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Reactive max-min ant system with recursive local search and its application to TSP 
and QAP

Rafid Sagbana, Ku Ruhana Ku-Mahamudb and Muhamad Shahbani Abu Bakarb

aComputer Science Dept., university of Babylon, Babylon, Iraq; bSchool of Computing, College of Arts and Sciences university, utara malaysia, 
Sintok, Kedah, malaysia

ABSTRACT
Ant colony optimization is a successful metaheuristic for solving combinatorial optimization problems. 
However, the drawback of premature exploitation arises in ant colony optimization when coupled 
with local searches, in which the neighborhood’s structures of the search space are not completely 
traversed. This paper proposes two algorithmic components for solving the premature exploitation, i.e. 
the reactive heuristics and recursive local search technique. The resulting algorithm is tested on two 
well-known combinatorial optimization problems arising in the artificial intelligence problems field 
and compared experimentally to six (6) variants of ACO with local search. Results showed that the 
enhanced algorithm outperforms the six ACO variants.

1. Introduction

For the necessity of solving combinatorial optimization (CO) 
problems, metaheuristic algorithms have been invented as 
being either model-based or instance-based searching meth-
ods. Ant colony optimization (ACO) is a model-based meta-
heuristic inspired by the food foraging behavior of real ants. 
The CO problem is modeled into a construction graph so that 
stochastic search agents, called artificial ants, can perform a 
walk through that graph. The distinctive feature of ACO is a 
particular type of probabilistic model in which the graph is 
coupled with the agents. Iteratively, generations of ants move 
on graph searching feasible solutions to the CO problem under 
hand. Subsequently, the ants update the model in an on-the-fly 
reinforcement learning way, so that the search concentrates in 
regions containing high quality solutions. This learning scheme 
utilizes types of numerical values called artificial pheromone 
trails (Dorigo & Stützle, 2010). The way that pheromone trails 
are distributed, i.e. the pheromone updating functions, deter-
mines in which parts of CO search space the high quality solu-
tions are located. In ACO, an effective searching agent can be 
designed if it has the ability to achieve an appropriate balance 
between exploiting the ants’ search experience gathered so far 
and exploring relatively unvisited search space regions.

A large number of real-world problems in many fields can 
be modelled as CO problems. Despite being one of the young-
est metaheuristics, ACO algorithms achieved great success in 
problem solving of engineering design, topology optimization, 
structural optimization in electronics, aerodynamics, fluid 
dynamics, telecommunications, automotive, robotics and 
artificial intelligence, signal and image processing, scheduling 
problems, logistics and transportation (Mohan & Baskaran, 
2012; Stützle, Lopez-Ibanez, & Dorigo, 2010; Wanga, Wua, 
Yanga, & Liua, 2011). Moreover, this expansion in the appli-
cation motivates new hybrid metaheuristics (Blum, Puchinger, 

Raidl, & Roli, 2011), that do not follow the traditional ACO 
paradigm. Recently, new hybrid methods that combines local 
search with ACO algorithm have received more and more 
attention (Gambardella, Montemanni, & Weyland, 2012). 
According to Battiti, Brunato, and Mascia (2008), the most 
successful ACO applications are the ones coupling it with 
local search and advanced memory features. The main goal 
of the hybridization is to achieve well-balanced exploration 
and exploitation and to exploit the complementary charac-
teristics of manipulating neighborhood structures during 
search. However, the problem of exploitation in this category 
of local search based ACO algorithms arises when the local 
search procedures prematurely traverse the neighborhood 
structures. The search around promising regions found by 
previous generations of ants is not completely transferred to 
the future generations.

This paper tries to develop an ACO based algorithm hybrid 
with local search in which advanced memory features can be 
utilized to record information about neighborhood structures 
generated either by ants and local search routines. Two mem-
ory schemes are designed to transfer the said neighborhood 
structures over iterations; one scheme for each category. The 
recorded information is used to guide the search of ants in one 
of the most powerful variant of ACO for traveling salesman 
problem (TSP) and quadratic assignment problem (QAP), 
i.e. max-min ant system (MMAS) algorithm (Stützle & Hoos, 
2000). Hence, the proposed algorithm induced MMAS. 
Specifically, the contributions of the paper lie in two aspects:

•  Reactive heuristics are developed to be considered as 
local heuristics in the transition probabilistic rule of 
construction solution function. The arcs with low con-
centrated pheromone will be identified during the evapo-
ration function at each step of pheromone update. These 
arcs will be recorded in the scheme of component-based 

© 2016 tSI® press

KEY WORDS
optimization; combinatorial 
problems; metaheuristics; 
swarm intelligence; search 
algorithms; ant colony 
optimization; recursive local 
search; reactive heuristics; 
traveling salesman problem; 
quadratic assignment 
problem

CONTACT Rafid Sagban  rsagban@uobabylon.edu.iq

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
1:

41
 2

9 
A

pr
il 

20
16

 

mailto:rsagban@uobabylon.edu.iq
http://www.tandfonline.com


2  R. SAgBAn eT Al.

memory for future consideration after the search is 
restarted.

•  A recursive local search technique is developed based on 
the scheme of population-based memory where previ-
ous populations is achieved and then improved by local 
search. The goal of this recursive process is to intensify 
the search around current neighborhood structure.

The rest of this paper is organized as follows: Detailed 
description about ACO algorithm in terms of exploration and 
exploitation mechanisms with more highlights on hybridiza-
tion with local search is given in Section 2. Section 3 presents 
the proposed algorithm, namely reactive max-min ant system 
with recursive local search algorithm (RMMASRLS), to solve the 
drawbacks of ACO variants when coupled with local searches. 
Two new operations to overcome the drawbacks are also 
described. The experimental design and results are presented 
in Section 4 and Section 5 respectively while the conclusion is 
drawn in Section 6.

2. The exploration and exploitation in ACO

ACO is a general purpose optimization framework for problem 
solving. It takes the inspiration from the foraging behavior of 
real ants. Ants, in their continuous journey searching for food, 
mark chemical paths to be followed by other ant foragers of 
the colony. This type of indirect communication between ants 
has been described by a mathematical model. It was the result 
of some experiments called double bridge experiments. When 
the ant after some explorations finds the food it returns back to 
the nest using one of the branches of the bridge. By laying and 
following a chemical instance called pheromone, after time, 
ants will find the shortest path between food and nest. The 
natural optimization process of following the pheromone has 
been modelled computationally into a solution construction 
model called the state transition rule:

 

Where τij is the pheromone value adjusted by the parameter α 
and μij is the pre-heuristic value, which is given by: 1/distance 
(i, j) and μ is adjusted by the parameter β. The set N (sp) repre-
sents the set of untraversed edges by ant (k). After generations 
of ants construct their solutions, the updating phase starts as 
follow.

Where the ∆τij
k is calculated by:

Where Q is a constant and Lk is the cost of the tour constructed 
by ant (k) while parameter ρ ∈ [0, 1] is a pheromone trail 
decay coefficient. The first model is the analogy of laying pher-
omone on the ground and the second one is of evaporating 
pheromone by time. These distinctive models were the main 
dynamics of the first ant algorithm, namely ant system (AS) 
(Dorigo, Maniezzo, & Colorni, 1996).

(1)pkij =

⎧⎪⎨⎪⎩

��ij .�
�

ij∑
cil∈N(S

P
)
��il .�

�

il

if cil ∈ N
�
SP
�

0 otherwise

(2)�ij = (1 − �) ⋅ �ij +

m∑
k=1

Δ�kij ,

(3)Δ�kij =

{
Q∕Lk

0

if the edge
(
i, j
)
∈ ant (k)�s tour

otherwise

Although the original AS algorithm achieved encouraging 
results for the TSP problem, it was later found to be inferior 
to state-of-the-art algorithms for the TSP as well as for other 
CO problems. The unbalanced designs of exploration and 
exploitation mechanisms lead to stagnation problems when 
all the searching agents (i.e. ants) follow the same path (Dorigo 
& Stützle, 2010). For the purpose of improving the exploration 
and exploitation behavior, several AS variants have been devel-
oped under unified form that is the ant colony optimization 
framework. Exploration and exploitation are two contrary but 
complementary processes that are essential for any successful 
search (Crepinsek, Liu, & Mernik, 2013). Exploration refers to 
the probing of unvisited regions within the search space, while 
exploitation refers to the search in the neighborhood structure 
of high quality good solutions. If exploration takes precedence, 
the algorithm will explore unproductive areas of the search 
space before reaching a solution; if exploitation is too strong, 
the algorithm may converge prematurely and produce a poor 
result (Solnon, 2010). The substantial difference among ACO 
algorithms is in the way that they manage the exploration and 
exploitation balance. The work in exploration and exploitation 
mechanisms in ACO is divided in to three parts. These are the 
pheromone memory management, the parameterization and 
hybridization.

In the first part, several mechanisms can be highlighted 
such as the elitism in elitist ant system (EAS), trail learning 
in ant colony system (ACS) and ant based Q-learning (Ant-
Q), ranking in rank-based ant system (RAS), trail bounding 
in MMAS and subtract pheromone in best-worst ant system 
(BWAS) (Dorigo & Stützle, 2010). More strategies have been 
stemmed from other computational fields such as such the idea 
of lower bounds (LB) used in the development of beam search-
based ACO (BACO). It is reliable on the completion of a partial 
solution, which is derived from branch-and-bound. Another 
approach for memory management relies on the interaction 
between several pheromone memories. This approach har-
nessed in developing successful methods for solving multi-ob-
jective problems (López-Ibáñez & Stützle, 2012). An advanced 
memory was added in the so-called population-based ACO 
(PACO) approach. It has been shown that PACO with restart 
mechanism was competitive to the standard ACO approach. 
PACO relies on an auxiliary memory called population for 
deriving new pheromone updating models (Oliveira, Stützle, 
Roli, & Dorigo, 2011). The amount pheromone added/dropped 
relies on the size of the memory, which denoted. This approach 
contributes in faster pheromone updates for ACO and moti-
vates the invention of more advanced features.

In the second part, the exploration and exploitation is 
maintained by the parameterization, where the parame-
ters’ values of ACO algorithm are changed in an on-line or 
off-line way. The off-line techniques are either trial-and-er-
ror scheme or machine learning scheme. Both schemes are 
applied before running the algorithm. For the first scheme, it 
required an experience about the fitness landscape of the CO 
problem under hand. The lack of this experience in advance 
is the main obstacle in applying this scheme. For the second 
scheme, machine learning mechanisms used to propose a suit-
able parameter setting for each CO instance. These solutions 
consumes more time before running the algorithm (Pellegrini, 
Stützle, & Birattari, 2010).The on-line techniques are propos-
als to change the parameters’ values during the run. This may 
increase the complexity and the burden of development of the 
algorithm. The lack of successful methodologies for applying 
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 InTellIgenT AuTOMATIOn & SOfT COMpuTIng  3

such techniques in ACO justified its poor performance when 
it is applied to classical CO problem such as TSP or QAP.

In the third part, the combinations between basic techniques 
for pheromone management (Dorigo & Stützle, 2010) with 
local search algorithms (Blum et al., 2011) are the most success-
ful approach for improving the quality of solutions produced 
by ACO algorithm. Although ACO can be applied without 
coupling with local search procedures, very often its solutions’ 
quality is greatly improved if it is extended to include it. The 
first step in applying local search is to determine the type of 
neighborhood. One common way is via k-exchange moves that 
exchange a set of k components of a solution with a different 
set of k components. Cheng and Mao (2007) introduced two 
local heuristics to direct ants during the solution construction. 
Yanga, Shia, Marcheseb, and Liang (2008) combined the ACO 
with a mutation and 2-Opt heuristic. Uǧur and Aydin (2009) 
developed a web-based interactive tool to simulate the behav-
ior of several ant colony optimization algorithms with 2-Opt 
and 2.5-Opt local search procedures. However, the simulation 
focused on visualizing the optimization process rather than 
the quality of solutions. Liu (Liu, 2010) applied heap sort algo-
rithm for 2.5-Opt local search and combined them with ACO. 
Chena and Chiena (2011) hybridized ACO, particle swarm 
optimization (PSO) and genetic algorithm (GA) with simu-
lated annealing (SA) local search. Gambardella et al. (2012) 
enhanced the framework of ant colony system when coupled 
with strong local searches by adding new speedup routines. 
The definition of strong local search formalized the ability of 
local search to improve the quality of solutions produced by 
any search method autonomously and efficiently.

3. The proposed algorithm

This section details the main contributions of this paper. Its 
start with defines the main memory schemes that will be used 
for transferring neighborhood structures over iterations. With 
reference to the general framework of ACO, the probabilistic 
construction and update pheromone are the main exploration 
and exploitation components. On the other hand the local 
search became essential component in the definition of ACO 
as an aggressive exploitation component. It has the ability to 
bring the best so far solutions produced by artificial ants to its 
local minimum. In the presence of local search, the role of the 
probabilistic construction and update pheromone components 
is less prominent, together with the limitation that the local 
search itself in transferring the neighborhood structure over 
iterations. The local search is applied after artificial ants con-
struct their solutions. In the next iteration, new solutions are 
generated and new local search is applied. In particular, two 
operations to overcome the problem are: The first one regards 
the probabilistic construction and pheromone update com-
ponent and the second the integration with local search itself.

3.1. Defining the memory schemes

The proposed enhancements rely mainly on utilizing advanced 
memories, i.e. component-based and population-based mem-
ories, to record the features of the neighborhood structures 
drawn during current search. The first memory scheme, 
namely components-based memory (CbM) is associated with 
reactive heuristics (RH) in the context of {0, 1} values. The RHs 
denote whether the solution component is significant or not. 
A threshold value ϵ is used to characterize the value of RH. It 

sets to 1/ρ * Cnn where ρ is the evaporation rate and Cnn is the 
heuristic value. In each iteration and within the evaporation 
model of pheromone update, the components of each solution 
are tested whether it is being decreased below the threshold to 
be marked as {1} in the corresponding RH, i.e. rhij. This process 
will be iterated until a state of convergence is happened. The 
average λ-branching factor and acceptance criteria described 
in (Stützle, 1999) are used to determine the convergence phase. 
This active learning process is highly dependent on the evapo-
ration rate (ρ) that is defined in equation (2). Hence, the values 
of RHs are derived based on the following formula.

 

Where the �ij the pheromone trail associated with the solu-
tion components. After convergence, the values of RH will be 
exploited as a reactive heuristics to guide the artificial ants in 
their probabilistic construction process as follows:

 

The second memory scheme, namely population-based mem-
ory (PbM) is associated with the current population rather 
than the component of each solution. The main role of PbM 
is to keep a small population P = {P1,...Pk} of just improved 
solutions by the so called recursive local search (RLS). The 
value of k represents the size of memory P and it sets to small 
value to minimize the computations. After the new solutions 
have been generated, the population P is updated. If the current 
local search is succeeded in improving the quality of solution 
it will be used in P update otherwise, a recursive way of updat-
ing is conducted, i.e. RLS. It activated when the typical local 
search is failed in improving quality of solutions. In RLS, just 
dropped solutions from P are recursively used in updating. The 
k-Opt local search algorithms are suitable for hybridization 
with ACO due to their ability to improve the quality of solu-
tions. The local search manipulated relies on examining the 
neighbourhood structures with the 2-Opt strategy. For TSP, the 
3-Opt local search with don’t look bit and nearest neighborhood 
data structures (Dorigo & Stützle, 2004) is utilized. For QAP, 
3-Opt with the first-improvement strategy is used to hasten the 
expensive evaluation function property. Therefore, the differ-
ence between objective functions before and after local search, 
i.e. ∆f = f(sgb)—f(s’gb), is hastened. The difference between the 
local search procedures between TSP and QAP is the speedup 
techniques where in QAP the second examination is simply 
cancelled when the first one does not improve the solution (sgb).

3.2. The implementation of RMMASRLS

In this section, an enhanced variant of MMAS denoted as 
RMMASRLS is developed after adding the above mentioned 
algorithmic components, i.e. the reactive heuristics and 
recursive local search as depicted in Figure 1. Before the 
algorithm starts solving the CO problem, the CbM and PbM 
memory structures are initialized. The RH memory records 
the arcs below the predefined threshold (see Subsection 3.1) 
of pheromone trails so that the unexplored regions in the 
current search are shifted to the next search. The ability of 
ants to remember their previous search influences their future 

(4)f
(
RH , 𝜀, 𝜏ij

)
=

{
rhij ← 1 if 𝜏ij < 𝜀

rhij ← 0 if 𝜏ij ≥ 𝜀

(5)pkij =

⎧⎪⎨⎪⎩

��ij .�
�

ij
.rhij∑

cil∈N(SP)
��il .�

�

il
.rhil

if cil ∈ N
�
SP
�

0 otherwise
(5)
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4  R. SAgBAn eT Al.

and the statistical significance of the reported performance 
improvement for TSP and QAP. The first part of results focuses 
on the behavior of the proposed algorithm for solving TSP 
comparing with other ACO variants. The parameter settings for 
the ACO variants are selected from their literature as follows: 
The number of ants (m) is equal to the number of cities except 
ACS where m is equal to 10. The pheromone intensity (α) and 
pre-heuristic distance (β) are equal to 1 and 2 respectively for 
all variants. Evaporation rate (ρ) is 0.5 for AS and EAS; 0.1 
for RAS, BWAS and ACS; and 0.02 for MMAS. Some ACO 
variants have several additional parameters. The settings for 
these parameters are: RAS: number of ranks (r) are 6; ACS: q0 
is 0.9; local update parameter is 0.1; number of nearest neigh-
bor cities is 20 for all ACO variants. The initial pheromone 
(τ0) is set to 1∕� ∗ Cnn in MMAS and to 1/n * Cnn in ACS. In 
the original papers of AS, EAS, and RAS, the value of τ0 was 
not exactly defined. Hence it is set to 1∕� ∗ Cnn. ACO variants 
are tested with local search 3-opt. The second part of experi-
ments focus on the application of the proposed algorithm to 
QAP problem. The execution times are proportional to the 
size and the structure of the QAP instance. These time’s dura-
tions are for short and long executions. For standard MMAS, 
the parameter setting is selected from the literature as follows: 
m = 5; α = 1; ρ = 0.8 and the exploration/exploitation param-
eter q0 is equal to 0.5. The evaluation metrics are the average 
and standard deviation for the quality of solutions of the ten 
independent runs. In the third part, the non-parametric sta-
tistical test Wilcoxon was used to verify the significance of the 
improvement in quality. Wilcoxon signed-ranks test is based 
on the positive and negative ranks of the mean of the quality 
of solutions matric (Derrac, García, Molina, & Herrera, 2011). 
The test performed with 0.05 significance level and one-tailed 
hypothesis.

decisions according to the new decision model (see Equation 
5). The RH’s heuristics is beneficial to solve the CO problems 
even those depends on the pre-heuristic (e.g. distances among 
cities in TSP). In the proposed model, ants for each decision, 
will utilize three sources of information: ��ij ,�

�

ij
and rhij. Using 

RH’s heuristics, the decision process will be more informative. 
Subsequently, new information about the search space starts 
to cumulate in the pheromone trails �ij. At this point of run 
time, ants are biased toward high pheromone intensity. The 
pre-heuristic information about search space is becoming 
ineffectual in the decision of ants. The RH memory stays not 
active during this time of optimization progress unless the 
stagnation is indicated by the feedback measures. Once the 
search is stagnating the search will be is restarted, together 
with reactivating RH memory and utilizing the new construc-
tion solution model.

At each generation of solutions for CO, one of three best 
solutions is chosen to be added to the P memory: The best-iter-
ation solution, the best-so-far solution or the old-best solution. 
The first and second solutions are typical choices in other ACO 
algorithms, while the third one is new. For the management of 
added/dropped solutions in P memory, a simple first-in-first-
out (FIFO)-strategy is adopted. Once a solution is dropped, it is 
recursively re-added back to P if its quality is improved by local 
search. This is the so-called recursive local search (RLS). In 
this way, the neighborhood structure treated by the stochastic 
local search is explored carefully and the exploitation process 
is treated more completely.

4. Experimental design

The experiments conducted are divided into three parts: The 
comparison with ACO algorithms, the application to QAP 

Algorithm: RMMASRLS 

InitializeParameters () 
   Initialize_T_Memory () 

Initialize_RH_Memory () // CbM scheme
   Initialize_P_Memory ()  // PbM scheme
   while (not terminate) do // termination condition is fixed to 10 sec in TSP and varied as in Tables 1 & 2 in QAP
       for k  1 to m do  
             if (no stagnation) do

ConstructSolutions (T, C)  
else 

ReactiveRestart (Sgb, Sk, History) 
       ConstructSolutions (T, C, RH) 
             end-else 
             end-if 
             Sib  argmin{f(Sk | k 1 to m )} 
             if (f(Sib) < f(Sgb))              
              Sgb  argmin{f(Sgb), f(Sib)} 

S’gb LocalSearch(Sib) 
Sgb  argmin{f(Sib), f(S’ib)} 

Add (Sgb) 
                  if (P = |P|)              
                  Sob  Drop () 

S’ob  RLS (Sob) 
Sob  argmin{f(Sob), f(S’ob)} 

            else 
                  if(f(Sob) < f(Sgb)) 
      Add(Sob) 
 else 

     Add(Sib) 
Evaporate (RH, T, min) 
DepositPheromone (T, Sgb) 

     end-for 
  end-while 
end-algorithm 

Figure 1. the pseudocode for RmmASRlS Algorithm.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ite
 L

av
al

] 
at

 2
1:

41
 2

9 
A

pr
il 

20
16

 



 InTellIgenT AuTOMATIOn & SOfT COMpuTIng  5

better to have a well-tuned algorithm, the parameter setting 
of the proposed algorithm does not tuned to confirm that the 
improvement is due to the effectivity of the contributed algo-
rithmic components not a matter of parameter tuning.

5. Computational results

In Figures 2 and 3, the y-axis visualizes the quality of solu-
tions measured by the mean of the best solutions found during 
the 10 runs conducted to solve TSP. The x-axis represents the 
ACO algorithms (one bar for each algorithm). There are six 
standard stochastic local search algorithms namely AS, EAS, 
RAS, ACS, BWAS and MMAS are used in the experiments. The 
3-Opt algorithm are coupled with the tested ACO algorithms 
including RMMASRLS. The experiments covered three sizes of 
TSP instances; small; medium and large.

In Figure 2, for the small and medium sizes of instances, 
the performance of the tested ACO algorithms started equally 
except in AS algorithm was bad due to the early conference 

The QAP and TSP instances are selected from TSPLIB 
(Reinelt, 1991) and QAPLIB (Burkard, Cela, Karisch, & Rendl, 
1997) repositories respectively. For QAP case, selected instances 
were bur26a, bur26b, bur26c, bur26d, bur26e, bur26f, bur26g, 
bur26h, chr25a, els19, kra30a, kra30b, tai20b, tai25b, tai30b, 
tai35b, tai40b, tai50b, tai60b and tai80b while for the TSP case 
they were st70, Eil76, pr76, gr96, rat99, KroA100, KroB100, 
KroC100, KroE100, rd100, d198, lin318, pcb442, rat783 and 
pcb1173. The experiments were conducted on Windows 8 
64-bit operating system, processor Intel Core i3–3217U with 
CPU @ 1.80 GHz, RAM 4 GB. The proposed algorithm was 
coded in C language. The MMAS-TSP were selected based 
on ACOTSP 3.0 (Dorigo & Stützle, 2004), where it is easily 
extended to solve QAP. The parameter settings for the proposed 
algorithm are described as follows: For the TSP, the k is equal 
to 10; the ants’ number (m) is equal to 25; the pheromone 
intensity (α) is equal to 1 and evaporation rate (ρ) is 0.2. For 
the QAP, k = 10; m = 5; α = 1; ρ = 0.8 and the exploration/
exploitation parameter q0 is equal to 0.5. Although it is always 

Figure 2. the performance of RmmASRlS Versus other ACo Variants for Solving Small and medium Sizes of tSp problems.

Figure 3. the performance of RmmASRlS Versus other ACo Variants for Solving large Size of tSp problems.
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not such big so the ACS and RMMASRLS are still showing the 
same performance. It is worth mentioning that the proposed 
algorithm is not well-tuned while the parameter setting of all 
other ACO variants is optimized as shown in the literature. 
The results showed that the proposed algorithm and the EAS 
are the best where the exploitation is the dominant process in 
large instances. Hence, the proposed algorithm also showed 
good performance with large TSP instances. As overall result 
for this part of experiments, the performance of the proposed 
algorithm is good in solving all sizes of TSP even with tight run 
time. It outperformed other ACO variants for solving all TSP 
instances except pcb1173.tsp. It can be seen from the results that 
coupling local search procedures with ACO algorithms did not 
affect the outperformance of the proposed algorithm. That is 
because of the aggressive exploitative contributed by RLS tech-
nique throughout the searching period with the ability to turn 
to exploration contributed by reactive heuristics (see Figure 3).

In the subsequent subsections the results of the second part 
of experiments is presented. The results of the application of 

problem (as in d198.tsp). When the size increased (as in lin318.
tsp) the performance of the tested algorithms starts to be dispa-
rate. The previous two experiments showed that the proposed 
components are beneficial in solving small scale instances for 
TSP problem and confirmed the outperformance of the pro-
posed algorithm. For the medium size of instances, the outper-
formance of the proposed algorithm continued. For the TSP 
instance pcb442.tsp, the MMAS and the RMMASRLS are the best 
among other ACO variants. The proposed algorithm inher-
its the exploration and exploitation components of MMAS. 
For the TSP instance rat732.tsp, the ACS and the RMMASRLS 
are the best among other ACO variants. Here, the aggressive 
exploitation of the proposed RLS technique is dominates the 
standard local search coupled with ACS. The proposed com-
ponents are still beneficial in solving this size of instances for 
TSP problem.

For the large size of instances, the proposed algorithm is 
still competitive except in pcb1173.tsp instance the results were 
competitive but not better than BWAS. However, the gap is 

Table 1. performance of RmmASRlS Algorithm on QAp Instances (Short run).

note: Bold values indicate that the quality of solutions provide by the proposed algorithm is better than the standard algorithm as shown by the lower mean, stand-
ard deviations (SD) and best quality.

QApinstance Best known Sec.

MMAS-QAp RMMASRlS-QAp

Mean SD Best Mean SD Best
bur26a 5,426,670 8 5,427,097 636 5,426,670 5,426,670 0 5,426,670
bur26b 3,817,852 8 3,817,935 73 3,817,852 3,817,852 0 3,817,852
bur26c 5,426,795 8 5,426,893 107 5,426,795 5,426,795 0 5,426,795
bur26d 3,821,225 8 3,821,255 48 3,821,225 3,821,225 0 3,821,225
bur26e 5,386,879 8 5,387,074 185 5,386,879 5,386,879 0 5,386,879
bur26f 3,782,044 8 3,782,048 6 3,782,044 3,782,044 0 3,782,044
bur26 g 10,117,172 8 10,117,324 182 10,117,172 10,117,172 0 10,117,172
bur26 h 7,098,658 8 7,098,708 103 7,098,658 7,098,658 0 7,098,658
chr25a 3,796 4 4,562 172 4,304 4,177 99 3,984
els19 17,212,548 2 17,241,610 43,635 17,212,548 17,212,548 0 17,212,548
kra30a 88,900 8 95,609 224 95,145 94,372 157 94,130
kra30b 91,420 9 92,298 217 91,900 91,523 120 91,420
tai20b 122,455,319 3 122,667,105 172,642 122,455,319 122,455,319 0 122,455,319
tai25b 344,355,646 5 345,428,471 762,772 344,653,810 344,379,559 75,620 344,355,646
tai30b 637,117,113 9 638,804,383 580,656 637,743,822 637,218,046 258,852 637,117,113
tai35b 283,315,445 15 284,997,173 371,182 284,180,375 283,768,905 241,686 283,315,445
tai40b 637,250,948 24 639,646,179 677,314 638,452,551 637,375,646 133,920 637,250,948
tai50b 458,821,517 50 461,287,056 853,848 459,959,918 459,293,938 126,779 459,121,468
tai60b 608,215,054 90 612,310,940 960,895 611,081,614 608,922,672 297,495 608,387,539
tai80b 818,415,043 225 828,968,489 3,493,073 822,936,304 822,384,964 1,731,411 820,317,326

Table 2. performance of RmmASRlS Algorithm on QAp Instances (long-run).

note: Bold values indicate that the quality of solutions provide by the proposed algorithm is better than the standard algorithm as shown by the lower mean, stand-
ard deviations (SD) and best quality.

 QApinstance Best known Sec.

MMAS-QAp RMMASRlS-QAp

Mean SD Best Mean SD Best
bur26a 5,426,670 50 5,426,670 0 5,426,670 5,426,670 0 5,426,670
bur26b 3,817,852 50 3,817,853 4 3,817,852 3,817,852 0 3,817,852
bur26c 5,426,795 50 5,426,796 2 5,426,795 5,426,795 0 5,426,795
bur26d 3,821,225 50 3,821,225 0 3,821,225 3,821,225 0 3,821,225
bur26e 5,386,879 50 5,386,879 0 5,386,879 5,386,879 0 5,386,879
bur26f 3,782,044 50 3,782,044 0 3,782,044 3,782,044 0 3,782,044
bur26 g 10,117,172 50 10,117,172 0 10,117,172 10,117,172 0 10,117,172
bur26 h 7,098,658 50 7,098,658 0 7,098,658 7,098,658 0 7,098,658
chr25a 3,796 40 4,154 116 3,946 4,042 144 3,796
els19 17,212,548 20 17,212,548 0 17,212,548 17,212,548 0 17,212,548
kra30a 88,900 76 94,588 151 94,340 94,239 148 93,930
kra30b 91,420 86 91,517 88 91,420 91,434 29 91,420
tai20b 122,455,319 27 122,455,319 0 122,455,319 122,455,319 0 122,455,319
tai25b 344,355,646 50 344,496,014 122,804 344,355,646 344,355,646 0 344,355,646
tai30b 637,117,113 90 637,612,929 440,084 637,152,585 637,128,942 11,091 637,117,113
tai35b 283,315,445 147 284,231,012 101,855 284,027,477 283,378,972 134,301 283,315,445
tai40b 637,250,948 240 638,153,448 381,309 637,598,806 637,259,823 19,516 637,250,948
tai50b 458,821,517 480 460,204,146 349,142 459,529,895 459,036,877 59,112 458,923,553
tai60b 608,215,054 855 610,393,364 462,570 609,780,832 608,563,150 104,995 608,387,539
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Online parameter adaptation is another direction to automate 
the exploration/exploitation balance of the proposed algorithm.
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