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ABSTRACT 

The sliding window-based method is one of the most 

used method for automatic Electrocardiogram 

(ECG) signal quality classification. Based on this 

method, ECG signals are generally divided into 

small segments depending on a window size and 

these segments are then used in another 

classification process, e.g., feature extraction. The 

segmentation step is necessary and important for 

signal classification and signal segments with 

different window sizes can directly affect the 

performance of classification. However, in signal 

quality classification, the window size is often 

randomly selected and further analysis on the most 

appropriate window sizes is thus required. In this 

paper, an extensive investigation of the effects of 

window size on signal quality classification is 

presented. A set of statistical-amplitude-based 

features widely used in the literature was extracted 

based on 10 different window sizes, ranging from 1 

to 10 seconds. To construct signal quality 

classification models, four well-known machine 

learning techniques, i.e., Decision Tree, Multilayer 

Perceptron, k-Nearest Neighbor, and Naïve Bayes, 

were employed. The performance of the quality 

classification models was validated on an ECG 

dataset collected using wireless sensors from 20 

volunteers while performing routine activities, e.g., 

sitting, walking, and jogging. The evaluation results 

obtained from four machine-learning classifiers 

demonstrated that the performance of signal quality 

classification using window sizes of 5 and 7 seconds 

were good compared with other sizes. 

Keywords: Electrocardiogram (ECG) signal, ECG 

signal quality classification, wireless monitoring 

systems, signal segmentation, window size.  

I INTRODUCTION 
Electrocardiogram (ECG) signals describe electrical 
activities of the human heart and they are primarily 
used in diagnosis and treatment of cardiovascular 
diseases (Catalano, 1993; Hampton, 2008; Norman, 
1992). However, in data acquisition, especially in 
continuous monitoring, ECG signals are often 
corrupted by several types of noises, e.g., motion 
artifact, power line interference, and baseline drift 
noises (Clifford, Azuaje, & McSharry, 2006). Such 

noises considerably affect the quality of ECG signals 
and lead to high false cardiac alarm rates in intensive 
care units (Schmid, Goepfert, & Reuter, 2013). 
Therefore, the assessment of the signal quality is also 
an important process and required for continuous 
ECG monitoring.  

Several researchers have addressed issues related to 
assessing quality levels of ECG signals and have 
proposed an automatic approach for signal quality 
classification. In 2011, the Computing in Cardiology 
Challenge (Silva, Moody, & Celi, 2011) was 
arranged by PhysioNet, aiming to find some effective 
and efficient methods for classifying quality levels of 
ECG signals captured using mobile phones. The 
PhysioNet has also publicly provided an ECG dataset 
for evaluating methods of signal quality 
classification. The dataset consists of 2000 ECG 
signal recordings, 10 seconds long each, collected 
using mobile phones. Each signal recording was 
manually annotated by experts with three quality 
levels, “Acceptable”, “Unacceptable”, and 
“Indeterminate”. Based on this ECG dataset, several 
studies proposed automatic approaches for ECG 
signal quality classification using different 
techniques, for example, combination of rule-based 
and machine-learning-based methods (Kuzilek, 
Huptych, Chudacek, Spilka, & Lhotska, 2011), 
Ensembles of Decision Trees (Zaunseder, Huhle, & 
Malberg, 2011), a threshold-based rule (Hayn, 
Jammerbund, & Schreier, 2012; Johannesen & 
Galeotti, 2012). However, further investigation on 
the effects of window size on signal quality 
classification and further experiments on ECG 
signals continuously captured while subjects are 
performing a routine daily activity were required. 

Studies on the effects of window size for signal 
classification has been also addressed many research 
area, e.g. detecting embolic signals using the Fast 
Fourier Transform (FFT) (Aydin, 2000), analyzing 
electromyography signals (Thongpanja, 2013), and 
classifying acceleration signals for human activity 
recognition (Banos, Galvez, Damas, Pomares, & 
Rojas, 2014). These studies demonstrated the 
importance of analyzing the window size in the 
signal processing and motivated further investigation 
on the window size impacts on classifying the quality 
of ECG signals.  

This paper presents an extensive study on the effects 
of window size on signal quality classification. ECG 
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signals acquired using wireless devices from 20 
volunteers while performing routine activities were 
used. Based on a sliding window technique, 
statistical-amplitude-based feature were extracted 
from ECG signals relying on a defined window size. 
Four machine learning algorithms, i.e., Decision 
Tree, Multilayer Perceptron, k-Nearest Neighbor, and 
Naïve Bayes, were employed to construct 
classification models. In order to investigate the 
effects of window size on signal quality 
classification, each classification model was 
evaluated using a different set of window sizes. The 
rest of this paper is organized as follows: Section 2 
provides related works. Section 3 describes the 
materials and methods used for automatic classifying 
quality levels of ECG signals. Section 4 reports 
evaluation results and discusses the effects of 
window size on signal quality classification. Section 
5 presents conclusions.  

II RELATED WORKS 

A. ECG Signal Quality Classificaiton  

A combination of a rule-based method and a machine 
learning-based method (Kuzilek, et al., 2011) was 
proposed for ECG signal quality classification. A set 
of noise detection rules and a Support Vector 
Machine (SVM) classifier were employed for 
calculating a quality score of each signal recording 
based on statistical values of signal amplitudes and 
time-lagged covariance matrices. Using the signal 
quality scores determined from rules and SVM, an 
accuracy of 83.6% was achieved.  

An automatic method based on Ensembles of 
Decision Trees (EDTs) for ECG signal quality 
classification was presented (Zaunseder, et al., 2011). 
In order to construct a EDTs classifier, frequency-
domain features base on high frequency (45-250 Hz) 
and low frequency (0-0.5 Hz) noises in ECG signals, 
were used. The proposed method yielded an accuracy 
of 90.4%. 

An algorithm for determining the quality of ECG 
signals (Johannesen & Galeotti, 2012) was 
developed, consisting of two steps: (1) exclusion of 
signal recordings with ECG-lead connection issues, 
using QRS complex information and (2) 
determination of signal quality levels of each 
recording, relying on noise type information. The 
two-step algorithm provided an accuracy of 90.0%.  

Four quality measures based on empty lead, spike 
detection, lead-crossing point, and QRS-detection 
robustness criterion, were implemented in order to 
assess the quality of ECG signals (Hayn, et al., 
2012). Using combination of these four measures, a 
good evaluation result was obtained for signal quality 
classification, with an accuracy of 91.6%.  

In all above studies, the different methods for 
automatic signal quality classification were presented 
with high accuracy results on the PhysioNet ECG 
dataset. However, the effects of window size on 
signal quality classification and the experiments on 
ECG signals continuously captured while subjects 
are performing a routine daily activity were not yet 
investigated. 

B. Window Size Effects in Signal Classifiation 

An extensive study on the effects of window size in 
analysis and detection of embolic signals using the 
fast Fourier transform (FFT) was reported (Aydin, 
2000). The embolic signals were acquired using a 
commercial Doppler ultrasonic system, EME Pioneer 
TC4040, with a frequency of 2 MHz. Based on the 
FFT technique, six dissimilar window sizes, 2.2, 4.4, 
8.9, 17.9, 35.8, and 71.6 milliseconds, were 
employed for evaluating the effects of window size. 
The evaluation results showed that the FFT window 
sizes of 8.9 and 17.9 milliseconds were mostly 
suitable for detecting embolic signals. 

For electromyography (EMG) signal processing, an 
investigation on impacts of window size on 
analyzing surface EMG signals (Thongpanja, 2013) 
was presented. In data collection, EMG signals were 
captured from 6 volunteers while they are performing 
5 levels of lifting objects, weighed between 1 to 5 
kilograms, and are performing a 5-second movement 
of elbow flexion and extension. Using six different 
window sizes, i.e., 125, 250, 375, 500, 750, and 
1,000 milliseconds, EMG signals were segmented 
using a sliding window technique. For evaluation, the 
Modified Reverse Arrangement (MRA) test was 
adopted in order to assess the stationarity of EMG 
signal segments. The results demonstrated that 375 
and 125 milliseconds were optimal values of window 
size for analyzing surface EMG signals for static and 
dynamic contractions, respectively.  

In (Banos et al., 2014), a comprehensive study on the 
effects of window size on automatic human activity 
classification using acceleration signals was 
presented. In data acquisition, acceleration signals 
were captured from 17 subjects while they were 
performing 33 activities. Using different window 
sizes ranging from 0.25 to 7 seconds (in steps of 0.25 
second) and a non-overlapping sliding window 
technique, three sets of statistical features including 
mean and standard deviation were extracted. Four 
machine learning algorithms, i.e., Decision Tree, k-
Nearest Neighbors, Naïve Bayes, and Nearest 
Centroid Classifier, were employed to construct 
activity classification models. In order to evaluate the 
performance of each model, 10-fold cross validation 
and an F1score measure were used. From the 
obtained results, the highest performance of activity 
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recognition were achieved when using window sizes 
of 1 and 2 seconds.  

All the studies mentioned above addressed the 
importance of selecting an optimal window size for 
analyzing and classifying different signals, i.e., 
embolic signals (Aydin, 2000), electromyography 
signals (Thongpanja, 2013), acceleration signals 
(Banos, et al., 2014). These studies motivated further 
investigation of the effects of window size on ECG 
signal quality classification. 

III  MATERIALS AND METHODS 

A. Data Acquisition  

In this study, ECG signals captured using wireless 
Body Sensor Networks (Yang, 2006) from 20 
healthy volunteers, i.e., 10 young and 10 elderly 
volunteers, were used. The 10 young volunteers (7 
males and 3 females, aged between 27-44 years) 
were asked to perform 16 daily activities, five times 
each, including standing, walking upstairs, up and 
down movement of both arms, and jogging. The 10 
elderly volunteers (2 males and 8 females, aged 
between 57-71 years) were asked to perform 7 daily 
activities, five times each, e.g., sitting, lying, and 
walking. Lead-II configuration (Barill, 2005), which 
is usually applied for monitoring patients’ ECG 
signals in Intensive Care Units, and a sampling rate 
of 100 Hz were employed for acquiring the signal 
recordings. 

B. Signal Segmentaion and Annotation 

For signal segmentation, a non-overlap sliding 
window method (Banos, et al., 2014) was adopted in 

this study. According to a report from the 
Association for Advancement of Medical 
Instrumentation (AAMI, 2002), an abnormal case in 
ECG signals should be reported within 10 seconds. 
This motivated time-period number was used as the 
maximum size value of ECG segments for 
classifying quality levels. In order to investigate the 
effects of the window size, 10 different window 
sizes, range of 1 to 10 second in steps of 1 second, 
were considered. ECG signals were divided into 
small portions based on the different window sizes as 
illustrated in Figure 1.  

To annotate ECG signals with quality labels, the 
signal quality classification scheme (G.D. Clifford, 
Behar, Li, & Rezek, 2012) was applied. This scheme 
was used in several studies, focused mainly on 
classifying quality levels of ECG signals (Joachim, 
Julien, Qiao, & Gari, 2013; Li & Rajagopalan, 2014; 
Tanantong, Nantajeewarawat, & Thiemjarus, 2015). 
In this study, two suggested quality levels, “Low-
quality” and “High-quality”, were used for labelling 
entire ECG signals. Low-quality signals are the 
signals that are contaminated with high levels of 
noises and cannot be confidentially used for a 
physician’s diagnosis. High-quality signals are the 
signals that are noiseless or contaminated with some 
little noises. In addition, for high-quality signals, the 
significant ECG signal components, e.g., P, Q, R, S, 
and T waves, must be completely identified. Table 1 
shows the proportion of signal segments to quality 
levels in 10 different window sizes. 

 

            

 

 

 

 

 

 

Figure 1. ECG Signals During Jogging (Top) and Examples of Signal Segments with Diverse Window Sizes (Bottom) 
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Table 1. No. of Segments in Each Window Size 

Window Size 

(Second) 

No. of Signal Segment 

Low Quality High Quality Total 

1 1850 (12.26%) 13237 (87.74%) 15087 

2 944 (12.57%) 6567 (87.43%) 7511 

3 598 (11.98%) 4395 (88.02%) 4993 

4 460 (12.32%) 3273 (87.68%) 3733 

5 374 (12.58%) 2600 (87.42%) 2974 

6 301 (12.19%) 2168 (87.81%) 2469 

7 266 (12.59%) 1847 (87.41%) 2113 
8 221 (12.02%) 1618 (87.98%) 1839 

9 200 (12.26%) 1431 (87.74%) 1631 

10 185 (12.69%) 1273 (87.31%) 1458 

C. Feature Extraction and Signal Quality 

Classificaiton  

Based on 10 different window sizes, four statistical-
amplitude-based features, i.e., mean, variance, 
slope, and difference between maximum and 
minimum values of ECG signal amplitudes in each 
segment, were extracted. The number of all obtained 
features can be determined by the multiplication 
between the number of features and the number of 
segments in the defined window sizes (Referring to 
Table 1). Such features were also widely employed 
in several studies on ECG signal quality 
classification (Chudacek, Zach, Kuzilek, Spilka, & 
Lhotska, 2011; Johannesen & Galeotti, 2012; 
Kuzilek et al., 2011; Schumm, Arnrich, & Troster, 
2012).  To construct the signal quality classification 
model, four widely known machine learning 
techniques (Witten, Frank, & Hall, 2005), i.e., 
Decision Tree, Multilayer Perceptron, k-Nearest 
Neighbor, and Naïve Bayes, were applied. In this 
study, the WEKA open-source data mining tool 
(Bouckaert et al., 2010) were utilized for the 
implementations of these machine learning 
techniques. 

D. Performance Measures  

The performance of the ECG signal quality 

classification is measured using four statistical 

measures, i.e., Sensitivity (SEN), Specificity (SPE), 

Selectivity (SEL), and Accuracy (ACC). These 

measures are given by: 

100%
TP

SEN
TP FN

 


 

100%
TN

SPE
TN FP

 


 

100%
TP

SEL
TP FP

 


 

100%
TP TN

ACC
TP FP TN FN


 

  
 

where TP (True Positive) and TN (True Negative) 
are the number of signal segments accurately 
predicted as “Low Quality” and “High Quality”, 
respectively. FP (False Positive) and FN (False 
Negative) are the number of signal segments 
inaccurately predicted as “Low Quality” and “High 
Quality”, respectively. 

For avoiding the effects of data unbalancing 
(Sokolova, 2009), the F1score is additionally 
employed to evaluate the performance of the signal 
quality classification. This measure is a combination 
of Sensitivity and Selectivity measures, also known 
as Recall and Precision in text classification 
evaluation. It is defined as follows: 

1 2 100%
SEN SEL

F score
SEN SEL


  


 

IV RESULTS AND DISCUSSION 
For evaluating the signal quality classification, a 10-
fold cross validation technique (Witten, et al., 2005) 
was employed. Table 2 illustrates the performance 
results of signal quality classification using 
dissimilar window sizes (1 to 10 seconds) and four 
classification algorithms, i.e., Decision Tree (DT), 
Multilayer Perceptron (MLP), k-Nearest Neighbor 
(k-NN), and Naïve Bayes (NB). The overall 
performance results were between 68.78% and 
88.65% for sensitivity, between 96.02% and 98.89% 
for specificity, between 72.14% and 90.06% for 
selectivity, and between 93.01% and 96.37% for 
accuracy. 

The DT classifier yielded the highest accuracy of 
96.21% using a 7-second window size and the 
highest sensitivity of 98.89% for 10 seconds. 
Utilizing an 8-second window size, the top 
specificity and selectivity of 98.89% and 89.41 were 
obtained, respectively. For MLP with a 5-second 
window size, the best accuracy, specificity, and 
selectivity of 96.37%, 98.73%, and 90.06% were 
obtained, respectively. The top sensitivity value was 
81.58% for a window size of 7 seconds. Using k-NN 
(k = 3) and a 5-second window size, the classifier 
gained the highest accuracy and sensitivity of 
79.68% and 96%, respectively. The top specificity 
and selectivity of 98.43% and 87.82% were obtained 
when using a window size of 7 seconds. The NB 
classifier with 7-second window size provided the 
highest accuracy, specificity, selectivity of 95.08%, 
97.51%, and 81.89%, respectively. For a 5-second 
window size, NB achieved the maximum sensitivity 
of 79.41%. The performance results obtained from 
each algorithm demonstrate that the window size 
has different effects on the signal quality 
classification. 
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Table 2. Performance Comparision of Classification Algorithms Using 10 different Window Sizes 

Algorithm Measure 
Window Sizes (Second) 

1 2 3 4 5 6 7 8 9 10 

Decision  

Tree 

(DT) 

SEN 74.97% 81.36% 78.76% 77.17% 83.96% 79.73% 81.95% 68.78% 86.00% 88.65% 

SPE 98.45% 97.69% 98.57% 97.98% 97.54% 98.15% 98.27% 98.89% 97.00% 97.01% 

SEL 87.12% 83.48% 88.20% 84.32% 83.07% 85.71% 87.20% 89.41% 80.00% 81.19% 

ACC 95.57% 95.63% 96.19% 95.42% 95.83% 95.91% 96.21% 95.27% 95.65% 95.95% 

Multilayer 

Perceptron 

(MLP) 

SEN 74.54% 77.12% 79.77% 77.83% 79.95% 79.07% 81.58% 73.30% 82.00% 79.46% 

SPE 98.69% 98.52% 98.54% 97.86% 98.73% 98.57% 98.16% 98.58% 98.25% 98.11% 

SEL 88.80% 88.24% 88.17% 83.64% 90.06% 88.48% 86.45% 87.57% 86.77% 85.96% 

ACC 95.72% 95.83% 96.29% 95.39% 96.37% 96.19% 96.07% 95.54% 96.26% 95.75% 

k-Nearest 

Neighbor 

(k-NN) 

SEN 72.11% 73.31% 77.26% 75.87% 79.68% 78.07% 78.57% 78.73% 75.00% 77.84% 

SPE 98.35% 98.20% 98.50% 97.74% 98.35% 98.02% 98.43% 97.84% 97.90% 98.04% 

SEL 85.90% 85.43%  87.50%  82.51%  87.39%  84.53%  87.82%  83.25%  83.33%  85.21% 

ACC 95.13% 95.07% 95.95% 95.04% 96.00% 95.59% 95.93% 95.54% 95.10% 95.47% 

Naïve 

Bayes 

(NB) 

SEN 70.11% 72.03% 75.75% 75.65% 79.41% 75.75% 78.20% 76.02% 75.50% 77.84% 

SPE 96.22% 96.03% 96.52% 96.36% 97.00% 96.54% 97.51% 96.97% 96.02% 96.94% 

SEL 72.14% 72.26% 74.75% 74.52% 79.20% 75.25% 81.89% 77.42% 72.60% 78.69% 

ACC 93.01% 93.01% 94.03% 93.81% 94.79% 94.01% 95.08% 94.45% 93.50% 94.51% 

Note: SEN = Sensitivity, SPE = Specificity, SEL = Selectivity, ACC = Accuracy  

 

 
Figure 2. Effects of the Window Size on Signal Quality Classification Performance (F1Score) 
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window sizes of 5 and 7 seconds, respectively. 
Although some algorithms, DT and MLP, achieved 
the good performance results for a couple of higher 
window sizes (e.g., 9 and 10 seconds), such results 
were not much different from the experimental results 
using the 5-second and 7-second window sizes. 
Moreover, utilizing the window sizes between 1 to 4 
seconds and an 8-second window size should not be 
suggested for ECG signal quality classification.  

V CONCLUSION 
A comprehensive study on the effects of window size 
on ECG signal quality classification has been 
proposed. In this study, several machine-learning-
based methods techniques and signal-amplitude-based 
features, which were widely employed in previous 
works, were used for constructing signal quality 
classification models. For investigating the window 
size effects, 10 different window sizes, ranging from 1 
to 10 seconds, were considered in the experiments. As 
demonstrated by the evaluation results, the suitable 
window sizes were 5 and 7 seconds and the use of 
sizes between 1 to 4 seconds were not suggested for 
classifying the quality of ECG signals. 
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