for Late Quaternary stratigraphy and paleoclimate

Thomas Opel¹, Sebastian Wetterich¹, Alexander Yu. Dereviagin², Hanno Meyer¹, Margret C. Fuchs³, and Lutz Schirrmeister¹

- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research Section, Potsdam, Germany (thomas.opel@awi.de)
- 2 Moscow State University, Department of Geocryology, Faculty of Geology, Moscow, Russia
 3 Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz-Institute Freiberg for Resource Technology, Freiberg, Germany

O* DFG HZDE

1 Ice wedges as winter climate archives

- In permafrost regions, winter thermal contraction cracking of the ground and subsequent filling of frost cracks mostly by snow melt in spring lead to the formation of vertical ice veins
- Repetition of frost cracking and crack filling over time lead to the growth of ice wedges that shape the polygonal tundra surface (Figure 1)
- Ice wedges are considered as climate archive for meteorological winter and spring, i.e. the cold period of the year (DJFMAM, here referred to as winter; Meyer et al., 2015)
- Their isotopic composition (δ^{18} O, δ D) is interpreted as proxy for local surface winter temperatures
- Ice wedges can be directly dated by ¹⁴C dating and the ³⁶Cl/Cl⁻ approach (Blinov et al., 2009), indirect age attribution is possible by dating the surrounding sediments using different methods or isotope-based cryostratigraphic correlation

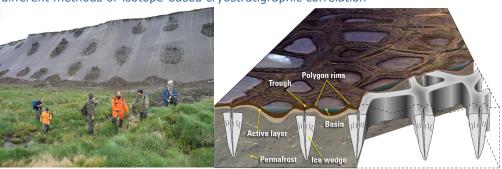


Figure 1 Yedoma Ice Complex wall in summer 2007 and schematic cut-away of ice-wedge polygons (R. Mitchell/Inkworks).

3 MIS5 Ice Complex (Buchchagy)

- Isotope-based cryostratigraphic correlation to ice wedge L7-15 IW1 at Bol'shoy Lyakhovsky Island, constrained to about 120 to 90 kyr (Wetterich et al., 2016)
- In contrast, OSL ages of about 80 kyr for sediments underlying ice wedge Oy7-07 IW1
- Stable-isotope values (mean $\delta^{18}O$ -33‰) reflect very cold winter temperatures

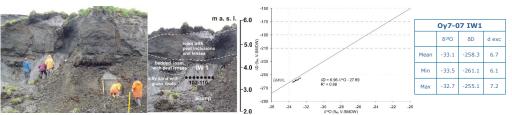


Figure 4 Overview photograph, detailed photograph and co-isotope plot for Oy7-07 IW1.

• Ice-wedge δ¹⁸O (mean -34‰) reflects coldest winter temperatures

4 MIS4 flood plain deposits (Kuchchugui)

- Sediment age information from OSL (about 70 to 80 kyr) and infinite ¹⁴C ages (>43 kyr), ice-wedge ages from ³⁶Cl/Cl⁻ (68±31kyr and 98±31kyr; Blinov et al., 2009)
- Buried composite sand-ice wedges (CSIW) and multi-stage ice-wedge intersection (passing downwards into CSIW) (Figure 5)
- CSIW may show different formation conditions or stages of strong isotopic alterations

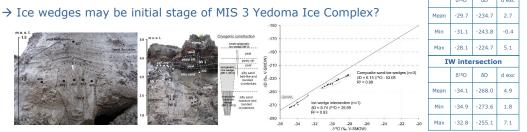
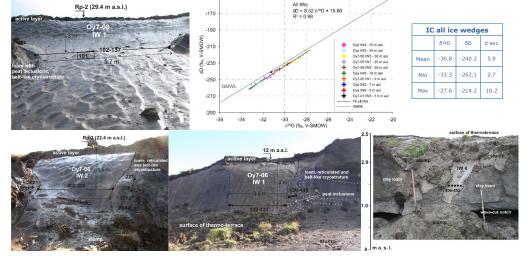



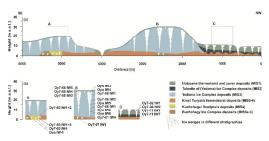
Figure 4 Photographs of composite sand-ice wedge, multi-stage ice wedge intersection, and co-isotope plots.

5 MIS3 Ice Complex (Yedoma)

- Sediment age information from ¹⁴C dating reveals Ice Complex formation between at least 48.5 to 32.2 kyr (Schirrmeister et al., 2011)
- In places, Holocene development on top of the Ice Complex revealed by ^{14}C ages and Holocene ice-wedge isotope signatures, i.e. $\delta^{18}O>$ -27.5‰, the corresponding data are not considered here
- δ^{18} O of ten ice wedges (mean -29‰ to -33‰) reflect non-stable cold to very cold winter tempertures during the MIS 3

Figure 5 Photographs of selected ice wedges of the MIS3 Yedoma Ice Complex in different altitude levels (1 to 29 m asl) and corresponding co-isotope plot.

References: Blinov et al. 2009. Geochemistry, Geophysics, Geosystems 10, Q0AA03; Meyer et al. 2015. Nature Geoscience 8, 122-125; Meyer et al. 2002. Permafrost and Periglacial Processes 13, 91-105; Opel et al. 2011. Permafrost and Periglacial Processes 22, 84-100; Schirrmeister et al. 2011. Quaternary International 241, 3-25; Wetterich et al. 2016. Quaternary Science Reviews, doi:10.1016/j.quascirev.2015.11.016; Wetterich et al. 2014. Quaternary Science Reviews 84, 39-55. Wetterich et al. 2011. Quaternary Science Reviews 30, 3139-3151; Wetterich et al. 2009. Paleogeography, Paleogeology 279,73-95.


2 Study region, stratigraphy and chronology

 Main study region at the Dmity Laptev Strait is the Oyogos Yar mainland coast (72.7°N, 143.5°E) opposite of Bol'shoy Lyakhovsky Island (Figure 2)

Figure 2 Study region at the Dmitry Laptey Strait.

- Sediment dating: ¹⁴C, luminescence
- Ice-wedges dating: 14C, 36Cl/Cl
- Cryostratigraphic correlation to Bol'shoy Lyakhovsky Island based on ice-wedge isotopes
- Studied ice wedges were attributed to four stratigraphic units (Table 1)

Figure 3 Schematic stratigraphic overview of the Oyogos Yar mainland coast permafrost outcrops.

MIS	Туре	Local term	Poster section
MIS1	Thermokarst basin deposits	Alas (Laptev)	6
MIS3	Yedoma ice Complex deposits	Molotkov (Oyogos)	5
MIS4	Floodplain deposits	Kuchchugui	4
MIS5	Ice Complex deposits	Buchchagy (Kazantsevo)	3

Table 1 Stratigraphic units exposed at the Oygos Yar mainland coast

6 MIS1 Thermokarst basin ice wedges (Holocene+recent)

- Late Glacial thermokarst basin with Holocene sediment accumulation and syngenetic ice-wedge growth at least over the last two millennia revealed by icewedge ¹⁴C ages (Opel et al., 2011) (Figures 6 and 7)
- Warmest ice-wedge δ¹⁸O derived winter temperatures at Oyogos Yar (up to -20%)

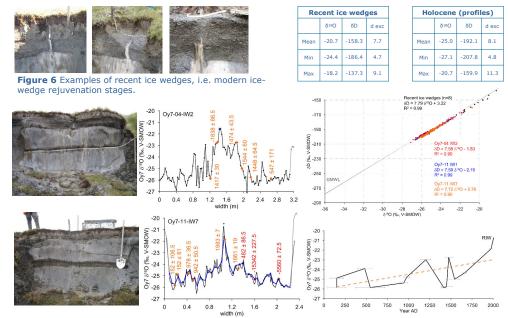
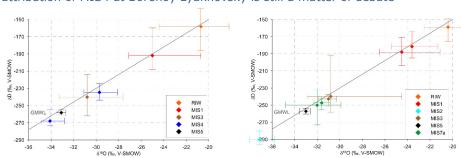



Figure 7 Photographs and corresponding high-resolution δ^{18} O profiles (with 14 C ages in AD) of two Holocene ice wedges, co-isotope plot of Holocene and recent ice wedges, and stacked δ^{18} O record based on dated δ^{18} O samples

7 Regional comparison to Bol'shoy Lyakhovsky Island

- Oyogos Yar ice-wedge isotopes correspond very well to that from Bol'shoy Lyakhovsky
- Not all generations were found at Oyogos Yar (i.e. MIS2 and MIS7a), whereas the attribution of MIS4 at Bol'shoy Lyakhovsky is still a matter of debate

Figure 8 Co-isotope plots of Oygos Yar mainland coast ice-wedge generations compared to ice-wedge generations at Bol'shoy Lyakhovsky Island (Meyer et al., 2002; Wetterich et al., 2009, 2011, 2014, 2016).

8 Conclusions

- Stable isotope data of four ice-wedge generations at the Oyogos Yar mainland coast reflect variations in Northeast Siberian Arctic winter climate conditions on different time scales from MIS5 to today.
- MIS4 ice-wedge $\delta^{18}\text{O}$ reflect coldest conditions, slightly colder than during MIS5.
- MIS3 ice wedges indicate a cold to very cold non-stable climate during Yedoma Ice Complex formation.
- Distinctly warmer conditions can be inferred for the Holocene as well as a Late Holocene warming trend with peak δ^{18} O values for modern ice wedges.
- The attribution of ice wedges to distinct sedimentary units and direct ice-wedge dating is often challenging and requires particular attention and new chronological approaches.