1

2 boreal treeline in north-central Siberia

Quaternary Science Reviews

- 4 PAST-Gateways Special issue: Non-glaciated Arctic environments
- 5 Juliane Klemm* ^{1, 2}, Ulrike Herzschuh^{1, 2} and Luidmila A. Pestryakova³
- 6 Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Periglacial Research
- 7 Unit, Telegraphenberg A 43, 14473 Potsdam, Germany
- 8 ² Institute for Earth and Environmental Science, University of Potsdam, Karl- Liebknecht-Straße 24-
- 9 25, 14476 Potsdam-Golm, Germany
- ³ Department for Geography and Biology, North-eastern Federal University of Yakutsk, Belinskogo
- 11 58, 67700 Yakutsk, Russia
- * Corresponding Author: Juliane.Klemm@awi.de

13 Abstract

3

14 Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate 15 16 change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a 17 small lake (radius~100 m), was used to reconstruct the development of the lake and its catchment as 18 well as vegetation and summer temperatures over the last 7,100 calibrated years. A multi-proxy 19 approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of 20 21 the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-22 Holocene summer temperatures until the establishment of modern conditions around 3,000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional 23 vegetation changes was compared to local changes in the lake's catchment. An initial small water 24 depression occurred from 7,100 to 6,500 cal. years BP. Afterwards, a small lake formed and deepened, 25

probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.

Keywords

26

27

28

29

30

31

34

- 32 tundra-taiga ecotone; *Larix gmelinii*; palynology; sediment geochemistry; mean July temperature;
- ordination; WA-PLS; Procrustes rotation

1. Introduction

- 35 The globally occurring warming trend is especially pronounced in the arctic region as a consequence
- of polar amplification (Serreze et al., 2009; Bekryaev et al., 2010; Hinzman et al., 2013) and is
- 37 expected to accelerated in the future in northernmost Siberia, particularly around the Taymyr
- Peninsula (IPCC, 2013). To substantiate this prediction it is useful to interpret reconstructions from the
- 39 past with similar spatial patterns, but few quantitative climate reconstructions are available from
- 40 northern Siberia.
- 41 Reconstruction of past climate requires an understanding of how the climate proxy is temporally and
- 42 spatially related to climate change. From the ongoing environmental changes we already know that the
- 43 timing and strength of the various components of the Arctic environmental systems to climate forcing
- are extremely variable (Lenton, 2012; Hinzman et al., 2013; Pearson et al., 2013). For example,
- 45 hydrological changes of permafrost lakes may be abrupt but the direction of change varies locally, e.g.
- 46 rising lake level at one site and increased outflow at a nearby site (Brouchkov et al., 2004; Smith et al.,
- 47 2005; van Huissteden et al., 2011; Morgenstern et al., 2011; Kanevskiy et al., 2014; Turner et al.,
- 48 2014). Accordingly, proxies of hydrological changes in thermokarst lakes may respond immediately
- 49 but change is not linearly related to climate. On the other hand, the vegetation change in response to
- 50 climate may by uniform, i.e. northward species migration and a boreal forest expansion in times of
- warming (Naurzbaev and Vaganov; 2000; Elmendorf et al., 2012a, b; Berner et al., 2013; IPCC,

2013). This response to climate variation might be consistent over larger areas but its reaction can be 52 53 masked regionally (Sidorova et al., 2009; Giesecke et al., 2011; Tchebakova and Parfenova, 2012; 54 Kharuk et al., 2013). At the Siberian treeline, the most reasonable scenarios are leading-edge 55 vegetation-climate disequilibrium at times of climate warming due to restricted larch migration rates 56 and trailing-edge disequilibrium because of persistent forest despite a cold climate. This indicates that 57 a reasonable ensemble of environmental variables needs to be collected to control for the uncertainties 58 originating from the various scales on which processes operate. 59 Continuous records of millennial-scale environmental changes in northern Siberia are best obtained 60 from lake sediments that can be explored for various parameters. Here, we present results of 61 palynological and sedimentological analyses of a lake sediment core from the southern Taymyr Peninsula (northern Siberia) covering ~7,100 cal. years BP to present. Because pollen is still one of the 62 63 most reliable climate proxies available for the region, we provide a pollen-based climate 64 reconstruction and assess the obtained results in connection with local hydrological changes as 65 inferred from sedimentological and geochemical parameters.

2. Regional setting

66

67 The Khatanga River Region forms part of the Northern Siberian Lowlands and is located between the 68 Taymyr Peninsula to the North and the Putorana Plateau to the South, politically belonging to the 69 Krasnoyarsk Krai of Russia. The studied lake's catchment is underlain by thick terrigenous and volcanic sediments that are rich in smectite originating from Siberian Trap basalts of the Putorana 70 71 Plateau (Wahsner et al., 1999; Petrov, 2008; Vernikovsky et al., 2013). Overlying Quaternary 72 periglacial and, to some extent, lacustrine-alluvial deposits are predominately of Putoran origin and 73 therefore basaltic (Peregovich et al., 1999; Shahgedanova et al., 2002). Loadings in the Khatanga River have been reported to comprise up to 80% of the montmorinolit clay mineral smectite (Rachold 74 et al., 1997; Dethleff et al., 2000). The lowland's landscape is homogeneous with low relief. The 75 region was probably not or only locally glaciated during the Last Glacial Maximum but was situated 76 77 between the glaciers of the Taymyr and Putoran Mountains, hence, periglacial conditions prevailed 78 (Svendsen et al., 2004; Ehlers and Gibbard, 2007). The region is controlled by continuous, very deep

79 permafrost with medium ground-ice content up to 20% by volume (Schirrmeister et al., 2013; Brown 80 et al., 2014) and numerous lakes are found there (Ananjeva and Ponomarjeva, 2001). 81 The regional climate is dominated by the polar front, which is located close to the coast of the Arctic 82 Ocean during winter. In summer, the region lies within the arctic front. Prevailing winds are from the 83 north-west and south-east (Treshnikov, 1985; MacDonald et al., 2000b; Pospelova et al., 2004). The 84 subarctic climate of the region is continental, having short and mild summers with a mean July 85 temperature around 12.5°C and severe winters with a mean January temperature ~ -31.5°C. Annual 86 precipitation is low, around 250 mm with the most rain falling during the summer month between June 87 and September. Snow cover lasts between 180 and 260 days with up to 80 cm height (Grigoriev and 88 Sokolov, 1994; climate station, established in Khatanga town in 1934, 89 http://www.pogodaiklimat.ru/climate/20891.htm). 90 The vegetation of the region represents the southern fringe of shrub tundra and is composed of a 91 mosaic of vegetation types (Stone and Schlesinger, 1993; Yurtsev, 1994; CAVM, 2003) with 92 continuous vegetation cover, but locally, for example on drier hilltops, bare soil may be found 93 (Chernov and Matveyeva, 1997). The moss layer is extensive and at least 10 cm thick. The most 94 abundant genera are Sphagnum, Hylocomium, Aulacomnium, Dicranum, and Polytrichum. The 95 herbaceous and dwarf-shrub layer grows up to fifty centimetres high. Dominating are sedges, such as 96 species of Eriophorum and Carex, and shrubs, especially Ledum palustre, Vaccinium species, Betula 97 nana, and Alnus viridis subsp. fruticosa. This shrub tundra is dotted by stands of Larix gmelinii 98 (Abaimov, 2010). In this area, the northernmost "forest islands", with the regional name Ary-Mas, 99 grow as far north as 72°56'N (Bliss, 1981; Tishkov, 2002). The main human impact in the Khatanga 100 River region is commercial reindeer herding, which intensified from the 1960s (Pavlov et al., 1996). 101 The study site is located at 72.40°N and 102.29°E; 60 m a.s.l. The small lake—given the technical 102 name CH-12—is elliptic in shape with a surface area of around 2.4 hectares and a mean radius of 103 100 m (Fig. 1). Its maximum depth is 14.3 m. The lake is located in a confined depression on a low-104 lying plateau in the northern lowlands. It has no inflow streams but drains the surrounding ridges. One 105 small outflow is present on its western side draining into the Novaya River, which is one of the main 106 tributaries of the Khatanga River. Our vegetation surveys within the catchment revealed that the low-

107 growing shrub tundra is dominated by Ericaceae dwarf-shrubs (Cassiope tetragona, Vaccinium vitis-108 idaea and V. uliginosum) while Betula nana and Alnus fruticosa are more rare and only obtain low 109 growth heights (< 20 cm). Salix spp. grow predominantly along the river and lake shorelines. 110 Cyperaceae and Poaceae, as well as herbs such as Dryas octopetala ssp. punctata, are abundant. 111 Scattered patches of *Larix gmelinii* trees up to 5 m in height occur in the area. 112 [figure 1] 3. Material and Methods 113 114 3.1. Material collection 115 Fieldwork was undertaken as part of a joint Russian-German Expedition to the Khatanga region in 116 2011. Sampling took place at a central lake position at 14.3 m depth, where a 131.5 cm-long core with 117 a UWITEC gravity corer extended with a hammer action was deployed. The core was subsampled in 118 Germany at the laboratory of the Alfred Wegener Institute (AWI). To allow for a precise estimation of 119 the sedimentation rate of the investigated lake, a parallel short core of 32 cm was obtained and sliced 120 into 0.5 cm thin samples in the field. 121 3.2. Age determination 122 The uppermost 10 cm of the short-core were freeze-dried and sent for radiometric dating of lead and 123 caesium at the Environmental Radioactivity Research Centre of the University of Liverpool, UK 124 (Appleby et al., 1991 and 2001). Furthermore, material (moss, wood or leaf remains or bulk sediment) 125 from fifteen samples were freeze-dried and sent to the Poznan Radiocarbon Laboratory, Poland, for 126 radiocarbon dating The age-depth model was established using the Bacon package (Blaauw and 127 Christen, 2011 in the R environment version 3.02 (R Core Team, 2013), in which the calibrated ages 128 before present (cal. years BP) are based on IntCal13 (Reimer et al., 2013). 129 3.3. Pollen analysis 130 For pollen analysis, 65 fossil sediment samples of 1.5 ml were retrieved using plastic syringes and

prepared following standard procedure (Fægri and Iversen, 1989, HCl, KOH, HF cooking for 2h,

acetolysis). Final samples were mounted in water-free glycerine and examined at 400X magnification.

131

132

Pollen taxonomic determination was based on a regional reference collection and standard literature (Moore et al., 1991; Reille, 1998; Blackmore et al., 2003; Beug, 2004; Savelieva et al., 2013). Pollen types are given in the text in CAPTIAL letters to facilitate the differentiation between POLLEN TAXA and plant taxa (Joosten and de Klerk, 2002). At least 500 terrestrial pollen grains were counted for each sample. Non-pollen palynomorhps, such as coniferous stomata (Hansen, 1995), were counted alongside the pollen grains.

3.4. Sedimentological (geochemical and granulometric) analyses

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

There were no signs of hiatuses in the record. At 109–111 cm the sediment was offset, possibly due to the coring process, but no loss of material was indicated in the field or in the laboratory examination. The core description follows initial analyses and picture scan results. The sediment core was opened in the laboratory at AWI Potsdam, and one half was directly transported to the laboratory AWI Bremerhaven to perform line-scanning using the Avaatech XRF scanner using a Rh X-Ray tube at 1 mA and a 10 s count time at 10 kV without a filter, and at 30 kV for heavier elements, with a "PD thick" filter. The resolution of logging was set to 5 mm. This study presents the geochemical results of the aluminium, titanium, silicon, rubidium, strontium, bromine, iron, and manganese counts (252 observations). For statistical analysis we used the log-ratios of the elements (Weltje and Tjallingii, 2008). The relatively heavy element titanium, showed stable count results with low X^2 errors (mean $X^2 = 0.97$). It had the highest correlation to biogenic components, with a Pearson correlation coefficient of 0.72 for total organic carbon (TOC) and 0.69 for total nitrogen (TN). Consequently, titanium could be used to normalise the other elements and counteract the dilution effect of high organic material content to some extent (Löwemark et al., 2011; Shala et al., 2014). Prior to the analysis extreme outliers were excluded, e.g. those from the edges of the core or those around inclusions and at the offset at 109 cm. To allow numerical correlation with other sedimentological proxies the running means of 2 cm window-size of the scanning data were calculated. The gravimetric water content (WT) was measured for 66 samples of the sediment core to infer the compaction of the sediment calculated as the difference between wet and dry weight of the material. A Vario EL III carbon-nitrogen-sulphur analyser was used to measure total carbon and TN content; and a Vario MAXC analyser was employed for TOC measurements. Total inorganic carbon (TIC) was calculated as difference between the total carbon and TOC. The elemental ratio of the weight percentages of TOC and TN was calculated to check for possible variation in the sedimentary origin of the organic matter (Meyers and Lallier-Vergés, 1999), hereafter referred to as C/N ratio.

Sediment particle sizes of 65 samples were measured. A minimum of 2.5 g sediment was first treated with 35% hydrogen peroxide for four weeks to remove the organic components. Second, 10% acetonic acid was used to remove calcium carbonate within the remaining sample. Last, the volume percentage of 86 particle size classes between 0.3 and 1000 μm particle diameter were measured with a COULTER LS 200 Laser Diffraction Particle Analyser. The reported volume percentages were calculated from the particle diameter classes: 0.0625–1 mm, 2–62.5 μm, and 0.3–2 μm.

3.5. Data analysis

Pollen percentage calculation was based on the total terrestrial pollen count and pollen concentrations were calculated using Lycopodium marker spores (Stockmarr, 1971). Ordination analyses of the pollen data were based only on those 31 taxa that occurred in at least five samples of the core. The stratigraphically constrained cluster analysis (CONISS) was based on the Bray-Curtis dissimilarity matrix (Grimm, 1987), and to assess the significance of the obtained clusters the broken-stick model was used (Bennett, 1996). Principle component analysis (PCA) was based on square-root transformed pollen data. To reconstruct past climate variation, a previously established pollen-climate transfer function for mean July temperature (T_{July}) based on pollen spectra exclusively from lake surfacesediments from northern Siberia (Klemm et al., 2013) was applied to the fossil pollen spectra from CH-12. Fifteen modern surface samples from the Khatanga expedition 2011 were added following the same protocol so that the calibration set consisted of 111 modern spectra in total. The included modern T_{July} data ranges between 7.5 and 18.5°C, this data was retrieved from MODIS satellite imagery from the years between 2007 and 2010. The inclusion of these surface samples into the modern pollen dataset slightly improved the performance of the weighted-average partial least squares model, for which one component was employed, resulting in a root mean square error of prediction of 1.66°C and maximum bias of 4.1°C for T_{July}. The significance of the final reconstructed T_{July} was tested against

187 possible reconstructions derived from random environmental data (using 1000 reconstructions; Telford 188 and Birks, 2011). The complete modern and fossil datasets are available from: PANGAEA link (follows 189 upon publication). 190 The grain size data was analysed with the end-member modelling algorithm using a W-transformation 191 described in Dietze et al. (2012, accessible through the EMMAGeo R-package). With this approach, 192 the contribution of robust end-members (EM) to all the different size classes as well as the quantitative 193 EM contribution throughout the sediment core can be identified (Weltje, 1997; Weltje and Prins, 194 2007). The selection of the minimal potential number of end-members was based on a minimal 195 cumulative explained variance of at least 0.9% of the total dataset variance. The value of the mean 196 coefficient of determination (r²) was used to determine the maximum number of EMs. The robustness 197 of the EMs was tested and the final robust EM and the residual member were calculated. Furthermore, 198 the elementary ratios and the grain size data were jointly analysed to retrieve patterns in the sediment 199 signal of the lacustrine archive via cluster and ordination analyses. The constrained cluster analysis 200 and final ordination followed the same approach as described for the pollen data analysis but 201 employed a Euclidean distance matrix to standardised and log(x+1) transformed data of every second 202 centimetre (Legendre and Gallagher, 2001). 203 To test whether the sediment signal and the pollen signal followed similar trends over the core, the 204 ordination results of both PCAs, using the first two axes scores, were compared with a Procrustes 205 rotation and associated PROTEST with 1,000 permutations (Jackson, 1995; Wischnewski et al., 2011). 206 The Procrustean superimposition approach scales and rotates the ordination results to check for a 207 maximal fit of a superimposition between ordination results (Gower, 1971; Peres-Neto and Jackson, 208 2001). 209 All statistical data analyses were performed in the R environment version 3.02 (R Core Team, 2013) 210 using the analogue (Simpson and Oksanen, 2014), rioja (Juggins, 2014), palaeoSig (Telford, 2015) and 211 vegan (Oksanen et al., 2015) packages.

4. Results

4.1. Age-depth model

The 131.5 cm-long lake sediment core covers the time from 7,100 cal. years BP to the present-day (Fig. 2 and Table 1). ²¹⁰Pb/¹³⁷Cs results indicate a relatively stable, recent sedimentation rate of about 0.03 cm/a (Table 2). The age-depth model based on radiocarbon dates shows a similar and stable accumulation rate over nearly the whole core of around 0.025 cm/a. However, between the depths of 87 and 61 cm, corresponding to a time between 5,400 and 2,600 cal. years BP, a lower accumulation rate of ~0.01 cm/a is inferred. The comparison of radiocarbon dates based on terrestrial wood and moss samples with nearby bulk samples does not reveal any offset. However, the bulk sediment date of the top part of the sediment, at 5.5 cm, dates to about 1,280 ¹⁴C years, whereas radiometric dates of lead and caesium for the uppermost samples show that these sediments are clearly of more recent origin given that the timing of nuclear weapon testing in the 1950s and early 1960s is captured within the core's uppermost three centimetres, the 'true' radiocarbon ages of those samples are most likely affected by nuclear activities (Manning et al., 1990). In the final age-depth model, the radiocarbon result of this upper sample is disregarded.

227 [figure 2, table 1 and 2]

4.2. Pollen data

All pollen spectra are dominated by shrub pollen of BETULA NANA type and ALNUS VIRIDIS type, and POACEAE and CYPERACEAE contributions are also high throughout the core spectra (Fig. 3).

LARIX is present only at low percentages ranging between 0.3 and 9.9% showing a decreasing trend throughout the record. The depth-constrained cluster analyses reveals two significant pollen zones, which were further subdivided on visual inspection. The lower zone (PZ I: 131-53 cm, 7.1-2,200 cal. years BP) is characterised by high LARIX, BETULA NANA type and ALNUS VIRIDIS type, while the upper zone (PZ II 52-0 cm, the last 2,200 years) is rich in POACEAE and CYPERACEAE.

The first PCA-axis (Sup. Fig 1A) explains 70% of the total variance; high 1st axis scores are correlated with high LARIX and ALNUS VIRIDIS type percentages, whereas negative scores are correlated with

POACEAE, CYPERACEAE and PINUS percentages. The second axis explains only 7% of the variance within the dataset and is positively correlated to BETULA NANA type and negatively to ERICACEAE and some herb taxa, such as CHENOPODIACEAE and BRASSICACEAE.

A transfer function-based estimate of July temperature for the upper sample yields 14.5°C, which is in close agreement with the modern satellite-based temperature inference of 14.2°C for the Khatanga region (mean over n=15). The test of the significance of the transfer-function indicated that the pollen-inferred T_{July} reconstruction was statistically significant (p=0.037). The pollen-based climate reconstruction of T_{July} revealed a cooling trend over the last ~7,100 cal. years with an absolute change of about 2 °C. Relative to the overall Holocene cooling trend, periods of variable summer temperature occurred between 1,500 and 1,000 cal. years BP (4 samples) as well as between 900 and

249 [figure 3, Sup. Fig 1A]

4.3. Sedimentological data

700 cal. years BP (3 samples).

Total organic carbon (TOC) varied between 0.9 and 17.8 wt% and total nitrogen (TN) ranged between 0.1 and 1.5 wt% (Fig. 4). Both element curves show generally similar variations, still C/N varied between 1 and 16. Bromine counts correlated well with the organic components (Pearson correlation index: 0.6–0.65). Over the whole core, the water content varied between 15 and 85 wt%. In the bottom ten centimetres, high values are measured followed by a drop around 120 cm depth and then by a steady gradual increase of the water content towards the surface sediments. The geochemical components expressed as the ratios Al/Ti, Si/Ti, Rb/Sr, and Fe/Mn show relatively small variations throughout the core, with the highest variability in the lower 45 cm (7,100–5,500 cal. years BP, Fig. 4). Iron and manganese show similar trends throughout the core, however Fe shows more variation, particularly since 2,700 cal. years BP.

The minerogenic sediment component mainly consists of fine to medium silts with occasional sections of fine sands with a mean grain size of ~11 μm and maximum sample means of 75 μm. The chosen EM model explains a mean of 79% of the total variance over the sediment core. The model error is

largest in the lowermost section of the core. EM1 has its main maximum in the medium-to-fine sand fraction. EM2 displays its maximum at the silt-to-clay transition (Sup. Fig 2A).

Depth-constrained cluster analysis of the various sedimentological datasets reveals a significant split at 115 cm depth (~6,600 cal. years BP). Based on the clustering and visual inspection, the upper zone was further divided into six subzones (Fig. 4). The first and second PCA axes explain 50% and 15% of the variance, respectively (Sup. Fig 3A). The first axis was positively correlated to EM1 and Rb/Sr and negatively correlated to EM2 values and Al/Ti. The second axis separated TOC and C/N, which spanned the positive side, from Fe/Mn on the negative side.

[figure 4, Sup. Figure 2A and 3A]

4.4. Numerical comparison of pollen and sedimentological data

Generally, the sedimentological parameters show higher variability than the pollen data, however the overall trends of the two datasets are significantly correlated as revealed by Procrustes rotation (r=0.49, p<0.001). The goodness of fit between the ordinations is shown in figure 5 with periods of higher agreement having lower residuals. However, a simple inspection of the two cluster analyses shows that the respective clusters of each dataset do not completely overlap. First, the main division of the sediment dataset, which separates the bottom section from the remaining core (the last 6,500 years), is not indicated in the pollen zonation at all. This section has high concentrations of stomata and MENYANTHES TRIFOLIATA. Second, periods of major change in the sedimentological data during the last 6,500 cal. years BP always slightly preceded periods of major change in the palynological data (Fig. 5). For example, major change in the sedimentological data between 2,500 and 2,300 cal. years BP finds a counterpart in the pollen data around 2,200 cal. years BP. Likewise, a sedimentological regime shift recorded for the period between 1,500 and 1,000 cal. years BP may correspond to an abrupt change in the pollen data around 700 cal. years BP.

[figure 5]

287

288

5. Discussion

289 5.1. Assessment of investigated parameters as proxies for regional vegetation and climate, and lake 290 catchment development 291 With the selection of the study site we aimed at capturing a regional-scale pollen signal. Because CH-292 12 lacks any inflowing streams, the portion of fluvial pollen input should be minimal; also only a 293 minor proportion of pollen may be introduced to the small lake via slopewash (Crowder and Cuddy, 294 1973; Fall, 1992). Consequently, most of the deposited pollen grains are of aerial origin. As a function 295 of the lake size, the relevant source area of pollen (RSAP; Sugita, 1994) is expected to encompass an 296 area with a radius of hundreds of metres to a few kilometres. An estimation of its actual size depends 297 not only on lake size but also on surrounding vegetation, namely its composition, spatial structure and 298 openness (Sugita et al., 1999; Bunting et al., 2004, Poska et al., 2011). Today the lake is surrounded by 299 tundra with a high portion of arctic herbs characterised by low pollen productivity. The background 300 pollen loading is high and the spatial scale of vegetation reflected in the pollen source is quite large 301 (Pitkänen et al., 2002; Broström et al., 2005; von Stedingk et al., 2008). The RPSA is possibly above 302 ten to twenty kilometres in radius as suggested by the high value of 25 km published for the modern 303 vegetation in the Khatanga River region (Niemeyer et al. 2015). The RSAP was probably much 304 smaller in times of denser forests during the mid-Holocene compared with today. This theoretical 305 consideration is supported by the observation that PINUS values vary contrarily to LARIX. We regard 306 pine pollen as an indicator of landscape openness, because no modern or fossil presence of pine trees 307 in the regional vegetation is documented. Reported modern and fossil occurrences of *Pinus* are at least 308 200 km away, east and south of the study site (Hultén and Fries, 1986; Kremenetski et al., 2000). 309 PINUS grains are well known for their long-distance transport particularly in open landscapes (Birks 310 and Birks, 2003; Hicks, 2006, Ertl et al., 2012). Awareness of such changes in landscape openness and 311 RSAP is needed when pollen signals are compared with other environmental variables. 312 It is well-known that LARIX is underrepresented in the pollen spectra compared to its abundance in the 313 vegetation, because it is a medium-to-low pollen producer and has a low pollen dispersion (Clayden et

314 al., 1996; Binney et al., 2011; Klemm et al., 2013). Being a deciduous tree, its foliage production is 315 high and, therefore the interpretation of pollen records with respect to treeline changes can be aided by 316 Larix stomata concentrations in the sediment (Ammann et al., 2014; Birks, 2014). Still the estimation of larch cover remains a challenge, and LARIX percentages of around as little as 0.5% may indicate its 317 318 local presence in the vegetation (Lisitsyna et al., 2011). Modern sediment studies from northern 319 Siberia indicate that northern larch forests are typically reflected by 2% LARIX in the pollen spectra 320 (Klemm et al., 2013). 321 The pollen-based quantitative mean July temperature reconstruction is highly correlated to PCA1 and 322 the reconstructed changes are larger than the error ranges. The significance of the T_{July} reconstruction 323 for this core also supports that T_{July} may be the driving force of pollen changes. Therefore, the trend 324 and the absolute temperature offset between the middle and late Holocene can be considered reliable. 325 The absolute values, however, may be rather biased towards the mean of the trainings set (see e.g. 326 'edge-effect' as discussed by Birks et al., 2012). The absolute values are slightly higher than the 327 Khatanga climate station measurements of 12.5°C, because the transfer function is built upon MODIS 328 satellite images deriving from the relatively warm summers between 2007 and 2010 (Klemm et al., 329 2013). 330 Lake CH-12's catchment is without fluvial inflows and well-confined within a few hundred metres of 331 the lake's edge; consequently the scale captured by sedimentological proxies is relatively local. C/N is 332 indicative of the relative contributions of aquatic and terrestrial organic matter to the lacustrine 333 sediment. The obtained C/N ratios mostly range between 10 and 15 suggesting a mixture of both 334 sources (Meyers and Teranes, 2001). We assume that high C/N values, for example at the bottom of 335 the core, relate to low water levels which cause high amounts of terrestrial material to reach the coring 336 position at the centre of the lake. Based on the C/N ratios we assume that relative TOC content at this 337 lake likewise mirrors the relative changes in organic and minerogenic material supplies but is also 338 affected by the within-lake productivity (Briner et al., 2006). The Fe/Mn ratio is assumed to represent 339 the level of lake-water mixing at the water-sediment interface (e.g. Haberzettl et al., 2007; Och et al., 340 2012; Naeher et al., 2013; see supplementary material for details).

According to our field observations the sediments within the small catchment are rather homogeneous. Changes in the grain-size composition and selected elemental ratios of the minerogenic component therefore predominately represent variations in the transportation and sedimentation processes in the direct vicinity of the coring position rather than changes in the material source (Dearing and Jones, 2003). The grain-size data of this lake core indicate the occurrence of two main sedimentation regimes within the last 7,100 years. Sections of clay-to-silt sediments, and higher Rb/Sr values, can be assumed to represent times of deep lake conditions, because a large distance between the coring position and the lake shore causes the sedimentation of a rather fine fraction. In contrast, sections of higher grain size variability and high sand contributions represent unstable lake conditions and an influx of less sorted sediment from near-by lake shores. These grain size signals correspond well to changes in elemental ratios, among them Al/Ti that likewise reflects the transport of coarser minerogenic material to the lake centre. (A detailed discussion of the applicability of these ratios is provided in the supplementary material).

5.2. Vegetation and climate change in Arctic Siberia over the last ~7,000 years

Our palynological investigation reveals a general larch forest decline during the last ~7,100 years. The mid-Holocene vegetation was characterised by open *Larix* taiga with *Alnus* shrubs in the understorey. Modern vegetation conditions, i.e. shrub tundra, dominated by sedges and grasses with only sparse *Larix* stands, became established at approximately 2,200 cal. years BP. This observed general Holocene vegetation trend confirms earlier investigations from north-eastern Siberia using pollen and/or macrofossils analyses (e.g. Prentice and Webb, 1998; Hahne and Melles, 1997; Tarasov et al., 1998, 2007; MacDonald et al., 2000a, 2008; Andreev et al., 2011 and references therein) or modelling approaches (Monserud et al., 1998, Kleinen et al., 2011). Our record reveals that the strong turnover occurred between 3,000 and 2,000 years ago; a similar timing of strong change has also been reported from other sites in the Taymyr region (fig. 6) and or throughout most circumarctic environments (Kaufman et al., 2004; Salonen et al., 2011; Luoto et al., 2014).

[figure 6]

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

5.3. Catchment and lake development

The initial lake development started from a small water-hole in a boggy environment. High terrestrial organic input together with the presence of large macrofossils supports a conclusion of very local sedimentation of plant material into a small wet depression. Additionally, the presence of pollen from the semi-aquatic Menyanthes trifoliata is typical for a shallow water-logged environment. Initial lacustrine sedimentation started around 7,000 cal. years BP during the late phase of the regional climate optimum that occurred from 9,000 to 6,800 cal. years BP (Andreev et al., 2011). Thermokarst processes are assumed to be more active in times of warming and accordingly strong thermokarst activity has been reported for Siberia during the early and mid-Holocene (Romanovskii et al., 2004; Grosse et al., 2006). During that time, high temperatures and high humidity together with poor drainage may have promoted the formation of a small water-filled depression at the study site lasting for around 500 years. The following subsidence of the initial depression may have been rapid due to internal feedback mechanisms (Czudek and Demek, 1970; Murton, 2001). In modern Yakutia, fast subsidence rates of 5–10 cm/a (Brouchkov et al., 2004) and 17–24 cm/a (Fedorov and Konstantinov, 2003) are reported. Our sedimentological data from the period following the initial lake formation show high variability from 6,500 until around 5,200 cal. years BP, indicating processes of a deepening water body and relief formation. Thaw slumps and instable lake margins might have led to a mix of fine and coarse material accumulating in a shallow, well-ventilated lake. Our reconstruction suggests that lake sedimentation stabilised, probably because of the formation of a deeper lake after about 5,200 cal. years BP. Over the last 5,200 years the lake experienced two short-term changes in the sedimentological regime, at about 2,500 cal. years BP and about 1,500 cal. years BP, where strong inputs of unsorted material to the lake basin occurred. Such inputs may indicate either a change in the hydrologic regime of the lake's catchment leading to an increased water inflow from the surrounding slopes or represent the input due to slumps from instable margins.

5.4. Assessment of the reconstruction

The pollen-based climate reconstruction of our study yields a summer temperature change of about
2 °C over the last 7,100 years. This magnitude of Holocene temperature change is in general
agreement with other studies from the Taymyr region and throughout northern Siberia (Miller et al.,
2010; Andreev et al., 2011) and has been attributed to a decrease in solar radiation in summer over the
high-northern latitudes (Berger and Loutre, 1991) and related high-latitude feedback mechanisms
(Kerwin et al., 1999; Wanner et al., 2008; Marcott et al., 2013). Some distinct short-scale variations
are obvious within the last 2,000 years of the reconstruction (fig. 6). A warm phase around 1,500-
1,000 cal. years BP may reflect the Medieval Climate Anomaly (MCA, defined after Mann et al., 2009
between 1,050-750 years ago in northern Europe). A possible MCA is also indicated by tree-ring
chronologies from the nearby Khatanga region (Briffa et. al., 2008; McKay and Kaufman, 2014). Also
regional lacustrine summer temperature reconstructions based on pollen and diatoms indicate a warm
MCA (e.g. Lama Lake: Andreev et al., 2004; Kumke et al., 2004). This warm interval was followed by
a rapid cool period in the Northern Hemisphere known as the Little Ice Age (Overpeck et al., 1997;
Briffa and Osborn 1999; Briffa, 2000; MacDonald et al., 2008). At Lake CH-12, a cooling is indicated
around 900 cal. years BP, as is also found in the 100 km-distant Labaz Lake region (Andreev et al.,
2002).
The general similarity in the proxies for local lake and catchment changes and regional vegetation
change probably originates from a joint driver, which most likely is climate variation. Earlier studies
found that, compared to vegetation changes, changes in the within-lake sedimentation or catchment
erosion are captured in sediments mostly with short time-lags (Dearing and Jones, 2003). Other
possible factors that would result in similar changes in the proxies are disturbances through, for
example, fire, insects, or humans. In this pristine setting human disturbance can be considered
minimal, as can major effects from insects (Hauck et al., 2008; Dulamsuren et al., 2010). However,
fire is a frequent feature in the forest-tundra ecotone (Berner et al., 2012) and may have affected the
study site to some extent. A charcoal analysis, however, was not included in this approach.
This comparison of the environmental development at two spatial scales yielded that the local changes
within the lake and its catchment possibly preceded the regional vegetation changes by several

decades. However, more detailed inferences about vegetation lag-times are not possible because of the limited temporal resolution of the reconstruction results. Accordingly, only the general trends of pollen-based reconstructed climate, i.e. variations on millennial time-scales are reliable while short-term changes may be biased by lagged responses. Still, we assume that pollen is the most reliable proxy for climate reconstruction because all limnological proxies potentially respond non-linearly to climate change.

6. Conclusions

An overall cooling of summer temperature by about 2 °C since 7,000 cal. years BP was reconstructed by the application of a pollen-based transfer function to a sediment record from a lake located at the present-day northern larch limit on the southern Taymyr Peninsula. This trend is significant and adds to information to the Taymyr region especially due to the good resolution of the lacustrine core for the last 2,000 years. The temperature decrease mainly reflects the density decrease of larch forests supporting the high sensitivity of this ecosystem to climate variations.. Regional vegetation change generally matches the lake system development and is probably driven by climate-related thermokarst processes. However, the sub-millennial scale changes and variability differ for each proxy dataset, i.e. we inferred a lagged vegetation response and a non-linear lake system response to climate. This studies approach combining the regional vegetation signal and the more local lake catchment signal helps to understand the resolution of both reconstructed signals and highlights that a careful consideration of the scale of the reconstruction has to be made.

Acknowledgements

- We thank Mareike Wieczorek, Romy Zibulski, Ruslan Gorodnichev, Alexey Kolmogorov and Alexey
- Pestryakov for assisting with the field and laboratory work.

References

- Abaimov, A. P. (2010) Geographical distribution and genetics of Siberian larch species. In Permafrost
- Ecosystems: Siberian Larch Forests. (Eds.) A. Osawa, O. A. Zyryanova, Y. Matsuura, T. Kaimoto and R.
- W. Wein. Springer Netherlands, pp. 41–58.

446	Ammann, B., W. O. van der Knaap, G. Lang, MJ. Gaillard, P. Kaltenrieder, M. Rösch, W. Finsinger, H. E.
447	Wright and W. Tinner (2014) The potential of stomata analysis in conifers to estimate presence of conifer
448	trees: examples from the Alps. Vegetation History and Archaeobotany 23(3): 249-264.
449	doi:10.1007/s00334-014-0431-9
450	Ananjeva (Malkova), G. V. and O. E. Ponomarjeva (2001) Percentage of lake cover in the Russian Arctic. In:
451	Fourth International Circumpolar Arctic Vegetation Mapping Workshop: A compilation of short papers,
452	abstracts, and comments presented at the Russian Academy of Sciences (Eds.) M. K. Raynolds and C. J.
453	Markon, Moscow Russia, pp. 43–45.
454	Andreev, A. A., C. Siegert, V. A. Klimanov, A. Y. Derevyagin, G. N. Shilova and M. Melles (2002) Late
455	Pleistocene and Holocene vegetation and climate changes in the Taymyr lowland, Northern Siberia
456	reconstructed from pollen records. Quaternary Research 57(1): 138-150. doi:10.1006/qres.2001.2302
457	Andreev, A. A., P. E Tarasov, C. Siegert, T. Ebel, V. A. Klimanov, M. Melles, A. A. Bobrov, A. Y. Dereviagin,
458	D. J. Lubinski and HW. Hubberten (2003) Late Pleistocene and Holocene vegetation and climate on the
459	northern Taymyr Peninsula, Arctic Russia. Boreas 32(3): 484–505. doi:10.1111/j.1502-
460	3885.2003.tb01230.x
461	Andreev, A. A. P. E. Tarasov, V. A. Klimanov, M. Melles, O. M. Lisitsyna and HW. Hubberten (2004)
462	Vegetation and climate changes around the Lama Lake, Taymyr Peninsula, Russia during the Late
463	Pleistocene and Holocene. Quaternary International 122(1): 69-84. doi:10.1016/j.quaint.2004.01.032
464	Andreev, A. A., L. Schirrmeister, P. E. Tarasov, A. Ganopolski, V. Brovkin, C. Siegert, S. Wetterich and HW.
465	Hubberten (2011) Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late
466	Quaternary inferred from pollen records. Quaternary Science Reviews 30(17): 2182-2199.
467	doi:10.1016/j.quascirev.2010.12.026
468	Appleby, P. G., N. Richardson and P. J. Nolan (1991) ²⁴¹ Am dating of lake sediments. Hydrobiologia 214: 35–
469	42.
470	Appleby, P. G. (2001) Chronostratigraphic techniques in recent sediments. In: Tracking Environmental Change
471	Using Lake Sediments Vol. 1: Basin Analysis, Coring, and Chronological Technique. (Eds.) W. M. Last
472	and J. P. Smol. Kluwer Academic, pp. 171–203. doi:10.1007/0-306-47669-X_9
473	Bekryaev, R. V., I. V. Polyakov and V. A. Alexeev (2010) Role of polar amplification in long-term surface air
474	temperature variations and modern Arctic warming. Journal of Climate 23(14): 3888–3906.

475	Bennett, K. D. (1996) Determination of the number of zones in a biostratigraphical sequence. New Phytologist
476	132(1): 155–170. doi:10.1111/j.1469-8137.1996.tb04521.x
477	Berger, A. and M. F Loutre (1991) Insolation values for the climate of the last 10 million years. Quaternary
478	Science Reviews 10(4): 297-317. doi:10.1016/0277-3791(91)90033-Q
479	Berner, L. T. P. S. A. Beck, M. M. Loranty, H. D. Alexander, M. C. Mack and S. J. Goetz (2012) Cajander larch
480	(Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia.
481	Biogeosciences 9: 3943–3959. doi:10.5194/bg-9-3943-2012
482	Berner, L. T., P. S. A. Beck, A. G. Bunn and S. J. Goetz (2013) Plant response to climate change along the
483	forest-tundra ecotone in northeastern Siberia. Global Change Biology 19(11): 3449-3462.
484	doi10.1111/gcb.12304
485	Beug, H. J. (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr
486	Friedrich Pfeil: München, pp. 545 (in German).
487	Binney, H. A., P. W. Gething, J. M. Nield, S. Sugita and M. E. Edwards (2011) Tree line identification from
488	pollen data: beyond the limit? Journal of Biogeography 38(9): 1792-1806. doi:10.1111/j.1365-
489	2699.2011.02507.x
490	Birks, H. H. and H. J. B. Birks (2003) Reconstructing Holocene climates from pollen and plant macrofossils. In:
491	Global Change in the Holocene. (Eds.) A. Mackay, R. W. Battarbee, H. J. B. Birks and F. Oldfield.
492	Arnold, London, pp. 342–357.
493	Birks, H. J. B., A. F. Lotter, S. Juggins and J. P. Smol (2012) Tracking Environmental Change Using Lake
494	Sediments: Data Handling and Numerical Techniques (Vol. 5). Springer, pp. 745.
495	Birks, H. J. B. (2014) Challenges in the presentation and analysis of plant-macrofossil stratigraphical data.
496	Vegetation History and Archaeobotany, 23(3): 309-330. doi:10.1007/s00334-013-0430-2
497	Blaauw, M. and J. A. Christen (2011) Flexible paleoclimate age-depth models using an autoregressive gamma
498	process. Bayesian Analysis 6(3): 457–474. doi:10.1214/ba/1339616472
499	Blackmore, S., J. A. J. Steinmann, P. P. Hoen and W. Punt (2003) BETULACEAE and CORYLACEAE.
500	Review of Palaeobotany and Palynology 123 (1-2): 71-98. doi:10.1016/S0034-6667(02)00156-2
501	Bliss, L. C. (1981) Introduction. In: Tundra Ecosystems: a Comparative Analysis. No. 25 (Eds.) L. C. Bliss, O.
502	W. Heal and J. J. Moore, Cambridge University Press, pp. 3–46.
503	Briffa, K. R. and T. J. Osborn (1999) Seeing the wood from the trees. Science 284(5416): 926–927.

504	Briffa, K. R. (2000) Annual climate variability in the Holocene: interpreting the message of ancient trees.
505	Quatarnary Science Review 19(1): 87-105. doi:10.1016/S0277-3791(99)00056-6
506	Briffa, K. R., V. V. Shishov, T. M. Melvin, E. A. Vaganov, H. Grudd, R. M. Hantemirov, M. Eronen and M. M.
507	Naurzbaev (2008) Trends in recent temperature and radial tree growth spanning 2000 years across
508	northwest Eurasia. Philosophical Transactions of the Royal Society B: Biological Sciences 363(1501):
509	2269–2282. doi:10.1098/rstb.2007.2199
510	Briner, J. P., N. Michelutti, D. R. Francis, G. H. Miller, Y. Axford, M. J. Wooller and A. P. Wolfe (2006) A
511	multi-proxy lacustrine record of Holocene climate change on northeastern Baffin Island, Arctic Canada.
512	Quaternary Research 65(3): 431-442. doi:10.1016/j.yqres.2005.10.005
513	Broström, A., S. Sugita, MJ. Gaillard and P. Pilesjö (2005) Estimating the spatial scale of pollen dispersal in
514	the cultural landscape of southern Sweden. The Holocene 15(2): 252-62.
515	doi:10.1191/0959683605h1790rp
516	Brouchkov, A., M. Fukuda, A. Fedorov, P. Konstantinov and G. Iwahana (2004) Thermokarst as a short-term
517	permafrost disturbance, Central Yakutia. Permafrost and Periglacial Processes 15 (1): 81-87.
518	doi:10.1002/ppp.473
519	Brown, J., O. Ferrians, J. A. Heginbottom and E. Melnikov (2014) Circum-Arctic Map of Permafrost and
520	Ground-Ice Conditions. Boulder, Colorado USA: National Snow and Ice Data Center.
521	http://nsidc.org/data/ggd318.
522	Bunting, M. J., MJ. Gaillard, S. Sugita, R. Middleton and A. Broström (2004) Vegetation structure and pollen
523	source area. The Holocene 14(5): 651-660. doi:10.1191/0959683604hl744rp
524	CAVM Team (2003) Circumpolar Arctic Vegetation Map. (1:7,500,000 scale), Conservation of Arctic Flora and
525	Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska.
526	Chernov, Y. I. and Matveyeva, N. V. (1997) Arctic Ecosystems in Russia. In: Polar and Alpine Tundra. (Ed.) F.
527	E. Wielgolaski. Elvesier. Amsterdam, pp. 361–507.
528	Clayden, S. L., L. C. Cwynar and G. M. MacDonald (1996) Stomate and pollen content of lake surface sediment
529	from across the tree line on the Taimyr Peninsula, Siberia. Canadian Journal of Botany 74(7): 1009–1015.
530	doi:10.1139/b96-125
531	Crowder, A. A. and D. G. Cuddy (1973) Pollen in a small river basin: Wilton Creek, Ontario. In: Quaternary
532	Plant Ecology (Eds.) H. J. B. Birks and R. G. West. Blackwell Scientific Publications, Oxford, pp. 61–77.

533	Czudek, T. and J. Demek (1970) Thermokarst in Siberia and its influence on the development of lowland relief.
534	Quaternary Research 1 (1): 103-120.
535	Dearing, J. A. and R. T. Jones (2003) Coupling temporal and spatial dimensions of global sediment flux through
536	lake and marine sediment records. Global and Planetary Change 39(1-2): 147-168. doi:10.1016/S0921-
537	8181(03)00022-5
538	Dethleff, D., V. Rachold, M. Tintelnot and M. Antonow (2000) Sea-ice transport of riverine particles from the
539	Laptev Sea to Fram Strait based on clay mineral studies. International Journal of Earth Sciences 89: 496-
540	502. doi:10.1007/s005310000109
541	Dietze, E, K. Hartmann, B. Diekmann, J. IJmker, F. Lehmkuhl, S. Opitz, G.Stauch, B. Wuennemann and A.
542	Borchers (2012) An end-member algorithm for deciphering modern detrital processes from lake
543	sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology 243-244: 169-180.
544	doi:10.1016/j.sedgeo.2011.09.014
545	Dulamsuren, C., M. Hauck, H. H. Leuschner and C. Leuschner (2010) Gypsy moth-induced growth decline of
546	Larix sibirica in a forest-steppe ecotone. Dendrochronologia 29(4): 207–213.
547	doi:10.1016/j.dendro.2009.05.007
548	Ehlers, J. and P. L. Gibbard (2007) The extent and chronology of Cenozoic Global Glaciation. Quaternary
549	International 164–165: 6–20. doi:10.1016/j.quaint.2006.10.008
550	Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Björk, A. D. Bjorkman, T. V. Callaghan, L. S. Collier,
551	E. J. Cooper, J. H. C. Cornelissen, T. A. Day, A. M. Fosaa, W. A. Gould, J. Grétarsdóttir, J. Harte, L.
552	Hermanutz, D. S. Hik, A. Hofgaard, F. Jarrad, I. S. Jónsdóttir, F. Keuper, K. Klanderud, J. A. Klein, S.
553	Koh, G. Kudo, S. I. Lang, V. Loewen, J. L. May, J. Mercado, A. Michelsen, U. Molau, I. H. Myers-
554	Smith, S. F. Oberbauer, S. Pieper, E. Post, C. Rixen, C. H. Robinson, N. M. Schmidt, G. R. Shaver, A.
555	Stenström, A. Tolvanen, Ø. Totland, T. Troxler, CH. Wahren, P. J. Webber, J. M. Welker and P. A.
556	Wookey (2012a) Global assessment of experimental climate warming on tundra vegetation: heterogeneity
557	over space and time. Ecology Letters 15(2): 164–175.
558	Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Björk, N. Boulanger-Lapointe, E. J. Cooper, J. H. C.
559	Cornelissen, T. A. Day, E. Dorrepaal, T. G. Elumeeva, M. Gill, W. A. Gould, J. Harte, D. S. Hik, A.
560	Hofgaard, D. R. Johnson, J. F. Johnstone, I. S. Jónsdóttir, J. C. Jorgenson, K. Klanderud, J. A. Klein, S.
561	Koh, G. Kudo, M. Lara, E. Lévesque, B. Magnússon, J. L. May, J. A. Mercado-Díaz, A. Michelsen, U.
562	Molau, I. H. Myers-Smith, S. F. Oberbauer, V. G. Onipchenko, C. Rixen, N. M. Schmidt, G. R. Shaver,

563	M. J. Spasojevic, Þ. E. Þórhallsdóttir, A. Tolvanen, T. Troxler, C. E. Tweedie, S. Villareal, CH. Wahren,
564	X. Walker, P. J. Webber, J. M. Welker and S. Wipf (2012b) Plot-scale evidence of tundra vegetation
565	change and links to recent summer warming. Nature Climate Change 2: 453-457.
566	Ertl C., AM. Pessi, A. Huusko, S. Hicks, E. Kubin and S. Heino (2012) Assessing the proportion of "extra-
567	local" pollen by means of modern aerobiological and phenological records — An example from Scots
568	pine (Pinus sylvestris L.) in northern Finland. Review of Palaeobotany and Palynology 185: 1-12.
569	doi:10.1016/j.revpalbo.2012.07.014
570	Fægri, K. and J. Iversen (1989) Textbook of Pollen Analysis. John Wiley & Sons. Chichester, England, pp. 294.
571	Fall, P. L. (1992) Pollen accumulation in a montane region of Colorado, USA: a comparison of moss polsters,
572	atmospheric traps, and natural basins. Review of Palaeobotany and Palynology 72(3): 169-197.
573	doi:10.1016/0034-6667(92)90026-D
574	Fedorov, A. and P. Konstantinov (2003) Observations of surface dynamics with thermokarst initiation, Yukechi
575	site, Central Yakutia. Proceedings of the 8th International Permafrost Conference, Zurich, Switzerland.
576	239–243.
577	Giesecke, T., K. D. Bennett, H. J. B. Birks, A. E. Bjune, E. Bozilova, A. Feurdean, W. Finsinger, C. Froyd, P.
578	Pokorný, M. Rösch, H. Seppä, S. Tonkov, V. Valescchi and S. Wolters (2011) The pace of Holocene
579	vegetation change-testing for synchronous developments. Quaternary Science Reviews 30(19): 2805-
580	2814.
581	Gower, J. C. (1971) Statistical methods of comparing different multivariate analyses of the same data. In:
582	Mathematics in the Archaeological and Historical Sciences. (Eds.) F. R. Hodson, D. G. Kendall and P.
583	Tautu. Edinburgh University Press, Edinburgh, pp. 138–149.
584	Grigoriev, V. Y. and B. L. Sokolov (1994) Northern hydrology in the Former Soviet Union (FSU). In: Northern
585	Hydrology: International Perspectives. (Eds.) T. D. Prowse, C. S. L. Omrnanney and L. E. Watson. NHRI
586	Science Report No. 3, National Hydrology Research Institute, Environment Canada, Saskatoon, pp. 147-
587	179.
588	Grimm, E. C. (1987) Coniss - a Fortran-77 program for stratigraphically constrained cluster-analysis by the
589	method of incremental sum of squares. Computers & Geosciences 13(1): 13-35.
590	Grosse, G., L. Schirrmeister, C. Siegert, V. V. Kunitsky, A. A. Slagoda, A. A. Andreev and A. Y. Dereviagyn
591	(2006) Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast
592	Siberia during the Late Quaternary. Geomorphology 86(1): 25-51. doi:10.1016/j.geomorph.2006.08.005

593	Haberzettl, T., H. Corbella, M. Fey, S. Janssen, A. Lücke, C. Mayr, C. Ohlendorf, F. Schäbitz, G. H. Schleser,
594	M. Wille, S. Wulf and B. Zolitschka (2007) Lateglacial and Holocene wet-dry cycles in southern
595	Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike,
596	Argentina. The Holocene 17: 297–310. doi:10.1177/0959683607076437
597	Hahne, J.and M. Melles (1997) Late- and post-glacial vegetation and climate history of the southwestern Taymyr
598	Peninsula, central Siberia, as revealed by pollen analysis of a core from Lake Lama. Vegetation History
599	and Archaeobotany 6: 1–8.
600	Hansen, B. C. S. (1995) Conifer stomate analysis as a paleoecological tool: an example from the Hudson Bay
601	Lowlands. Canadian Journal of Botany 73(2): 244-252. doi:10.1139/b95-027
602	Hauck, M., C. Dulamsuren and C. Heimes (2008) Effects of insect herbivory on the performance of <i>Larix</i>
603	sibirica in a forest-steppe ecotone. Environmental and Experimental Botany 62(3): 351–356.
604	doi:10.1016/j.envexpbot.2007.10.025
605	Hicks, S. (2006) When no pollen does not mean no trees. Vegetation History and Archaeobotany 15: 253–261.
606	Hinzman, L. D., C. J. Deal, A. D. McGuire, S. H. Mernild, I. V. Polyakov and J. E. Walsh (2013) Trajectory of
607	the Arctic as an integrated system. Ecological Applications 23(8): 1837-1868. doi:10.1890/11-1498.1
608	Hultén, E. and M. Fries (1986) Atlas of North European Vascular Plants (North of the Tropic of Cancer) Vol. 1.
609	Koeltz Scientific Books, Königstein, Germany, pp. 40-41.
610	IPCC (2013) Collins, M., R. Knutti, J. Arblaster, JL. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. J.
611	Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. J. Weaver and M. Wehner. Long-term
612	Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical
613	Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
614	Panel on Climate Change. (Eds.) T. F. Stocker, D. Qin, GK. Plattner, M. Tignor, S. K. Allen, J.
615	Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley. Cambridge University Press, Cambridge,
616	United Kingdom and New York, NY, USA
617	Jackson, D. (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance.
618	Ecoscience 2: 297–303.
619	Joosten, H. and P. de Klerk (2002) What's in a name? Some thoughts on pollen classification, identification, and
620	nomenclature in Quaternary palynology. Review of Palaeobotany and Palynology 122: 29-45.
621	doi:10.1016/S0034-6667(02)00090-8

522	Juggins, S. (2014) Rioja: Analysis of Quaternary science data, R package version 0.9-3. http://cran.r-
523	project.org/package=rioja
524	Kanevskiy, M., T. Jorgenson, Y. Shur, J. A. O'Donnell, J. W. Harden, Q. Zhuang and D. Fortier (2014)
525	Cryostratigraphy and permafrost evolution in the lacustrine lowlands of west-central Alaska. Permafrost
526	and Periglacial Processes 25(1): 14-34. doi:10.1002/ppp.1800
527	Kaufman, D. S., T. A. Ager, N. J. Anderson, P. M. Anderson, J. T. Andrews, P. J. Bartlein, L. B. Brubaker, L. L.
528	Coats, L. C. Cwynar, M. L. Duvall, A. S. Dyke, M. E. Edwards, W. R. Eisner, K. Gajewski, A.
529	Geirsdóttir, F. S. Hu, A. E. Jennings, M. R. Kaplan, M. W. Kerwin, A. V. Lozhkin, G. M. MacDonald, G.
530	H. Miller, C. J. Mock, W. W. Oswald, B. L. Otto-Bliesner, D. F. Porinchu, K. Rühland, J. P. Smol, E. J.
531	Steig and B. B. Wolfe (2004) Holocene thermal maximum in the western Arctic (0-180°W), Quaternary
532	Science Reviews 23: 529–560. doi:10.1016/j.quascirev.2003.09.007
533	Kerwin, M., J. T. Overpeck, R. S. Webb, A. DeVernal, D. H. Rin and R. J. Healy (1999) The role of oceanic
534	forcing in mid-Holocene northern hemisphere climatic change. Paleoceanography 14: 200-210.
535	doi:10.1029/1998PA900011
536	Kharuk, V. I., K. J. Ranson, S. T. Im, P. A. Oskorbin, M. L. Dvinskaya and D. V. Ovchinnikov (2013) Tree-line
537	structure and dynamics at the northern limit of the larch forest: Anabar Plateau, Siberia, Russia. Arctic,
538	Antarctic, and Alpine Research 45(4): 526-537. doi:10.1657/1938-4246-45.4.526
539	Kleinen, T, P. Tarasov, V. Brovkin, A. A. Andreev and M. Stebich (2011) Comparison of modelled and
540	reconstructed changes in forest cover through the past 8000 years: Eurasian perspective. The Holocene
541	21: 723–734. doi:10.1177/0959683610386980
542	Klemm, J., U. Herzschuh, M. F. J. Pisaric, R. J. Telford, B. Heim and L. A. Pestryakova (2013) A pollen-climate
543	transfer function from the tundra and taiga vegetation in Arctic Siberia and its applicability to a Holocene
544	record. Palaeogeography, Palaeoclimatology, Palaeoecology 386: 702-713.
545	Kremenetski, C. V., K. Liu and G. M. MacDonald (2000) The late Quaternary dynamics of pines in northern
546	Asia. In: Ecology and Biogeography of Pinus. (Ed.) D. M. Richardson. Cambridge University Press, pp.
547	95–106.
548	Kumke, T., U. Kienel, J. Weckström, A. Korhola and HW. Hubberten (2004) Inferred Holocene
549	paleotemperatures from diatoms at Lake Lama, Central Siberia. Arctic, Antarctic, and Alpine Research
550	36(4): 624–634.

651	Legendre, P. and E. D. Gallagher (2001) Ecologically meaningful transformations for ordination of species data.
652	Oecologia 129: 271–280. doi:10.1007/s004420100716
653	Lenton, T. M. (2012) Arctic climate tipping points. Ambio 41(1), 10–22.
654	Lisitsyna, O. V., T. Giesecke and S. Hicks (2011) Exploring pollen percentage threshold values as an indication
655	for the regional presence of major European trees. Review of Palaeobotany and Palynology 166(3): 311-
656	324.
657	Löwemark, L., HF. Chen, TN. Yang, M. Kylander, EF. Yu, YW. Hsu, TQ. Lee, SR. Song and S. Jarvis
658	(2011) Normalizing XRF-scanner data: a cautionary note on the interpretation of high-resolution records
659	from organic-rich lakes. Journal of Asian Earth Sciences 40: 1250-1256.
660	doi:10.1016/j.jseaes.2010.06.002
661	Luoto, T. P., M. Kaukolehto, J. Weckström, A. Korhola and M. Väliranta (2014) New evidence of warm early-
662	Holocene summers in subarctic Finland based on an enhanced regional chironomid-based temperature
663	calibration model. Quaternary Research 81: 50-62. doi:10.1016/j.yqres.2013.09.010
664	MacDonald, G. M., A. A. Velichko, C. V. Kremenetski, C. K. Borisova, A. A. Goleva, A. A. Andreev, L. C.
665	Cwynar, R. T. Riding, S. L. Forman, T. W. D. Edwards, R. Aravena, D. Hammarlund, J. Szeicz and V. N.
666	Gattaulin (2000a) Holocene treeline history and climate change across northern Eurasia. Quaternary
667	Research 53: 302–311.
668	MacDonald, G., B. Felzer, B. Finney and S. Forman (2000b) Holocene lake sediment records of Arctic
669	hydrology. Journal of Paleolimnology 24(1): 1–13.
670	MacDonald, G. M., K. V. Kremenetski and D. W. Beilman (2008) Climate change and the northern Russian
671	treeline zone. Philosophical Transactions of the Royal Society B: Biological Sciences 363: 2285–2299.
672	Mann, M. E., Z. H. Zhang, S. Rutherford, R. S. Bradley, M. K. Hughes, D. Shindell, C. Ammann, G. Faluvegi
673	and F. B. Ni (2009) Global signatures and dynamical origins of the little ice age and medieval climate
674	anomaly, Science 326(5957): 1256-1260. doi:10.1126/science.1177303
675	Manning, M. R., D. C. Lowe, W. H. Melhuish, R. J. Sparks, G. Wallace, C. A. M. Brenninkmeijer and R. C.
676	McGill (1990) The use of radiocarbon measurements in atmospheric studies. Radiocarbon 32(1): 37–58.
677	Marcott, S. A., J. D. Shakun, P. U. Clark and A. C. Mix (2013) A reconstruction of regional and global
678	temperature for the past 11,300 years. Science 339(6124): 1198-1201. doi:10.1126/science.1228026
679	McKay, N. P. and D. S. Kaufman (2014) An extended Arctic proxy temperature database for the past 2,000
680	venes Science Data 1:140026 doi:10.1038/sdata 2014.26

081	Meyers, P. A. and E. Lailier-Verges (1999) Lacustrine sedimentary organic matter records of Late Quaternary
682	paleoclimates. Journal of Paleolimnology 21(3): 345–372.
683	Meyers, P. A. and J. L. Teranes (2001) Sediment organic matter. In: Tracking Environmental Change Using
684	Lake Sediments, Physical and Geochemical Methods, Vol. 2. (Eds.) W. M. Last and J. P. Smol, Kluwer
685	Academic Publishers, Dordrecht, The Netherlands, pp. 239–269.
686	Miller, G. H., J. Brigham-Grette, R. B. Alley, L. Anderson, H. A. Bauch, M. S. V. Douglas, M. E. Edwards, S.
687	A. Elias, B. P. Finney, J. J. Fitzpatrick, S. V. Funder, T. D. Herbert, L. D. Hinzman, D. S. Kaufman, G.
688	M. MacDonald, L. Polyak, A. Robock, M. C. Serreze, J. P. Smol, R. Spielhagen, J. W. C. White, A. P.
689	Wolfe and E. W. Wolff (2010) Temperature and precipitation history of the Arctic. Quaternary Science
690	Reviews 29: 1679–1715.
691	Monserud, R. A., N. M. Tchebakova and O. V. Denissenko (1998) Reconstruction of the mid-Holocene
692	palaeoclimate of Siberia using a bioclimatic vegetation model. Palaeogeography, Palaeoclimatology,
693	Palaeoecology 139: 15–36.
694	Moore, P. D., J. A. Webb and M. E. Collison (1991) Pollen Analysis: Second Edition. Blackwell scientific
695	publications, pp. 216.
696	Morgenstern, A., G. Grosse, F. Günther, I. Fedorova and L. Schirrmeister (2011) Spatial analyses of thermokarst
697	lakes and basins in Yedoma landscapes of the Lena Delta. The Cryosphere Discussions 5:1495–1545.
698	doi:10.5194/tcd-5-1495-2011
699	Murton, J. B. (2001) Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western
700	Arctic Canada. Global and Planetary Change 28(1): 175–192.
701	Naeher, S., A. Gilli, R. P. North, Y. Hamann and C. J. Schubert (2013) Tracing bottom water oxygenation with
702	sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chemical Geology 352: 125-133.
703	Naurzbaev, M. M. and E. A. Vaganov (2000) Variation of early summer and annual temperature in east Taymir
704	and Putoran (Siberia) over the last two millennia inferred from tree rings. Journal of Geophysical
705	Research 105: 7317–7326.
706	Niemeyer, B., J. Klemm, L. A. Pestryakova and U. Herzschuh (2015). Relative pollen productivity estimates for
707	common taxa of the northern Siberian Arctic. Review of Palaeobotany and Palynology 221, 71-82.
708	doi:10.1016/j.revpalbo.2015.06.008

709 Och, L. M., B. Müller, A. Voegelin, A. Ulrich, J. Göttlicher, R. Steiniger, S. Mangold, E. G. Vologina and M. 710 Sturm (2012) New insights into the formation and burial of Fe/Mn accumulations in Lake Baikal 711 sediments. Chemical Geology 330-331: 244-259. 712 Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. 713 H. H. Stevens and H. Wagner (2015) Vegan: Community ecology package. R package version 2.2-1.. 714 http://CRAN.R-project.org/package=vegan 715 Overpeck, J., K. Hughen, D. Hardy, R. Bradley, R. Case, M. Douglas, B. Finney, K. Gajewski, G. Jacoby, A. 716 Jennings, S. Lamoureux, A. Lasca, G. MacDonald, J. Moore, M. Retelle, S. Smith, A. Wolfe and G. 717 Zielinski (1997) Arctic environmental change of the last four centuries. Science 278(5341): 1251–1256. 718 Pavlov, B. M., L. A. Kolpashchikov and V. A. Zyryanov (1996) Population dynamics of the Taimyr reindeer 719 population. Rangifer 16(4): 381-384. doi:10.7557/2.16.4.1281 720 Pearson, R. G., S. J. Phillips, M. M. Loranty, P. S. Beck, T. Damoulas, S. J. Knight and S. J. Goetz (2013) Shifts 721 in Arctic vegetation and associated feedbacks under climate change. Nature Climate Change 3(7): 673-722 677. doi:10.1038/nclimate1858 723 Peregovich, B., E. Hoops and V. Rachold (1999) Sediment transport to the Laptev Sea (Siberian Arctic) during 724 the Holocene—evidence from the heavy mineral composition of fluvial and marine sediments. Boreas 28: 725 205–214. 726 Peres-Neto, P. and D. Jackson (2001) How well do multivariate data sets match? The advantages of a 727 Procrustean superimposition approach over the Mantel test. Oecologia 129(2): 169– 728 178.doi:10.1007/s004420100720 729 Petrov, O. V. (2008) Geological map of Russia and adjoining water areas, 1:2,500,000. Karpinsky Russian 730 Geological Research Institute (VSEGEI), Moscow, Russia, 12 sheets (in Russian). 731 Pitkänen, A., J. Turunen, T. Tahvanainen and K. Tolonen (2002) Holocene vegetation history from the Salym-732 Yugan Mire Area, West Siberia. The Holocene 12: 353-362. 733 Poska A., V. Meltsov, S. Sugita and J. Vassiljev (2011) Relative pollen productivity estimates of major 734 anemophilous taxa and relevant source area of pollen in a cultural landscape of the hemi-boreal forest 735 zone (Estonia). Review of Palaeobotany and Palynology 167(1–2): 30–39. 736 Pospelova, E. B., I. N. Pospelov, A. V. Zhulidov, R. D. Robarts, O. V. Zhulidova, D. A. Zhulidov and T. Y. 737 Gurtovaya (2004) Biogeography of the Byrranga Mountains, Taymyr Peninsula, Russian Arctic. Polar 738 Record 40: 327-344.

739 Prentice, I. C. and T. Webb III (1998) BIOME 6000: reconstructing global mid-Holocene vegetation-patterns 740 from paleoecological records. Journal of Biogeography 25: 997–1005. 741 R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical 742 Computing, Vienna, Austria. http://www.R-project.org/. 743 Rachold, W., A. Eisenhauer, H.-W. Hubberten, B. Hansen and H. Meyer (1997) Sr Isotopic Composition of 744 Suspended Particulate Material (SPM) of East Siberian Rivers: Sediment Transport to the Arctic Ocean. 745 Arctic and Alpine Research 29: 422–429. 746 Reille, M. (1998) Pollen et Spores D'Europe et D'Afrique du Nord. Laboratoire de Botanique Historique et 747 Palynologie, Marseille, pp. 515. 748 Reimer, P. J., E. Bard, A. Bayliss, J. W. Beck, P. G. Blackwell, C. Bronk Ramsey, C. E. Buck, H. Cheng, R. L. 749 Edwards, M. Friedrich, P. M. Grootes, P. T. Guilderson, H. Haflidason, I. Hajdas, C. Hattž, T. J. Heaton, 750 D. L. Hoffmann, A. G. Hogg, K. A. Hughen, K. F. Kaiser, B. Kromer, S. W. Manning, M. Niu, R. W. 751 Reimer, D. A. Richards, E. M. Scott, J. R. Southon, R. A. Staff, C. S. M. Turney and J. van der Plicht 752 (2013) IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP. Radiocarbon 753 55(4): 1869–1887. doi:10.2458/azu js rc.55.16947 754 Romanovskii, N. N., H.-W. Hubberten, A. V. Gavrilov, V. E. Tumskoy and A. L. Kholodov (2004) Permafrost 755 of the east Siberian Arctic shelf and coastal lowlands. Quaternary Science Reviews 23: 1359–1369. 756 Salonen, J. S., H. Seppä, M. Väliranta, V. J. Jones, A. Self, M. Heikkilä, S. Kultti and H. Yang (2011) The 757 Holocene thermal maximum and late-Holocene cooling in the tundra of NE European Russia. Quaternary 758 Research 75: 501–511. 759 Savelieva, L. A., E. A. Raschke and D. V. Titova (2013) Photographic atlas of plants and pollen of the Lena 760 River. St. Petersburg State University, Saint-Petersburg, Russia, pp. 113. 761 Schirrmeister, L., D. Froese, V. Tumskoy, G. Grosse and S. Wetterich (2013) Yedoma: Late Pleistocene Ice-762 Rich Syngenetic Permafrost of Beringia. In: The Encyclopedia of Quaternary Science Vol. 3: (Ed.) S.A. 763 Elias. Elsevier, Amsterdam, pp. 542–552. 764 Serreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig and M. M. Holland (2009) The emergence of surface-765 based Arctic amplification. Cryosphere 3: 11–19. 766 Shahgedanova, M., N. Mikhailov, S. Larin and A. Merzlyakova (2002) The Mountains of Northern Russia. In: The Physical Geography of Northern Eurasia (Ed.) M. Shahgedanova. Oxford University Press, New 767 768 York, pp. 284–313.

- 769 Shala, S., K. F. Helmens, K. N. Jansson, M. E. Kylander, J. Risberg and L. Löwemark (2014)
- 770 Palaeoenvironmental record of glacial lake evolution during the early Holocene at Sokli, NE Finland.
- 771 Boreas 43: 362–376.
- 772 Sidorova, O. V., R. T. W. Siegwolf, M. Saurer, A. V. Shashkin, A. A. Knorre, A. S. Prokushkin, E. A. Vaganov
- and A. V. Kirdyanov (2009) Do centennial tree-ring and stable isotope trends of *Larix gmelinii* (Rupr.)
- Rupr. indicate increasing water shortage in the Siberian north? Oecologia, 161(4): 825–835.
- Simpson, G. L. and J. Oksanen (2014) Analogue: Analogue matching and modern analogue technique transfer
- function models, R package version 0.16-0. http://cran.r-project.org/package=analogue
- 777 Smith, L. C., Y. Sheng, G. M. MacDonald and L. D. Hinzman (2005) Disappearing arctic lakes. Science,
- 778 308(5727): 1429–1429. doi:10.1126/science.1108142
- Stockmarr, J. (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13: 615–621.
- 780 Stone, T. A. and P. Schlesinger (1993) Digitization of the map "Vegetation of the Soviet Union, 1990": A Report
- to the Northeast Forest Experiment Station, USDA Forest Service, Global Change Research Program,
- 782 Radnor, Pennsylvania. See file
- ftp://daac.ornl.gov/data/russian_land_cover/vegetation_1990/comp/vmap90_method.pdf.
- S. Sugita, S (1994) Pollen representation of vegetation in Quaternary sediments: Theory and method in patchy
- 785 vegetation. Journal of Ecology 82 (4): 881–897. doi:10.2307/2261452
- Sugita, S., M.-J. Gaillard and A. Broström (1999) Landscape openness and pollen records: a simulation
- 787 approach. The Holocene 9: 409–421.
- 788 Svendsen, J. I., H. Alexanderson, V. I. Astakhov, I. Demidov, J. A. Dowdeswell, S. Funder, V. Gataullin, M.
- Henriksen, C. Hjort, M. Houmark-Nielsen, H.-W. Hubberten, O. Ingólfsson, M. Jakobsson, K. H Kjær, E.
- Larsen, H. Lokrantz, J. P. Lunkka, A. Lyså, J. Mangerud, A. Matiouchkov, A. Murray, P. Möller, F.
- 791 Niessen, O. Nikolskaya, L. Polyak, M. Saarnisto, C. Siegert, M. J. Siegert, R. F. Spielhagen and R. Stein
- 792 (2004) Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23: 1229–
- 793 1271.
- Tarasov, P. E., T. Webb, A. A. Andreev, N. B. Afanas'eva, N. A. Berezina, L. G. Bezusko, T. A. Blyakharchuk,
- 795 N.-S. Bolikhovskaya, R. Cheddadi, M. M. Chernavskaya, G. M. Chernova, N. I. Dorofeyuk, V. G.
- Dirksen, G. A. Elina, L. V. Filimonova, F. Z. Glebov, J. Guiot, V. S. Gunova, S. P. Harrison, D. Jolly, V.
- I. Khomutova, E.V. Kvavadze, I. M Osipova, N. K. Panova, I. C. Prentice, L. Saarse, D. V. Sevastyanov,
- 798 V. S. Volkova and V. P. Zernitskaya (1998) Present-day and mid-Holocene biomes reconstructed from

799	pollen and plant macrofossil data from the Former Soviet Union and Mongolia. Journal of Biogeography
800	25: 1029–1053.
801	Tarasov, P., J. W. Williams, A. A. Andreev, T. Nakagawa, E. Bezrukova, U. Herzschuh, Y. Igarashi, S. Müller,
802	K. Werner and Z. Zheng (2007) Satellite- and pollen-based quantitative woody cover reconstructions for
803	northern Asia: Verification and application to late-Quaternary pollen data. Earth and Planetary Science
804	Letters 264(1–2): 284–298.
805	Tchebakova, N. M. and E. I. Parfenova (2012) The 21st century climate change effects on the forests and
806	primary conifers in central Siberia. Bosque 33(3): 253-259. doi:10.4067/S0717-92002012000300004
807	Telford, R. J. and H. J. B. Birks (2011) A novel method for assessing the statistical significance of quantitative
808	reconstructions inferred from biotic assemblages. Quaternary Science Reviews 30(9): 1272-1278.
809	Telford, R. J. (2015) PalaeoSig: Significance tests of quantitative palaeoenvironmental reconstructions, R
810	package version 1.1-3. http://cran.r-project.org/package=palaeoSig
811	Tishkov, A. (2002) Boreal Forests. In: The Physical Geography of Northern Eurasia. (Ed.) M. Shahgedanova.
812	Oxford University Press, New York, pp. 216–233.
813	Treshnikov, A. F. Atlas Arktiki (1985) Glavnoe Upravlenie Geodezii i Kartografii, Moskow: Russia, pp. 204
814	(in Russian).
815	Turner, K. W., B. B. Wolfe, T. W. Edwards, T. C. Lantz, R. I. Hall and G. Larocque (2014) Controls on water
816	balance of shallow thermokarst lakes and their relations with catchment characteristics: a multi-year,
817	landscape-scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon
818	(Canada). Global Change Biology 20(5): 1585–1603. doi:10.1111/gcb.12465
819	van Huissteden, J., C. Berrittella, F. J. W. Parmentier, Y. Mi, T. C. Maximov and A. J. Dolman (2011). Methane
820	emissions from permafrost thaw lakes limited by lake drainage. Nature Climate Change 1(2): 119-123.
821	doi:10.1038/nclimate1101
822	Vernikovsky, V. A., N. L. Dobretsov, D. V. Metelkin, N. Y. Matushkin and I. Y. Koulakov (2013) Concerning
823	tectonics and the tectonic evolution of the Arctic. Russian Geology and Geophysics 54:838-858.
824	von Stedingk, H., R. M. Fyfe and A. Allard (2008) Pollen productivity estimates from the forest—tundra ecotone
825	in west-central Sweden: Implications for vegetation reconstruction at the limits of the boreal forest. The
826	Holocene 18: 323–332.

827	Wahsner, M., C. Müller, R. Stein, G. Ivanov, M. Levitan, E. Shelekhova and G. Tarasov (1999) Clay-mineral
828	distribution in surface sediments of the Eurasian Arctic Ocean and continental margin as indicator for
829	source areas and transport pathways — a synthesis. Boreas 28: 215-233.
830	Wanner, H., J. Beer, J. Bütikofer, T. J. Crowley, U. Cubasch, J. Flückiger, H. Goosse, M. Grosjean, F. Joos, J. C
831	Kaplan, M. Küttel, S. A. Müller, I. C. Prentice, O. Solomina, T. F. Stocker, P. Tarasov, M. Wagner and
832	M. Widmann (2008) Mid-to Late Holocene climate change: an overview. Quaternary Science Reviews
833	27(19): 1791–1828. doi:10.1016/j.quascirev.2008.06.013
834	Weltje, J. (1997) End-member modelling of compositional data: numerical-statistical algorithms for solving the
835	explicit mixing problem. Mathematical Geology 29: 503-549.
836	Weltje, J. and M. A. Prins (2007) Genetically meaningful decomposition of grain-size distributions. Sedimentary
837	Geology 202: 409–424.
838	Weltje, G. J. and R. Tjallingii (2008) Calibration of XRF core scanners for quantitative geochemical logging of
839	sediment cores: Theory and application. Earth and Planetary Science Letters 274: 423-438.
840	Wischnewski, J., A. Kramer, Z. Kong, A. W. Mackay, G. L. Simpson, S. Mischke and U. Herzschuh (2011)
841	Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan
842	Plateau during the past two centuries. Global Change Biology 17(11): 3376-3391. doi:10.1111/j.1365-
843	2486.2011.02474.x
844	Yurtsev, B. A. (1994) Floristic division of the Arctic. Journal of Vegetation Science 5: 765–776.