, 10-12] concerns about intensive and big data. This

type of grid provides the service to save massive amounts of data

that can be accessed or transferred. Whereas the main difference

between data grid and data-centric grid [9, 13] is that data-

centric, grid moves massive computations to the data rather than

processing massive data to the computations.

Resource allocation in grid consists of four main steps, which

are: scheduling, code transfer, data transmission and monitoring.

The scheduling step consists of three main phases which are

resource discovery, resource selection and job execution.

Resource discovery is interest in searching and discovering the

available resources, whereas resource selection chooses the best

resource option to achieve better quality of service (QoS). In job

execution phase, the submission of tasks (jobs) to the chosen

resources is carried out [14].

Code transfer in charge of moving the codes that belong to

individual tasks to the allocated resources to execute these

codes. Data transmission concerns about transferring data from

the task for execution. Finally, the monitoring is responsible for

examining if the resources are available and the availability of

the resources during job execution as well [14].

Classical scheduling mechanisms cannot meet the

requirements for the end when the number of the jobs increased

massively in a grid computing environment. To meet the

requirements for non-trivial applications. Hence, this paper

proposes a new mechanism that performs multi-level scheduling

to avoid the flaws of the classical mechanisms. Therefore,

backfilling technique becomes highly required due to its

efficiency in exploiting the resources by filling the gaps that

exist in the scheduler in short jobs.

The rest of the paper is organized as the following: Section II

reviews some of the mechanisms in grid computing and provides

a critical analysis and comparison of the reviewed mechanisms,

Section III presents the new proposed mechanism. The paper is

concluded in Section IV.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UUM Repository

https://core.ac.uk/display/78487309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Telecommunication, Electronic and Computer Engineering

134 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10

II. SCHEDULING ALGORITHMS AND STRATEGIES IN GRID

COMPUTING

Scheduling algorithms have a significant role in the quality

of service that user of grid is requested for. The scheduling in

resource allocation refers to the mapping process between the

application and resources. The scheduling algorithms could be

static, dynamic or adaptive. In this section, we review “some of

many” scheduling algorithms.

A. Dynamic Objective with Advanced Scheduling

Leal et al. proposed performance-based Scheduling Strategies

in [15]. This mechanism is very suitable for applications that

require high throughput computational performance. It

implements four strategies which are: Static Objective (SO),

Dynamic Objective (DO), Static Objective with Advanced

Scheduling (SO-AS) and Dynamic Objective with Advanced

Scheduling (DO-AS). All previous techniques have shown less

makespan, (better throughput).

However, DO-AS outperformed the other three techniques by

offering better distribution. (Total number of jobs that were

completed) measured the performance of this mechanism. This

mechanism was simulated through GridWaySim Testbed. DO-

AS approach starts by determining the performance of the

system by applying linear equation (𝑛(𝑡) = 𝑟∞ 𝑡 − 𝑛1/2).

Then, based on the results obtained from the previous step, the

number of jobs that allocated to internal or external resources

will be determined. DO-AS maps to the next job immediately,

in order to take the advantage of the free slots in the scheduler.

Therefore, another check for the available resources will be

applied, in case that job is external, the job will move to internal

resources (to avoid the situation of receiving the same job that

already has been submitted). Figure 1 shows the flow chart steps

for DO-AS.

Figure 1: Dynamic objective with advanced scheduling

B. Swift Scheduling Mechanism

Scheduling Mechanism was proposed by Somasundaram and

Radhakrishnan in [16]. This mechanism is suitable for

distributed environments, when the tasks in the application are

indivisible. This mechanism is integrating Shortest Job First

(SJF) with a Heuristic Search algorithm. This approach reduces

waiting average time by combining between informed search

and uniformed search.

The analytical results showed that Swift Scheduling is

overcoming Shortest (SJF), First Come First Serve (FCFS) and

Simple Fair Task Order (SFTO). From Figure 2 below, it can be

noticed that (SJF) is applied in order to schedule the job queue,

whereas heuristic approach is used to match the resources with

the scheduler. Figure 2 shows the concept of swift scheduling

widths, line spaces, and text fonts are prescribed; please do not

alter them. You may note peculiarities. For example, the head

margin in this template measures proportionately more than is

customary. This measurement and others are deliberate, using

specifications that anticipate your paper as one part of the entire

proceedings, and not as an independent document. Please do not

revise any of the current designations.

Figure 2: Swift scheduling concept [16]

C. Request Forwarding Approach

This mechanism was proposed by Iamnitchi and Foster in

[17]. This approach concerns about the "Node" that user request

has to go to (forwarded to). The user sends a request to the node

"A". Node "A" replies back to the user, this replay contains

information about node "A" resources. If the resources satisfy

the user requirement, node "A" will be selected to serve the user.

If not, the user will try to communicate with node "B" (another

node) and so on. This procedure will be repeated if the user is

not satisfied with the resource node, or when Time to Live (TTL)

is over.

The request is applied by using one of four approaches, which

are; Random Walk, Learning Based, Best Neighbor and Hybrid

Learning Based Approach [18]. From the previous methods,

Random Walk is the best in terms of reducing overhead since

this approach does not need an extra memory to register the

request. In addition, there is no need to store the history of the

answers for the requests that reach the nodes. On the other hand,

Random Walk suffers from integrity of choosing the best

available resources due to TTL. Figure 3 shows the steps for this

mechanism by combining between informed search and

uniformed search.

Proposed Algorithm for Scheduling in Computational Grid using Backfilling and Optimization Techniques

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10 135

Figure 3: Request forwarding approach

D. Routing Transferring Model Based

In [19], Li et al. proposed Routing Transferring Model Based

(RTM) was proposed. This mechanism consists of three main

components, which are Resource Requester, Resource Router

and finally Resource Provider. Topology and distributed type

are very important factors to determine the complexity of this

mechanism. As well as, the distribution of the resources has a

very important role in the performance.

This mechanism works as the following: When the Resource

Router got the request from the Resource Requester; it forwards

it to the routing table. The routing table chooses the shortest path

(if any). In case that there is no short path, the request is moved

to another Resource Router. When the shortest path is located,

the request will be forwarded to Resource Provider. If there is

more than one available neighbor that can provide the resources,

the request will be forwarded to the nearest one. This approach

works well for resource discovery, due to the time for locating

the resources is reduced because of resource replication. But this

approach will consume a long time to check the resources info

from the table (especially when the number of resources is big).

Consequently, the performance of the scheduling will be slow.

Figure 4 shows the flowchart for this mechanism.

Figure 4: Routing transferring model based flowchart

E. The Parameter Based Mechanism

The Parameter Based mechanism proposed by [20], is based

on the operating rate of the node (such as; CPU and memory).

This mechanism uses Data Dissemination Algorithm as a

searching mechanism. When a user inquires for the resources,

resources status info will communicate with the node. Then a

validation process will start, the validation process could be

based on one of three strategies which are; Total Awareness,

Neighbor Awareness and Distinctive Awareness.

When the validation process is completed, the request will be

processed to the suitable resource. This mechanism reduces the

overhead, but in case that Total Awareness strategy is used, the

complexity will be increased as well. This is due to all

dissemination messages go to the all nodes, whereas Neighbor

Awareness and Distinctive Awareness reduce the overhead and

the possibility of collision in the network. Figure 5 shows the

flowchart for this mechanism.

Figure 5: The parameter based mechanism

F. Peer to Peer Approach

Peer to peer approach is implemented for huge distribution

network scales, p2p reduces the administrative overhead. In

addition, this approach enables to seed and leach the data among

the resources independently (centralized server to control the

traffic is not required).

Unified Peer to Peer Database Framework (UPDF) [21] is one

of the mechanisms basis on P2P approach. In order to achieve

the scalability and manageability, UPDF uses graph-theoretic

method. To overcome the local processing, Time To Live (TTL)

is utilized in this mechanism. UPDF is scalable when the

network has many resources, but the availability of information

becomes tedious when the nodes are leaving and joining the

network frequently.

G. Peer to Peer Approach

Volunteer Resource Allocation was proposed by Krawczyk

and Bubendorfer in [22]. The idea behind this approach is; the

idle resources will be donated by the volunteers. Volunteers

will not get any reward for that. First, the user will send request

to the broker; the broker will select the appropriate resources

for the requested job. The resources will notify the broker that

they are ready to serve the request. So the broker starts

spreading the work to these resources via local scheduler. This

approach can perform well only for a limited number of users.

Journal of Telecommunication, Electronic and Computer Engineering

136 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10

In case that many users are requesting services from the broker,

the executing time will take long time to complete. Figure 6

shows resource polling steps.

Volunteer Resource Allocation was proposed in [22]. The idea

behind this approach is; the idle resources will be donated by the

volunteers. Volunteers will not get any reward for that. First, the

user will send request to the broker; the broker will select the

appropriate resources for the requested job. The resources will

notify the broker that they are ready to serve the request. So the

broker starts spreading the work to these resources via local

scheduler. This approach can perform well only for a limited

number of users. In case that many users are requesting services

from the broker, the executing time will take long time to

complete. Figure 6 presents resource polling steps.

Figure 6: Volunteer Resource Allocation concept [22]

H. Economic, Market and Coalition Mechanism

The Economic mechanism was proposed in [23] by Buyya.

Bartering and pricing are two main concepts in this approach.

Five protocols can be used for bartering. These protocols are

English-Dutch-Sealed-Bid and Vickrey. The budget of the user

takes important role about selecting the resource besides the

quality of the resource. This mechanism performs well when

there is no deadline for executing the user's job, and when

resources are distributed in a local place. While the performance

will be worse in case that resources are allocated in global

places.

Market Mechanism was proposed in [24]. Agents and

facilitator are main components in this mechanism. The

facilitator tells the agents about the price info. The agents can

determine what is the optimal or near optimal request that can

agree with facilitator price. Then the facilitator modifies the

price and propagates the info. This mechanism suffers from the

bottleneck in facilitator when the numbers of resources become

bigger.

Wu, Ye and Zhangin in [24] proposed Coalition Formation

Mechanism. This mechanism concerns about saving the cost

through coordinating activities among the agents. Two models

are used in this mechanism. These models are; Complementary

Based and Utility Based Coalition. In Complementary Based,

each party sequel the skill to make it easy for the agents, while

Utility Based Coalition tries to distribute the profits amongst

coalition members. The main disadvantage of this mechanism is

the high overhead to form the coalition, which could affect the

throughput badly as well as the cost is considered high

comparing to other mechanisms that concern about the price.

Table 1 below summarizes the key points for the reviewed

mechanism.
Table 1

Resource Allocation Mechanisms in Computational Grid

Mechanism Type Strength Weakness

DO-AS Dynamic
Provides high

throughput

Mapping to next

job will take a
long time in

other grid

environment(s)

Swift
scheduling

Dynamic

Provides minimum

(time, cost), maximum

resource utilization.

Makespan is
high.

Request

forwarding

approach

Static
Resourcing Discovery
time is reduced

Suffers from high
overhead

Routing

transferring

model
based

Static
Provides good CPU

power

Long time to

scan resources

info (in case of
many resources)

Volunteer
Resource

Allocation)

Static
works fine with single

user in the Grid

Slow execution
time (for more

than one user)

The
parameter

based

mechanism

Static

Reduces overhead and

congestion in the
network

Complexity

(Total awareness
approach)

Peer to

peer

approach

Adaptive Scalable

Availability of

Information is

required

Economic
Mechanism

Static

Performs well when

resources are in local

place

Performance is

affected for

remote resources

Market

Mechanism
Static

Provides travel

arrangement, electric

power network,
Traffic flow network

Suffers from the

bottle neck when

resources are
increased

Coalition
Mechanism

Static
Agent info is not
required

Overhead (in

case the number
of the users is

huge).

III. PROPOSED SCHEDULING ALGORITHM

Due to the dynamicity of grid computing, scheduling the jobs

becomes challenging, particularly when the number of the jobs

increases. The traditional scheduling mechanism suffers from

lack of flexibility when it allocates the jobs to the available

resources.

For instance, Shortest Job First (SJF), which gives the

privilege to the short jobs at the expense of the long ones. Even

though most of the jobs in High Performance Computing

application workloads (HPC) are very short ones [25]. Still SJF

performance is questionable when this mechanism runs in real

grid system.

In a real grid system for HPC workloads, when the system is

running for months or years, we need to process the small jobs

faster, but not at the expense of the long jobs. Even though 10 %

only of the workloads are long jobs, but this ratio cannot be

neglected. Moreover, traditional scheduling mechanisms cannot

deal with the fragmentations that created in the queue due to

different arrival times for the jobs. These fragmentations are a

Proposed Algorithm for Scheduling in Computational Grid using Backfilling and Optimization Techniques

 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10 137

CPU idle time which can be exploited if a proper policy is

applied. Thus and when the number of the gaps (fragmentations)

becomes high, traditional mechanisms cause inefficiency due to

lack of exploiting the resources fully [26].

As a result, backfilling policy becomes required for such a

system. The backfilling policy has no order or fixed rule to

schedule the jobs, it simply backfills the short jobs in the gaps in

order to reduce the waiting time for the whole jobs in the

scheduler. The backfilling was described as something for

nothing, a benefit without a tradeoff [26, 27].

To extremely utilize the resources to reduce the waiting time

for the jobs to be processed, schedule-based approach has to be

considered. In the queue-based system, the scheduling is

executed blindly. The queue-system doesn't require any

information about the incoming jobs; this can lead to a delay for

the rest of the jobs ahead in the queue when backfilling is

applied. This is can be justified due to the unawareness of the

jobs execution time, the available resources and the size of the

jobs. When such important information is missing, applying the

backfilling would have repercussions as mentioned above [28].

The new proposed algorithm consists of two main parts; the

first part will generate an initial solution, while the second will

optimize the initial solution that generated from the first part. To

extend the proposed algorithm to the dynamic mode, a gap

filling policy will be applied. The gap filling policy will find the

best suitable gaps (while the jobs are arriving), to fill these gaps.

The jobs that cannot fit in any gap, they will be scheduled based

on First Come First Serve (FCFS).

In dynamic Grid, the new arrival jobs could be short and have

to wait in the schedule. This will waste the power of existing

resources. To improve the utilization of the resources, smaller

job size can be filled in suitable gaps without affecting the other

jobs, which they are in the top of the queue. If there is no suitable

gap, the gap filling policy will not be applied, and the traditional

algorithm only will be practiced. The second part of the

proposed algorithm will optimize the initial solution that

obtained from the first part. This will be conducted by applying

meta-heuristic algorithm. Meta-Heuristic algorithm will search

for approximate and non-deterministic solution. Thus, mining

for better solution will be targeted always without reaching for

final best solution [28, 29].

The applied Local-Search Optimization Mechanism, will use

a short memory. The memory will guide the search and offer the

experience of the current and next search. While long memory

could trap the algorithm in loops. The meta-heuristic approach

will periodically enhance the initial solution based on the

objective function. Thus, the utilization of the machine will be

extra optimized and the waiting jobs in the queue will be less

without affecting the other job in the queue since the job

preemption is not supported. The generated solution from the

first part of the algorithm is essential; since the second part

applies meta-heuristic approach, which in turn belongs to the

local search based type. Figure 7 presents the flowchart of the

proposed algorithm, followed by pseudo code.

Figure 7: Proposed algorithm flowchart

Proposed Algorithm

1.produce NewScheduler();
2.start:

3.create resource-queue(Rn),job queue(Jn),

4.add jobs(j)to job queue(Jn);
5.add resources(r)to resource-queue(Rn);

6.finish;

7.generating initial result:
8.check for the gaps;

9.if found_gaps= true;

10.apply gap filling policy;
11.else

12.schedule the jobs based on arrival time;

13.end else
14.end if

15.apply local-search optimizing mechanism to find the fastest processing

time
16.allocate (j,r);

17.loop execution for(Jn,Rn);

18.end

Figure 8: Proposed Algorithm Pseudo Code

IV. CONCLUSION AND FUTURE WORK

This papers has presented a critical review related to well-

known mechanisms in scheduling for grid computing

environment. Moreover, this paper proposed a new scheduling

mechanism based on the multi-level scheduling approach. First,

a backfilling mechanism is applied followed by optimization

mechanism. The optimization is applied to further enhance the

obtained solution from the first stage. The main aim of this

mechanism, is to deal with real grid computing dynamic

environment.

For future work, we will implement our proposed mechanism

using real workloads. The main scope of the proposed

mechanism will cover the HPC applications, since this is the

vital implementation for grid computing.

ACKNOWLEDGMENT

This work is funded by UNIVERSITI UTARA MALAYSIA

(UUM) S/O Code: 15861.

Journal of Telecommunication, Electronic and Computer Engineering

138 ISSN: 2180-1843 e-ISSN: 2289-8131 Vol. 8 No. 10

REFERENCES

[1] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman, "Grid

information services for distributed resource sharing," in High

Performance Distributed Computing, 2001. Proceedings. 10th IEEE

International Symposium on, 2001, pp. 181-194.
[2] R. van Engelen, M. Govindaraju, N. Koziris, and K. Psarris, "Distributed

systems and grid computing(DSGC)," in Symposium on Applied

Computing: Proceedings of the 2006 ACM symposium on Applied
computing, 2006.

[3] M. Arora, S. K. Das, and R. Biswas, "A de-centralized scheduling and

load balancing algorithm for heterogeneous grid environments," in
Parallel Processing Workshops, 2002. Proceedings. International

Conference on, 2002, pp. 499-505.

[4] R. Ranjan, A. Harwood, and R. Buyya, "Peer-to-peer-based resource
discovery in global grids: a tutorial," Communications Surveys &

Tutorials, IEEE, vol. 10, pp. 6-33, 2008.

[5] S. U. Khan and I. Ahmad, "A cooperative game theoretical technique for
joint optimization of energy consumption and response time in

computational grids," Parallel and Distributed Systems, IEEE

Transactions on, vol. 20, pp. 346-360, 2009.
[6] S. Khan and C. Ardil, "A Game Theoretical Energy Efficient Resource

Allocation Technique for Large Distributed Computing Systems," in

PDPTA, 2009, pp. 48-54.
[7] S. U. Khan, "A goal programming approach for the joint optimization of

energy consumption and response time in computational grids," in
Performance Computing and Communications Conference (IPCCC),

2009 IEEE 28th International, 2009, pp. 410-417.

[8] R. Ranjan, A. Harwood, and R. Buyya, "A taxonomy of peer-to-peer
based complex queries: a grid perspective," arXiv preprint cs/0610163,

2006.

[9] D. B. Skillicorn, "Motivating computational grids," in Cluster Computing
and the Grid, 2002. 2nd IEEE/ACM International Symposium on, 2002,

pp. 401-401.

[10] J. Kołodziej and S. U. Khan, "Data scheduling in data grids and data
centers: a short taxonomy of problems and intelligent resolution

techniques," in Transactions on Computational Collective Intelligence X,

ed: Springer, 2013, pp. 103-119.
[11] L. Wang, J. Tao, H. Marten, A. Streit, S. U. Khan, J. Kołodziej, et al.,

"MapReduce across distributed clusters for data-intensive applications,"

in Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2012 IEEE 26th International, 2012, pp. 2004-2011.

[12] R. Sharma, V. K. Soni, M. K. Mishra, and P. Bhuyan, "A survey of job

scheduling and resource management in grid computing," world academy
of science, engineering and technology, vol. 64, pp. 461-466, 2010.

[13] D. M. Batista and N. L. Da Fonseca, "A brief survey on resource

allocation in service oriented grids," in Proc. of Globecom Workshops,
2007.

[14] M. B. Qureshi, M. M. Dehnavi, N. Min-Allah, M. S. Qureshi, H. Hussain,

I. Rentifis, et al., "Survey on grid resource allocation mechanisms,"
Journal of Grid Computing, vol. 12, pp. 399-441, 2014.

[15] K. Leal, E. Huedo, and I. M. Llorente, "A decentralized model for

scheduling independent tasks in federated grids," Future Generation
Computer Systems, vol. 25, pp. 840-852, 2009.

[16] K. Somasundaram and S. Radhakrishnan, "Task resource allocation in

grid using swift scheduler," International Journal of Computers,
Communications & Control, vol. 42, pp. 158-166, 2009.

[17] A. Iamnitchi and I. Foster, "On fully decentralized resource discovery in

grid environments," in Grid Computing—GRID 2001, ed: Springer, 2001,
pp. 51-62.

[18] A. Iamnitchi, I. Foster, and D. Nurmi, "A peer-to-peer approach to

resource discovery in grid environments," in IEEE High Performance
Distributed Computing, 2002.

[19] W. Li, Z. Xu, F. Dong, and J. Zhang, "Grid resource discovery based on

a routing-transferring model," in Grid Computing—GRID 2002, ed:
Springer, 2002, pp. 145-156.

[20] M. Maheswaran and K. Krauter, "A parameter-based approach to resource

discovery in Grid computing systems," in Grid Computing—GRID 2000,
ed: Springer, 2000, pp. 181-190.

[21] M. Marzolla, M. Mordacchini, and S. Orlando, "Peer-to-peer systems for

discovering resources in a dynamic grid," Parallel Computing, vol. 33,
pp. 339-358, 2007.

[22] S. Krawczyk and K. Bubendorfer, "Grid resource allocation: allocation

mechanisms and utilisation patterns," in Proceedings of the sixth
Australasian workshop on Grid computing and e-research-Volume 82,

2008, pp. 73-81.

[23] R. Buyya, "Economic-based distributed resource management and
scheduling for grid computing," arXiv preprint cs/0204048, 2002.

[24] T. Wu*, N. Ye, and D. Zhang, "Comparison of distributed methods for
resource allocation," International Journal of Production Research, vol.

43, pp. 515-536, 2005.

[25] D. Zotkin and P. J. Keleher, "Job-length estimation and performance in
backfilling schedulers," in High Performance Distributed Computing,

1999. Proceedings. The Eighth International Symposium on, 1999, pp.

236-243.
[26] C. B. Lee, "On the user-scheduler relationship in high-performance

computing," 2009.

[27] A. W. Mu'alem and D. G. Feitelson, "Utilization, predictability,
workloads, and user runtime estimates in scheduling the IBM SP2 with

backfilling," IEEE Transactions on Parallel and Distributed Systems, vol.

12, pp. 529-543, 2001.
[28] D. Klusacek and H. Rudová, "Improving QoS in computational Grids

through schedule-based approach," in Scheduling and Planning

Applications Workshop at the Eighteenth International Conference on
Automated Planning and Scheduling (ICAPS 2008), Sydney, Australia,

2008.

[29] D. Klusacek, "Dealing with uncertainties in grids through the event-based
scheduling approach," in Fourth Doctoral Workshop on Mathematical

and Engineering Methods in Computer Science (MEMICS 2008), 2008,

pp. 978-980.

