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ABSTRACT. Manufacturing industries are facing fierce challenges in handling product
competitiveness, shorter product cycle time and product varieties. The situation demands
a need to improve the effectiveness and efficiency of capacity planning and resource opti-
mization while still maintaining their flexibilities. Machine loading — one of the important
components of capacity planning is known for its complexity that encompasses various
types of flexibilities pertaining to part selection, machine and operation assignment along
with constraints. Various studies are done to balance the productivity and flexibility in
flexible manufacturing system (FMS). From the literature, researchers have developed
many approaches to reach a suitable balance of exploration (global improvement) and
exploitation (local improvement). We adopt a hybrid of population approaches; hybrid
constraint-chromosome genetic algorithm and harmony search algorithm (H-CCGaHs),
to solve this problem that aims at mapping a feasible solution to the domain problem.
The objectives are to minimize the system unbalance as well as to increase the through-
put while satisfying the constraints such as machine time availability and tool slots. The
proposed algorithm is tested for its performance on 10 sample problems available in FMS
literature and compared with existing solution approaches.

Keywords: Flexible manufacturing system, Machine loading, System unbalance, Throu-
ghput, Hybrid genetic algorithm and harmony search

1. Introduction. Flexible manufacturing systems (FMS) are very expensive. So, it is
crucial to manage them effectively to achieve optimum results with the least investment
risks. This largely depends on how the decision is being made to tackle the problems
in FMS. FMS have been developed to integrate computer-controlled configurations of
numerical control (NC) machine tools along with other auxiliary production equipment,
and a material handling system to simultaneously manufacture low to medium volumes
of a wide variety of high quality products at a competitive cost [1].

One of the main purpose of FMS is to achieve efficiency of a well-balanced transfer
line while retaining the flexibility of the job shop [2]. This includes the efficiency of

2325


https://core.ac.uk/display/78485758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2326 U. K. YUSOF, R. BUDIARTO AND S. DERIS

handling machine loading problems. The machine loading problem — one of the important
aspects of capacity planning in FMS refers to assigning the machines, operations, and the
necessary tools for selected part types to perform these operations within the technological
constraints in order to maximize throughput and minimize system unbalance [2, 3].

In the FMS environment, machine loading problem dwells on how the part types should
be assigned together with the allocation of the tools so that the productivity is optimized
[3]. This is achieved given a set of part types to be produced with a set of tools that
are needed for processing the part types on a set of machine, together with using a set of
resources such as material handling appliances, pallets and fixtures. The function is able
to minimize the idle time of the machine, leading to maximization of machine utilization
and enhancing overall system output.

The machine loading problem optimization has been studied by many researchers over
many years as the area of study is receptive to new approaches that have proven to
achieve better results. Furthermore, the machine loading problem is only a fraction of
the real manufacturing problem, where each proposed work should be looked into with a
possibility of applying it onto the real manufacturing environment. From the literature, it
is concluded that the problem pertaining to the machine loading covers many objectives
[2, 4]. Due to many objectives covered which involves many simultaneous determinations
of many factors such as throughput, sequence and workload balancing, machine loading
problem lies under the broad category of NP-hard problem [5] where the requirement is
to satisfy various technological constraints. Shanker and Tzen [6] worked on balancing
machine workload and meeting the part types due date, while Ammons et al. [4] resolved
the loading problem to meet a bi-criteria objectives. Later, Mukhopadhyay et al. [7] and
Tiwari and Vidyarthi [8] solved machine loading problem with an objective of maximizing
throughput and minimizing system unbalance using heuristic approaches.

Generally, machine loading problem can be handled using two main approaches: (i)
optimization-based and (ii) heuristic-based. Optimization-based methods are robust in
their applicability, though they tend to become impractical when the problem size in-
creases which usually occurs in manufacturing scenarios, whereas heuristic approaches
are usually dependent on rules and constraints of individual problem. Because of this na-
ture, heuristic-based approaches always face difficulty in estimating results in a changed
problem or environment, which poses issues in handling the ever-changing manufacturing
requirements.

These limitations motivate the researchers to enhance the method and to look for in-
novative searching technique to further improve heuristic-based approaches. One of the
popular approaches is genetic algorithm (GA) which is known for its capability in intel-
ligent, probabilistic searching. Tiwari and Vidyarthi [8] used GA to allocate resources in
ordering and increasing equipment utilization and throughput while Li et al. [9] proposed
GA to handle problems with multi-period and multi-level capabilities balancing issues.
Kumar et al. [3] proposed constraint-chromosome GA in handling complex constraints in
the FMS loading problem.

GA has proven to be robust in handling many types of manufacturing optimization
problems. For example, Saravanan [10] came out with many extensive examples and
comparisons of Al-based techniques (i.e., genetic algorithms, tabu search, simulated an-
nealing, particle swarm optimization and ant colony optimization) that are applied to
handle several manufacturing optimization problems. In summary, GA is able to solve
all these problems successfully, whereas other techniques are able to solve certain types
of problems only. Nevertheless, GA may have the tendency to converge towards local
optima and often lose out in finding the global optimum of the problem [11]. In other
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words, it has the tendency of focusing on the local optimum rather than exploring new
solution to achieve global optimum.

Integrating GA into other algorithms or approaches has also been proposed in previous
studies. Che [12] used hybrid GA to enhance productivity while considering product con-
figuration change. Ono et al. [13] proposed a hybrid multi-objective GA and quasi-Newton
method to find robust optimal solutions to enhance the local search facility and reduce
search cost. Chen et al. [14] proposed a guided mimetic algorithm to solve scheduling
problems and Yogeswaran et al. [15] solved machine loading problem in FMS using GA
and simulated annealing algorithm.

Another potential algorithm that is able to handle machine loading problem effectively
is harmony search (HS). It is a new metaheuristic population-based algorithm created by
Geem et al. [16]. This heuristic algorithm is derived from an artificial phenomenon found
in musical performance that always seeks for a better harmony. HS has been applied
to several computational optimization problems such as school bus routing [17], music
composition [18] and timetabling problem [19]. To the best knowledge of the author,
none of the work has focused on machine loading problem.

Geem et al. [16] stated that the main features of HS that make it different from other
methods are: HS makes a new vector after considering all existing vectors rather than
considering only two (parents) as in GA, and HS does not require the setting of initial
values of decision variables. These features increase the flexibility in order to find better
solutions. The study also showed that HS is capable of achieving faster convergence
compared with GA and simulated annealing. In addition, Mukhopadhyay et al. [20]’s
study concluded that HS poses a strong explorative power, which is a very important
characteristic for evolutionary algorithms (EA).

Integrating HS into other algorithms or approaches has also been proposed in previous
studies. Alia et al. [21] worked on clustering algorithm based on the harmony search
(HS) hybridized with fuzzy c-means called DCHS to automatically segment the brain
MRI image in an intelligent manner, Wang et al. [22] proposed a hybrid modified global-
best harmony search (hmgHS) algorithm for solving the blocking permutation flow shop
scheduling problem with the makespan criterion, while Li and Wang [23] proposed a
global optimization by merging the mechanisms of harmony search (HS) and differential
evolution (DE).

Based on the above literatures, the hybrid of the algorithms may increase the ability to
produce better results as opposed to using a single algorithm in solving the problem. In
addition, in combining the strength of GA (exploitative) and HS (explorative), the hybrid
of those two algorithms may have potential of producing better results than an individual
algorithm is able to. In our study, we hybridize two algorithms, GA and HS to create a
more robust and effective algorithm in finding a better result. Our objective functions
focus on the maximization of throughput and the minimization of system unbalance.
These objective functions will lead to the minimization of system idle time which promotes
higher machine utilization. In addition, machine loading policy aims for the maximization
of total system output which is interpreted as throughput.

The remainder of the paper is organized as follows. Section 2 describes the problem
and model formulation. Section 3 discusses on the solution proposed to solve the problem.
Section 4 discusses on the results of the proposed solution. Finally, Section 5 concludes
the paper.

2. Problem Description and Model Formulation. Part type selection and machine
loading arrangement constitute two major components of the strategic planning problem
of FMS. Part type selection deals with selecting a set of part types to be manufactured
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during the upcoming planning horizon whereas the loading problem concerns about the
allocation of operations and the required machine and tools for the selected part types.
Most of the earlier researchers have addressed these problems separately due to their
complexities; hence the solution of part type selection problem may lead to infeasible
result for real-life loading problem.

Part types selection may be performed by two types of operations: essential operation
and optional operation. Essential operation is the operation that can be performed only
on a specific machine using a certain number of tool slots whereas optional operation
implies that it can be performed on a number of machines with the same or varying
processing time and tool slots. Since essential operation is required to be performed
at particular machine/s, the flexibility lies in the selection of machines that are set for
optional operation where there are more opportunities in improving the machine allocation
which may produce better results.

As previously mentioned, the objective functions for this research are the maximiza-
tion of throughput and minimization of system unbalance combined to attain the overall
function for machine loading problem. Based on the implication, it is very important to
have both objective functions combined in a logical manner that will also consider the
technical constraints.

2.1. Notations, formulation of objective function and constraints. The subscript
and parameter notations used to demonstrate the objective functions are:

Subscripts

N Total number of parts

M Total number of machines

H  Planning horizon (480 minutes)
i Part type, e =1,...,N

m Machine, m =1,..., M

t Tool type, t =1,...,T

J Operation type, 7 =1,...,J
Parameters

UT,, under-utilized time on machine m

O7T,, over-utilized time on machine m

Bi batch size of part type ¢

Q; = 1 if part type i is selected; otherwise 0

t¢ . time available on machine type m after allocation of operation j
of part type ¢

timj time required by machine type m for operation j of part type ¢

tr . number of machines for each machine type remaining on machine m
after allocation of operation j of part type ¢
tr . number of machines for each machine type available on machine m

after allocation of operation j of part type ¢
Tim; number of machines for each machine type required by machine m
for operation j of part type ¢
Yi;  set of machine type on which operation j of part type ¢ can be performed
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2.2. Objective functions.

e The first objective of this research is to minimize the system unbalance leading to
maximizing system utilization that is formulated as

_ MxH-YY_ UT,-O0T, 0
M x H
e The second objective function is to maximize throughput, leading to maximization
of system efficiency that is formulated as

F2 _ Zileﬁz * Oy
22:1 Bz

Both objectives have values between zero and one. A perfectly balanced work-

allocation will have F; = 1, and full completion of all the considered products within

the considered time frame give F; = 1. Therefore, the objective function strives

to reach F; = 1, and F, = 1, that is, to maximize both F} and F,. For making

the objective function more robust, the objective is defined as a weighted average of

these two objectives.

e The third objective function is a combination of both of the above two objective

functions and is formulated as

By

(2)

F= Maximize (WI(FI) + W2(F2)>

3
Wi+ W, 3)

where W and W, are the corresponding weight associated with the system unbalance
and throughput respectively. These two objective functions may be assigned to the
weights accordingly, after which the researcher decides which objective should carry
more weight. In the present study, to simplify the computation, we equally assigned
the weight for each objective function, such that both carry a value of 1.

The above objective functions are subjected to the following constraints:

System unbalance:
M

> UT, — 0T, > 0. (4)
m=1

Non-splitting of part type:

M J
YN imj =i« J, i=1,2,...,N. (5)

m=1 j=1

Available time on machines:

P
Ztimj S t?m; 1= 17 27 7N (6)
7j=1
Unique part type routing:
Y imp <1, i=1,2,.. ,N;ji=1,2,...,J] (7)

Number of machines and machine remaining time:
T'Zm]Oélm]ZO, z:1,2,,N,m:1,2,,M (8)
tlm]am]ZO, z:1,2,,N,m:1,2,,M (9)
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The integrity of decision variables:

o; =

{ 1 if part type i is selected

0 otherwise, (10)

i=12,...,N

0 otherwise, (11)
1=1,2,.... Nym=1,2,.... M

o — { 1 if part type ¢ is assigned to machine m
m T

- { 1 if operation j of part type ¢ is assigned to machine m
mj

0 otherwise, (12)

i=1,2...,Nym=1,2,...,M;j=1,2,...,J

In the above constraints, constraint (4) defines that the sum of the idle time remaining
on machines after allocation of all feasible part types must be either zero (100% utilization
of system) or a positive value. Constraint (5) ensures that once a part type is considered
for processing, all the operations under that part type must be completed first before
undertaking a new part type. Constraint (6) forces the available time on machine to
be greater than or equal to the time required by the next part type to be assigned to
this machine. Constraint (7) ensures that the operation must be completed on the same
machine and expressed once a machine is selected. Constraints (8) and (9) dictate that
the number of machines for each machine type and the remaining time on any machine
after any assignment of part type should always be positive or zero. Constraints (10), (11)
and (12) ensure the integrity of decision variables where the decision variables possess a
value of 0 and 1 integers.

3. Solution by a Hybrid of Constraint-Chromosome Genetic Algorithm and
Harmony Search.

3.1. Genetic algorithm. Genetic Algorithm (GA) is a population-based method that
is inspired by the principle of natural evolution [24]. It is motivated by the mechanism
of natural selection, which is a biological process that does the selection based on ‘the
survival of the fittest’. GA steps involve initialization, where the initial populations are
generated using a random function. These populations are assigned a fitness value based
on the objective function. In order to generate the possibility for more solutions, new
populations are created based on the selection criteria. Genetic operators; crossover and
mutation are applied to these newly-formed populations and the objective function is
calculated. These steps (the formation of new solution until fitness calculation) will be
repeated until the satisfactory result is achieved. Figure 1(a) shows the basic GA process.

3.2. Harmony search. Harmony search (HS) mimics music harmony that produces an
aesthetic and pleasing combination of sounds. Musical performances seek for the best
performance (fantastic harmony) which is determined by aesthetic estimation, similar to
the optimization algorithms that search for the best performance (global optimum, maxi-
mum benefit or efficiency) which is determined by an objective function evaluation. Since
aesthetic estimation is established by a set of harmonic sounds played by instrument com-
binations, the objective function evaluation is determined by the set of values produced
by component variables. Better aesthetic estimation can be improved via practice, the
value of objective functions can be improved via iterations. Figure 1(b) shows the basic
HS process.
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FIGURE 1. Basic process

3.3. Proposed hybrid constraint-chromosome genetic algorithm and HS al-
gorithm (H-CCGaHs). Even though GA is known as a global search technique, the
effectiveness of its usage highly depends on how well it can handle problem constraints.
Due to that, there are a number of techniques that have been developed to handle con-
straints. Michalewicz and Nazhiyath [25] surveyed several constraint methods for GA
where the most common approach is to add penalty function to the objective function
in order to transform a non-constraint problem into a problem with constraint. In this
penalty function, the basic rule is to add zero penalty when all constrains are satisfied,
and non-zero penalty otherwise. However, quantifying constraint violation is not always
practical especially when we are dealing with non-numeric variables. Therefore, applying
penalty functions directly inside the FMS framework can be a tedious task. Cormier et
al. [26] proposed constraint-based genetic algorithm to solve problems in concurrent en-
gineering. This concept is adopted in our current work to solve FMS problem, with some
modifications.

For this reason, we put an effort to find an efficient coding of each individual with
respect of taking all the constraints of machine loading problem. In our work, we consider
constraints during the initialization of population which we call constraint-chromosome
genetic algorithm (CCGA). The chromosome is defined as a part type sequence of the
problem where the sequence will determine the arrangement of the processing. The part
types are arranged based on random selection from the scheduled part types, where each
gene is checked against its existence to ensure that no same gene is generated in the
chromosome. Each part type is assigned a number of operations required to be performed
with respective available machines. To ensure the feasibility of the solution, each gene
in part type sequence will retrieve the respective operation that is assigned to it. Since
the operation sequence for each part type has to follow the sequence, which means the
first operation need to be allocated first before the second one, the sequence must be
maintained. A sample of part sequence for Table 1 (dataset 8) is shown in Figure 2.
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TABLE 1. Description of the dataset 8 (adopted from [27])

Part Batch Number of Operation Machine Unit Proc Tool Total

Type Size Operation No No Time (min) Slot Proc Time
1 9 2 1 2,3 22 2 198
2 3 25 1 225
2 1 1 3 20 1 160
3 9 3 1 1,4 25 1 225
2 4 25 1 225
3 2 22 1 198
4 7 2 1 3 24 1 168
2 4 19 1 133
5) 14 2 1 4,1 26 2 364
2 3 11 3 154
6 13 3 1 12,3 25 1 325
2 2,1 17 1 221
3 1 24 3 312
7 10 2 1 4 16 1 160
2 42,3 7 1 70

o (=== =] = = =[=]=]=]=]=]=]=]=]=]
o (=] =] === = = w]=]a]w]=]a = =[]

FIGURE 3. (a) Possible value of part-operation-chromosome, (b) another
possible value of part-operation-chromosome

The convergence speed of a genetic algorithm is very important in finding a global
optimum or an acceptable solution. The reproduction strategy is in a position to influence
the convergence speed of the algorithm. With these criteria in mind, each unit is assigned
a combination number of part type, operation and machine. The feasible machine for
each operation will be randomly selected based on the range of machines that should be
performed for that particular part type and operation. For example, part type 4 in part
type sequence [4 21365 7] is considered as an essential operation, whereby the operation
can be performed on a particular machine only, and allows machine 3 to be assigned to
operation 1. Since both the operation 1 and 2 of part type 4 is considered as an essential
operation, there is no change in the gene that generated the part-operation chromosomes,
as shown in Figures 3(a) and 3(b). On the other hand, operation of part type 6 is an
optional operation where this operation can be performed on a number of machines with
the same or varying process times and tool slots. In this example, operation 1 may be
performed on machine 1, 2 or 3 where the total processing time for both varies which can
lead to a different result.
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As previously mentioned, the strength of GA lies in its ability to develop a robust
strategy in handling the manufacturing optimization problems with constraints; while HS
offers flexibility in finding a better solution as well as possesses the ability to converge
faster compared to other methods. In other words, GA is known for its exploitation
ability to achieve a good solution, while HS has an ability to explore more solutions.
These two characteristics are the main characteristics of EA that offer a good balance in
solving the real machine loading problem. Considering the strength of these algorithms,
it is logical to hybridize these two algorithms as well as to impose the constraints in
population creation to achieve a better result. This study proposes the hybrid of CCGA
and HS called H-CCGaHs.

This model uses GA as a base for population initialization. The population is then
divided into two equally-sized populations that perform GA and HS operators separately.
The success of GA and HS is very much dependent on how efficient the respective operators
are in searching for a better solution. Due to this, H-CCGaHs is proposed in such a way
that the populations will interchangeably operate a different set of operators for each
generation/iteration. The population swap between CCGA and HS may effectively avoid
being trapped in a local optima as well as to ensure robustness (e.g., GA population
will be used for HS next generation processing and vice versa). In the HS process, this
population is referred to as harmony memory (HM). The structure of the proposed model
is described in Figure 4.

3.4. Parameters initialization. Based on Figure 4, the parameter initialization for GA
and HS are being set. For GA, the number of generation (NG), the size of population
(SP), the crossover rate (CR) and the mutation rate (MR) are initialized with selected
values. NG determines the iteration set for the termination of the algorithm, SP is the
size of the feasible solutions. CR is used to vary the programming of a chromosome from
one generation to the next, while MR is to maintain genetic diversity of one generation of
a population to the next. For HS, the parameters are the harmony memory consideration
rate (HMCR), the pitch adjustment rate (PAR) and the harmony memory size (HMS).
HMCR is similar to the crossover rate in genetic algorithm, while PAR behaves similar to
MR in determining the number of part types to be moved to another position or swapping
them with other part types. HMS is the size of the solution matrix that is similar to SP.

3.5. Population initialization. We use GA approach for population initialization where
each population consists of a chromosome that is represented by a string. The selection
of a string format for the individual is the first and a very important step to a successful
implementation of genetic algorithm. Initial GA populations are generated using a random
function, where the sequence of part type is randomly generated from the part type
scheduled for the processing. The sequence determines the arrangement of the part type
processing, and as part of the constraint, the same part type cannot exist twice in the
chromosome string.

3.6. Fitness evaluation. After chromosomes initialization, each sequence of the popula-
tion is evaluated according to the objective functions set for the problem. The evaluation
of the chromosome is a crucial part of GA, since the chromosomes selected for mating
are based on their fitness. The objective function will decide whether part type sequence
with selected machine is good for the machine loading problem. Machine loading prob-
lem in FMS involves multiple objective functions, so the model should be robust for the
user to specify several objectives. For our problem, the objective function will determine
the throughput (TH) and system unbalance (SU). Throughput is defined as units of part
types produced for all selected part types during the planning horizon where the units
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are the sum of batch sizes. System unbalance refers to sum of the over-utilized (OT},) or
under-utilized (U7T,,) time on all machines after the allocation of all part types.

Since the chromosomes are constructed from valid genes, the result is also expected
to be a feasible result. The chromosome carries all relevant information to calculate the
fitness value including the operations required for each part type and the machine which
the operation is to be performed. From this information, we can determine the total
processing time and machine slots for each chromosome and are able to calculate the
fitness value and determine which part type in the string can be assigned.

3.7. Population splitting and swapping. After the fitness calculation, the population
is divided into half where these populations will perform GA and HS operators respec-
tively. Although the original HS does not consider the population size to determine the
processing limit criteria, HS algorithm is improvised to include population size as part of
its process in order to accommodate GA approach. Furthermore, this process may also
enhance HS capability of selecting a better solution. To create diversity for next gener-
ations, these populations are swapped interchangeably (i.e., GA populations perform HS
operators and vice versa). Through swapping the populations generated by the two algo-
rithms and running against the other algorithm’s operators, it will create more chances
of discovery of unvisited solutions and avoids creating repeated or a similar solution. A
sample of populations swapping is shown in Figure 5.

3.8. Genetic algorithm operators.

3.8.1. Selection. Selection process provides the driving force in genetic algorithm to de-
termine the continuation of evolutionary process flow. Previous researches have proposed,
tested and compared many selection methods. This research proposes the use of simple
roulette wheel selection method where the selection will pick the parents for the next
mating based on the fitness proportionate selection. In this proportionate selection, the
objective function will assign a fitness value to each chromosome to associate a probabil-
ity of selection with each individual chromosome, so the higher the fitness, the better the
chance of being selected.

3.8.2. Crossover and mutation operators. The chromosome has to be broken up to give
the result that is legal to our problem. Our chromosome also falls into the category where
the same gene cannot appear more than once and direct swap between parents will tend
to create duplication or deletion of certain genes; hence creating infeasible result. Due
to that, we apply ordered chromosomes with two-point crossover. Two crossover points
of the first parent will be randomly generated to determine the first portion of the first
offspring. The remaining genes of chromosome in the first offspring will be taken from
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the second parent, considering the same gene is not to be taken again. The information
after the crossover point is ordered the same as that in the other parent. Second offspring
will repeat the same process and starts creating the second offspring with second parent.

Mutation avoids the potential of being trapped in local minima by preventing the
population of chromosomes from becoming too similar to each other. This phenomena
will eventually slow down the evolution process and prevent the ability of the algorithm
to achieve good results. For mutation, we use reciprocal exchange mutation, where two
randomly selected genes are being swapped in the same chromosome. This operation
promotes diversity where it opens possibility for a new searching space. The same reason
also explains why most of the GA algorithms avoid taking only the fittest of the population
during selection for the next generation, but rather make the selection random (or semi-
random) with weighing factors towards the fitter ones.

3.9. Harmony search algorithm operators.

3.9.1. Memory considerations, random searching and pitch adjustments operators. A new
feasible harmony solution is generated based on three operators — memory considerations,
random searching and pitch adjustments.

With the probability of HMCR, memory consideration operator selects the part type
positions of a new harmony solution based on the solutions stored in HM. HMCR has a
probability of selecting historical positions from feasible machine loading stored in HM. As
an example, if HMCR = 0.90, it indicates the number of part types to be selected randomly
from a historical positions in the HM to be 90%. Based on (1-HMCR) probability, part
types will be assigned based on the random positions from the whole available position.
This operator is equivalent to the mutation operator in genetic algorithm [16] to ensure
that algorithm avoids the potential of being trapped in local minima by preventing the
population of matrix from becoming too similar to each other.

To improvise the solutions as well as to escape local optima, another option is in-
troduced that mimics the pitch adjustment of each instrument for tuning the ensemble.
Based on probability of PAR, the operator will select the part type depending on mem-
ory consideration rather than random consideration. The obtained part type moves to
neighbouring part type with the probability value of (PAR x HMCR) with the value of
0 < PAR < 1. In case of machine loading, the selected part type will move to a valid
position with the probability of (PAR x HMCR), where the pitch adjustment operator
works similar to the neighbourhood structures of local based heuristics that are concerned
with the exploitation of the new harmony solution.

3.9.2. Update HS harmony memory. Based on the objective functions, HS algorithm eval-
uates the new harmony solution. If the fitness value of the solution is better than the
worst fitness value in HM, it will include that new solution in HM and exclude the worst
solution from HM.

3.10. Termination criteria. This research uses the number of generations as the termi-
nation condition. The number of generation set for this research is 75 which is based on
the size of the datasets as well as the generation number used by the previous researches
on the same datasets.

4. Experimental Results and Discussion. To illustrate the proposed algorithm the
dataset 8 generated by Mukhopadhyay et al. [27] is adopted and the data is given in
Table 1. We are using this specific example to ease comparative understanding of the H-
CCGaHs against existing algorithms as this example has already been applied by previous
researchers. From the table, there are seven part types to be loaded on four machines.
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All of the machines are assumed to have one shift, i.e., 480 minutes available time and all
of them have five tool slots each.

The time taken to find solutions is not only dependent on the size of population but also
on the tightness of the constraints and the approach used in designing the chromosome
representation as well as the effectiveness of the objective functions. This is because
substantial processing time is required to filter non-feasible solutions. The work is hoped
to manage the machine utilization as well as allowing more part types to be scheduled
using the same resources. The chromosome representation ensures that the values are
representing the right combinations which only allow the valid machines to be allocated
to the respective part types. In addition, the objective function will also check on the
chromosome to ensure the right combination as well the total amount of time allocated
does not exceed the remaining time available for the machine.

The various combination of parameter values are used to conduct a sensitivity analy-
sis on the sample data set to identify the optimal control parameters for the proposed
H-CCGaHs (Table 2). Exhaustive computations have been carried out to assess the ef-
fectiveness of the proposed algorithm and its performance is compared with the previous
studies. From the experiments, options 2 and 6 are giving the overall best result where
higher HMCR and PAR rate will improve the solution. Higher HMCR and PAR rates
promote higher probability of selecting the new sequence based on historical position of
solution stored in HM as well as improvise the solution and avoid being trapped in local
optima. In addition, MR rate is not effectively affecting the result.

The proposed approach has been implemented using C# compiler. It is tested on
the benchmark problems available in Mukhopadhyay et al. [27]. The solution for the
10 datasets and comparative results between the proposed algorithm and existing lit-
eratures are given in Table 3. The comparative study is performed between proposed
H-CCGaHs with heuristics developed by [3, 8, 15, 28, 29, 30, 31, 32]. From the result
it can be observed that the proposed algorithm H-CCGaHs performs better than most
of the heuristics available in the literature for the minimization of system unbalance as
well as combined objective functions (COF). The average COF (1.8160) in the last row
of Table 3 shows that H-CCGaHs is superior in performance over the other heuristics
considered for the evaluation. It is significant to note that dataset 4 already achieved
optimum throughput for all the literatures compared, whereas dataset 9 met its optimum
throughput through our previous works ([31, 32]) and proposed algorithm. However, only
the proposed H-CCGaHs algorithm is able to supersede other algorithms in achieving
optimum throughput for dataset 2, which the throughput produced is the same with the
batch size.

TABLE 2. Control parameters of the proposed algorithm and overall result

Option
1 2 3 4 ) 6

Population/HM 20 20 20 20 20 20
No of Generation 75 75 75 75 75 75
Crossover 0.70  0.70  0.70 0.70 0.70  0.70
Mutation 0.01  0.10  0.30 0.01 0.10  0.30
HMCR 0.85 095 0.90 0.90 0.85 0.95
Pitch Adjustment 0.10 0.10  0.01 0.01 0.10  0.10
Overall fitness 1.8098 1.816 1.8158 1.8158 1.8158 1.816

Control Parameter
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TABLE 3. Comparison of proposed H-CCGaHs with other heuristics

Proposed
(28] 8] [33] [29] (30] [15] [31] (32] H-CCGaHs

Data Batch TH SU TH SU TH SU TH SU TH SU TH SU TH SU TH SU TH SU
Set Size COF COF COF COF COF COF COF COF COF
1 80 42 76 48 14 44 127 48 14 48 14 48 14 52 0 52 0 52 0
1.4854 1.5927 1.4839 1.4615 1.5927 1.5927 1.6500 1.6500 1.6500

2 73 63 234 46 18 63 124 46 18 63 124 63 22 64 15 64 15 73 30
1.7411 1.6208 1.7984 1.6208 1.7984 1.8516 1.8689 1.8689 1.9844

3 79 69 152 69 72 73 128 69 94 69 72 73 28 73 28 73 28 73 28
1.7943 1.8359 1.8574 1.8245 1.8359 1.9095 1.9095 1.9095 1.9095

4 51 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819 51 819
1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734 1.5734

5 76 61 264 53 187 61 264 53 175 61 264 61 264 61 69 61 69 61 69
1.6651 1.6 1.6651 1.6062 1.6651 1.6651 1.7667 1.7667 1.7667

6 73 63 214 61 28 63 284 64 69 61 28 64 37 64 7 64 7 64 7
1.7516 1.821 1.7151 1.8408 1.821 1.8731 1.8731 1.8731 1.8731

7 78 48 996 54 165 54 177 54 165 63 231 63 231 63 21 63 21 63 21
1.0966 1.6064 1.6001 1.6064 1.6874 1.6874 1.7968 1.7968 1.7968

8 70 43 158 48 63 44 13 44 13 44 13 48 63 54 56 54 56 54 56
1.532 1.6529 1.6218 1.6218 1.6218 1.6529 1.7423 1.7423 1.7423

9 88 88 309 88 309 88 309 83 309 88 309 88 309 88 56 88 56 88 56
1.8391 1.8391 1.8391 1.8391 1.8391 1.8391 1.9708 1.9708 1.9708

10 67 55 166 56 122 56 122 54 82 56 122 56 122 67 205 67 205 67 205
1.7344 1.7723 1.7723 1.7633 1.7723 1.7723 1.8932 1.8932 1.8932

COF 1.6213 1.6914 1.6927 1.6889 1.7207 1.7417 1.8045 1.8045 1.8160

For all of the machine loading datasets, we have provided the detailed description
regarding the obtained results, and operation-machine allocation combinations in Table
4. The table shows the COF result, throughput and system unbalance for each data set
and the respective machine assignment for part type for each operation. The ‘-’ indicates
that the respective operation is not required by the part type, while ‘na’ means that the
particular part type is not being assigned due to resource constraint.

Sarma et al. [34] recommended using comparative improvement index (CII) for per-
formance comparison. Therefore, CII is adopted here to investigate the % improvement
in the results obtained by the proposed algorithm. We do not compare the comparative
improvement index of system unbalance (C1lsy) and the comparative improvement in-
dex of throughput (C'II7y) individually since the increase of C'1Iry may decrease C'1lgy
and vice versa. So it is more appropriate to use CIIcor and CIIrgaq, to indicate the
comparative improvement. C'IIcor and CIIrgp.,. are obtained by using the following:

(COFy, — COFy)

ClII = 100 13
COF COFp, * (13)
(Ir'Hr — THpyy)
CII ae = 100 — 100 14
THM ( TH, * (14)
where
Cllcor the comparative improvement in the combined objective functions
Cllrygvas the percentage achievement based on the maximum achievable
throughput
COFy the combined objective function obtained by heuristic procedures

3, 8, 15, 28, 29, 30, 31, 32]
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COFy, the combined objective function obtained by the proposed algorithm
THrp maximum throughput in each dataset
THpy, the throughput obtained by the proposed algorithm

The corresponding CIIs values are given in Table 5. For the sake of comparison, CIIsor
and CIIrypre, are compared with heuristic procedure performed by [3, 8, 15, 28, 29, 30,
31, 32]. From the table, it can been observed that for almost all the problems, the
proposed algorithm shows a considerable improvement. In the table, the term given by
the ‘0’ sign in CIlcopr with 100% in CIIrgar., indicates for that problem optimality
(i.e. maximum possible throughput and minimum possible system unbalance) has been
achieved. The ‘0’ sign in CIIcor with non-100% in CI1I7 4, indicates no improvement.
Note that for dataset 2, the proposed H-CCGaHs manages to achieve 100% maximum
throughput as compared with the other algorithms. For the description of all 10 datasets
of the underlying problem, readers are requested to refer to [27, 28].

Figure 6 shows the comparison with other literature in terms of achieving 100% total
throughput. From the graph, it is shown that datasets 4 and 9 have already reached 100%
total throughput from the beginning, while other datasets still have room for improvement.
For dataset 10, the algorithms developed by our previous and current studies (CCGA, HS
and H-CCGaHs) achieve 100% total throughput. However, only the proposed algorithm
(H-CCGaHs) is able to achieve 100% total throughput for dataset 2.

Maximum Throughput
100.0
90.0 M Tiwari etal. (1997)
X 80.0 H
5 W M Tiwari and Vidyarthi (2000)
_g. 70.0
tén 60.0 - 5 M Kumar et al. (2004)
E 50.0 A I l l M Nagarjuna et al. (2006)
§ 40.0 1 i # Prakash et al. (2008)
E 300 A ' ! !
E o i | M Yogeswaran et al. (2009)
E . 9 [
]
100 | i £ Yusof et al. (2012)
0.0 - Yusof et al. (2011)
1 2 3 4 5 6 7 8 9 10 B H-CCGaHs
Dataset

FIGURE 6. Maximum throughput comparisons

Table 6 shows the convergence (number of generations) and duration (in seconds) taken
to run each data set for the proposed three algorithms. From the table, overall H-CCGaHs
is better in achieving convergence, while HS is the worst. In term of duration, H-CCGaHs
is relatively better than CCGA, while HS run the fastest. Thus, it is clear that H-CCGaHs
is the best method to achieve a fast convergence with the moderate time taken to run the
algorithm, with the consideration of the overall good results obtained.

5. Conclusion. The present work discusses the machine-loading problem as a part of
the very important aspect of planning horizon. It deals with the challenge of locating
the available resources (machine) to load the part types, while considering the constraints
of the problem, such as the machine time available, the number of operations, and the
allowable machines that may be allocated for the operations.
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TABLE 4. Operation-machine allocation combination for the assigned part sequence

operation/machine operation/machine
Data Part Data Part
set Type 1 2 3 set Type 1 2 3
1 COF: 1.6500 TH:52 SU:0 6 COF:1.8731 TH:64 SU:7
1 3 - - 1 2 — —
6 4 3 2 3 1 - -
3 1 3 - 2 1 3 -
5 2 2 - 5 3 1 -
7 2 1 4 6 2 - -
2 na na 4 na - -
8 na na na 7 COF: 1.7968 TH: 63 SU: 21
4 na na — 6 2
2 COF: 19843 TH: 73 SU: 30 2 4 3
1 4 2 — 1 1 — —
3 1 - - 3 1 - -
2 1 4 - 5 3 — —
4 3 - 4 na na
5 4 1 - 8 COF: 1.7423 TH: 54 SU: 56
6 2 - - 5 4 3 -
3 COF: 19095 TH: 73 SU: 28 1 2 3 -
1 2 - - 7 4 2 -
2 2 - - 2 3 - -
3 4 1 - 4 na - -
5 4 3 - 6 3 2 1
4 na — — 3 na na na
4 COF: 15734 TH: 51 SU: 819 9 COF: 1.9708 TH: 88 SU: 56
5 1 - - 2 4 - -
4 3 3 2 4 3 4 -
1 2 1 4 7 1 4 -
3 4 - - 6 4 1 -
2 4 3 1 3 1 -
5 COF: 1.7667 TH: 61 SU: 69 3 2 - -
6 1 - - 5 2 3 -
1 2 2 - 10 COF:1.8932 TH: 67 SU: 205
2 1 - 6 3 1 -
4 4 2 3 2 3 4 3
3 na na 4 3 4 1
5 3 - - 3 1 2 -
5 1 2 4
1 3 4 2

The main contribution of the present research is an efficient heuristic approach based on
hybrid of CCGA and HS algorithm (H-CCGaHs), which is able to solve machine-loading
problem of FMS. While some of the previous studies considered part type sequence and
operation allocation as separate but interconnected components, the present research



MACHINE LOADING OPTIMIZATION 2341

TABLE 5. Cllcor and C Iy, comparisons with other heuristics

Batch Proposed
Dataset  Size 28] [8] [3] [29] [30] [15] [31] [32] H-CCGaHs
1 80 Clltgpaes 52.5 60.0 55.0 60.0 60.0 60.0 65.0 65.0 65.0
Cllcor 11.1 3.6 11.2 3.6 3.6 3.6 0 0
2 73 Clltgpes 86.3 63.0 86.3 63.0 86.3 86.3 87.7 87.7 100
Cllcor 14.0 224 103 224 103 7.2 6.2 6.2
3 79  Cllrgpee 87.3 87.3 924 873 873 924 924 924 92.4
Cllcor 6.4 40 28 4.7 40 0 0 0
4 51 Cllrgpee 100 100 100 100 100 100 100 100 100
Cllcor 0 0 0 0 0 0 0 0
5 76  Clltgpe: 80.3 69.7 80.3 69.7 80.3 80.3 80.3 80.3 80.3
Cllcor 6.1 104 6.1 10.0 6.1 6.1 0 0
6 73 Clltgpyes 86.3 83.6 86.3 87.7 83.6 87.7 87.7 87.7 87.7
Cllcor 69 29 92 18 29 0 0 0
7 78  Clltgpes 61.5 69.2 69.2 69.2 80.8 80.8 80.8 80.8 80.8
Cllcor 63.9 119 123 119 65 6.5 0.0 0.0
8 70  Cllrgpme: 614 68.6 62.9 629 629 68.6 77.1 77.1 77.1
Cllcor 13.7 54 74 74 74 54 0 0
9 88  Cllrgpaee: 100 100 100 100 100 100 100 100 100

Cllcor 7.2 72 72 72 72 72 00 00

10 67 Cllrgye. 82.1 83.6 83.6 80.6 83.6 83.6 100.0 100.0 100.0
Cllcor 92 68 68 74 6.8 6.8 0 0

Average COF 120 74 73 75 55 43 06 06

TABLE 6. Convergence and duration taken to run comparison

Convergence (number of generations) Duration (in second)
Dataset CCGA HS H-CCGaHs CCGA HS H-CCGaHs
1 9 21 26 11.53  9.52 7.66
2 9 24 6 7.42  3.25 0.22
3 7 4 8 5.75 247 4.43
4 6 5 7 723 233 4.36
3 7 6 8 9.33 3.73 6.23
6 9 18 12 436  2.86 4.44
7 7 9 12 6.28 3.33 5.71
8 8 35 6 739  5.56 6.64
9 6 7 6 6.84 5.22 6.81
10 8 17 9 6.65 3.59 6.46

adopts an approach of treating part type sequencing and machine allocation problem
as one main goal. Because of this, the tasks are carried out concurrently in this work.
This process is repeated iteratively until a termination condition is met, after which the
optimal or near-optimal solution is being identified.

Exhaustive computations are carried out to assess the effectiveness of the proposed
algorithm, and its performance is compared with the previous studies. From the results,
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the proposed H-CCGaHs offers better results for most of the test problems, in which the
COF increased by 4.27% compared with the best result of the other heuristic methods
[15]. The right chromosome representation to map the machine-loading problem, which
considers constraints as well as the efficient genetic operators, leads to the good result.
In addition, the proposed algorithm achieves fast convergence, such that most of the best
results are obtained at the early number of generations. This ability is very important
for the manufacturing industry that always prioritize to use various methods that can
save processing time and cost in generating machine allocation planning. The results also
show that most of the superior results occur on the datasets containing high number of
operations, thus demonstrating the ability of the proposed algorithm to effectively and
efficiently handle high-number operation machine-loading problems that occur in actual
manufacturing scenarios.

The proposed approach can be applied to similar constraint optimization problems,
particularly in allocation and scheduling, where optimizing an objective function is sub-
jected to resources availability and constraints. Although the proposed algorithm is tested
on the datasets available in the open literature, this work can be extended to test on large
scale real life problems. It can also be extended to solve multi-objective machine loading
problems and is able to handle more flexible attributes.
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