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The stable water isotopes HH'®O and HD'9O are fractionated during phase transitions in
consequence of slightly different vapor pressures and constants of diffusion of the different water
isotopes. For this reason, the concentration ratios Ry=[HD'®O]/[HH'®O] of atmospheric water vapor
or precipitation reflect the condensation and evaporation history of air masses. Concentration ratios
are given as 0D=Rp/Rp ysmow-1, Whereby Rpysnow=0.00031152 is the concentration ratio of the
Vienna Standard Mean Ocean Water.
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(1) We validate dD simulations of the isotope-enabled limited-area model COSMOiso (Pfahl et al., _IOR,
2012) in CLimate Mode (CCLMiso) by comparing 15 years of modeled 8D ratios from Central Europe oy N 17190
(2000-2014) with 6D observations (precipitation, in situ, and remote sensing). o " Y , 1120
Model configuration: [.’ I ,
+horizontal resolution of 0.5° x 0.5° .Y A ed Caaad o Vo o
« fifty vertical levels ~ Iy
 lateral boundary data from ECHAMwiso 5.4 (Werner et al. 2011) simulations, which were nudged
to observations.
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(2) We identify the most important processes with respect to 6D in Central Europe by means of four @ 7 30 " 20 40\ 60

sensitivity runs and assess the suitability of the different types of observations for validation of the Longitude / °E
respective processes in the model. CCLMiso simulation of 8D in precipitation in winters (DJF) from 2000 to 2014.
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(validation against ground-based remoztse sensing of 6D 2.9km AGL in Karlsruhe (Schneider et al., 2012))
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Contour lines: Two-dimensional probability distri- Sensitivity of the modeled dD on assumptions of
butions of modeled and observed 6D, which CCLMiso, calculated for the lowest / highest decile of
correspond to the lowest(<-4°C) / highest(>17°C) modeled T, at the sampling locations.

decile of modeled T,,, at the sampling locations. Lines

indicate probabilities of occurrence of 0.7, 0.5, and

0.3 (normalized to 1 at the maximum).

AVK: Averaging kernels applied.

troposphere agrees with remote sensing observations within the range of
uncertainty of the observations.

« The modeled dD ratios in low-level water vapor are on average 33%o higher
than the observed ratios. The main reason is the underestimation of easterly
moisture transport in the CCLMiso simulations of winter 2012/2013. Spectral
nudging of horizontal wind fields to the ECHAMwiso simulations reduces the
mean difference between modeled and observed dD ratios to 5%o (in the model

run with isotope-enabled multilayer soil model).
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