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Abstract

The detection and prediction of changes in coastal ecosystems require a better understand-

ing of the complex physical, chemical and biological interactions, which involves that obser-

vations should be performed continuously. For this reason, there is an increasing demand

for small, simple and cost-effective in situ sensors to analyze complex coastal waters at a

broad range of scales. In this context, this study seeks to explore the potential of beam

attenuation spectra, c(λ), measured in situ with an advanced-technology optical transmis-

someter, for assessing temporal and spatial patterns in the complex estuarine waters of

Alfacs Bay (NW Mediterranean) as a test site. In particular, the information contained in the

spectral beam attenuation coefficient was assessed and linked with different biogeochemi-

cal variables. The attenuation at λ = 710 nm was used as a proxy for particle concentration,

TSM, whereas a novel parameter was adopted as an optical indicator for chlorophyll a (Chl-

a) concentration, based on the local maximum of c(λ) observed at the long-wavelength side

of the red band Chl-a absorption peak. In addition, since coloured dissolved organic matter

(CDOM) has an important influence on the beam attenuation spectral shape and comple-

mentary measurements of particle size distribution were available, the beam attenuation

spectral slope was used to analyze the CDOM content. Results were successfully com-

pared with optical and biogeochemical variables from laboratory analysis of collocated

water samples, and statistically significant correlations were found between the attenuation

proxies and the biogeochemical variables TSM, Chl-a and CDOM. This outcome depicted

the potential of high-frequency beam attenuation measurements as a simple, continuous

and cost-effective approach for rapid detection of changes and patterns in biogeochemical

properties in complex coastal environments.
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Introduction

Coastal regions are highly dynamic and productive ecosystems, with high ecological and eco-

nomic values [1]. They are also vulnerable areas subjected to considerable anthropogenic pres-

sures through urban and industrial development, pollution, fisheries, agriculture and

aquaculture, recreation, etc. These pressures have caused, in many cases, habitat degradation

carrying serious environmental and economic consequences, such as harmful algal blooms

(HABs), anoxia, accumulation of pollutants and toxins or over-exploited fisheries [2]. Added

to this, the effects of climate change and natural hazards are threatening the capability of

coastal ecosystems to support goods and valuable services [3]. For these reasons, increasing

national and international efforts have been addressed over the last decades to establish and

implement environmental strategies for preservation, conservation and sustainable use of

these ecosystems. In accordance with the requirements of the European Water Framework

Directive (WFD, 2000/60/EC) and the Marine Strategy Framework Directive, new interdisci-

plinary research programs are successfully being carried out such as the coastal module of the

Global Ocean Observing System (Coastal GOOS), the Coastal Observing System for Northern

and Arctic Seas (COSYNA), the Global Earth Observations System of Systems (GEOSS) or the

Marine Geological and Biological Habitat Mapping (GEOHAB). All those programs have been

conceived to monitor, forecast and assess the state of coastal ecosystems, which involve inte-

grated, multidisciplinary and multiscale observing systems. Coastal environments are gov-

erned by complex physical and biogeochemical processes and thus, undergo changes over a

broad range of time-space scales. Continuous and routine provision of data is therefore

required to assess the states of these ecosystems, detect changes in these states and evaluate

their impacts [4]. In addition, there is a demand for compact, inexpensive, stable and low

power in situ sensors to enable sustainable and long-term monitoring.

A powerful solution to resolve in-water variability at a wide range of space and time scales

is the use of in situ measurements of Inherent Optical Properties (IOPs) [5–8]. IOPs depend

on the composition, morphology, and concentration of the particulate and dissolved chro-

mophoric substances in the water and thus, can be used to estimate some water quality vari-

ables (e.g. turbidity) [9] and biogeochemical properties (e.g. Chlorophyll a and suspended

matter concentrations) [10–11]. Among the IOP measuring devices, transmissometers present

numerous advantages due to their general availability and simplicity of both operation and

data processing [12]. These devices have been used to estimate the concentration of the sus-

pended material in water [13], the composition [11] and size distribution of particles [14] and

the particulate organic carbon [8, 15]. Furthermore, several studies have demonstrated the

relationships between particulate attenuation, cp, and chlorophyll concentration (as an index

of phytoplankton biomass) in oceanic waters [16–18]. In coastal waters, cp also registers

changes in inorganic, detrital, and heterotrophic particles, thus compromising its correlation

with chlorophyll a (Chl-a) concentration [18]. Nevertheless, the correlation between both vari-

ables (i.e. cp and Chl-a) still needs to be further explored.

Recent technological advances have led to the development of high spectral resolution (i.e.

hyperspectral), cost-effective, compact and low power transmissometers (e.g. VIPER, TriOS

GmbH [19]), which have improved the operational capabilities. In this context, this study eval-

uates the potential of economically affordable and advanced-technology transmissometers to

detect changes and patterns in the biogeochemical properties at high temporal and spatial res-

olution in complex coastal environments. In particular, we focus on the information contained

in the spectral beam attenuation coefficient and explore its suitability as a qualitative proxy for

different biogeochemical properties. The observed patterns are analyzed in relation to the pre-

vailing physical forcing to better understand the biophysical coupling.
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This study is focused on the microtidal estuary of Alfacs Bay (Ebro Delta, NW Mediterra-

nean coast), using it as a test site. This bay is an important shellfish production area commonly

affected by HABs events, which lead to significant economic losses [20]. For this reason, this

area has been intensively monitored since 1990. Research efforts have focused on characteriz-

ing the hydrodynamics of this bay [21–25], its ecology [26–29] and the coupling between phys-

ical and biological processes [30]. However, the use of optical-based approaches in this area

-which allow the assessment of fine-scaled temporal and spatial variability of water constituent

characteristics- is still very limited. Only Busch (2013) [31] analyzed the phytoplankton

dynamics in this environment using radiometric measurements, which provided useful data

only in day time. One of the main conclusions of this author was that continuous observations

in Alfacs Bay are required to properly understand the rapid ecosystem dynamics.

Materials and Methods

Study site

Alfacs Bay is located in the south of the Ebro River Delta (Spain), in the NW Mediterranean

Sea (Fig 1). It is a shallow estuarine bay with 11 km length, 4 km width and a maximum depth

of 6.5 m. It is a semi-enclosed embayment separated from the open sea by a sand barrier that

leaves an opening of roughly 2.5 km width, allowing the exchange of water with the open sea.

The major physical forcings in the bay are wind and freshwater input, whereas tidal forcing is

negligible with a maximum range of 0.25 m [32]. The freshwater discharge is derived mainly

from the rice-fields irrigation channels, located in the northern part of the Bay. These channels

are open from April to October or November, with an average flux rate of ca. 14.5 m3�s−1 [22].

The freshwater inputs induce vertical stratification, while only during strong wind events the

water column is vertically mixed [21]. Heat fluxes in the ocean-atmosphere boundary layer in

summer periods contribute in addition to stratifying the water column [33].

Field campaign

No specific permissions were required for the location of the field campaign, and the study did

not involve endangered nor protected species. Two sampling strategies were adopted to ana-

lyze both temporal and spatial patterns in Alfacs Bay in June 2013. The analysis of temporal

patterns was conducted from the 24th of June at 9:30 pm for 48 hours. This time series of verti-

cal profiles was gathered from 0.5 m to 3 m depth at a fixed station located in the north-central

part of the Bay (blue circle in Fig 1). At this station, simultaneous measurements of physical

(wind and current velocities and direction, and water temperature) and optical parameters

(beam attenuation and near-forward angular scattering) were conducted continuously with a

vertical resolution of 0.5 m. At each depth, instruments measured for 10 minutes. Thereby,

each vertical profile took approximately 1 hour. Water samples were collected every 6 hours at

three different depths (0.5 m, 1.5 m and 3 m) for later laboratory analysis of biogeochemical

and optical parameters [Chl-a, total suspended matter (TSM), algal and non-algal particulate

absorption (aph and anap, respectively) and coloured dissolved organic matter (CDOM)

absorption]. The analysis of the spatial variability was undertaken on the 27th of June at seven

stations along the bay (red circles in Fig 1). At each station, measurements of physical (temper-

ature and salinity) and optical parameters were made with a ship deployed profiling package

and water samples were collected at three different depths (0.5 m, 3 m and 0.5 m above the bot-

tom). Instruments measured for 5 minutes every 0.5 m along each depth profile.

Physical parameters. Wind data were obtained from the weather station nearby the

coastline in Les Cases de Alcanar, ca. 5 km south of Alfacs Bay (Fig 1). Three-dimensional cur-

rent velocities were measured with an upward-looking Acoustic Doppler Current Profiler

Analysis of Complex Coastal Waters by Means of Optical Transmissometry
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(ADCP, 2MHz Aquadopp, Nortek) moored at roughly 2 m depth since the maximum depth at

this station was 3.5 m. It was configured to record 10-min average data with vertical cells of

about 25 cm.

Water temperature and salinity were measured with the CTD48M (Sea&Sun Technology,

Germany). Unfortunately, a failure in the instrument caused the loss of the data corresponding

to the temporal analysis at the fixed sampling station. Temperature data provided by the multi-

ple-parameter system LISST (Sequoia Scientific Inc.) were used instead.

Optical measurements. Spectral beam attenuation coefficient was measured with the

25-cm path length VIPER (TriOS GmbH., Germany [19]). It is an open-path hyperspectral

transmissometer which measures the beam attenuation, c(λ), in the spectral range from 360

nm to 750 nm, with an optical resolution of 15 nm (defined by the FWHM) and an acceptance

angle of 0.8˚. More detailed information about the instrument performance and validation can

be found in Ramı́rez-Pérez et al. (2015) [34]. VIPER measurements were carefully performed

(i.e. on the shadow side of the ship and under calm sea surface conditions) to avoid ambient

light contamination [34]. c(λ) data were collected continuously and averaged over 5 minutes.

Milli-Q water references were subtracted and data were corrected for temperature and salinity

dependence of pure seawater to derive the total non-water beam attenuation spectrum, cpg(λ)

[34]. Measurements of particle size distribution (PSD) from 1.25 μm to 250 μm were con-

ducted with the LISST-100X (Sequoia Scientific, Inc.). This instrument measures the near-for-

ward scattering at 32 logarithmically spaced angles and the beam attenuation at 670 nm [35].

A successfully performance analysis between the attenuation measured at 670 nm by LISST

and VIPER was previously carried out [34]. Therefore, this study focused only on the LISST

scattering data to derive the particle size distribution. The volume concentration, V(D), was

obtained through inversion of the angular forward scattering pattern using the manufacturer-

provided inversion routine. The used inversion algorithm is based on a kernel matrix derived

from Mie theory of scattering by spherical particles. Data from the outer and inner rings were

excluded from further analysis due to the instability observed in the smallest and largest size

Fig 1. Location map of Alfacs Bay in NW Mediterranean Sea. The red star indicates the location of the weather station, whereas circles

show the sampling stations for the analysis of temporal (blue circle) and spatial (red circles) patterns. Map produced with Open Street Map.

doi:10.1371/journal.pone.0170706.g001
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ranges [36]. Then, the particle number distribution, N(D), was calculated from the equation:

NðDÞ ¼ 6 � VðDÞ=ðpD3Þ ð1Þ

where D represents the diameter of a volume-equivalent sphere for the midpoint of each size

class. To obtain the PSD, the average number of particles in each size class was divided by the

width of the class, which is denoted as N'(D). Finally, the PSD was fitted to the power-law func-

tion (or Junge distribution) [37]:

N 0ðDÞ ¼ N 0ðD0Þð
D
D0

Þ
� x

ð2Þ

where D0 is a reference diameter, N'(D0) the differential number concentration at D0 and ξ is

the nondimensional PSD slope.

Laboratory analysis of water samples.

• CDOM absorption measurements: absorbance spectra (240–600 nm) were acquired with the

Aqualog fluorescence spectrometer (HORIBA JobinYvon, Germany) directly after sampling.

Water samples were syringe-filtered with 0.2 μm Whatman Spartan filters before analysis

with 1 cm quartz cuvettes. Absorbance measurements were further converted to absorption

coefficient, which is used as a proxy for the CDOM content in a given water sample. The

Napierian absorption coefficient of CDOM at each wavelength (aλ) was obtained from the

given equation:

alðm
� 1Þ ¼ ð2:303 � AlÞ=L ð3Þ

where Aλ is the absorbance at specific wavelength and L is the cuvette path length in meters.

More detailed information about the measurement protocol can be found in Gonçalves-Ara-

ujo et al. (2015) [38]. CDOM absorption spectra, a(λ), were fitted to the following exponen-

tial function [39]:

aðlÞ ¼ aðl0Þ � e
� Sðl� l0Þ ð4Þ

where S represents the spectral slope and a(λ0), the absorption coefficient at a reference

wavelength λ0 (443 nm in this case). The function was fitted to the wavelength range from

300 to 600 nm and extrapolated to 720 nm for later analysis of CDOM contribution at longer

wavelengths.

• Algal and non-algal particulate absorption (aph(λ) and anap(λ)): water samples were immedi-

ately filtered through ø 47-mm GF/F filters (pore size 0.7 μm), shock-frozen in liquid nitro-

gen and stored at -80˚C until analysis in the laboratory at the Alfred-Wegener-Institute. The

partition of the particulate absorption, ap(λ), into phytoplankton, aph(λ), and non-algal

absorption, anap(λ), was performed by the filter pad technique following Ferrari and Tassan

(1999) [40]. We used a Cary 4000 UV/VIS dual beam spectrophotometer equipped with a

150-mm integrating sphere (Varian Inc., USA) as described in Taylor et al. (2011) [41]. The

measurement procedures and data analysis were performed as detailed in Röttgers and

Gehnke (2012) [42]. Phytoplankton absorption aph was obtained as the difference between

ap and anap.

• Chlorophyll a: water samples for phytoplankton pigments analysis were filtered immediately

after collection through ø 25-mm Whatman GF/F filters (pore size 0.7 μm). Then, filters

were shock-frozen in liquid nitrogen and stored at -80˚C until analysis in the laboratory at

the Alfred-Wegener-Institute. The extracted pigments were analyzed using the High Perfor-

mance Liquid Chromatography (HPLC) technique following the method of Barlow et al.
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(1997) [43], with modification customized to our instruments as detailed in Taylor et al.
(2011) [41]. In this study, we use the Chl-a concentration as an index of phytoplankton bio-

mass and covarying materials (biogenic detritus).

• Total suspended matter concentration: TSM concentration was determined gravimetrically

following Röttgers et al. (2014) [44] to reject potential errors associated with salt retention in

the filters and loss of materials during washing and combustion [44–45]. Thereby, four dif-

ferent volumes of each water sample (within the range from 0.6 to 2.2 liters) were filtered

immediately after collection through pre-weighed Whatman GF/F filters (ø 47 mm). After-

wards, the gained mass of each filter was determined by subtracting the weight of the filter

from the final weight. A linear regression analysis was performed for filtered volume versus

the gained mass, and the regression slope was taken as the TSM concentration value [44].

Data and statistical analysis

This study explored the information contained in the beam attenuation spectrum as a proxy

for different biogeochemical properties. In particular, the analysis focused on three major

spectral features, which are described as follow (Fig 2):

• Spectral slope: it is the major spectral shape feature of the beam attenuation coefficient and

is related to the particle size distribution and CDOM content [46]. For this reason and due

to the lack of in situ CDOM absorption measurements, we used the total non-water beam

attenuation spectral slope to detect variations in CDOM. This simplification was adopted

because of the high CDOM content in Alfacs Bay [31] and the availability of additional parti-

cle size distribution measurements. To compute this parameter, beam attenuation spectra

were fitted to the power-law function [46]:

cpgðlÞ ¼ cpgðlrÞ � ðl=lrÞ
� g

ð5Þ

where λr is a reference wavelength (532 nm, in our case) and γ is the power-law slope. The

exponent was derived by non-linear least-squares regression, with a r2>0.98 in all cases.

• Peak height associated with red band phytoplankton absorption peak: although c(λ) is typi-

cally a smoothly varying function of wavelength [46–47], deviations from its theoretical

behavior -associated with absorbing particles- have been reported by several authors [48–

50]. Zaneveld and Kitchen (1995) [48] observed step increases at the long-wavelength side of

the chlorophyll absorption peaks as result of anomalous diffraction and dispersion [51],

which was called "absorption peak effects". This local maximum is therefore expected to be

related to the Chl-a content (in addition to other factors such as the particle size distribution)

[48]. For this reason, the link between the local maximum of c(λ) and the Chl-a concentra-

tion was tested in this study, since it can provide a first estimate of phytoplankton biomass

and covarying materials. Similarly to Davis et al. (1997) [52], who estimated the Chl-a con-

centration based on the red band absorption peak -a(676)- by subtracting a baseline, we

computed the peak height in the red band of the beam attenuation spectrum. However, here

the local maximum was found at 685 nm (approximately 10 nm past the absorption peak, in

agreement with Zaneveld and Kitchen (1995) [48]). The attenuation at 710 nm was then sub-

tracted from this local peak as a base value to remove the effect of particle scattering. This

wavelength was empirically chosen based on providing the best results (based on r2 and

RMSE as compared to collocated Chl-a data determined by HPLC at discrete samples).

Thereby, the peak height was computed as cpg(685)-cpg(710), which was used as a proxy for

Chl-a concentration.

Analysis of Complex Coastal Waters by Means of Optical Transmissometry
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• cpg(710): At long visible wavelengths, the attenuation is assumed to be determined mostly by

their scattering properties and secondarily by the particulate absorption, whereas CDOM

absorption has a insignificant contribution [15, 53–55]. For this reason, the attenuation in

the red part of the visible spectrum (i.e. 660 and 670 nm) has been commonly used as proxy

for suspended particle concentration, since it responds primarily to concentration and sec-

ondarily to size and nature of the particles [56]. While this assumption can be considered

true in open waters, it could fail for complex coastal waters with high CDOM contents,

which can yield a non-negligible CDOM absorption at long wavelengths (~700 nm) (e.g.

[57]). Nevertheless, the exponential decrease of CDOM absorption with wavelength involves

that the longer the wavelength, the smaller its contribution to the beam attenuation signal.

For this reason, this study used the beam attenuation in the NIR (concretely at 710 nm) as

proxy for TSM, where the CDOM absorption influence was minimum.

Variations in time and space of these optical parameters were analyzed by means of statisti-

cal techniques. In particular, the Kruskal-Wallis H-test was applied at 5% significance level

(α = 0.05) in order to identify temporal and spatial patterns in Alfacs Bay, given that data were

Fig 2. Representative total non-water beam attenuation spectrum measured in Alfacs Bay in June 2013. Numbers 1–3 indicate

the three spectral features used in this study as proxies for biogeochemical variables: 1 = spectral slope of cpg(λ) for CDOM absorption,

2 = cpg(685)-cpg(710) for Chl-a and 3 = cpg(710) for TSM concentration.

doi:10.1371/journal.pone.0170706.g002
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not normally distributed, as demonstrated by the Shapiro-Wilk test performed prior to analy-

sis. On the other hand, since both inputs were subject to errors, a model II linear regression

analysis was applied to investigate the relationships between optical parameters and biogeo-

chemical variables. Additionally, the correlations between them were examined using non-

parametric Spearman-r correlation coefficients and the associated errors were determined by

means of the root mean squared error (RMSE).

Results and Discussion

At first, the results from validating the above-mentioned beam attenuation-based proxies with

laboratory-measured biogeochemical variables are presented. Secondly, the temporal and spa-

tial variability and patterns of these optical and biogeochemical parameters in Alfacs Bay are

shown.

Validation of biogeochemical proxies

Attenuation at 710 nm vs. total suspended matter concentration. The comparison

between the total non-water beam attenuation coefficient and the particulate and CDOM

absorption at 710 nm (cpg(710), ap(710) and aCDOM(710), respectively) was performed to

determine the relative contribution of the two last components to the bulk cpg(710) signal

(Fig 3a). In all samples, ap(710) and aCDOM(710) represented a minor fraction of cpg(710),

since their values were two orders of magnitude lower than cpg(710). cpg(710) oscillated from

0.96 to 4.66 m-1, whereas ap(710) and aCDOM(710) ranged from 0.0065 to 0.025 m-1 in our

dataset. The insignificant CDOM contribution to the attenuation signal at 710 nm, enabled to

use cpg(710) as proxy for TSM. Then, a model II linear regression analysis was applied to inves-

tigate the relationship between cpg(710) and TSM (Fig 3b). The regression slope (± SD) was

0.224±0.03 g�m-2, which agreed with previous works [53, 54]. In addition, although our slope

was flatter, our observations were within the confidence bounds of the relationship found by

Neukermans et al. (2012) [55] for the C-Star attenuation meter (with an acceptance angle of

1.2˚) (Fig 3b). This disparity in the regression slope can be partly explained due to the different

attenuation wavelength used in the relationship (670 and 710 nm in Neukermans et al. (2012)

[55] and in our study, respectively). A significant correlation was observed between cpg(710)

and TSM, with r2 = 0.75 and RMSE = 0.49 m-1 (p<0.001).

cpg(685) peak height vs. Chl-a concentration. A relatively good linear correlation was

found between the Chl-a concentration and the non-water attenuation peak height at 685 nm,

cpg(685) peak (r2 = 0.79, RMSE = 0.014 m-1, p<0.001, Fig 4a). Thereby, it is reasonable to con-

sider cpg(685) peak as a proxy for tracking changes in Chl-a concentration. Since this peak was

associated with the red-band Chl-a absorption peak due to anomalous dispersion, the linear

correlation between cpg(685) peak and the laboratory-derived phytoplankton absorption at

676 nm, aph(676), was examined (Fig 4b). A significant linear correlation was also obtained in

this case, with r2 = 0.68 and RMSE = 0.014 m-1 (p<0.01). In turn, the correlation between Chl-

a concentration and aph(676) was analyzed (r2 = 0.83; RMSE = 0.019 m-1; p<0.001) and com-

pared to the power-law fit obtained by Bricaud et al. (1995) [58]. Our observations were in

agreement with the function predicted by those authors (Fig 4c). According to Bricaud et al.
(1995) [58], the relationship between aph(λ) and Chl-a varied as a result of changes in packag-

ing effect and pigment composition. Our proxy is therefore suspected to be affected not only

by these factors but also by minor contributions associated with CDOM and non-algal parti-

cles absorption, particle size distribution or Chl-a fluorescence, which compromise the rela-

tionship found between Chl-a concentration and cpg(685) peak height. For this reason, we

recommend this approach as a qualitative proxy, since its capability to provide quantitative

Analysis of Complex Coastal Waters by Means of Optical Transmissometry
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estimates of Chl-a concentration should be further explored with a more extensive dataset.

The potential influence of Chl-a fluorescence, which could lead to a decrease in the attenuation

signal around 685 nm, was not evaluated here. Nevertheless, we assumed a minor effect since

Chl-a fluorescence from the light beam leads to an emission into all directions, and therefore

the amount of fluorescence into the direction of the beam towards the detector can be consid-

ered insignificant.

Spectral slope of total non-water beam attenuation vs. aCDOM(443). The evolution of

the attenuation spectral slope, the particle size distribution slope and the CDOM absorption at

443 nm was analyzed to evaluate the suitability of using cpg slope as an indicator of CDOM

content. Variations in cpg slope responded mainly to changes in aCDOM(443), since both

parameters exhibited a fairly similar behavior although the magnitude of these variations dif-

fered. PSD slope, however, varied within a relatively narrow range (from 3.43 to 4.24), playing

a smaller role in the variations observed in cpg slope (Fig 5a). Note that the PSD slope of the

LISST and the VIPER-derived cpg slope are sensitive to different particle range given the dis-

tinct scattering angles they collect, which can contribute to the different behavior observed

among both variables. In order to test whether these variations in cpg slope were associated

with changes in the magnitude of aCDOM instead of in the CDOM absorption spectral slope,

Fig 3. (a) Comparison of cpg(710), ap(710) and aCDOM (710) along all the samples used in this study. (b) Scatter plot of TSM and the

attenuation at 710 nm. Best fit ± 90% confidence intervals are shown in blue. Black solid and dashed lines represent the 90% prediction

bounds of the [TSM]-cp(670 nm) data of Neukermans et al. (2012) (for the C-Star).

doi:10.1371/journal.pone.0170706.g003
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SCDOM, the correlation between aCDOM(443) and SCDOM was analyzed (p<0.001). An inverse

relationship was found between both variables, which is consistent with the observations from

Helms et al. (2008) [59] (Fig 5b). In contrast, no correlation was observed between SCDOM and

cpg slope (p>0.1). Finally, the relationship between aCDOM(443) and cpg slope showed a signifi-

cant correlation (p<0.001), although the coefficient of determination was not too strong

(r2 = 0.5; RMSE = 0.93). This correlation was due to the high CDOM content in Alfacs Bay

[31]. For future studies, however, it is recommended to perform in situ measurements of

0.2 μm-filtered and unfiltered seawater alternatively to determine CDOM absorption sepa-

rately (e.g. [14]).

Spatial variability

The horizontal and vertical spatial variability of the environmental, optical and biogeochemical

parameters was analyzed based on vertical profiles measured at seven stations spread in Alfacs

Bay (Fig 6a). The vertical profiles of temperature and salinity showed a stratified water column,

with a fresher and warmer surface layer and an underlying cooler and saltier water layer

(Fig 6b and 6c). The pycnocline was located at ~3.5m depth, consistent with previous studies

Fig 4. Scatter plots of (a) Chl-a concentration and cpg(685) peak. (b) Phytoplankton absorption at 676 nm, aph(676), and cpg(685)

peak. (c) Chl-a concentration and aph(676). The red line represents the power-law fit proposed by Bricaud et al. (1995). Blue lines are the

regression line ± 90% confidence intervals.

doi:10.1371/journal.pone.0170706.g004
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Fig 5. (a) Evolution of beam attenuation spectral slope (cpg slope), PSD slope and CDOM absorption at 443 nm (aCDOM(443)) along

all samples. (b) Scatter plot of aCDOM(443) and CDOM absorption spectral slope, SCDOM. (c) Scatter plot of cpg slope and

aCDOM(443). The blue lines are the regression fits.

doi:10.1371/journal.pone.0170706.g005

Fig 6. Analysis of the spatial variability in Alfacs Bay. (a) Sampling stations for the analysis of spatial patterns, with different colors

according to its location: inner (green), central (blue), outer (red) region of the Bay. Map produced with Ocean Data View (ODV) software

[60]. (b) Temperature and (c) salinity vertical profiles measured at the seven sampling stations with colors according to Fig 6a.

doi:10.1371/journal.pone.0170706.g006
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[22, 32–33]. The averaged temperature and salinity gradients between surface and bottom

were of ΔT = 1.33˚C and ΔS = 1.84, with maximal differences of 2.1˚C and 2.7, respectively

(found in the bay mouth).

The stratification of the water column determined the spatial variations observed in the

optical properties. Thereby, significant differences in the beam attenuation spectra as well as in

CDOM and phytoplankton absorption spectra were found between surface and bottom water

layers (i.e. z� 3.5 m and>3.5 m, respectively) (p<0.01) (Fig 7). Meanwhile, no noticeable dif-

ferences were detected in the non-algal particulate absorption, anap(λ) (not shown). Waters

below the pycnocline were characterized by a higher attenuation and phytoplankton absorp-

tion, whereas CDOM absorption was lower. The shape of the particle size distribution was rel-

atively homogeneous, although the PSD slope decreased slightly with depth (Table 1)

(p>0.05).

The analysis of the spatial patterns based on cpg(λ) measurements was carried out by using

the above-mentioned attenuation spectral features -cpg(710), cpg(685) peak and cpg slope- and

their relationships with the underlying biogeochemistry. In general, surface waters presented

Fig 7. Optical properties measured at seven stations occupied in Alfacs Bay and over the water column. (a) In situ measured total

non-water beam attenuation spectra. (b) LISST-derived size distribution for particle number. (c) CDOM absorption and (d) phytoplankton

absorption spectra. Blue and red lines indicate measurements performed above and below the pycnocline, respectively.

doi:10.1371/journal.pone.0170706.g007
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steeper cpg slopes and lower values of both cpg(685) peak and cpg(710). In contrast, cpg(λ) mea-

sured below the pycnocline showed the opposite behavior, although their oscillations were

larger (Table 1, Fig 8). Statistically significant differences (p<0.01) between surface and bot-

tom layers were found in cpg(710) and cpg slope, which increased by 40% and decreased by

27% with depth, respectively (Table 1, Fig 9a). The observed decrease in the attenuation spec-

tral slope with depth can be associated not only with a reduction in CDOM contribution but

also with resuspension events. Horizontally, except slight differences detected in the bottom

layer, no significant spatial patterns were observed along the different bay regions, suggesting a

horizontal homogeneity in cpg(λ) spectral features (Fig 8).

On the other hand, the spatial variability observed in the biogeochemical parameters over

the sampled transects were in agreement with the total non-water beam attenuation proxies,

since noticeable differences were found between surface and bottom water layers for these as

Table 1. Mean and standard deviation of the non-water beam attenuation-based proxies and biogeo-

chemical variables for waters above and below the pycnocline (i.e. z� 3.5 m and z > 3.5 m,

respectively).

Z� 3.5 m Z > 3.5 m

Mean SD Mean SD

cpg (710) (m-1) 2.12 0.16 3.53 0.55

cpg(685) peak height (m-1) 0.074 0.007 0.12 0.024

cpg slope 1.04 0.08 0.76 0.12

PSD slope 3.89 0.09 3.77 0.17

TSM (g�m-3) 3.97 1.37 9.36 3.44

Chl-a (mg�m-3) 5.28 1.44 9.47 3.73

aCDOM (443) (m-1) 0.38 0.09 0.19 0.08

doi:10.1371/journal.pone.0170706.t001

Fig 8. Spatial distribution of proxies from non-water beam attenuation and biogeochemical variables.

Attenuation at 710 nm, cpg(710), vs. TSM at the (a) surface (z� 0.5 m) and (b) bottom (z� 5 m) layers of

Alfacs Bay. cpg(685) peak vs. Chl-a concentration at the (c) surface and (d) bottom layers. cpg spectral slope

vs. CDOM absorption at 443 nm at the (e) surface and (f) bottom layers. Produced with Ocean Data View

software [60].

doi:10.1371/journal.pone.0170706.g008
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well. While TSM and Chl-a increased with depth, CDOM absorption decreased (Table 1,

Fig 8). However, horizontal variations observed in the attenuation proxies were less pro-

nounced than those in the biogeochemical variables (Fig 8).

Finally, the results from the laboratory-measured absorption spectra exhibited differences

in optical constituents contribution between surface and bottom layers, although the averaged

magnitude of the total absorption was very similar for both cases (0.82 and 0.84 m-1, respec-

tively) (Fig 9a). The spatial variations found in these variables coincided with those observed

from the beam attenuation-based analysis. The ternary plot of the partitioned absorption at

each sampling station showed that surface waters were characterized by a higher proportion of

CDOM and lower phytoplankton absorption than the water below the pycnocline, which pre-

sented larger particulate fraction (Fig 9b). These observations are consistent with a previous

study in the region [31], that found similar vertical distribution of optically active constituents

(i.e. Chl-a, TSM, and CDOM).

Temporal variability

The 48 hours-time series of wind data showed a clear bimodal pattern with two dominant

directions, from southwest and northwest (Fig 10a and 10b). NW winds blew for ca. 10–12

hours during the nighttime (from 10 pm until 9:30 am, approximately) and shifted from SE to

SW during daytime. The velocities reached by southern winds were 5 m�s-1 on average, with

maximum values up to 8 m�s-1 in the evening (8:30 pm). The strongest winds blew from SW

from 5 pm to 10 pm. The observed wind pattern responded to the typical land breeze

Fig 9. Analysis of partitioned absorption data. (a) Contribution of the major biogeochemical variables to the total non-water absorption

coefficient at 440 nm for the two different water layers. (b) Ternary plot of the partitioned absorption coefficient at 440 nm (CDOM,

phytoplankton, and non-algal particles) measured at the different sampling stations in Alfacs Bay. Blue and red circles correspond to water

samples collected above and below the pycnocline, respectively.

doi:10.1371/journal.pone.0170706.g009
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characterized by weak nocturnal winds (<2 m�s-1) blowing from land, that reverses the direc-

tion and increases the intensity during the daytime (sea breeze) [30, 33]. A similar behavior

was observed in the surface current velocities, indicating that the water circulation at the sam-

pling station was driven by the prevailing wind (Fig 10c). Thereby, surface water flowed in

northward direction during daytime in response to southern winds and southwards when the

wind ceased during nighttime. This pattern was observed within the first 2 m depth, though

the velocity decreased with depth.

The effect of hydrodynamics on the water optical properties was analyzed for time and

depth, and no significant correlations (p>0.05) between the optical properties and both the

current velocity and direction were found. Thereby, the differences in the optical parameters

between both prevailing flow regimes (i.e. southward and northward currents) were not statis-

tically significant (p>0.05) (Fig 11).

The surface current velocity (at 0.5 m depth) was 0.1 m�s-1 on average, with a maximum

value of 0.2 m�s-1, coinciding with SW winds episodes (Fig 12a). In relation to the hydrogra-

phical variability, water temperature showed a marked diurnal cycle (day-night), with an oscil-

lation of 1.2˚C. It ranged from 23.2˚C (registered at 4 am) to 24.4˚C, at 6 pm (Fig 12b). While

no significant correlations were found between physical and optical variables, the time series

of cpg(710) and particle size distribution slope were characterized by an increase in their mag-

nitude at periods of maximum current velocities, in response to the more intense northward

currents (Fig 12-a, 12-c and 12-f). In contrast, cpg(685) peak and cpg spectral slope exhibited a

bimodal pattern similar to that observed for the wind and current data. Both parameters rose

under weak southward current conditions, whereas the minimum values concurred with the

maximum current velocities flowing northwards (Fig 12-a, 12-d and 12-e).

The temporal variations in biogeochemical properties showed similar patterns as those

observed based on cpg proxies (Fig 13). The concentration of particulate matter increased with

Fig 10. Time series of physical forcings along 48 hours. (a) Wind speed and direction measured in the weather station located in

Alcanar. (b) Wind speed and direction (to) represented by arrows. Upward pointing arrow indicates the North. (c) Surface current velocity

and direction represented by arrows, measured at 0.5 m depth with the ADCP located in the sampling station.

doi:10.1371/journal.pone.0170706.g010
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current velocity within the time interval from 6 pm to 12 am, on June 25, in agreement with

cpg(710). Nevertheless, the magnitude of this increase differed, since cpg(710) showed a rise of

20% with respect to the mean value, whereas a 40% increase was detected for TSM concentra-

tion (Fig 13a). Apart from this, no similar patterns were observed between both parameters

along the time series, involving no significant correlation between TSM and cpg(710) (p>0.05).

In contrast, significant correlations were found between Chl-a concentration and cpg(685) peak

(p<0.05), as well as between CDOM absorption at 443 nm and the attenuation spectral slope

(p<0.01). The bimodal pattern detected in the optical proxies was also observed within the bulk

analyses of Chl-a and aCDOM(443). Both variables increased their magnitude during southward

current conditions (i.e. from 12 am to 12 pm, approximately) (Fig 13b and 13c).

Conclusions

Continuous measurements of spectral beam attenuation coefficient collected in situ with an

advanced-technology transmissometer have been proven as a powerful tool to better

Fig 11. Optical measurements collected during profiling along 48 hours for the analysis of temporal patterns in Alfacs Bay. (a) In

situ measured total non-water beam attenuation spectra. (b) LISST-derived size distribution for particle number. (c) CDOM absorption and

(d) phytoplankton absorption spectra. Blue and red lines indicate measurements performed under the influence of southward and northward

currents, respectively.

doi:10.1371/journal.pone.0170706.g011
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understand the existing interactions between physical and biogeochemical variables in the

complex estuarine waters of Alfacs Bay (NW Mediterranean). In particular, this approach

allowed the detection of qualitative changes in the major biogeochemical variables (i.e. Chl-a,

TSM and CDOM) at high temporal and spatial scales in this microtidal estuary. Spatial pat-

terns observed in the biogeochemical properties were driven by the vertical stratification of the

water column. Accordingly, surface and bottom water layers were characterized by a different

relative contribution of the major biogeochemical variables to the bulk beam attenuation.

Meanwhile, observations along the 48 hours time series revealed a coupling between physical

(meteorological and hydrodynamic conditions) and biogeochemical properties, since the pre-

vailing hydrodynamic regimes determined the variations in water composition. The temporal

and spatial patterns were obtained based on the spectral features of the total non-water beam

attenuation coefficient and validated with laboratory results of discrete water samples (i.e. bio-

geochemical variables and partitioned absorption coefficients). Significant linear relationships

were found between the non-water beam attenuation proxies and the biogeochemical

Fig 12. Variations with time and depth in the attenuation-based proxies and PSD slope along with the current velocity. (a)

Temporal dataset of current velocity measured within the first 2 m depth. Time series of vertical profiles of (b) water temperature, (c)

cpg(710), (d) cpg(685) peak, (e) cpg spectral slope and (e) LISST-derived PSD slope.

doi:10.1371/journal.pone.0170706.g012
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variables. However, for future studies, it is highly recommended to include in situ beam atten-

uation measurements of 0.2 μm-filtered seawater for better CDOM characterization. The pro-

posed proxies are subject to numerous uncertainties due to several factors affecting the

attenuation signal (CDOM absorption and particle characteristics such as size, shape, compo-

sition, etc., which determine their absorption and scattering properties). For this reason, the

collection of discrete water samples for laboratory analysis of biogeochemical variables is

required for validation purposes.

Our results based on a high-frequency, low power (� 3 W), compact, versatile (adaptable to

different observing platforms) and cost-effective (~10000€) beam attenuation meter, as well as

on a simple and rapid data processing method, have demonstrated a capability to improve the

operational monitoring of coastal waters towards a better understanding of their complex

physical and biogeochemical interactions.
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