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Abstract: Studying phytoplankton functional types (PFTs) from space is possible due to recent
advances in remote sensing. Though a variety of products are available, the limited number of
wavelengths available compared to the number of model parameters needed to be retrieved is
still a major problem in using ocean-color data for PFT retrievals. Here, we investigated which
band placement could improve retrievals of three particular PFTs (diatoms, coccolithophores and
cyanobacteria). In addition to analyzing dominant spectral features in the absorption spectra of the
target PFTs, two previously-developed methods using measured spectra were applied to simulated
data. Such a synthetic dataset allowed for significantly increasing the number of scenarios and
enabled a full control over parameters causing spectral changes. We evaluated the chosen band
placement by applying an adapted ocean reflectance inversion, as utilized in the generalized inherent
optical properties (GIOP) retrieval. Results show that the optimal band settings depend on the
method applied to determine the bands placement, as well as on the internal variability of the
dataset investigated. Therefore, continuous hyperspectral instruments would be most beneficial for
discriminating multiple PFTs, though a small improvement in spectral sampling and resolution does
not significantly modify the results. Bands, which could be added to future instruments (e.g., Ocean
and Land Colour Instrument (OLCI) instrument on the upcoming Sentinel-3B,-3C,-3D, etc., and
further satellites) in order to enhance PFT retrieval capabilities, were also determined.

Keywords: ocean color; phytoplankton functional types; remote sensing; retrievals; modeling;
derivative analysis

1. Introduction

Different phytoplankton functional types (PFTs) play various roles in the carbon and other
biogeochemical cycles and respond differently to changes in environmental conditions [1]. While PFTs
and their specific roles in the ecosystems have been incorporated into ecological and biogeochemical
modeling studies (e.g., [2]), recent advances in satellite ocean color observations have enabled retrieving
global information on the composition of the phytoplankton community.

A number of different bio-optical and ecological algorithms have been developed to identify
and differentiate between PFTs, size classes (PSCs) and taxonomic composition [1]. Though a
variety of products are available, they significantly differ in the type of information they provide,
their assumptions and their performance on different spatial and temporal scales. The limited number
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of wavelengths available, compared to the number of model parameters needed to be retrieved to
resolve the complex spectral features within the satellite data, is a major problem in using ocean-color
data for PFT retrievals [1]. Hence, improved spectral resolution and sampling of future satellite-borne
instruments are expected to allow the retrieval of additional spectral properties characteristic for PFTs.
With planned missions, much of the ocean color community has been asking what sensor spectral
bands will be required to improve on the PFT retrievals proof of concept that have already been
established, but have limitations with existing instruments. This manuscript directly addresses
that desired knowledge from a modeled framework and is a contribution toward defining spectral
requirements and ideal band placement.

A number of previous studies analyzed measured remote sensing reflectances (Rrs(λ)) or
absorption spectra to determine the band placement for obtaining the best retrieval results. For example,
Hoepffner and Sathyendranath [3] decomposed absorption spectra into Gaussian absorption bands,
while Lee et al. [4] and Isada et al. [5] performed derivative analysis on Rrs(λ) and phytoplankton
absorption spectra, respectively. In addition to different methods, different datasets were analyzed in
the above-mentioned studies, ranging from cultures, through a spatially and temporally small-scale
set of in situ samples, to a larger set of measurements covering various marine environments.
Similar, but different bands were obtained depending on the study, and no final consensus was
met. Furthermore, these studies suggested which bands might have greater importance for retrieving
PFTs, but did not attempt to test their actual performance while retrieving PFTs. The choice of the most
appropriate band placement might also vary depending on the design of a PFT retrieval, and thus,
more investigation is required, depending on the chosen algorithm.

On the other hand, it is the continuous hyperspectral data that might offer the best possibility
to retrieve PFTs, since they provide the highest number of bands at a given interval, and various
algorithms can be applied to them and further adjusted. This might be possible with some anticipated
missions (e.g., the Environmental Mapping and Analysis Program (EnMAP) mission [6] or the
Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission [7]), which will have improved spectral
resolution and spectral sampling. Xi et al. [8] recently studied if such hyperspectral data could
possibly allow the discrimination of several PFTs from remote sensing reflectances. They examined the
performance of the spectral fourth derivative analysis and a clustering technique applied to simulated
remote sensing reflectances, using as input measured hyperspectral absorption spectra of laboratory
phytoplankton cultures and phytoplankton absorption spectra inverted with the quasi-analytical
algorithm (QAA), to differentiate six taxonomic groups. The differentiation performed most effective
on measured phytoplankton absorption, then better on hyperspectral Rrs(λ) than on QAA-inverted
spectra (due to errors induced by the inversion algorithm, likely due to assumptions made in spectral
shapes of optical components, etc., within QAA). However, culture-based data of single species were
considered in this study, unlikely for natural conditions in which an algorithm needs to perform on
satellite ocean color data.

Other efforts to retrieve PFTs have been based on applying ocean reflectance inversion models to
measured and modeled reflectances [9,10]. Such inversion methods, which minimize the difference
between observations and the model, are susceptible to the choice of parameters and may not yield
satisfactory solutions if the model is not sufficiently representing reality and if components assigned
to absorption and backscattering are too few or are poorly assigned [1]. Werdell et al. [9,10] applied
ocean reflectance inversion models to MODIS data to identify N. miliaris in the Arabian Sea, but they
were only able to infer the presence or absence of N. miliaris, suggesting caution when interpreting the
absolute magnitude of the retrievals. They demonstrated, however, that new satellite missions with
increased spectral resolution should improve the identification of phytoplankton community structure
from space.

Satellite data of high spectral resolution have been already applied in the ocean color satellite
remote sensing. Specifically, the data from the atmospheric mission SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography) [11,12] have been used to retrieve
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PFTs [13,14], light availability [15] and chlorophyll a(chl-a) fluorescence [16]. However, these data of
high spectral resolution (0.26–0.44 nm in the UV-visible range) had also a large pixel size (∼30 km by
60 km). Since atmospheric correction of SCIAMACHY data would have to handle strong atmospheric
absorbers and heterogeneity of big pixels, Bracher et al. [13] designed the algorithm PhytoDOAS (an
extension of the Differential Optical Absorption Spectroscopy for oceanic phytoplankton groups) to
retrieve diatoms and cyanobacteria directly from top of atmosphere radiances, by separating their
high frequency absorptions from each other and relevant atmospheric absorbers, while accounting for
broad band effects by using a low order polynomial. Later, Sadeghi et al. [14] adjusted the algorithm to
additionally retrieve coccolithophores with SCIAMACHY. While these studies explored the possibility
of applying hyperspectral satellite data to ocean color observations despite the instrumental limitations,
future dedicated ocean color missions are expected to have increased spectral resolution and coverage
together with improved spatial coverage, as compared to current multispectral missions. They also
will be atmospherically corrected and, hence, directly supply remote sensing reflectances to be used in
ocean color retrievals.

Here, we tested which band placement would be the most optimal to retrieve three above-mentioned
PFTs from multispectral instruments: diatoms, coccolithophores and cyanobacteria. In the present
study, we focused on these PFTs, since they constitute the only ones being retrieved globally and
simultaneously from their optical signatures. Their previous retrievals with SCIAMACHY data
showed that their spectral characteristics differ enough to allow their discrimination from satellite
data. In addition to analyzing dominating spectral features in the absorption spectra of specific PFTs,
two methods, which were previously applied to measured spectra [4,5], were applied to simulated
data. This synthetic dataset allows for significantly increasing the number of scenarios and enables a
full control over parameters that lead to the variability within the dataset. In addition, basic modeling
approaches simplify the dataset and represent the best possibility where all of the variability is
correctly assigned to the three considered PFTs. We determined the optimal band placements with the
different approaches. Afterwards, we tested the feasibility of retrieving diatoms, coccolithophores and
cyanobacteria with the generalized IOP (GIOP) software applied to the simulated data and the selected
band placements. For a more comprehensive comparison, GIOP retrievals were also run on continuous
hyperspectral data with various spectral sampling and resolution. Different resolutions and band
placements were examined in terms of the best performance of these spectral inversion retrievals.

2. Materials and Methods

Three different methods (described below) were applied to examine the placement of spectral
bands to retrieve different PFTs. The flowchart of the consecutive steps involved in this process is
shown in Figure 1.

2.1. Absorption Spectra of PFTs

Diatoms, coccolithophores and cyanobacteria constitute the target PFTs of this study.
The absorption spectra of diatoms and cyanobacteria, which were used in this study, were the same
as in Bracher et al. [13]. These spectra were measured on surface water samples from two different
cruises (Polarstern cruises ANTXXI/3 and ANTXXIII/1). The absorption spectrum of coccolithophores
is the same as in Sadeghi et al. [14] and was acquired from an Emiliania huxleyi culture, which is the
most abundant and widespread species of coccolithophores [17]. More information on the absorption
spectra of diatoms and cyanobacteria can be found in Bracher et al. [13] and of coccolithophores in
Sadeghi et al. [14].

Additionally, the absorption spectra of three non-target PFTs (dinoflagellates, chrysophytes and
prasinophytes) were used to investigate how the inclusion of other PFTs influences the analysis of
the absorption spectra of a mixed community (see Sections 2.4 and 3.2). The absorption spectra of
dinoflagellates and chrysophytes were measured during the MD OOMPH cruise using the point-source
integrating-cavity absorption meter (PSICAM) technique [18], as described in [14]. The absorption
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spectra of dinoflagellates were measured in natural samples where dinoflagellates dominated the
phytoplankton (92.4%), with the remaining community composed of chrysophytes (∼5.4%) and
prasinophytes (∼2.1%). The absorption spectrum of chrysophytes was measured in a water sample
where chrysophytes constituted 95.3% of the chl-a, and the remaining 4.7% was attributed to
prasinophytes. The absorption spectrum of prasinophytes was measured also using the PSICAM
during the ANT 23-1 cruise, as described in [13]. Prasinophytes constituted 97% of the water sample
for the prasinophytes absorption spectrum.

For most of the cases, we chose to use the absorption spectra of natural samples since the
pigmentation of cultures might differ from natural samples due to different environmental conditions,
notably artificial light source and nutrient availability. The specific absorption spectrum from
Emiliania huxleyi cultures, which is spectrally very similar to the specific absorption of measured
natural samples, is the one exception. For more details, see [14].

Figure 2 (top panel) shows the original measured chlorophyll a (chl-a) specific absorption
spectra of diatoms, coccolithophores, cyanobacteria, dinoflagellates, chrysophytes and prasinophytes
(a∗φD(λ), a∗φCoc(λ), a∗φCya(λ), a∗φDino(λ), a∗φChr(λ), a∗φPra(λ)). The corresponding spectra normalized
to a∗φ(443) are presented in Figure 2 (bottom panel) (ā∗φD(λ), ā∗φCoc(λ), ā∗φCya(λ), ā∗φDino(λ),
ā∗φChr(λ), ā∗φPra(λ)).

Measured absorption spectra of target PFTs (diatoms, coccolitophores, 
cyanobacteria) and 3 additional PFTs (chrysophytes, dinoflagellates, prasinophytes) 

Derivative analysis of absorption 
spectra of target PFTs 

Derivative analysis of absorption spectra of 
phytoplankton mixtures 

(following Isada et al. 2015) 

Derivative analysis of reflectance 
spectra 𝑅𝑟𝑠 (following Lee et al. 2007) 

Pick bands at the strongest 
curvature features 

Simulate and normalize absorption spectra 
of different phytoplankton mixtures  

Correlations between fraction of total chl-a of 
target PFTs and 2nd derivatives of 𝑎φ  

at each  λ 

2nd derivativea of normalized 
absorption spectra 𝑎∗

φ,Dia , 
 𝑎∗

φ,Coc 
,  𝑎∗

φ,Cya 
  

2nd derivative of the simulated 
absorption spectra 𝑎φ  

Choose bands of highest correlations 

Simulate 𝑅𝑟𝑠 of different 
phytoplankton mixtures  

1st & 2nd derivatives 
of the simulated 𝑅𝑟𝑠 

Spectral frequency distribution where 1st 
& 2nd derivatives of 𝑅𝑟𝑠 equal 0 

Choose bands of highest frequencies 

Calculate correlation of 𝑎φ  at selected bands 

Exclude highly correlated bands 
and choose a subset of bands 

Calculate correlation of 𝑅𝑟𝑠  at selected bands 

Exclude highly correlated bands 
and choose a subset of bands 

Choose bands that appear in all 3 approaches 

Investigate possible redundancy of bands  

Approaches to select bands 

Figure 1. Flowchart showing the three different approaches to select bands for phytoplankton
functional type (PFT) retrievals and the fourth selection method based on all three methods.
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Figure 2. Measured chl-a specific (top) and normalized to 443 nm (bottom) absorption spectra
(a∗φ(λ) and ā∗φ(λ)) of diatoms, coccolithophores, cyanobacteria, dinoflagellates, chrysophytes
and prasinophytes.

2.2. Forward Modeling of Rrs

Remote sensing reflectances (Rrs(λ)) were simulated in a simplified manner using an ocean
reflectance model, which is also commonly used in its inverse form for retrieving inherent optical
properties (IOPs) from measured Rrs(λ). We adopted a form of an ocean reflectance inversion model
that follows that described by and utilized in the generalized IOP (GIOP) model software [19]. The code
of the GIOP model was adapted to include the absorption and backscattering spectra of three target
PFTs. While we recognize that such an ocean reflectance model (ORM) has been utilized elsewhere, we
will refer to it as GIOP throughout the remainder of this manuscript for convenience. The following
steps illustrate the set-up of this forward modeling.
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Inherent optical properties of absorption and backscattering of ocean waters are related to
subsurface remote-sensing reflectances rrs(λ) following [20], as:

rrs(λ) = 0.0949u(λ) + 0.0794u(λ)2,

u(λ) =
bb(λ)

a(λ) + bb(λ)
,

(1)

where bb(λ) is the total backscattering coefficient (m−1) and a(λ) is the total absorption coefficient
(m−1). The subsurface values rrs(λ), are related to Rrs(λ) following [21]:

rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
. (2)

The total absorption coefficient is expanded as the sum of all absorbing components:

a(λ) = aw(λ) + adg(λ) + aφ(λ), (3)

where the subscripts w, dg and φ indicate contributions by water, colored dissolved organic matter
(CDOM) + non-algal particles (NAP) and phytoplankton, respectively.

The contributions of CDOM and NAP to adg(λ) have similar exponential spectral shapes,
which suggests that these two components may share some common chromophores [22]. In addition,
the dg combination cannot currently be accurately decomposed into its two components using
remote-sensing methods. Hence, to focus here on the differentiation of various PFTs, the dg combination
was considered as a single term in our simplified model. Total backscattering is expanded to:

bb(λ) = bbw(λ) + bbp(λ), (4)

where the subscripts w and p indicate contributions by water and particles, respectively.
Absorbing and backscattering components are further expressed as the products of their

concentration-specific absorption and/or backscattering spectra (eigenvectors; a∗(λ) for absorption
and b∗(λ) for backscattering) and their concentrations (eigenvalues; A for absorption and B for
backscattering). The coefficients aw(λ) and bbw(λ) were assumed as in the default GIOP configuration
(aw(λ) is taken from [23] and bbw(λ) is taken from [24]). Absorption of dissolved organic matter and
non-algal particles adg(λ) was expressed as follows:

adg(λ) = Adga∗dg(λ) = adg(443) exp (−Sdg(λ− 443)). (5)

We varied the value of adg(443) among simulations (adg(443) equaled 0.01, 0.05, 0.1, 0.15 and 0.2).
Sdg was set to 0.02061 following Maritorena et al. [25].

Phytoplankton absorption aφ(λ) was constructed from the contributions by diatoms, coccolithophores
and cyanobacteria:

aφ(λ) = Aφa∗φ(λ) = AφDa∗φD(λ) + AφCoca∗φCoc(λ) + AφCyaa∗φCya(λ), (6)

where the subscripts D, Coc and Cya indicate diatoms, coccolithophores and cyanobacteria, respectively.
Chl-a specific absorption coefficients for diatoms, coccolithophores and cyanobacteria (a∗φD(λ),
a∗φCoc(λ), a∗φCya(λ)) are described in Section 2.1.

Similarly, backscattering by particles bbp(λ) was expanded to:

bbp(λ) = Bbpb∗bp(λ) = bbd(λ) + BbφDb∗bφD(λ) + BbφCocb∗bφCoc(λ) + BbφCyab∗bφCya(λ), (7)
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where subscripts d, D, Coc and Cya indicate non-algal particles (NAP), diatoms, coccolithophores and
cyanobacteria, respectively. Eigenvalues Bbφ for PFTs are the same as Aφ, since they are also related to
the concentration of each PFT.

Backscattering properties for the three PFTs were not measured simultaneously with their
absorption properties. Hence, backscattering properties were adapted from different studies performed
for similar species (Bricaud et al. [26] and Ahn et al. [27]). Backscattering of diatoms was assumed as
for Chaetoceros lauderi [26]. This species is a representative diatom species with a large size (∼25 µm)
and low intracellular chlorophyll concentration. Backscattering of coccolithophores was taken from
Ahn et al. [27], who measured backscattering for Emiliania huxleyi. Backscattering of cyanobacteria
(specifically of Synechococcus sp.) was taken from Ahn et al. [27], as well.

The backscattering of PFTs was expressed as:

BbD b∗bD(λ) = AφD b∗φD(590) (
λ

590
)ηφD ,

BbCoc b∗bCoc(λ) = AφCoc b∗bφCoc(555) (
λ

555
)ηφCoc ,

BbCya b∗bCya(λ) = AφCya b∗bφCya(555) (
λ

555
)ηφCya ,

(8)

where b∗φD(590) = 0.22, b∗bφCoc(555) = 0.219 ×10−3, b∗bφCya(555) = 0.516 ×10−3; ηφD and ηφCoc both
equaled 0, since both PFTs are rather large cells, and ηφCya = −1, which is in agreement with theoretical
predictions for picoplankton.

Backscattering of non-algal particles is difficult to simulate because of the lack of knowledge
about their size distribution and refractive index. Here, a constant background was used following the
approaches of Brewin et al. [28] and Werdell et al. [9] (four different constant backgrounds in total).

Following Brewin fet al. [28], bbd(λ) was expressed as:

bbd(λ) = bbd(470) (
λ

470
)ηd . (9)

In the first applied parametrization, bbd(470) was set to 0.00068 and ηd to −1.9 and in the second
parametrization bbd(470) was set to 0.00049 and ηd to −3.4 (following Table 3 in Brewin et al. [28]).

Following Werdell et al. [9], the backscattering was expressed as:

bbd(λ) = 0.01 bd(555) (
λ

555
)ηd , (10)

where bd(555) was set to 0.1 or 0.2 and ηd was set to −1 (Table 1 in Werdell et al. [9]).
Concentrations of chl-a for each PFT varied between 0 and 10 mg·m−3 (explicitly, 14 different

concentrations were used: 0.0, 0.01, 0.03, 0.05, 0.08, 0.10, 0.30, 0.50, 0.80, 1.00, 3.00, 5.00, 8.00,
10.00 (mg·m−3)). We simulated Rrs for all of the possible combinations of the given parameters,
which adds up to 54,880 simulated Rrs spectra (5 (adg) × 4 (bbd) × 14 (AφD) × 14 (AφCoc) × 14 (AφCya)).
Simulated ranges of variables cover a broad range of conditions between the coastal and oceanic
waters, excluding extremely absorbing and scattering waters, for which the specific algorithms are
usually designed.

2.3. Derivative Analysis

Derivative analysis has been widely applied to analyze hyperspectral data of both inherent and
apparent optical properties (e.g., [4,5,8,29,30]). It uses the first or higher order derivatives of spectral
data to enhance small features within the spectra. Increasing derivative order leads to the suppression
of the broad bands and increases the number of bands, which can be useful for identification of
PFTs. However, the signal-to-noise ratios decreases as differentiation of higher orders is applied.
Here, the derivative analysis was first applied directly to the absorption spectra of the target PFTs,
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but was also used in the further analysis of absorption and reflectance data based on studies of
Isada et al. [5] and Lee et al. [4] (Sections 2.4 and 2.5, respectively).

The first and second derivatives were calculated by finite difference approximation [29] using the
following equations:

ds
dλ
≈ s(λ + ∆λ)− s(λ− ∆λ)

2∆λ
,

d2s
d2λ
≈ s(λ + ∆λ)− 2s(λ) + s(λ− ∆λ)

(∆λ)2 ,
(11)

where s is the spectrum used for the derivative transformation and ∆λ is the sampling interval.
Since derivatives are sensitive to noise, mean filter smoothing was applied to the data beforehand
with a filter window of 5, 9 or 10 nm, depending on the application. We followed precisely the choice
of smoothing windows, as suggested by the studies, on which we based our analysis. Following [5],
we used a smoothing window of 9 nm in the derivative analysis of absorption spectra. Nine nanometers
was originally determined as the optimal value by [31], based on the sensitivity analysis of their second
derivative spectra of phytoplankton absorption. In the derivative analysis of the reflectance spectra,
we used the same filter window as in [4], who smoothed their measurements with a 5-nm running
average. In addition, we also smoothed the spectra with a window double this size, 10 nm, which is
also a typical bandwidth window for the satellite sensors. Smoothing windows of 9 nm and 10 nm
are very similar, and in the case of the bands selected by different methods being 1 nm apart, we
considered them being the same band identified by both methods.

In this first method, we looked for the spectral regions, which display the strongest features in the
second derivatives of the absorption spectra of the target PFTs. The wavelengths of the maxima of
spectral curvatures were chosen as candidate bands.

2.4. Application of Derivative Spectroscopy to Phytoplankton Absorption Spectra for Selection of Spectral Bands
(Isada et al., 2015)

Isada et al. [5] examined the relationship between the concentration of phytoplankton community
and the phytoplankton absorption spectra for the coastal waters of Funka Bay, Japan. They measured
light absorption of phytoplankton (among other parameters) and calculated the contribution of
various phytoplankton groups to the concentration of chl-a using HPLC pigment analysis by
applying the CHEMTAX program. In total, 51 samples from surface waters were collected from
April 2010–January 2012. They calculated the correlations between the concentration of three PFTs
(diatoms, chlorophytes plus prasinophytes and cyanobacteria) and the second derivatives of the
absorption spectra (normalized to absorption at 443 nm) at each wavelength from 400–700 nm.
Fifteen wavelengths, which showed high correlations with each PFT, were suggested to improve
the estimation of the phytoplankton community structure.

Here, we adapted their approach and applied it to simulated data (Figure 1). Different from
the previous approach (Section 2.3), where we directly calculated the derivatives of the specific
absorption spectra of the target PFTs, here we analyzed the absorption spectra of mixed phytoplankton
communities. Phytoplankton absorption of different communities was calculated for the combinations
of seven different concentrations (0, 0.01, 0.05, 0.1, 0.5, 1, 5 mg·m−3) of the three target and three
non-target PFTs (117,649 scenarios), as the sum of the specific absorption spectra of each PFT multiplied
by its concentration (the number of different concentrations is smaller here because of including three
additional PFTs, which radically increases the number of scenarios). The spectra were then smoothed
with a mean filter window of 9 nm (following [5] and [31]) and normalized to the absorption at 443 nm.
Afterwards, second derivatives of the spectra were computed, following Equation (11).

The correlations between the concentration of the target PFTs (expressed in a fraction of the total
chl-a) and second derivatives at each wavelength were first calculated considering only three target
PFTs and, afterwards, all six PFTs. We also calculated correlations for scenarios of all PFTs, but
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excluding cyanobacteria, because cyanobacteria tended to dominate the calculated spectra (see
Section 2.3). Packaging effects were not considered here, since we wanted to examine which
wavelengths show the strongest linear correlation.

The wavelengths of highest correlations were compared with the spectral regions, which were
previously chosen based on the derivative analysis of the specific measured PFT absorption spectra
(Section 3.2). Furthermore, we calculated correlation coefficients for normalized absorption coefficients
of the phytoplankton mixtures at each chosen wavelength with all other chosen wavelengths. Highly
correlated bands indicated the potential redundancy of the measurements and the opportunity to
reduce the number of selected bands.

2.5. Application of Derivative Spectroscopy to Reflectance Spectra for Selection of Spectral Bands
(Lee et al., 2007)

Lee et al. [4] applied the derivative analysis to measured Rrs, to select optimal wavelengths
for band placement. They calculated the first and second derivatives from nearly 400 hyperspectral
measurements. The frequencies of zero (the number of zeros) values for these derivatives at each
wavelength were counted, and the wavelengths with the highest frequency were selected as the
potential location for band placement. They also calculated correlation coefficients between Rrs

at the suggested bands to indicate which adjacent bands could be potentially removed because of
the redundancy.

We applied this approach to all modeled Rrs (Figure 1), which were simulated as described in
Section 2.2. Following [4], we selected the wavelengths with the highest frequencies of the first and
second derivatives equaled to zero. Based on the correlation between Rrs at the selected wavelengths,
we also identified the potential redundancy of the spectral information.

2.6. Ocean Reflectance Inversion with GIOP

We adapted the same model software GIOP, which was used for forward modeling (Section 2.2)
to run the inversion and evaluate retrievals of PFTs based on certain band placements. The flowchart
of the inversion is shown in Figure 3. Using Rrs(λ) (simulated as described in Section 2.2), absorption
and backscattering eigenvectors as input, eigenvalues for absorption (A) and backscattering (B) are
estimated via nonlinear least squares inversion. GIOP software was adapted to solve additional
absorbing phytoplankton components (three PFTs). a∗φ(λ) for each PFT is provided as chl-a specific
absorptions, and the eigenvectors AφD, AφCoc, AφCya provide an estimate of chl-a concentration of
diatoms, coccolithophores and cyanobacteria, respectively.

Rrs 

Inversion 
with GIOP 

IOPs 

A φ,Dia ∙ aφ,Dia(λ) 

A φ,Coc ∙ aφ,Coc(λ) 

A φ,Cya ∙ aφ,Cya(λ) 

adg (443 nm) ∙ adg(λ) 

aw(λ) 
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Figure 3. Flowchart showing the inversion performed with GIOP.
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The simulated scenarios reflect the conditions where all absorption spectra are known,
even though such information is very difficult to obtain for normal remote sensing retrievals.
The retrieval followed the default configuration [19]. The ORM was applied to the simulated Rrs(λ)

using different suites of smoothing filters and input wavelengths of bands chosen in this study
and three satellite instruments: Moderate Resolution Imaging Spectroradiometer (MODIS), Medium
Resolution Imaging Spectrometer (MERIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWIFS).

The input chl-a concentration data for the respective PFT in the simulation were used as the
reference. The performance of each retrieval was evaluated by calculating the correlation coefficient (r)
and mean absolute error (MAE) between the reference and retrieved values. MAE was calculated as:

MAE =
1
n

n

∑
i=1
|xi,retrieved − xi,re f erence| , (12)

where xi,retrieved and xi,re f erence are the retrieved chl-a and reference chl-a concentrations of the given
PFT, respectively. The statistics were performed on the successful retrievals with retrieved chlorophyll
concentration up to 50 mg·m−3.

3. Results

3.1. Analysis of Specific Measured PFT Absorption Spectra of Diatoms, Coccolithophores and Cyanobacteria
Using Derivative Analysis

The second derivatives of ā∗φ(λ) for each target PFT are shown in Figure 4. The positions of the
identified absorption peaks and valleys are indicated. Based on these spectra, wavelengths of maxima
of spectral curvature were located. The ‘candidate’ bands for PFTs are highlighted in Figure 4 and
given in Table 1 (which summarizes bands selected with all approaches) as ‘a∗ph devs’ (a subset of
bands chosen with the second derivatives analysis of spectra of each PFT). Since derivatives of the
spectra of coccolithophores and diatoms indicate mostly very similar locations, bands attributed to
them are grouped together (Figure 4, bottom panel). Cyanobacteria show more distinct features, which
hence are indicated separately in the top panel of Figure 4.
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Figure 4. Cont.
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Figure 4. The second derivatives of ā∗φ(λ) for each target PFT. Both the top and bottom panels
show the same spectra, but the chosen wavelengths are highlighted separately for cyanobacteria (top)
and diatoms and coccolithophores (bottom).

Table 1. Summary of the bands chosen by different approaches (spectral resolution of 10 nm) and
the bands of the existing instruments. Abbreviations for the band settings are the same as in Table 2.
Medium Resolution Imaging Spectrometer (MERIS) and Ocean and Land Colour Instrument (OLCI)
bands are the same, with the exception of additional OLCI bands (400 nm and 674 nm) highlighted in
red. Bands in color are the bands that were excluded in order to make a subset with a smaller number
of bands. The bands that were removed from ‘Freq. 10 nm’ to ‘Freq. 10 nm red.’ are in green. In the
case of ‘a∗ph devs’ sets, the bands removed from the original set ‘a∗ph devs’ to ‘a∗ph devs red.v.1’ are
in green; the bands that were further removed to ‘a∗ph devs red.v.2’ are in red; and the bands finally
removed to ‘a∗ph devs red.v.3’ are in blue.

a∗ph Devs aph devs
(+red.v.1,2,3)

Freq. 10 nm
(+red.) Mix

MERIS
& OLCI MODIS SeaWIFS

H&S,
1991

Isada et al.,
2015

Lee et al.,
2007

376
382 382 379 381

386 384 385
391 390

393 395
399

402 404 405 404 400
413 412 412 412 412 413 411
418 418
426 430 425
437 435
444 443 442 443 443 443 443 433 440
451 449
463 458 461 458 460
475 475 470 473 475

482 483
490 488 490 490 488 490

493 496
494

501 502
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Table 1. Cont.

a∗ph Devs aph devs
(+ red.v.1,2,3)

Freq. 10 nm
(+ red.) Mix

MERIS
& OLCI MODIS SeaWIFS

H&S,
1991

Isada et al.,
2015

Lee et al.,
2007

507 507 510 510 512 510
515
523
530 531 531

532 532 532 532 532
545

556 556 553 555 551 555 556
560

566 565
576 576 580 578 583 585 580
591 596 593 594 599
605 600
611 611

612
615 620 623 615 615

627 631 635 631 633 635
640
641 642

645 644 646
652 650 655

665 667 670 662 665
674 672 674 674
678 678

679 681 678 676
685

700 694 710

3.2. Results of Applying Derivative Spectroscopy to Mixtures of Phytoplankton Specific Absorption Spectra for
the Selection of Spectral Bands, Following Isada et al., 2015

We calculated the correlations between the compositions of the target PFTs (expressed as a
fraction of the total chl-a concentration) and second derivatives of the normalized absorption spectra of
simulated mixtures at all wavelengths. When only the three target PFTs are considered in the mixtures,
the calculated correlations reflect approximately the peaks as observed directly in the derivatives of
the absorption spectra of each PFT (see Section 3.1). However, the separation between the maximal
features for diatoms and coccolithophores is better visible here than in the derivative analysis of the
previous section. To examine how these results are affected by including other PFTs in the mixture,
the correlations were also calculated for the mixture of all six PFTs (Figure 5, top panel). In general,
including other PFTs decreases the correlation coefficients of each PFT, and some of the features are
smoothed or decreased as compared to when considering only three PFTs. Since the cyanobacteria
has the highest amplitude of the PFT chl-a specific absorption spectrum and more spectral features
related to additional specific pigments (specifically phycobilisomes, with absorption peaks around
493 nm and 556 nm; see Figures 2 and 4), their features are dominating the correlations. Hence,
for an additional comparison, cyanobacteria were excluded from phytoplankton mixtures (Figure 5,
bottom panel). In such a case, correlations for diatoms and coccolithophores at all red wavelengths
increase significantly. Certain peaks related to diatoms and coccolithophores (e.g., 550 nm) are
suppressed if cyanobacteria are included in the simulations.

In Figure 5, we highlighted the bands that were chosen separately for cyanobacteria (top panel)
and diatoms and coccolithophores (bottom panel). In the previous approach (Section 3.1), bands
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were simultaneously chosen for diatoms and coccolithophores, since their spectral features were not
well separated.

To investigate the redundancy of spectral information, linear regression analysis of the normalized
absorption spectra at the chosen wavelengths was carried out. For example, in the case of the bands
chosen for coccolithophores, normalized absorption (of phytoplankton mixtures) at 390 nm, 449 nm,
482 nm, 507 nm, 596 nm and 612 nm were used as the independent variables. For each of them,
correlations with all other chosen bands were calculated, which are shown in Figure 6. By excluding
some of the highly correlated bands, we created an additional subset.
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Figure 5. Correlation coefficients between the chl-a concentration of diatoms, coccolithophores and
cyanobacteria and the second derivative spectra of normalized absorption coefficients of simulated
mixtures. Highlighted areas indicate recommended spectral bands: red for cyanobacteria (top), blue
and green for diatoms and coccolithophores, respectively (bottom). The color of the most left band in
the bottom panel arises from the overlapping of both green and blue bands.

The chosen bands before excluding any of them are given in Table 1 as ‘aph devs’ (a subset of
bands chosen with the derivatives analysis of spectra of PFTs mixtures). By excluding highly correlated
bands for each PFT, a reduced subset ‘aph devs, red.v.1’ of them was chosen. Since the chosen bands
were strongly dominated by bands chosen for cyanobacteria (which have multiple spectral features
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corresponding to phycobilisomes), for further comparison, we additionally reduced the number of
bands by leaving only one band specific for cyanobacteria (‘aph devs, red.v.2’) and by excluding all
cyanobacteria-specific bands (‘aph devs, red.v.3’).
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Figure 6. Correlation coefficients of normalized absorption coefficients of simulated mixtures (ā∗φ(λ))
at wavelengths chosen for coccolithophores (highest correlation of second derivatives of ā∗φ(λ) at
these wavelengths and chl-a concentration of coccolithophores); ā∗φ(λ) at each band indicated in the
legend was used as the independent variable, respectively, while ā∗φ(λ) at other bands was considered
as the dependent variable. A correlation coefficient for linear regression was then calculated for each
ā∗φ(λ) pair.

3.3. Results of Applying Derivative Spectroscopy to Reflectance Spectra for Selection of Spectral Bands,
Following Lee et al., 2007

We calculated the spectral distribution of frequencies where first and second derivatives of
simulated Rrs spectra equaled zero for smoothing windows of 5 nm and 10 nm (Figure 7, top and
bottom, respectively). Higher values correspond to more appearances of the derivatives crossing zero.
The bands of the highest frequencies of zero crossing are highlighted and indicate possible placement
of the satellite bands. Though some wavelengths indicate high frequencies only for smoothing with
a smaller filter window (of 5 nm), many features coincide for both applied smoothings (5 nm or 10 nm).

In addition, we compared these spectral distributions of the first derivatives for each target PFT
separately (Figure 8). By comparing the obtained distributions, it is possible to determine which PFT
drives the high frequencies at a given wavelength. In this approach, again, cyanobacteria dominated
the spectral features (shown by the highest frequencies).

The possible redundancy of bands was also investigated similarly to Section 3.2, by calculating
correlation coefficients among the chosen bands for Rrs (e.g., as shown in Figure 9 for a 10-nm
smoothing window). From groups of bands that were highly correlated, only one band was chosen
(for example, from bands at wavelengths of 376 nm, 379 nm and 386 nm, the band of 379 nm was
chosen). The chosen bands for 10-nm resolution, before and after excluding highly correlated ones, are
given in Table 1 as ‘Freq. 10 nm’ and ‘Freq. 10 nm red.’, respectively.
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Figure 7. Spectral distribution of the frequency where the first and the second derivatives of simulated
Rrs equal zero for filter smoothing windows of 5 nm (top) and 10 nm (bottom). The bands of highest
frequencies of the first and the second derivatives are highlighted in blue and red, respectively.
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Figure 8. Spectral distribution of the frequency where the first derivatives of simulated Rrs equal zero
(a filter smooth window of 10 nm) calculated for all the scenarios (black); and cases of including only
diatoms (blue), coccolithophores (green) or cyanobacteria (red) in the simulations. Chosen regions of
high frequencies are highlighted.
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Figure 9. Correlation coefficients among the chosen bands for Rrs for 10 nm.

3.4. Results of GIOP Retrievals

The GIOP retrievals of diatoms, coccolithophores and cyanobacteria were tested on the different
band placements as chosen in the Sections 3.1–3.3. An additional subset of similar wavelengths chosen
in all three approaches (‘a∗ph devs’, ‘aph devs, red.v.1’, ‘Freq. 10 nm, red.’) was also tested and is
indicated as ‘Mix’ in Tables 1–4. In addition, band locations of previous ocean color satellite sensors
were included in the comparison. Since we wanted to focus on the location of the bands, and not
their bandwidth (SeaWIFS, for example, has mostly bands with a bandwidth of 20 nm, while MODIS
and MERIS mostly of 10 nm), we used the same average filter of 10 nm. In addition, we also tested
continuous hyperspectral data with spectral sampling and resolutions of 1 nm, 5 nm, and 10 nm (as
‘All’ of the given resolution in Tables 2–4). Correlation coefficients (r) and mean absolute errors (MAE)
calculated between the retrieved chl-a concentrations of each PFT and their input concentrations for
diatoms, coccolithophores and cyanobacteria are shown in Tables 2–4, respectively.

Table 2. Correlation coefficients (r) and mean absolute errors (MAE) calculated between the retrieved
diatoms chl-a concentrations and their input concentrations. Retrievals are performed on band settings,
as determined by various approaches: a∗ph devs (derivative analysis of absorption spectra of PFTs,
see Section 3.1), aph devs (derivative analysis of mixtures of PFTs, see Section 3.2), aph devs red.v.1,
2 and 3 (subsets of aph devs, for details see Section 3.2), Freq. 10 nm and 5 nm (derivative analysis of
reflectance spectra for 10 and 5 nm spectral resolution, respectively, see Section 3.3), Freq. 10 nm and
5 nm reduced (subsets of Freq. 10 nm and 5 nm , respectively, see Section 3.3), Mix (subset of the similar
wavelengths chosen in a∗ph devs, aph devs red.v.1 and Freq. 10 nm reduced). MERIS, MODIS and
SEaWiFS refer to the data with spectral sampling of the respective instrument and spectral resolution
of 10 nm. All 10 nm, 5 nm o 1 nm refer to continuous data with spectral sampling and resolution of
1 nm, 5 nm, and 10 nm, respectively.

a∗ph Devs aph Devs
aph Devs,

Reduced v.1
aph Devs,

Reduced v.2
aph b

Reduced v.3 Freq. 5 nm
Freq. 5 nm,

Reduced

r 0.83 0.85 0.82 0.86 0.87 0.90 0.86
MAE 1.25 1.10 1.05 2.23 1.80 1.02 0.77

Freq. 10 nm
Freq. 10 nm,

Reduced Mix MERIS MODIS SeaWiFS
All,

1 nm
All,

5 nm
All,

10 nm

r 0.83 0.77 0.77 0.69 0.63 0.80 0.83 0.85 0.84
MAE 1.13 1.04 0.74 0.86 1.83 1.13 0.62 0.69 0.95
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Table 3. Correlation coefficients (r) and mean absolute errors (MAE) calculated between the retrieved
coccolithophores chl-a concentrations and their input concentrations. Abbreviations for the band
settings are the same as in Table 2.

a∗ph Devs aph Devs
aph Devs

Reduced v.1
aph Devs,

Reduced v.2
aph Devs,

Reduced v.3 Freq. 5 nm
Freq. 5 nm,

Reduced

r 0.89 0.90 0.91 0.91 0.93 0.92 0.91
MAE 0.91 0.90 0.92 0.98 0.71 0.72 0.80

Freq. 10 nm
Freq. 10 nm,

Reduced Mix MERIS MODIS SeaWiFS
All,

1 nm
All,

5 nm
All,

10 nm

r 0.91 0.92 0.86 0.88 0.91 0.93 0.89 0.90 0.91
MAE 0.75 0.94 1.07 1.01 1.03 0.73 0.93 0.86 0.87

Table 4. Correlation coefficients (r) and mean absolute errors (MAE) calculated between the retrieved
cyanobacteria chl-a concentrations and their input concentrations. Abbreviations for the band settings
are the same as in Table 2.

a∗ph Devs aph Devs
aph devs,

Reduced v.1
aph Devs,

Reduced v.2
aph Devs,

Reduced v.3 Freq. 5 nm
Freq. 5 nm,

Reduced

r 0.99 1.00 1.00 0.99 0.99 1.00 0.99
MAE 0.13 0.15 0.15 0.41 0.35 0.13 0.13

Freq. 10 nm
Freq. 10 nm,

Reduced Mix MERIS MODIS SeaWiFS
All,

1 nm
All,

5 nm
All,

10 nm

r 0.99 0.99 1.00 0.99 0.98 0.98 1.00 1.00 1.00
MAE 0.15 0.21 0.13 0.17 0.42 0.42 0.13 0.13 0.12

The smallest values and largest variability of correlations among the different band placements
was obtained for diatoms (Table 2). Additionally, MAE also varied the most for diatoms across all
PFTs. The reduction of the number of bands (based on the correlation within the spectral bands) had
a relatively small influence on the performance of the retrievals. Only when all cyanobacteria bands
were excluded, the MAE increased significantly. Among the settings of the previous instruments,
SeaWIFS had the highest r, while MERIS the smallest MAE. The performance of MODIS in this case
was worse than MERIS and SeaWIFS.

For coccolithophores, the variability among the different scenarios was quite small and was
larger for MAE than for r. Here, surprisingly, the removal of all cyanobacteria bands improved the
performance of the retrieval as compared to the full set of bands. Here, the SeaWIFS was the best
among the existing sensors.

The retrievals of cyanobacteria had the highest r and lowest MAE. This is expected, since they
have the most distinctive features among the target PFTs. MAE and r were quite similar among the
investigated band settings, with the exception of MAE ‘aph devs, reduced v.2’ (where the specific bands
of cyanobacteria were completely excluded) and MODIS and SeaWIFS, where the results were much
worse. MERIS showed the best performance among the sensors and results close to the best approach.

Continuous hyperspectral data usually gave the best results for all three target PFTs, and they did
not vary much among different resolutions.

4. Discussion

4.1. Band Placement Determined with Different Approaches

The variations of band placement, as determined by different approaches, are summarized
in Table 1 (see the results in Sections 3.1–3.3). In addition, we also present the band placements,
as determined with the original approaches that were adapted to simulated data for this study [4,5].
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The bands from [3], to which both above-mentioned studies compared their own results, are also
shown. For comparison, we added the bands of the multispectral ocean color instruments SeaWIFS,
MODIS, MERIS and OLCI.

The first two approaches, which are both based on the derivative analysis of the absorption spectra
of PFTs and phytoplankton mixtures (‘a∗ph devs’ and ‘aph devs’ in Table 1) provide quite similar results.
Bands of ‘a∗ph devs’, which were identified as the peaks in the spectra, were sometimes overlapping.
The approach of ‘aph devs’ was more successful in separating features of diatoms and coccolithophores,
but at the same time, the maxima of correlations were broader, which made it more difficult to choose
the exact bands.

Many bands showed up in all three adapted techniques (‘a∗ph’, ‘aph’ and ‘Freq. 10 nm’), which
was expected since in all of them, we used the same absorption spectra of PFTs. However, sometimes,
some bands were obtained only for one of the analyses. In general, larger differences were obtained for
the set ‘Freq. 10 nm’, as it was using reflectance and not absorption data. Very often, bands were a little
bit shifted from each other, which could be explained by using different kinds of data (absorption or
reflectance) and different smoothing windows. In addition, the features that were common for diatoms
and coccolithophores in the ‘a∗ph’ approach were separated by a few nm in the ‘aph devs’ approach,
while features of cyanobacteria were much broader, and choosing the bands position was more flexible.
By consolidating the bands that were common for all approaches (e.g., 381 nm, 404 nm, 443 nm, etc.),
we made an additional subset, mix, shown also in Table 1.

It is interesting to note that some of the bands that were identified in our study (e.g., 385 nm,
412 nm, 443 nm, 530 nm, etc.), were also identified in previous studies of [4,5], despite using completely
different datasets. In general, many bands also cover the same center wavelengths of the major
pigments (e.g., 413 nm for chl-a and 532 nm for carotenoids), as identified by [3]. Most of the bands
identified by our and previous studies (e.g., 412 nm, 443 nm, 510 nm, 531 nm) are also typically used
in the ocean color satellite instruments. However, the bands at 490 nm (or 488 nm) and 620 nm were
not selected by any of the methods here, which might be due to the fact that we focused here on the
three specific PFTs, while these bands have been chosen in the past for ocean color remote sensing
primarily of the pigment absorption in Case-2 waters and diffuse attenuation coefficient, and the
total suspended matter, respectively. Our results can be used to select additional bands for future
satellite sensors. In the case of OLCI, we would suggest adding four bands at 381 nm, 532 nm, 594 nm
and 473 nm or 631 nm (when considering improving retrievals of diatoms, coccolithophores and
cyanobacteria), which corresponds to the bands of the mix subset. This might be possible by changing
the configuration of future OLCI instruments (e.g., Sentinel-C, -D, etc.).

In general, we observe a high level of consistency between the bands chosen by various
approaches. The observed small diversity can arise from using various approaches and datasets. Even
though we used the same specific absorption spectra of PFTs, we obtained quite a lot of variability
within our approaches depending on the method applied. Hence, we conclude that it is not only the
dataset, but the methods too, that can lead to different conclusions. Therefore, the method applied
to determine the band placement is also a matter of choice in the first place, and the exact future
application of the suggested bands (e.g., band ratios or inverse modeling) should also be taken into
consideration, for example, by running designed retrievals on the simulated data.

4.2. Performance of GIOP Retrievals

As suggested above, we tested the chosen bands with the GIOP retrieval. We used the simplified
scenarios, which was sufficient for the scope of this study. We do not claim that GIOP is the best
possible method to retrieve PFTs, but it is indeed one of the possible solutions.

We compared the performance of the retrievals of diatoms, coccolithophores and cyanobacteria
in Tables 2–4. In general, no single band placement led to the best GIOP retrievals for all PFTs.
Although the set, for which most of cyanobacteria bands were excluded, led to an apparent worsening
of the results of the retrievals of diatoms and cyanobacteria (from ‘aph devs’ to ‘aph devs’ red v.2),
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most of the different band placements scenarios performed very similarly. This suggests that at least
one band was necessary for accurate differentiation between diatoms and coccolithophores. In general,
the performed reduction of the number of bands (based on the correlation within the spectra) did
not worsen the performance significantly, even though a large number of bands was removed (up
to 50%). This supports the idea that some highly correlated bands carry redundant information and
can be removed, with only a small impact on the outcome. The correlation coefficients obtained
here are quite high, but the obtained MAE are also quite large, despite simplified modeling and an
excellent description of the optical parameters. This supports suggestions by [9,10] that it is difficult
to obtain the qualitative concentrations of PFTs as retrieved with GIOP (and probably other spectral
fitting inversions).

Among the sensors, MERIS gave the best results among the investigated instruments for diatoms
and cyanobacteria, but SeaWIFS performed better for coccolithophores. Among all of the tested bands,
the continuous hyperspectral data usually yielded the best results. A small improvement was obtained
for increasing the resolution of hyperspectral from 10 nm to 5 nm, but no significant improvement was
obtained for increasing resolution from 5 nm to 1 nm.

5. Summary and Conclusions

Three different methods were applied to examine the best placement of spectral bands to retrieve
different PFTs from satellite remote sensing. Furthermore, the number of bands was reduced based
on the correlation within the spectra, which did not worsen the performance significantly. In general,
the three methods applied selected mostly similar bands, but the choice also deviated for some bands.
This shows that the choice of band settings is mainly driven by the optical signatures of the target,
but is further influenced also by the chosen method to determine band placements, as well as by
the internal variability within the investigated dataset. The chosen band placements were evaluated
by applying an adapted GIOP retrieval of the three target PFTs. The performance of the continuous
hyperspectral data usually gave the best results (which did not vary much among different resolutions).
This supports the strong recommendation of using continuous hyperspectral satellite data in the future.
In order to improve retrievals of PFTs with multispectral data by adding specific bands, the band
placement would depend on the specific target PFT, since no single band placement led to the best
retrievals for all PFTs. In the case of OLCI with the nine spectral bands, an additional four bands are
suggested for improving PFT retrievals.
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