
IMPROVING THE PERFORMANCE OF HYBRID

MAIN MEMORY THROUGH SYSTEM AWARE

MANAGEMENT OF HETEROGENEOUS

RESOURCES

by

Juyoung Jung

B.S. in Information Engineering, Korea University, 2000

Master in Computer Science, University of Pittsburgh, 2013

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Science

University of Pittsburgh

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/78483261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Juyoung Jung

It was defended on

December 7, 2016

and approved by

Rami Melhem, Ph.D., Professor at Department of Computer Science

Bruce Childers, Ph.D., Professor at Department of Computer Science

Daniel Mosse, Ph.D., Professor at Department of Computer Science

Jun Yang, Ph.D., Associate Professor at Electrical and Computer Engineering

Dissertation Director: Rami Melhem, Ph.D., Professor at Department of Computer Science

ii

IMPROVING THE PERFORMANCE OF HYBRID MAIN MEMORY

THROUGH SYSTEM AWARE MANAGEMENT OF HETEROGENEOUS

RESOURCES

Juyoung Jung, PhD

University of Pittsburgh, 2016

Modern computer systems feature memory hierarchies which typically include DRAM as the

main memory and HDD as the secondary storage. DRAM and HDD have been extensively

used for the past several decades because of their high performance and low cost per bit at their

level of hierarchy. Unfortunately, DRAM is facing serious scaling and power consumption

problems, while HDD has suffered from stagnant performance improvement and poor energy

efficiency. After all, computer system architects have an implicit consensus that there is

no hope to improve future system’s performance and power consumption unless something

fundamentally changes.

To address the looming problems with DRAM and HDD, emerging Non-Volatile RAMs

(NVRAMs) such as Phase Change Memory (PCM) or Spin-Transfer-Toque Magnetoresistive

RAM (STT-MRAM) have been actively explored as new media of future memory hierarchy.

However, since these NVRAMs have quite different characteristics from DRAM and HDD,

integrating NVRAMs into conventional memory hierarchy requires significant architectural

re-considerations and changes, imposing additional and complicated design trade-offs on the

memory hierarchy design. This work assumes a future system in which both main memory

and secondary storage include NVRAMs and are placed on the same memory bus.

In this system organization, this dissertation work has addressed a problem facing the

efficient exploitation of NVRAMs and DRAM integrated into a future platform’s memory

hierarchy. Especially, this dissertation has investigated the system performance and lifetime

iii

improvement endowed by a novel system architecture called Memorage which co-manages all

available physical NVRAM resources for main memory and storage at a system-level. Also,

the work has studied the impact of a model-guided, hardware-driven page swap in a hybrid

main memory on the application performance. Together, the two ideas enable a future system

to ameliorate high system performance degradation under heavy memory pressure and to

avoid an inefficient use of DRAM capacity due to injudicious page swap decisions.

In summary, this research has not only demonstrated how emerging NVRAMs can be

effectively employed and integrated in order to enhance the performance and endurance of a

future system, but also helped system architects understand important design trade-offs for

emerging NVRAMs based memory and storage systems.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Recent Trends of Memory Hierarchy Design 2

1.2 Research Overview and Contributions . 6

1.2.1 An NVRAM-based System Platform 6

1.2.2 Problem Overview . 9

1.2.2.1 Effective Handling of Memory Pressure 9

1.2.2.2 Efficient Utilization of Fast DRAM Resources 10

1.2.2.3 How Are Both Problems Related To Each Other? 12

1.2.3 Research Contributions . 12

1.2.3.1 Contributions to the External Page Swap Problem 12

1.2.3.2 Contributions to In-Memory Page Swap Problem 13

1.3 Dissertation Organization . 14

2.0 BACKGROUND . 15

2.1 Emerging NVRAM Technologies . 15

2.2 System Hardware Interfaces to NVRAM-based SSD 18

2.3 OS Memory Management and I/O Stack . 20

2.3.1 OS Memory Management . 20

2.3.2 OS I/O Stack . 21

2.4 OS Page Movement Techniques . 22

3.0 UNIFIED MANAGEMENT OF SYSTEM’S NVRAM RESOURCES . 24

3.1 Motivation and A Studied System Architecture 24

3.2 The Memorage Architecture . 27

v

3.2.1 Memorage Philosophy . 27

3.2.2 Key Design Goals . 29

3.2.3 Memorage Design and Implementation 30

3.2.3.1 Managing Resource Information 30

3.2.3.2 Memory Expansion and Shrinkage 33

3.2.4 Comparison with Possible Alternatives 36

3.2.5 Further Discussions . 37

3.3 Experimental Results . 38

3.3.1 Evaluation Methodology . 38

3.3.2 Characterization of Platform Performance 42

3.3.3 Software Latency of a Page Fault . 44

3.3.4 Application Performance . 46

3.4 System Lifetime Model of NVRAM Resource Sharing 51

3.4.1 Modeling Main Memory Lifetime . 51

3.4.2 System Lifetime Analysis via Model 54

3.5 Related Work . 57

3.6 Summary . 58

4.0 HARDWARE-DRIVEN PAGE SWAP IN HYBRID MAIN MEMORY 60

4.1 Motivation . 60

4.2 Analytical Model of Hardware-driven Page Swap in Hybrid Main Memory . 63

4.2.1 A Studied System Architecture and Model Parameters 63

4.2.2 Baseline CPI Model without In-Memory Page Swap 65

4.2.3 New CPI Model with In-Memory Page Swap 67

4.2.4 Profitability of page swap . 68

4.3 Comparing Model with Simulation . 69

4.3.1 Experimental Setup and Simulation Methodology 69

4.3.2 Evaluation Results . 71

4.4 Model-guided Hardware-driven Page Swap 77

4.4.1 Simulation Methodology . 79

4.4.2 Evaluation Results . 79

vi

4.5 Related Work . 85

4.6 Summary . 89

5.0 CONCLUSIONS AND FUTURE WORK 91

5.1 Concluding Remarks . 91

5.2 Future Work . 92

BIBLIOGRAPHY . 94

vii

LIST OF TABLES

1 Technology comparisons . 16

2 Memorage emulator platform . 39

3 Evaluated memory configurations . 42

4 Performance Model Parameters . 66

5 Simulation configuration . 70

6 Multiprogrammed workloads . 71

7 The considered page swap schemes . 78

viii

LIST OF FIGURES

1 An illustration of a future platform with hybrid memory and PSD 7

2 3D XPoint technology . 17

3 Hardware interfaces for storage devices . 19

4 Linux I/O stack . 21

5 Linux page movement syscalls . 23

6 A future system platform with NVRAM memory and storage 26

7 Illustration of Memorage concept . 27

8 Memorage zone seen by OS buddy allocator 32

9 Effect of Memorage on page reclamation thresholds 34

10 Cooperation between OS VM manager and storage subsystem 35

11 Illustration of emulation methodology. 40

12 Unloaded platform characterization . 43

13 Loaded platform characterization . 44

14 Breakdown of software latency of the Linux page fault handler 45

15 Bandwidth performance difference between main memory and PSD 46

16 Latencies for Memorage to offer and retrieve PSD resource 47

17 Application performance improvement by Memorage 48

18 A portion of kernel time over total execution time 49

19 Impact on the number of page faults and the increased inter-fault distance . . 50

20 Main memory lifetime improvement. 53

21 PSD lifetime degradation . 56

22 OS LRU length change while running 429.mcf 62

ix

23 OS LRU length change for inactive pages while running 429.mcf 62

24 Architecture illustration . 64

25 IPC and AMAT Improvement of a static page swap 72

26 Dynamic access latency gap x between two memories 73

27 Error rate b.t.w. simulation and model . 74

28 AMAT and α change for mix01 and mix04. 75

29 Validation of IPC and ROB fullness improvement 76

30 Input/output of model-guided page swap . 77

31 IPC improvement . 80

32 Number of page swaps over epoch. 83

33 Number of page swaps in RaPP . 84

34 Number of page swaps over epoch for other workloads. 89

x

1.0 INTRODUCTION

The memory hierarchy of modern computing systems beyond processor cache hierarchies has

a hierarchical organization which is comprised of the system main memory and secondary

storage subsystem. DRAM and HDD have been the best technologies for the main memory

and storage, respectively, for the past several decades, because they provide a satisfactory

performance and cost-per-bit required at each level of the hierarchy. Unfortunately, the

DRAM popularity is being challenged by the scaling problem and limited power budget of

DRAM technology. Similarly, the HDD keeps disappointing system designers with its slow

yearly performance improvement rate and power-burning mechanical operation.

To address these problems, researchers recently started exploring the use of emerging per-

sistent or non-volatile RAMs (shortly, PRAM, PM, or NVRAMs) 1 as a new medium of the

memory hierarchy design. The emerging NVRAMs such as Phase Change Memory (PCM)

and STT-RAM are differentiated from the traditional DRAM and HDD technology in that

they are scalable, byte-addressable, persistent, and energy-efficient. Because of their many

desirable characteristics other than the DRAM and HDD, a future platform is anticipated

to include NVRAMs as main memory, storage, or both. However, emerging NVRAMs also

have their drawbacks, and system designers must cautiously take care of them. For exam-

ple, PCM technology has slower access latency than DRAM, an unbalanced read and write

performance, and a limited cell endurance. Therefore, the integration of emerging NVRAMs

into the conventional memory hierarchy necessitates new architectural changes and support

to fully exploit their strengths while hiding the aforementioned shortcomings.
1The terminology NVRAM may cause confusion because many studies have often used the term to

represent NAND flash memory technology which is neither byte-addressable nor scalable. As such, to avoid
the confusion, we explicitly call the NAND flash memory as an existing NVRAM, not emerging NVRAM with
which this dissertation work deals. The NVRAM denotes an emerging NVRAM unless otherwise mentioned.

1

In this dissertation, we have investigated the integration of emerging NVRAMs into the

existing memory hierarchy, and tackled the lack of NVRAM awareness in the traditional

memory hierarchy design to improve the performance and lifetime of an NVRAM-based fu-

ture system. Specifically, a primary goal throughout this study is to improve the performance

of main memory, which is a dominant system component that greatly influences the overall

system performance. Other advantages of emerging NVRAMs such as the energy efficiency

and non-volatility are also interesting to explore, but we will leave them as our future work.

1.1 RECENT TRENDS OF MEMORY HIERARCHY DESIGN

In modern computer systems, having DRAM main memory and HDD secondary storage

has been a de-facto standard organization of memory hierarchy design. However, computer

system designers are recently facing critical challenges on the memory hierarchy design due

to the changed computing environment.

First and most importantly, there are much larger memory demands in a system than

ever before. Keeping up with Moore’s Law [101, 84], multi-core [85, 73] and many-core

processors [45, 40, 104] with multi-level cache hierarchies have become a mainstream of pro-

cessor design in the last decade, and the processors produce a great deal of memory requests

to service within a given time by running multiple applications on multiple cores simultane-

ously. To make matters worse, the memory footprint size of applications continues to grow

and is unlikely to stop increasing in the near future [69, 117]. To meet the increased memory

demand without a detrimental application performance degradation, contemporary memory

systems have multiple memory channels to serve numerous memory requests concurrently

and independently, and exploit the memory-level parallelism among them. Also, the memory

controllers associated with these memory channels have been integrated into a processor chip

and the DRAM device control signals are now generated completely on chip. This integra-

tion enables cores to speed up communications between cores and memory controllers and

as a result, achieve performance improvement [8, 61]. However, a continuing growth of the

memory demand requires current memory systems to further increase memory bandwidth

2

and bus speed in addition to memory capacity. To increase the memory bandwidth and

link speed, researchers are exploring the use of distributed, master-slave memory controllers

which control a large aggregate capacity of memory devices [28, 42]. Two factors differenti-

ate this approach from the traditional memory system design. First, only a master memory

controller is integrated into a processor, and many other smaller slave memory controllers

reside on a system motherboard off-chip. Second, the interconnect among memory devices is

based on a fast, point-to-point, serial link technology rather than a conventional parallel bus

interconnect. While the bandwidth and link speed of a memory subsystem can be improved

with the techniques just described, increasing a memory device’s density is not as easy as

bandwidth or links. The DRAM technology for system memory faces the scaling wall of

process technology in which a DRAM cell’s feature size – the minimum transistor length –

cannot shrink further to increase a DRAM chip density (and hence memory capacity) in a

functionally correct and cost-effective way [35].

The choice of researchers to address the DRAM scaling problem largely falls into two ap-

proaches. Some researchers are investigating three dimensional (3D) die stacking technology

as a promising means to increase a per-device memory capacity [75, 97]. For example, Hyrid

Memory Cube (HMC) and High Bandwdith Memory (HBM) increase a per-chip memory ca-

pacity by stacking conventional DRAM dies [30, 53]. This can also improve the performance

and dynamic power consumption of the memory chips because it shortens the signaling dis-

tance, which is enabled by the through-silicon via (TSV) technology [38, 87]. However, in

addition to these advantages, this approach also has some negative effects which not only

increase the vertical dimension of DRAM chips but also aggravate the thermal-induced prob-

lems caused by a heat dissipation in a vertical direction [81, 116]. Although the 3D stacked

DRAM technology can increase the per-chip DRAM capacity, it does not fix the more fun-

damental problem. The problem unable to continually scale down a DRAM cell size remains

unresolved until the DRAM technology itself is replaced by another. For that reason, other

researchers are actively looking for new scalable memory technologies and they think that

emerging NVRAM technologies are possible candidates for DRAM replacements or comple-

ments. Since a transistor feature size of these NVRAMs can be shrunk with an advancement

in process technology, emerging NVRAMs can pack more bits in the same die area without

3

increasing chip dimension. Moreover, it is also possible to apply 3D stacking technology

to the NVRAMs in order to further increase the chip capacity. For example, Intel and

Micron have recently announced that their 3D XPoint (“crosspoint”) memory would be ten

times denser than the conventional DRAM [52]. Hence, the approach which adopts emerging

NVRAMs has been considered a better solution to solve the DRAM scaling problem.

Second, in the contemporary computing environment, the power consumption has been

regarded as one of the most important design considerations in a computer system design,

because the cost of electricity gradually becomes a major component of the total operating

expense of modern computer systems [10, 26]. However, it is not surprising that a fraction

of the power consumption of the DRAM memory and HDD storage to the overall system

power is already significant. For instance, previous research showed that the DRAM main

memory in a server system accounted for more than 30% of a total server power consump-

tion [80, 66]. In addition, the power consumption of the DRAM memory, while a system

is idle, is rapidly increasing and becoming comparable to the dynamic power consumption.

For example, in a mobile system, the DRAM power consumption exceeds 30% of a total

power consumption of a system in a stand-by mode. This is due to the fact that a DRAM

cell must be periodically refreshed to prevent data loss caused by the leakage current [114].

Even worse, the power consumption by the wasteful DRAM refresh operations is projected

to account for 50% of the total power consumption of a memory system with future 64Gb

DDR4 DRAM devices [72, 93]. Meanwhile, the HDD storage system contributes to a system

power consumption of an additional 20–30% [10, 58] and exacerbates the problem of overly

high power dissipation in the memory hierarchy. As such, achieving power efficiency in the

memory hierarchy is another crucial problem to address, and needs to be accomplished at

both the memory and storage along the memory hierarchy. Though system architects will

likely continue to harness and improve the existing architectural techniques in order to reduce

the power consumption for DRAM memory and HDD storage, a large power consumption

within the memory hierarchy is fundamentally attributed to the underlying technologies,

DRAM and HDD, to build the memory and storage system. For instance, the HDD con-

sumes a lot of power for performing the required mechanical operations such as spinning

platters and moving actuators. Therefore, building the main memory and storage system

4

with other energy efficient technologies is better solution to reduce the power consumption

of the memory hierarchy. In response of the need, emerging NVRAM technologies have been

explored for constructing an energy-efficient memory hierarchy.

Third, the performance gap between DRAM memory and HDD storage system has never

decreased and is growing. Even if the HDD technology’s capacity improvement rate has

managed to keep up with the annual growth rate of data volume to store, the performance

improvement of the technology is quite disappointing. For example, the HDD’s capacity has

increased by 40% annually, but an annual increase in the random I/O performance of the

HDD drive is as low as 2% [29]. To address this problem, recent systems attempt to diminish

the performance gap with solid-state storage device (SSD) drives that are built with NAND

flash memory chips. Since the NAND flash memory is faster and more energy efficient than

the magnetic disk media, some of the traditional HDD spans have gradually been superseded

by SSD drives. In addition, an MLC (multi-level cell) NAND flash memory has surpassed the

areal density of HDD [48, 79]. As a result, the SSD in current systems is gradually taking the

role of fast swap devices, file caching devices, a whole HDD replacement, and main memory

extension devices [9, 83]. However, the NAND flash memory cell has a very poor endurance

limit as well as scaling issue. For example, an MLC NAND flash memory cell can tolerate

at most about 3000 writes [110]. In addition, since there is still a large performance gap

between main memory and storage even with NAND SSD, researchers believe that NAND

flash memory will eventually be superseded by emerging NVRAM technologies because they

provide even better operational characteristics than NAND flash for all aspects but cost per

GB. As such, emerging NVRAM based SSD storage devices such as Intel’s Optane are under

prototype-level tests, awaiting mass production to enter the market [6, 34, 52].

In summary, DRAM and HDD have exposed their technological limits which cannot

satisfy unwieldy demands of the current computing environment. To overcome the limits

and meet the needs, the adoption of emerging NVRAMs into memory hierarchy is being

examined carefully. Although DRAM and HDD will not suddenly disappear from the mem-

ory hierarchy, system architects are making preparations for featuring emerging NVRAM

technologies in both the main memory and storage system in future computer platforms.

5

1.2 RESEARCH OVERVIEW AND CONTRIBUTIONS

In this section, we present an overview of our research problems and contributions. We first

describe an emerging NVRAM-based system model which we have studied throughout this

dissertation. Then, we explain two research problems which we have addressed for the given

system model, and highlight our contributions. Lastly, we describe the organization of this

dissertation.

1.2.1 An NVRAM-based System Platform

Before we describe the challenging problems to solve in this dissertation work, we outline the

memory organization in a future NVRAM platform that we envision. According to a recent

ITRS [35, 36] technology projection, a future system is expected to feature mature NVRAM

technologies across the entire memory hierarchy by 2020. In particular, when the emerging

NVRAM technologies become fully mature, their performance may not only be comparable

to DRAM, but also accomplish a significant enhancement of per-chip density. For instance,

current commercial PCM uses a single-level cell (SLC) technology which represents two

states per bit (logic ’0’ and ’1’), but it is anticipated to pack more than two logic states into

a cell in the form of a multi-level cell (MLC) [7, 12, 55, 90]. When both main memory and

secondary storage in a future platform are built with emerging NVRAMs, we foresee that

the main memory will be built with SLC technology to provide higher performance, whereas

the storage will be established by MLC technology to provide larger capacity.

When using PCM as a basic building block of the main memory, the system needs

to handle an imbalanced read/write performance, and the limited lifetime of PCM cells.

In particular, the 2× and 10× slower read and write latency than that of DRAM, and the

limited write endurance around 106–108 are critical problems that hamper a wide adoption of

PCM main memory. To properly manage the challenges, computer architects have proposed

a main memory in which a small amount of DRAM is collocated with a large capacity PCM

main memory either as an OS-invisible hardware cache or as an independently addressable

memory region [15, 16, 68, 91, 92]. Following this reasonable design approach, our future

6

Figure 1: A future platform built with a DRAM/PCM hybrid memory and a PCM storage.

The IMSC stands for an integrated memory and storage controller, while the PSD denotes

an emerging Persistent RAM based solid state Storage Device.

platform assumes that a small amount of DRAM may be used to mitigate the drawbacks of

NVRAM, forming the main memory with heterogeneous memories.

Figure 1 illustrates our envisioned future platform and its memory hierarchy. Different

from a conventional system, the dotted box shows that the platform has a main memory

comprised of DRAM and PCM, a PCM storage (called PSD, a persistent RAM based solid

state storage device), and a memory bus interface to connect them to a processor. Even

though the figure depicts the platform with a specific type of NVRAM technology, PCM,

we also envision that other emerging NVRAM (e.g. 3D XPoint) may be adopted in lieu of

PCM in the architecture. However, even in this case, we envision that the organization of

the memory hierarchy from the figure will remain mostly unchanged.

Hybrid main memory, not DRAM cache: if DRAM assumes the role of a memory-

level hardware cache by posing itself in front of PCM memory, this hierarchically organized

memory is classified as the DRAM cache main memory. This organization has an advantage

7

of making a hardware implementation simple and enabling the use of some familiar processor

caching policies. However, it has several crucial shortcomings that may offset the benefits.

For example, the given DRAM resources are invisible to the OS memory manager, possibly

making their addressable space unnecessarily wasted. In addition, unlike the SRAM used

for storing the processor cache’s tags, the DRAM device is inappropriate for supporting fast

cache tag lookup operations, which are on a critical path. On the contrary, a flat organization

which equally treats DRAM and PCM can better and more flexibly utilize the given DRAM

resources by exposing them to the OS for allocation and deallocation. For example, the

OS may sometimes differentiate the usage of DRAM resources as a special high performing

and write-absorbing addressable region, adapting to a system’s needs. This flat organization

is classified as a hybrid main memory. Since recent research showed that a hybrid main

memory outperformed a hierarchical DRAM cache main memory [94, 16], the main memory

in our future platform is organized as a hybrid main memory.

Storage connected to a fast, high bandwidth bus: Since the access latency of PSD

is much faster than the traditional HDD or even NAND flash memory SSD, we believe that

the PSD storage shall interface with the memory bus which is the fastest, highest bandwidth

interconnect in a system platform. In this way, a system can exploit the full advantage

of the unprecedentedly fast NVRAM based storage. As seen in Figure 1, the organization

results in slotting storage into the same bus where the main memory resides. Even now,

without a commodity PSD storage device, it is not uncommon to have a storage device on

the memory bus in recent high-end server systems. For example, data center server platforms

are gradually equipped with the NAND flash memory SSDs in a form of NVDIMM (Non-

Volatile Dual-Inline Memory Module) [46, 21]. This enables the storage subsystem to achieve

higher bandwidth and shorter latency than the conventional I/O interconnects by sharing

the memory bus with DRAM main memory. In line with this trend, therefore, our studied

future platform features the secondary storage, PSD, which is closely integrated with the

main memory. Since the modern processor architecture does not have the north-bridge chip,

the PSD-host interconnection may be one of the memory channels. However, note that the

system may still include other conventional storage devices via the legacy I/O interconnect

such as PCIe (Peripheral Component Interconnect Express) [18] or SATA (Serial ATA) [98].

8

1.2.2 Problem Overview

In this dissertation, we address two imminent challenges which a given future NVRAM sys-

tem model will undergo while integrating NVRAMs into conventional system architectures.

The first challenge is to mitigate a dramatic, sometimes intolerable degradation of the system

performance under high memory pressure. The second challenge is to improve the utiliza-

tion of the small, fast DRAM resources in a hybrid main memory and boost the applications

performance via page swaps.

1.2.2.1 Effective Handling of Memory Pressure The memory organization in our

NVRAM system from Figure 1 adheres to the traditional memory hierarchy of the main

memory and storage which is stratified by media access latency. The choice allows system

designers to embrace emerging NVRAM technologies without making radical changes to

current system design methodologies. On the other hand, unless we make some architectural

changes, it also means that the future platform inherits an inefficiency from a conventional

system to handle high memory pressure, which may considerably damage the overall system

performance [9, 99]. Since modern applications constantly call for larger system memory

capacity to meet the required performance and throughput targets, it is evident that future

applications will put far more demand onto memory subsystems. As a result, they have a

high likelihood of suffering from a worse system performance due to the increased memory

pressure. For this reason, it is critically important that a system designer improves the main

memory performance of future computing systems.

Meanwhile, the problem of the memory pressure is also related to the storage system.

When a conventional system experiences high memory pressure, it initiates the page recla-

mation by moving the contents of the infrequently referenced pages from the main memory

to a swap space on the secondary storage. This process is called demand paging or page

swapping, and produces free pages that can be used for new page allocations from applica-

tions. However, because of a large performance gap between the main memory (DRAM) and

storage (HDD), frequent external page swaps significantly impair the overall system perfor-

mance, slowing down the actual execution of user applications. While a system has to reduce

9

the number of page swaps to storage in order to prevent system performance downfall, there

is no other way to avoid the swapping under high memory pressure in a conventional system.

Without timely disk swaps, the unmanaged memory pressure will result in a catastrophic

situation in which the OS would arbitrarily kill one or more running user applications. Since

each page swap requires to access the sluggish storage device, it is important to improve

the swap process so that a system can not only ensure the persistent execution of appli-

cations (instead of being randomly killed) but also avoid an intolerable performance drop

under heavy memory pressure.

In addition, it is important to understand the system-level implications of the future

NVRAM-based memory hierarchy compared to a conventional system. Recent studies found

that the system software latency to access files on an emerging NVRAM-based storage

device accounts for larger portions of overall latency than the hardware access latency to an

NVRAM device [19, 58]. For instance, a conventional OS I/O scheduler anticipatorily waits

for the coming requests to merge with current I/O requests in order to reduce the number of

expensive HDD accesses. However, the waiting delay may be longer than the access latency

of emerging NVRAM-based storage. In case that the storage access is on a critical path, the

conventional I/O access behavior worsens the overall system performance. Therefore, it is

justifiable that an access to NVRAM-based storage device bypasses the I/O scheduler and

is directly sent to the storage.

In summary, while keeping NVRAM-awareness in mind, it is imperative to study how

we can further improve traditional page swapping mechanisms between the main

memory and NVRAM-based storage in order to prevent an excessive system

performance degradation under high memory pressure. This challenge is a problem

of the interplay of the main memory and storage in a future NVRAM-based system, aiming

at improving the overall system performance.

1.2.2.2 Efficient Utilization of Fast DRAM Resources As seen in our envisioned

system model from Figure 1, system designers for a future platform cannot stay with a tra-

ditional DRAM-only approach to build a system memory due to a scaling wall and power

inefficiency of DRAM technology. Instead, the system memory will be a hybrid main mem-

10

ory being comprised of DRAM and emerging NVRAM. As such, a future system needs to

carefully orchestrate the heterogeneous characteristics of the two disparate memories by sup-

plementing a shortcoming of one memory with a strength of the other, so that the system

can achieve better performance. For example, even if emerging NVRAMs are scalable and

are pushing the limits of increasing the system memory capacity, an emerging NVRAM such

as PCM has an imbalanced, slower read/write performance in addition to the limited cell

endurance than DRAM. Especially, the access latency slower than DRAM is the NVRAM’s

Achilles’s heel that a hybrid main memory must hide from a system’s critical path.

Meanwhile, as mentioned in Section 1.1, previous research [94, 102] have proposed a

hybrid memory organization in which a small amount of DRAM is collocated with a large

capacity of PCM main memory as a normal addressable region. However, even though this

research showed that a hybrid main memory outperformed a DRAM cache organization

by providing the system software/hardware with the flexibility of a choice of the memory

type for a page allocation and placement, it is believed that there are still much room to

further improve the application performance in the hybrid main memory through better page

placement [15, 88, 94, 102]. Therefore, a momentous challenge of a DRAM/PCM hybrid main

memory is to achieve the optimal page placement for boosting application performance at

runtime. A system featuring a hybrid memory should be able to determine hot pages to be

placed onto a small, fast DRAM region, and cold pages to be replaced onto a large, slow

PCM region. If a system places frequently referenced pages onto the slower PCM region

mistakenly, it may result in a tremendous degradation of the overall system performance

due to the wrong page mapping to the memory type. Hence, it is imperative to investigate

efficient mechanisms that not only accurately identify hot/cold pages, but also place only

the hottest pages on the small, fast DRAM region throughout a program execution.

Unfortunately, recent research on a hybrid main memory have made an over-simplified

assumption in devising their page placement/replacement strategies [92, 94, 115]. Specifi-

cally, they commonly overlook the overhead of page replacement between DRAM and PCM.

As a result, the implications of the OS-managed page information on the hybrid main mem-

ory have not been studied well so far. Therefore, it is important to fill up the research hole

by investigating a diversity of page swap schemes at the system level, and by evaluating

11

the effect of the page swap on the performance of a hybrid main memory. In summary, the

problem to address is to improve the application performance when executing on

a DRAM-NVRAM hybrid memory through better utilization of a small, fast

DRAM region so as to approach the performance of running on a system with

the DRAM-only main memory.

1.2.2.3 How Are Both Problems Related To Each Other? The aforementioned

two problems are closely related to each other in that they are both dealing with a page

swap between two system components. While the first problem from Section 1.2.2.1 ad-

dresses the inefficiency of page swapping between the main memory and storage, the second

problem from Section 1.2.2.2 deals with the page swapping between two disparate memories

in the main memory. In addition, both problems shall be handled through the system-aware

management rather than a conventional approach to tackle them at the corresponding levels

of the memory hierarchy. Whenever it is necessary to differentiate the two types of page

swaps, the page swap in a hybrid main memory is called as an in-memory page swap, and

the one between the memory and storage as an external page swap.

1.2.3 Research Contributions

In this dissertation, we addressed the two problems described in Section 1.2.2. For each

problem, the contributions of this dissertation can be summarized as follows:

1.2.3.1 Contributions to the External Page Swap Problem Most of this work was

published in ICS 2013 [58] and CF 2011 [56].

1. We proposed and designed the Memorage architecture to improve the mechanism of

handling high memory pressure in future NVRAM-based systems.

2. We implemented a prototype system of Memorage architecture in commodity Linux

operating system, and evaluated it for application performance.

3. We developed an analytical model to investigate the effect of Memorage architecture on

the lifetime of the main memory and storage system. We also showed that the model

12

was a useful tool to estimate the lifetime of a system or the part replacement period.

4. We developed a unique experimental methodology on a real platform to study future

NVRAM-based systems, which was emulated with a commodity two socket server system.

This compensated for the limitation of a simulation-only approach for studying emerging

NVRAM-based systems.

5. We quantified and analyzed the OS software overhead to resolve high memory pressure

through the demand-paging mechanism of state-of-the-art Linux OS. We confirmed that

the OS software latency accounted for a large portion of disk swap latency.

1.2.3.2 Contributions to In-Memory Page Swap Problem These contributions

were published in SBAC-PAD 2016 [59].

1. We developed an analytical model to investigate the effect of a page swap in a hybrid

main memory on the application performance. Specifically, the model takes a queuing-

theoretic, flow-control approach to improve page swap, and explicitly considers the prof-

itability of a page swap, which distinguishes it from prior studies.

2. We compared the outcome of the model with the results from an existing architecture

simulator [63] that was validated against a real hardware. Also, we showed that the

model is useful to understand the effect of a page swap while analyzing the simulation

results.

3. We proposed a model-guided, hardware-driven page swap mechanism, and evaluated its

effectiveness by comparing with other page swap schemes. Furthermore, we showed how

the model can be integrated into a micro-architecture.

4. We observed that OS-managed LRU lists is not able to identify hot and cold pages for

page swap while running memory-intensive applications. This finding should guide other

researchers not to blindly trust what appeared to be a conventional belief.

13

1.3 DISSERTATION ORGANIZATION

The remaining chapters of this dissertation are organized as follows. First, we present the

background of this dissertation work in Chapter 2. In Chapter 3, we describe the design

and implementation of the Memorage architecture which overcomes memory pressure by an

integrated management of the main memory and storage NVRAM resources, and evaluate

the performance improvement endowed by the architecture. Chapter 3 also gives analyti-

cal models to qualitatively analyze the impact of the Memorage architecture on the main

memory and system lifetime, and show the usefulness of the developed models with realistic

usage scenarios. Chapter 3 then summarizes related work. Chapter 4 explains an efficient

hardware-driven page swap in a hybrid memory, presents an analytical model to investigate

the effect of page swap on the application performance. In addition, Chapter 4 evaluates the

usefulness of the model as well as a model-guided, hardware-driven page swap mechanism

through extensive simulations. Then, Chapter 4 presents related work. Lastly, we summarize

and conclude this dissertation, and discuss the future work in Chapter 5.

14

2.0 BACKGROUND

DRAM has been exclusively used as a platform’s main memory for decades, thanks to its

high performance and low cost per bit. However, DRAM main memory already accounts for

20% to 40% of the system power consumption and this fraction is growing [4]. Furthermore,

according to the ITRS reports [35, 36], there is no known path for the DRAM technology

to scale below 20nm. Eventually, DRAM may no longer be the best technology for main

memory, with new memory technologies emerging to take over its role. In response to this

problem, researchers have recently started exploring the use of emerging Non-Volatile RAM

(NVRAM) as a DRAM replacement [118, 68, 92]. Another technological breakthrough is

coming with emerging NVRAM technologies.

2.1 EMERGING NVRAM TECHNOLOGIES

Since DRAM and HDD technology have a looming challenge of performance, scalability,

and power consumption, a handful of emerging NVRAM (also called storage class memory or

SCM [37]) technologies are being actively developed by industry. Table 1 lists and compares

three promising NVRAM technologies with DRAM, NAND flash and HDD technologies:

PCM, STT-MRAM (spin-transfer-torque magnetoresistive RAM) and ReRAM (Resistive

RAM) [95, 103, 111, 106]. Basically, NVRAMs’ operations are based on sensing the resistance

of a cell material rather than electrical charge. PCM is considered to be the closest (among

all NVRAM technologies) to mass production, with commercial and sample chips available

at high densities (1 to 8 Gbits) [37, 95, 3, 24].

NVRAMs have several desirable properties in common. Unlike DRAM, they are non-

15

Latency Program Access Non- Write Cell
read write erase energy unit volatile endurance density∗

PCM 20ns 100ns N/A 100 pJ byte Yes 108∼109 5F 2

STT-MRAM 10ns 10ns N/A 0.02 pJ byte Yes 1015 4F 2

ReRAM 10ns 20ns N/A 2 pJ byte Yes 106 6F 2

DRAM 10ns 10ns N/A 2 pJ byte No 1016 (2/3)F 2

NAND flash 25µs 200µs 1.5ms 10 nJ page Yes 104∼106 4∼5F 2

HDD 8.5ms 9.5ms N/A N/A sector Yes N/A 2∼3F 2

Table 1: Comparison of emerging NVRAMs and existing memory/storage technologies [65]. ∗F is
the minimum feature size of a given process technology.

volatile. Compared with NAND flash, they are byte-addressable and have faster speeds.

Meanwhile, NVRAMs have known shortcomings; NVRAMs like PCM and ReRAM have

limited write cycles, requiring aggressive wear-leveling in write-intensive applications. More-

over, their access latencies are longer than DRAM, and in certain cases, write latency is much

longer than read latency. Likewise, write energy can be disproportionately large. Therefore,

system designers must pay extra caution to hide and reduce write operations [23].

Meanwhile, ITRS [35] is anticipating multi-level cell (MLC) solutions of NVRAMs.

Multi-level cell (MLC) designs effectively reduce the cost per bit by packing more bits per

memory cell. While a single-level cell (SLC) can represent two logic values, ‘0’ and ‘1’ (with

two resistance levels), an MLC cell stores more than two logical symbols. Future high-density

MLC NVRAMs may store more than two bits per cell [35, 27, 90, 22].

Introducing MLC NVRAM to a platform has several implications. First, MLC NVRAM

will be slower than SLC NVRAM. Reportedly, MLC PCM read and write are 2 to 4 times

slower [32, 91]. This is mainly due to more sensing levels for read and an iterative program-

ming process for write [12]. The second implication is the lower write endurance of MLC

NVRAM because: (1) the iterative write process accelerates cell wearing; and (2) reduced re-

sistance margins between different symbols make it harder to precisely control programming,

especially when the cell is partially worn out.

Because of its higher density and lower performance, MLC NVRAM is more suitable

for use in a NVRAM-based SSD than in main memory. If a NVRAM-based SSD employs

MLC NVRAM and main memory uses SLC NVRAM, there is a latency gap between the two

16

Memory Cell
Selector

Figure 2: Intel and Micron’s 3D XPoint Technology [52].

resources. Still, this gap (<10×) is not as significant as the gap between DRAM and HDD

(105×). There are also techniques to opportunistically enhance the speed of MLC NVRAM,

e.g., by treating an MLC PCM device like an SLC device when the system’s capacity demand

is low [32, 12, 91, 41].

Even if there are currently few details about its cell-level operational principle, a com-

mand set, and media characteristics, the most up-to-date progress of emerging NVRAMs has

come from the announcement from Intel and Micron. Figure 2 illustrates a simplified cell

structure of 3D XPoint memory [52]. It is reported that a 3D XPoint cell is three orders of

magnitude faster and has three orders of magnitude longer lifetime than the current NAND

flash memory. In addition, it is ten times denser than DRAM memory. All these information

seems to nearly be in lined with the NVRAM technology projection.

17

2.2 SYSTEM HARDWARE INTERFACES TO NVRAM-BASED SSD

In today’s commodity platforms for consumer and enterprise applications, HDDs are the

slowest hardware component connected through either a relatively slow serial ATA (SATA)

or serial SCSI (SAS) interface. The SATA [98] and SAS [49] are a communication protocol

that moves data between host and storage devices and use ATA and ATAPI (ATA Packet

Interface) command set and a SCSI command set, respectively. Both SATA and SAS re-

place with a serial point-to-point connection technology their predecessors, parallel ATA and

parallel-attached SCSI which revealed the limitation of data bandwidth due to parallel wires’

slow signaling and cross-talk, and as a result achieve orders of magnitude faster than prior

interfaces for rotating HDDs. Even if the protocols continue to improve their performance

and features, with SATA and SAS, a disk access request must pass through multiple chips

and buses (front-side bus to host bus adapter to SATA/SAS controller) before it reaches

the storage medium, incurring long latency. For example, the most recent SAS 3.0 protocol

support at most 12Gbps interface speed and SATA 3.1 specification can achieve up to 6Gbps

throughput performance.

Early NAND flash SSD offerings provide a direct migration path from HDDs based on

the legacy interface like SATA and SAS. According to Gartner 2010 report, SAS protocol

accounts for 37%, while SATA takes about 20% out of total SSD interfaces. However, both

enterprise and consumer SSDs have quickly saturated the SATA bandwidth. Recent high-

speed SSDs are attached via the higher-bandwidth PCI Express (PCIe) interface [39]. To

further improve the performance, the industry consortium has defined and released NVM

Express (NVMe) interface for PCIe interfaced SSDs [112]. The NVMe specification allows

SSD vendors to standardize SSD’s host interface and make it efficient through the register-

level communication.

Likewise, it is reasonable to predict that PSDs will interface with faster buses than PCIe

because NVRAMs have superior performance to flash memory. To accommodate fast PSDs,

a new higher-performance I/O standard may be created. However, in this case, or with

legacy interfaces, the byte-addressability of a NVRAM-based SSD is lost. In addition, the

memory bus is the highest-bandwidth bus of a platform. Hence, a NVRAM-based SSD will

18

CPU

integrated I/O Controller

Core XCore 0

iMC

SATA

CTRL

SAS

CTRL

PCH

PCIe

CTRL

HDD/

SSD

HDD/

SSD
SSD

X Y Z

[

Figure 3: System hardware interfaces for NVRAM storage devices.

be most likely and best co-located with NVRAM memory modules on a platform’s memory

bus.

We expect that future platforms will continue supporting legacy PCIe and SATA inter-

faces. It is quite conceivable that multiple heterogeneous storage devices may co-exist. For

instance, the HDD could provide ample capacity to store large file data while the NVRAM-

based SSD provides fast I/O for hot data. A particular storage configuration will be chosen

based on the cost, performance and capacity trade-offs made by the user.

Figure 3 displays possible hardware interfaces 1 to attach a storage device to current

system platforms. Conventional storage systems are connected to host CPUs via Platform

Controller Hub (PCH). Each interface bus is marked by a circled number in chronological

order, and higher number also implies higher throughput performance.

1Even though we showed all storage interfaces in today’s systems, note that we do not exclude the
possibility that new interfaces between 3 and 4 may be defined. In this case, however, we classify them
as variants of PCIe interface because their hardware capabilities are inferior to 4 .

19

2.3 OS MEMORY MANAGEMENT AND I/O STACK

Our descriptions in this section focus on Linux OS because of its relevance to our experi-

mental study. However, other modern OSes also implement the key concepts explained here

possibly with some modifications.

2.3.1 OS Memory Management

User applications request necessary memory resources via system calls such as malloc() or

mmap() which are served by OS virtual memory manager (VMM). Basically, all physical

memory resources (or pages) on a system are registered as free pages into buddy allocators

after a kernel gets allocated essential memory resources during the boot process. Since the

kernel classifies physical page frames into zones with different properties (eg. DMA zone)

for it purpose, each zone has its own buddy allocator [17, 74, 77]. Then, the zoned buddy

allocator takes a responsibility of de/allocating memory pages from its zone. However,

if there is no free page to allocate under high memory pressure, OS VMM performs the

page reclamation to make room for the new page. Since the new page allocation request

causes a page fault, VMM moves to swap space anonymous pages which is not backed by

file storage or simply de-allocate clean mapped pages backed by file storage in the process

of page fault handling. The manager detects the status of scant free memory by three

thresholds or watermarks, and recovers the level of a violated watermark through iterative

page reclamation operations. At the end, the buddy allocator produces free pages for new

allocations. Unfortunately, a page fault handling involved with page swap operations takes

a long time to execute, and thus significantly degrades the system performance. This is due

to the fact that it has to not only perform page table walking and manipulation, but also

access slow storage device.

Meanwhile, Linux VMMmanages the information of page reference recency, modification,

and others in page tables. When a page reclamation and swap is required, VMM refers to this

information in order to select less important pages for disk swap. Specifically, Linux VMM

maintains two types of LRU lists, the active list and the inactive list, for anonymous and file

20

Figure 4: Linux I/O software stack. An I/O request from user applications in conventional

systems goes through a full layer of software stacks before storage devices can service it.

pages, respectively. While anonymous pages are allocated for head, stack, and copy-on-write,

file pages are for file-backed data such as binaries and data files. These lists keep track of

hot and cold pages that have been recently referenced and not referenced, respectively [77].

Thus, VMM swaps out pages belonging to inactive page lists when pageout swap routine is

called. However, if the inactive lists do not have enough number of pages to swap out, VMM

first replenishes the lists by moving pages from active list to inactive list, then moves pages

in inactive lists to a swap area as usual.

2.3.2 OS I/O Stack

Figure 4 displays I/O software stack in Linux. Since the traditional OS I/O software stack

and file systems have been designed for rotating HDDs, storage optimizations are mainly

devoted to reducing disk seek time through efficient I/O scheduling. For example, a read

or write request in a conventional OS I/O stack must first go to the block I/O layer that is

responsible for I/O scheduling. The request then waits (in anticipation) for other requests

that can be merged together to reduce accesses to the slow HDD (1). The Linux’s default

21

“completely fair queuing” (CFQ) scheduler [17] does this. By comparison, SSDs without

mechanical rotation benefit little from such HDD-centric optimizations. Depending on the

target configuration, it makes sense to bypass the block I/O scheduler and the block device

driver (e.g., SCSI subsystem) all together (2). As a result, system designers have customized

the OS I/O software stack with SSDs in mind and design new file systems [19, 54, 99]. This

trend of retrofitting I/O stack can be also found even with PCIe PCM SSD [6]. Since PSDs

are byte-addressable and even faster than SSDs, further changes to I/O stack can occur.

For example, Linux’s DAX (Direct Access) enabled file system bypasses OS file cache and

directly accesses data on block I/O device, further reducing storage access latency [51] (3).

2.4 OS PAGE MOVEMENT TECHNIQUES

There has been extensive research on page movement techniques in the context of a

classic shared memory multi-processors (SMPs) [67, 86, 107]. The latency non-uniformity in

SMPs is incurred by a CPU-to-memory affinity rather than memory media disparities like

a hybrid memory. Due to a distance difference from CPUs to memory modules, a process

running on a core in a CPU socket experiences different memory access latency from when

the process is rescheduled to a core in another socket. To dynamically exploit the access

latency difference in a memory system, a system can move a frequently accessed, distant

page to a location closer to a core executing the program. This is very analogous to the need

of page swap in a hybrid main memory.

A page movement in today’s systems requires the OS to manipulate a page table in order

to update the memory mapping information of pages in the movement. For this, the VMM

first disables the write permission to the two pages to be swapped, whereas write access to

other pages are not banned. Next, a (destination) page to accommodate an incoming page

is allocated and mapped to an address. Once page data transfer completes, the original

pages in the page movement will be unmapped, and released to a memory pool. Last,

the write permission of the pages is reactivated. In current Linux implementation, VMM’s

migrate pages and move pages system calls can perform this page movement. The former

22

long move_pages (

int pid,

unsigned long count,

void **pages,

const int *nodes,

int *status,

int flags

);

long migrate_pages (

int pid,

unsigned long maxnode,

const unsigned long *old_nodes,

const unsigned long *new_nodes

);

// process ID

// the number of pages to move

// array of pointers to pages to move

// array of new locations

// array of move result status per page

// specifying type of page to move

// process ID

// max number of new locations

// old locations

// new locations

Figure 5: Linux’s page movement system calls.

is used for moving all pages associated with the specified process ID to a new location, while

the later is used for moving the given list of pages to the specified new location. Figure 5

displays the APIs for these system calls. For this dissertation work, it is worthy of seeing

what kind of information the OS expects for the software-based page movement.

Unfortunately, this OS-driven process may sometimes bring about a considerable over-

head by frequent TLB shootdown [108] and cache line flushes which may offset the benefit

of a page movement. In addition, not all requested page movements succeed, and any failed

trial fruitlessly incurs extra overhead.

23

3.0 UNIFIED MANAGEMENT OF SYSTEM’S MEMORY AND STORAGE

NVRAM RESOURCES

In this chapter, we present our noble observations on an envisioned NVRAM-based future

system to motivate this work. Using them, then, we propose and evaluate Memorage archi-

tecture to better handle heavy memory pressure in the future system. Also, we examine the

impact of Memorage architecture on the system-level lifetime via an analytical modeling.

3.1 MOTIVATION AND A STUDIED SYSTEM ARCHITECTURE

As described in Chapter 1 earlier, we envision in this study that a future emerging NVRAM

based systems will have to manage the NVRAM main memory and the NVRAM storage

resources in an integrated manner to make the best performance and cost trade-offs. In

a realization of the idea, the physical memory resource manager will need to book-keep

the status of the storage resources as well as the memory resources. The integration of

resource management will allow the system to flexibly provision the available resources across

the memory and storage boundary for better performance and reliability. The following

technology trends support this argument:

• There will be little device characteristic distinctions between main memory

resources and storage resources

Note that there are independent research and development efforts on scalable NVRAM main

memory and fast “Persistent RAM solid-state Storage Devices” (or “PSDs”) using high-

density NVRAM chips. If scaling predictions of ITRS [35] are realized (from 22nm flash

24

half pitch in 2011 to 8nm in 2024) and given that the PCM cell density is comparable to

that of NAND flash (see Table 1), a single PCM die can pack 256 Gbits by year 2024. This

chip capacity, estimated conservatively, enables building a small form-factor memory module

carrying hundreds of gigabytes. Stacked multi-chip packaging techniques have matured and

packages containing 8 to 16 chips are already commercially feasible [96].

In addition, fully exploiting the high bandwidth of the NVRAM modules in a platform

requires that all the capacity be interfaced via the main memory bus. Researchers have

already explored the benefit of placing flash memory on the main memory bus [62]. Suppose

that both main memory and system storage are comprised of NVRAM and are on the same

memory bus; then the main memory and storage resources are no more heterogeneous than

DRAM and hard disk drive (HDD) in today’s systems, but are quite homogeneous. This

offers an unprecedented, practical opportunity for the system to manage the resources in an

integrated manner.

• Reducing software overhead out of an overall I/O service latency becomes even

more important than in the past

Many software artifacts have been incorporated in a conventional OS to deal with the slow,

block-oriented HDDs. For example, complex I/O scheduling algorithms have been imple-

mented in the block I/O layer of the Linux OS [17]. If the current software stack is unchanged,

however, the major difference in data access latency between NVRAM main memory and a

PSD will be dominated by the overhead of the software stack that handles I/O requests. For

example, a 4-KB data transfer between a PSD and main memory can be done in hardware in

a microsecond, whereas the software overhead of an I/O operation—from a user I/O request

to the OS file system to the block I/O layer to the device driver and vice versa—amounts to

tens of microseconds [68, 65, 19, 27]! This software overhead has been acceptable because

the same data transfer operation with a HDD typically takes milliseconds and the software

overhead is only a fraction of the latency.

• Storage density grows exponentially and a typical user underutilizes the avail-

able storage capacity

HDD and NAND flash density improvement rates have outpaced Moore’s Law [47, 64]. While

there are different storage usage scenarios such as PC, embedded and server environments,

25

Figure 6: NVRAM main memory and a PSD share the memory bus. IMSC represents Integrated
Memory and Storage Controller. Note that not all storage devices in this figure have to be present
simultaneously.

the entire capacity of a given storage device is rarely filled up, leaving some space unused

during its lifetime. Agrawal et al. [5] measured the file system fullness and quantified the

annual file system size growth rate to be only 14% on average. Moreover, the storage ad-

ministrator usually performs careful storage capacity provisioning to ensure there is room

for the stored data set to grow. Provisioned but unused storage capacity is, in a sense, the

lost resources.

Based on the above observations, we make a case for Memorage, a system architecture

that utilizes the system-wide NVRAM resources in an integrated manner in order to ef-

ficiently mitigate the performance degradation of a system under high memory pressure.

Figure 6 illustrates a studied future system platform, which features NVRAM-only 1 main

memory and PSD storage device on a memory bus.
1The main memory may be a hybrid memory in the near future. However, Memorage with NVRAM-only

main memory foresees the long-term research, when NVRAM technology becomes mature and achieves the
performance comparable to DRAM.

26

Figure 7: Illustration of Memorage concept. Memorage dynamically expands or shrinks the

capacity of main memory (denoted “MM”) and PSD on demand.

3.2 THE MEMORAGE ARCHITECTURE

In this section, we propose Memorage architecture and explain its underlying principles and

design goals. In addition, we detail the design and implementation of the proposed Memorage

architecture which can effectively be integrated into a conventional memory hierarchy.

3.2.1 Memorage Philosophy

Memorage tackles the inefficiency of NVRAM resource utilization by collapsing the tradi-

tional static boundary between main memory and storage resources (see Figure 7). The

Memorage approach is motivated by the fact that fast NVRAM storage resources will likely

remain underutilized if a system is designed based on the traditional dichotomy of memory

and storage. It also enables us to mitigate the problem of NVRAM’s limited endurance with

a global wear-leveling strategy that involves all available NVRAM resources.

Storage capacity in a drive has increased with the improvement in storage density. Studies

like Meyer et al. [82] and Agrawal et al. [5] show however that storage utilization has not

been growing with the increasing storage capacity. Meyer et al. analyzed vast file system

27

content data collected for over four weeks in 2009 in a large corporation. Agrawal et al.

collected their data from 2000 to 2004 in the same company. According to their results,

storage capacity has increased by almost two orders of magnitude, but the mean utilization

of the capacity has actually decreased by 10% from 53% to 43%. Furthermore, 50% of the

users had drives less than 40% full while 70% of the users had their drives no more 60% full.

These studies clearly suggest that a storage device in a system is likely to have substantial

unused space during its lifetime.

The Memorage architecture aims to effectively address the above wastefulness by sug-

gesting the following principles:

1. Don’t swap, give more memory

Under high memory pressure, a conventional OS virtual memory (VM) manager swaps out

previously allocated pages into the storage to respond to memory requests. Significant

performance penalty is incurred when frequent swap in and swap out operations occur. In

Memorage, main memory borrows directly accessible memory resources from the PSD to

cope with memory shortages. Offering more memory capacity effectively eliminates the need

for costly swap operations.

2. Don’t pay for physical over-provisioning

To guarantee reasonable lifetime, reliability and performance of the NVRAM main memory,

robust wear-leveling and garbage collection with over-provisioned capacity is required. Flash

SSDs commonly resort to over-provisioning of as much as 20% of the (advertised) capacity.

Over-provisioned capacity is typically hidden from the user, and may remain inefficiently

utilized. In Memorage, as long as capacity planning of the PSD allows, the PSD can donate

its free capacity to the main memory to relax the limited write endurance problem and

facilitate wear-leveling. Effectively, Memorage offers “logical” or “virtual” over-provisioning

without hiding any capacity from the user or incurring additional cost for physical over-

provisioning.

To summarize, we expect two important benefits from the Memorage principles. First, by

granting more directly accessible memory capacity to the physical memory pool (principle

1), the system can decrease the frequency of page faults. Because NVRAM is orders of

magnitude faster than traditional HDDs, avoiding the software overheads of page faults

28

can lead to significant performance improvement. Second, by dynamically trading resources

between the main memory and the storage (principles 2), lifetime becomes more manageable

because the write traffic to the main memory and the storage can be re-distributed with

software control.

3.2.2 Key Design Goals

In this subsection, we discuss three design goals that have guided the design and implemen-

tation of Memorage.

• Transparency to existing applications

It is impractical to require re-compiling all existing applications for a new system feature to

be enabled. To ensure its seamless adoption, we encapsulate Memorage inside the OS kernel

and do not modify application-level interfaces. While not required, the user may configure

Memorage parameters to tune resource management policies according to particular system-

level objectives. Our goal is to have a Memorage system autonomously and intelligently

manage the underlying NVRAM resources, considering user preferences.

• Small development efforts

Meeting the transparency goal may impose additional complexities on system software de-

sign, especially the memory and storage subsystem of an OS. The complexities hinder the

fast adoption of Memorage architecture. Thus, we aim at avoiding long development time by

reusing the existing system software infrastructures whenever possible. In Section 3.3.1, we

describes our prototype design in detail so that other researchers and developers can easily

implement Memorage in their systems.

• Low system overheads

An implementation of Memorage may incur performance and memory overheads because it

adds a new layer of resource control. The performance overheads are incurred when NVRAM

resources are transferred from the storage side to the main memory side, and vice versa. The

space overheads come from book-keeping and sharing resource usages across the two sides.

In this work, we design a prototype Memorage system by reusing kernel-level functions and

data structures to achieve this goal. We note that the performance overheads are paid fairly

29

infrequently, only when NVRAM resources are exchanged under memory pressure situations.

3.2.3 Memorage Design and Implementation

We now discuss our Memorage prototype, integrated in a recent Linux kernel. The prototype

Memorage system runs on a non-uniform memory architecture (NUMA) platform with a

large system memory that emulates a PSD, as will be explained in Section 3.3.1. The

general strategies used in our implementation will also apply to other OSes.

We focus on how the first principle—Don’t swap, give more memory—is incorporated

in our implementation because today’s Linux kernel has no provisions for memory wear-

leveling. However, we will separately study via analytical modeling how Memorage helps

improve the efficiency of wear-leveling in Section 3.4. That said, incorporating the first

Memorage principle requires two major changes in an OS. First, it requires managing the

status of NVRAM resources in both memory and storage together. Second, it calls for

developing a strategy to dynamically expand and shrink the main memory capacity. We

subsequently expatiate our design approaches to accommodate the two changes.

3.2.3.1 Managing Resource Information As we discussed in Section 3.2.2, the Mem-

orage prototype extensively reuses existing memory management infrastructures of Linux in

order to reduce the development efforts. For example, key data structures to keep track of

the state of a node (representing per-CPU memory resources), a zone (expressing a mem-

ory region in a node) or a page remain unchanged. The existing node descriptor, struct

pglist data, still contains the information of a node that includes the Memorage zone, while

the zone descriptor, struct zone, keeps holding the information of the list of active and in-

active pages in the Memorage zone. Besides, the status of a page is recognized by the page

descriptor, struct page as usual (see [17] for more details).

To acquire the status information of resources in the Memorage zone, virtual memory

manager works closely with the PSD device driver and the file system. The PSD device driver

builds on a custom ramdisk driver to emulate the PSD with the system DRAM memory,

and can perform both block I/O operation and page-level allocation from the designated

30

node resources. In addition, it supports popular file systems such as ext3/ext4, and POSIX

file access APIs as a traditional storage block driver. It takes as input the size of the

Memorage zone, the resource amount to lend/reclaim at a time, and the memory node ID

to contain the Memorage zone. The PSD device driver utilizes the Linux memory hotplug

facility [1], which significantly simplifies the task of updating the OS-level information of

available memory resources as they are traded between the main memory and PSD storage.

PSD resource detection

An important design question that arose is: When should the Memorage zone be prepared?

Linux for the x86 architecture obtains the memory resource information from the BIOS

during the boot process and sets the memory related system-wide parameters like maximum

number of page frames accordingly. To keep a system’s resource discovery process consistent,

our prototype system assumes that PSD resources are similarly detected at boot time and

the OS book-keeps the PSD’s physical resource information in addition to system memory

resources. However, resource information relevant to PSD is marked to be unavailable on

loading the PSD device driver that is also performed as a part of the boot process. As a

result, OS’s VM manager has the full information of PSD resources but cannot allocate a

page from it until Memorage explicitly pumps in the predefined amount of NVRAM resources

from the PSD under memory pressure. Our prototype PSD device driver carries this out by

hot-removing PSD region (which is a memory node) during its initialization. However, the

offlined PSD region is logically removed from VM manager rather than physically from the

system.

File system metadata exposure

When Memorage donates some capacity to main memory by transferring its resource to

VM manager, the file system must catch and log such resource allocation events so that

it does not allocate donated resources for new file data. For further illustration, Figure 8

depicts the basic on-disk layout of a file system (e.g., ext3) as well as its interaction with

the buddy allocator system. The file system partitions the storage space into block groups,

and each block group is comprised of superblock, group descriptors, data block bitmap, inode

bitmap, inode table and data blocks. From each block group information, the following field

information should be passed to the buddy memory allocator:

31

Boot

block
Block group 0 Block group 1 Block group n ···

Super

block

Group

descriptors

Data

bitmap

Inode

bitmap

Inode

table

Data

blocks

Zone

Memorage
··· ···

Buddy allocator including new zone Memorage

Exposed to VM manager

1111111 0000000000 00110 ···

1111111 1111111111 00110 ···

···

···

Example of data bitmap change on

storage capacity donation

(4MB donation assuming 4KB data block size)

Figure 8: Memorage exposes free data blocks from a (mounted) file system to VM manager

as a new zone. Buddy allocator treats the new Memorage zone the same way as other zones.

1. Group descriptors that specify the status of individual block groups such as the number

of free blocks;

2. Data block bitmap that identifies which blocks within a block group are free blocks; and

3. Data blocks that stores file data in the file system.

The inode-related information does not have to be changed because blocks or pages in

the PSD are free blocks with no file data on them. Given this information from the file

system, the buddy allocator manages the Memorage zone just as other zones during memory

allocation and deallocation. In our prototype, the Memorage zone is conceptually a node in

the NUMA model that most modern operating systems support. Thus, the memory allocator

can utilize the fact that cost of accessing main memory nodes may be different according to

the geometric distance from the requesting core.

Clean up on system reboot

In response to a normal system shutdown request, Memorage mandates the file system

to nullify the bitmap information previously marked for PSD donations because we assume

32

memory data lifetime is over along with system reboot. By doing so, a file system consistency

checker (e.g., fsck) can avoid reporting unwanted check result in a subsequent boot process.

However, to address unexpected power failure, our prototype further needs to modify current

fsck implementation, letting it invalidate the inconsistent bitmap information rather than

trying to fix them up and slowing down the boot process.

3.2.3.2 Memory Expansion and Shrinkage When a system has few free memory

pages, Memorage’s VM manager dynamically expands the effective memory capacity by

allocating pages from the PSD and marking the data block bitmap accordingly. Then, the

file system treats the pages as if they hold file data and keeps them from being allocated.

Likewise, when the file system notices a storage capacity shortage, Memorage’s VM manager

deallocates pages in the Memorage zone and returns them to the storage resource pool.

Once the file system secures a safe number of pages, it resumes allocating them to file data.

Note that Memorage’s VM manager may not release the PSD pages immediately after they

enter into either the inactive list or free list. This design choice helps Memorage’s VM

manager avoid frequent file system metadata manipulation that interferes normal storage

access operation with the lock contention on common data structures.

The net effect of Memorage’s flexible capacity sharing can be explained clearly by exam-

ining how a VM manager handles high memory pressure situations. Commodity Linux has

three watermarks (ie. pages high, pages low, and pages min) used to control the invocation

and sleeping of kswapd, the kernel swap daemon [17]. When the number of available physical

page frames falls below pages low, kswapd is invoked to swap out virtual pages and reclaim

their page frames. When sufficient page frames have been reclaimed (above pages high),

kswapd is put into sleep. Essentially, Memorage lowers the watermarks by pumping in phys-

ical page frames borrowed from the storage capacity. As a result, kswapd will run less

frequently with the same series of memory allocation requests. The difference between two

points (1 and 2) in the Figure 9 captures the “expanded” margin to tolerate memory shortage

with Memorage.

Allocator modifications for resource sharing

To realize the capacity sharing, our implementation modifies the buddy memory allocator in

33

2

1
pages_high

pages_low

pages_min

new pages_high

new pages_low

new pages_min

kswapd woken up

zone balanced

kswapd sleep

time

Total size

A
v

a
il

a
b

le
 M

M
 p

a
g

e
s

A
d

d
it

io
n

a
l

M
e

m
o

ra
g

e
p

a
g

e
s

With Memorage, never reach to

watermark to invoke kswapd in this case

Figure 9: Memorage expands the margin to tolerate memory shortage, thus eludes a costly

page swapping by the increased margin.

two ways. First, it adds a new watermark (WMARK MEMORAGE) between page high and

page low. In particular, the watermark is set to one page lower than the value of page high

to minimize the chance of page swap and reclamation. Second, it endows the allocator

with the ability to inquire about Memorage zone’s resource availability when the number of

allocatable pages reaches the new watermark. Figure 10 further illustrates the interaction

between the memory allocator and the storage system under Memorage. Different from

the conventional memory allocator, which starts page swap and reclamation under memory

pressure, Memorage checks the possibility of borrowing resources from PSD before it allows

the OS VM manager to swap the extant pages (Step 1-1 and 1-2). In response to this inquiry,

Memorage resource controller grants the memory allocator to allocate PSD resources (Step

2 case (a)), or suggests the allocator to follow the normal swap and reclamation process due

to the unavailability of excess PSD NVRAM resources (case (b)).

Resource transfer size

What amount of resources the PSD provides to main memory at one time is an impor-

tant knob to control Memorage’s overhead associated with updating file system metadata

34

OS VM manger

Memorage

Resource Controller

PSD

device driver
File system

Memory subsystem

Storage subsystem

Memorage system

Step1-1

Step1-2

Step2

case(a)

Step2

case(b)

Do swap and

Page reclamation

Step2

case(a)

Figure 10: Cooperation between OS VM manager and storage subsystem to implement

Memorage’s flexible capacity sharing.

and kernel data structures. To mitigate the overhead, Memorage allocates PSD pages in

large chunks (but not all excess pages) at a time. Whereas the transfer size is a tuning

parameter dependent on the system platform, our prototype system uses 2 GB granular-

ity based on measurement results (see Figure 16 on page 47). If a system later undergoes

more severe memory demands that cannot be met with the current Memorage zone, then

Memorage “dynamically” appends another chunk of PSD pages to the zone. By doing so,

Memorage manipulates file system metadata as well as memory pool-related data structures

less frequently, and sidesteps the potentially large resource exchange overhead. This mech-

anism is similar to a mixture of the pre-allocation feature in xfs or ext4 file system and the

thin-provisioning scheme for dynamic storage growth [44].

Memorage zone shrinkage

An aggressive reclamation strategy returns the donated storage resources to storage resource

35

pool immediately after the memory resource deficit has been resolved. Even if this choice can

make a right resource provisioning, it may increase resource transfer overhead in a situation

of bursty memory pressure which needs previously reclaimed storage resources again. On

the other hand, a lazy reclamation strategy requests Memorage to reclaim the donated

storage resources only when a storage notifies its resource shortage. Although this strategy

can help Memorage avoid frequent resource transfer, it may leave the memory system in

an undesirable over-provisioned state. Therefore, we leverage a balanced approach which

is neither aggressive nor lazy. It shrinks Memorage zone with the help of a kernel thread

which reclaims the donated PSD pages when a system is not under memory pressure. Also,

it considers reclaiming frequently referenced pages first because keeping those pages on the

donated slower (MLC) PSD resources will degrade system performance.

3.2.4 Comparison with Possible Alternatives

Memorage provides a future NVRAM system with a seamless evolving path to overcome

the inefficient resource utilization of the traditional “static” memory management strategy.

There are other possible alternative strategies to utilize the NVRAM resources.

First, a platform may feature only fast SLC NVRAMs on the main memory bus and

the system partitions the memory space into main memory and storage capacity. This way,

the system may grow and shrink each space dynamically to respond to system demands.

In a sense, this approach throws away the traditional notions of main memory and storage

dichotomy completely. Unfortunately, this strategy may not result in the most cost-effective

platform construction because it does not exploit the cost benefits of MLC NVRAMs which

can store more information per cell than SLC. Moreover, when to control the growth of

a particular space, especially the storage, is vague. By comparison, Memorage honors the

traditional notion of the main memory and storage capacity, but manages the underlying

NVRAM resources such that main memory lifetime issues influenced by NVRAM cell’s wear-

out as well as overheads for swapping are effectively addressed.

Second, in lieu of dynamically reacting to memory pressure, a system may statically

“give” PSD resources that correspond to the traditional swap space to main memory. In

36

essence, the main memory capacity is increased by the swap space. When the system’s

memory usage does not exceed the total main memory capacity, this static approach may

result in better performance than Memorage. However, since it sets apart the fixed amount

of NVRAM resources for main memory, it does not adapt to dynamic changes of working set

sizes like Memorage does; it brings about the over- and under-provisioned memory resource

problem again, whereas Memorage can adapt to these changes.

Yet another approach may create a file and delegate the file system to handle memory

shortage situations with the capacity occupied by the file. This approach is analogous to

giving a swap file that dynamically adjusts its size. However, since this approach must always

involve the file system layer to get additional pages on memory deficit, it may not achieve

raw NVRAM performance of the PSD due to unnecessary file operations unrelated to page

resource allocation.

3.2.5 Further Discussions

Caveat for reclaiming the donated PSD pages

All pages are not reclaimable immediately on request. If the donated pages have a page

reference count greater than zero when storage shortage is reported, they cannot be reclaimed

shortly. Instead, those pages can be reclaimed only after their contents first migrate onto

other pages. To make matters worse, not all pages are migratable. For example, direct

mapped kernel pages are not. Therefore, it is important to take into account the fact that

reclamation of donated pages may not be instant (reporting an error such as -EBUSY) and

PSD pages should not be used for non-migratable kernel pages.

Handling a race condition between VM manager and file system

Since VM manager can manipulate the metadata of file system, system designers must

carefully handle potential race conditions that may be caused by accessing shared information

such as block bitmap simultaneously. One possible way to address the problem is to use a

conventional locking scheme that mandates serializing accesses to the shared information.

Alternatively, one can design a new file system dedicated for NVRAM, e.g., Wu et al. [113]

delegates storage resource management to VM manager entirely. However, this requires

37

compromising the compatibility with existing file systems. For this reason, we prefer the

locking strategy to avoid modifications to file systems.

Determining lifetime ratio of main memory to PSD

How global wear-leveling is done in Memorage determines the relative lifetime of NVRAM

main memory and the PSD. For example, if we treat all the NVRAM resources equally, we

could make both main memory and PSD have an equal lifetime. Others may want the PSD

to live longer than main memory and limit the amount of PSD capacity used in Memorage’s

over-provisioning. Such decisions rely on the preference of a user as well as the system

upgrade period; it is hard to say simply which strategy is better. Section 3.4 examines the

effect of lifetime ratio of main memory to PSD.

3.3 EXPERIMENTAL RESULTS

In this section, we explain our evaluation methodology and experimental platform, and

present the characterization results of our emulator and OS software overhead. Also, we give

the performance evaluation results achieved by our Memorage prototype.

3.3.1 Evaluation Methodology

We employ a number of methods for evaluation. To obtain the software latency of a page

fault, we measure the actual latency using fine-grained instrumentation of the Linux kernel.

For application-level performance measurements, we use the Memorage prototype system im-

plemented on a real platform. Lastly, to evaluate the lifetime improvement with Memorage,

we develop intuitive analytical models.

We employ two different platforms for experiments. Our latency measurement is per-

formed on a desktop platform. The platform running Linux kernel 2.6.35.2 with the ext3 file

system features an Intel Core i7 quad processor operating at 2.67 GHz, 8 MB L3 Cache, and

9 GB DDR3-1066 DRAM. Our Memorage prototype runs on a dual-socket Intel Xeon-based

server platform and a newer 3.2 kernel. This platform has a large memory capacity orga-

nized in NUMA and eases emulating the PSD capacity. We perform application performance

38

System Component Specification

Platform HP Proliant SL160g6 Server

CPU Two Intel Xeon E5620 (Sandy-bridge) processors

2.4 GHz base frequency, 2.66 GHz max turbo frequency

4 cores per processor

Hyper-threading 8 hardware threads/processor

Last-Level Cache (L3) 12 MB

Number of QPIs 2 links

Bus speed 5.86 GT/s QPI

Memory System 3 memory channels

192 GB DDR3-1066 SDRAM

populated as 12 × 16 GB RDIMMs

Operating System Linux kernel 3.2.8

File System Ext3

Table 2: Experimental platform.

evaluation on this platform. Table 2 summarizes the platform’s specification.

Figure 11 illustrates how we emulate a future NVRAM-based system with a commodity

server. Figure 11a shows an initial status of two socket system which has two CPUs connected

to memory of socket0 and socket1, respectively. Socket0 memory emulates NVRAM main

memory of 4.4 GB capacity, and socket1 memory of 96 GB capacity emulates PSD. First, we

offline CPU1 as shown in Figure 11b, thus the system has only one CPU. Then, we offline

PSD resources and hide them from OS virtual memory manager (see Figure 11c). Therefore,

OS memory manager cannot see PSD resources when it tries to allocate a memory page.

When memory pressure occurs (Figure 11d), PSD resources are exposed to OS memory

manager via memory hot-plugging operation (Figure 11e). Figure 11f depicts a system after

memory pressure disappeared.

To form our workload, we select eight benchmarks from the SPEC CPU2006 suite because

39

CPU #0

(4 cores)

CPU #1

(4 cores)

4GB

Socket 0 memory

96GB

Socket 1 memory

Main memory Emulated PSD

(a) Initial state

CPU #0

(4 cores)

CPU #1

(4 cores)

4GB

Socket 0 memory

96GB

Socket 1 memory

Main memory Emulated PSD

(b) Offlinig CPU1

CPU #0

(4 cores)

CPU #1

(4 cores)

4GB

Socket 0 memory

96GB

Socket 1 memory

Main memory Emulated PSD

Offloading PSD resources

(c) Offloading PSD resources

CPU #0

(4 cores)

CPU #1

(4 cores)

4GB

Socket 0 memory

96GB

Socket 1 memory

Main memory Emulated PSD

Offloading PSD resources

Memory pressure

(d) Memory pressure

CPU #0

(4 cores)

CPU #1

(4 cores)

4GB

Socket 0 memory

96GB

Socket 1 memory

Main memory Emulated PSD

Memory pressure

Memorage hot-plugs PSD resources

(e) PSD hot-plugging

CPU #0

(4 cores)

CPU #1

(4 cores)

4GB

Socket 0 memory

96GB

Socket 1 memory

Main memory Emulated PSD

(f) Memory pressure handled

Figure 11: Illustration of emulation methodology.

40

they are memory-bound applications [91]. The applications and their memory footprint

(dynamic resident set size or RSS) are bwaves (873 MB), mcf (1,600 MB), milc (679 MB),

zeusmp (501 MB), cactusADM (623 MB), leslie3d (123 MB), lbm (409 MB), and GemsFDTD

(828 MB). Thus, RSS of our multiprogrammed workload is 5.6 GB. Since our experimental

platform has eight hardware threads, all applications in our workload can run simultaneously.

The first set of experiments focus on measuring the software latency of page fault handling

and use mcf, whose RSS is 1.6 GB and is the largest of all applications. To ensure we observe

many page faults (opportunities for measurements), we run mcf after seizing all physical

memory capacity but only 1.3 GB. Measurement was done with the Linux kernel function

tracer Ftrace [14], which instruments the entry and exit points of target functions with a

small overhead.

For application performance studies, we assume that main memory is built with SLC

NVRAM whereas the PSD uses MLC NVRAM. This assumption implies that the target

system is built cost-effectively—fast main memory with small capacity and slightly slow

storage with large capacity. As discussed in Section 2.1, this construction does not necessar-

ily imply much longer access latency to the PSD-provided memory capacity because MLC

NVRAM can be read and programmed like SLC NVRAM. We assume that the NVRAM

capacity donated to the main memory realm (Memorage) and the PSD capacity reserved

for swap space (conventional system) are operating in the fast SLC mode. Given the as-

sumptions, we emulate both the NVRAM main memory and the NVRAM PSD with the

host machine’s DRAM. In particular, all applications are pinned to run on the first NUMA

node only. The PSD capacity is offered by the second NUMA node. The swap partition is

implemented using a ramdisk.

As the primary metric for performance comparison, we use the program execution time

to complete each of eight applications in our workload, started at once 2. Given the multi-

core CPU with eight hardware contexts, this simple metric is intuitive and relevant. Co-

scheduling of applications also ensures that platform resources are not underutilized. To

reduce the effect of measurement noise, we repeat experiments three times and average the
2We do not re-launch applications which complete earlier than others so that we can estimate a lower-

bound of the performance gain from Memorage. However, re-launching early completed applications sustains
memory pressure for a longer time, hence Memorage will achieve greater performance improvement.

41

Configuration Description

Baseline
A system has 4.4 GB effective memory available for allocation. This size causes
significant memory shortage.

Memorage

In addition to 4.4 GB (Baseline), Memorage provide a system with an ad-
ditional 2 GB capacity from PSD on low memory. Thus, the workload sees
6.4 GB total, and this capacity is larger than the aggregate memory footprint
of the workload.

Table 3: Evaluated memory configurations. Each configuration has a distinct effective mem-

ory capacity for page allocation.

results. We also reboot the system after each experiment to keep the system state fresh and

ensure that our workload runs under as much identical system conditions as possible.

We consider two target machine configurations shown in Table 3: Baseline and Memor-

age. The Baseline configuration offers the total physical memory capacity of 4.4 GB. Note

that this capacity is smaller by about 20% than the studied workload’s aggregate footprint

(5.6 GB). Accordingly, this configuration exposes the impact of frequent swap operations in

a conventional system under memory pressure. The Memorage configuration offers 2 GB of

additional memory capacity from PSD.

3.3.2 Characterization of Platform Performance

We characterize an average memory access latency and memory bandwidth of our platform

while consecutively issuing read operations. This bare-metal performance is important to

understand how accurately our emulation vehicle based on a commodity server can emulate

characteristics of the NVRAM main memory and PSD storage hardwares.

Figure 12 displays the memory system performance in terms of average latency and

bandwidth measured when the system is otherwise idle. 2 CPU sockets in the platform are

denoted by node 0 and node 1, respectively. In this matrix table, values on an intersec-

tion of an identical node number show local memory access latency and bandwidth of the

node, whereas values between different node numbers represent the performance of remote

42

Latency (ns) Node 0 Node 1

Node 0 81.1 130.6

Node 1 130.6 81.0

Bandwidth (MB/s) Node 0 Node 1

Node 0 14171.4 10110.0

Node 1 10106.8 14342.0

Figure 12: Average memory read latency and bandwidth of the unloaded experimental

platform. A node is a logical unit which OS manages CPU and memory resources associated

with the CPU. Thus, the value on a cell crossed by the same node number means that the

CPU in the node number accesses the memory in that node number.

memory access latency and bandwidth. The figure indicates that the emulated NVRAM

main memory’s access latency is faster than that of PSD by 61.2%. Also, the bandwidth

of NVRAM main memory is higher than PSD by 41%. We presume that this performance

difference reasonably emulates the performance disparity between the memory module and

storage device built with SLC and MLC NVRAM technologies, respectively.

By contrast, Figure 13 shows the memory system performance measured when the system

is busy. The x-axis shows an inject delay in cycles, which a load request is delayed by other

application’s memory requests. As system loads increase, the bandwidth degrades by about

30×, and average memory access latency decreases by 44%. The average memory latency

is calculated from the bandwidth value measured over a constant time duration. As the

load increases, the amount of data that a concerned thread can access decreases, and as a

result, the average memory access latency decreases 3. These measurements were performed

by Intel’s Memory Latency Checker tool [50] that is based on various hardware performance

counters in a processor.

3See the manual from [50] for more details on the tool’s capability.

43

0

5000

10000

15000

20000

25000

30000

0

20

40

60

80

100

120

140

B
a

n
d

w
id

th
 (

M
B

/s
e

c)

La
te

n
cy

 (
n

s)

Inject Delay (core cycles)

Latency and bandwidth under loads

Bandwidth (MB/sec) Latency (ns)

Figure 13: Average memory latency and bandwidth of the loaded experimental platform.

3.3.3 Software Latency of a Page Fault

In this section, we obtain and report two latencies, one for “fast path” (taken for a minor

fault) and another for “slow path” (major fault). A minor fault happens when the swap-in

operation finds the missing page in the in-memory swap cache that contains the pages shared

by several processes. On the other hand, a major fault requires fetching the missing page

from the swap space on the storage device (PSD). On our platform, the fast path latency

was measured to be 21.6 µs and the slow path latency was 58.6 µs. We find that even the

fast path places nontrivial software latency on the critical path. Considering the capabilities

of the underlying hardware, 21.6 µs is not a small number at all. For instance, the latency

to read a 4 KB page can be as small as 0.47 µs with the 8.5 GB/sec DDR3-1066 DRAM in

our platform.

Figure 14 breaks down the page fault handling latency according to the routines involved.

Most routines are executed on both the fast path and the slow path. Two routines are

executed only on the slow path, grab swap token() and swapin readahead(), and they

account for a dominant portion in the entire latency of the slow path—37.5 µs of 58.6 µs.

44

0

10

20

30

40

50

60
A

v
e

ra
g

e
 t

im
e

 t
a

k
e

n
 t

o
 e

x
e

cu
te

 e
a

ch
 r

o
u

ti
n

e
 i

n
 �

s

lookup_swap_cache

grab_swap_token

swapin_readahead

mem_cgroup_try_charge_swapin

_raw_spin_lock

page_add_anon_rmap

mem_cgroup_commit_charge_swapin

swap_free

unlock_page

others

: 0.783 us

: 0.666 us

: 36.872 us (63%)

: 2.832 us

: 0.211 us

: 1.135 us

: 9.355 us

: 3.357 us

: 1.071 us

: 2.349 us

Major fault (slow path) specific routines

Figure 14: Breakdown of software latency of the Linux page fault handler. Routines in the

legend are invoked in order. Recall that Memorage will eliminate this latency.

The swapin readahead() turns out to be the most time-consuming; it reads the missing

page from the swap area and performs DRAM copying. This routine’s latency grows with

the number of pages that should be brought in, because the page reclaiming routine must first

make enough room for the pages under high memory pressure. Another major contributor,

responsible for 12.18 µs, is a family of “memory control group” routines (prefixed with

mem cgroup). Their main goal is to track the memory usage and limit of the specific group

of processes, and reduce the chances of swap thrashing during page reclamations. The

observed overhead is caused by the activities that VM manager updates the necessary page

accounting metadata such as LRU data structure.

After all, given the long latency required on each page fault, a memory-bound appli-

45

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Copy Scale Add Triad

M
e

m
o

ry
 b

a
n

d
w

id
th

 (
M

B
/s

)

2x main memory main memory PSD

Figure 15: Performance difference between main memory and PSD on our experimental

NUMA platform in terms of the peak bandwidth, running the STREAM benchmark. The “2x

main memory” represents the bandwidth performance when both sockets are main memory.

cation’s performance will suffer if its memory requirements are not fully satisfied due to

memory shortage. The situation can be considerably relieved with Memorage because it

grants more physical memory capacity to the system and satisfies memory demands from

applications directly without involving time-consuming page fault handling. The larger the

effective memory capacity is, the less frequently page faults would occur.

3.3.4 Application Performance

The result of the previous Section 3.3.3 suggests that even if we provide a very fast swap

space with a PSD, the page fault overhead will remain high because of the long software

latency. Let us now turn our attention to evaluating the benefit of Memorage by comparing

the application-level performance measured under different memory configurations.

Before we evaluate the application performance, we first examined the achievable memory

bandwidth of our experimental platform by running STREAM benchmark [78]. This allows

46

128MB 1GB 2GB 4GB 8GB 16GB 32GB 64GB 96GB

Donation 00:00.4 00:03.0 00:06.1 00:12.1 00:24.0 00:46.7 01:29.1 02:42.5 03:37.0

Reclamation 00:00.5 00:03.5 00:07.0 00:14.2 00:27.9 00:55.6 01:45.3 03:16.8 04:31.2

00:00

00:43

01:26

02:10

02:53

03:36

04:19

05:02

E
la

p
se

d
 W

a
ll

-c
lo

ck
 T

im
e

 (
in

 m
in

:s
e

c)

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

Donation Reclamation

Log-scale view

Single Transfer Capacity

Figure 16: The latencies (in form of min:sec.ms) for Memorage to offer and retrieve PSD

resources as the transfer size changes.

us to quantify the “application-level” performance difference between main memory (on the

local node) and the emulated PSD (on the remote node). This is different from the bare-

metal measurements presented in Section 3.3.2 in that the STREAM benchmark not only

has both read and write operations, but also considers some compute time between two

memory requests.

Figure 15 shows that main memory achieves higher bandwidth than the PSD by about

15% on average, and half bandwidth of 2x main memory that both sockets are main memory.

We consider this difference to be a reasonable artifact of our experimental environment, as

reading from and writing to MLC NVRAMs (even if they are operating in the SLC mode)

could take slightly longer than SLC NVRAMs.

Next, we measure the time needed for our Memorage implementation to offer physical

resources from the PSD to main memory or vice versa. This latency represents an artifact of

Memorage that applications would not experience if sufficient memory were given to them

initially, and is paid only when the physical resources are transferred between main memory

47

+16.7%

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

P
e
r
fo

r
m

a
n

c
e
 r

e
la

ti
v
e
 t

o
 B

a
se

li
n

e
 (

x
 t

im
e
s)

+40.5%

-10.7%

Figure 17: Relative performance of benchmarks with Memorage (based on wall clock time

measurement). Performance improvement can be identified with a value greater than 1.

and the PSD, not on each (minor) page fault. Figure 16 presents our result, as a function

of the amount of memory capacity to donate or reclaim at one time. The plot clearly

shows that the measured latency increases linearly, proportional to the transferred data size.

Based on the result, we determined that a 2 GB transfer size is a reasonable choice during

our application-level performance study.

Figure 17 presents the performance of Memorage normalized to that of Baseline. We

show results for individual benchmark applications in the workload. Performance improve-

ment rate varies among the applications. Six out of eight applications gained significant

performance improvement. The total execution time of Memorage are improved by 16.5%

on average and by up to 40.5% in mcf, compared to Baseline. mcf is the most memory de-

manding application in the workload and it benefited the most. On the other hand, leslie3d

saw little performance improvement.

The plot also shows that all applications achieved performance improvement with the

additional memory capacity offered by Memorage, except one application; lbm actually loses

performance with more memory. This seemingly counter-intuitive result is caused by the

48

0% 20% 40% 60% 80% 100%

bwaves

cactusADM

GemsFDTD

lbm

leslie3d

mcf

milc

zeusmp

bwaves

cactusADM

GemsFDTD

lbm

leslie3d

mcf

milc

zeusmp

M
em

or
ag

e
Ba

se
lin

e

Execution Time Breakdown for User vs. Kernel in %

User Time Kernel Time

Figure 18: Total execution time is normalized to highlight the relative time spent in user

applications and system routines.

uncontrolled resource contention in the processor core (hyper-threading) and the shared

cache. lbm has a relatively small memory footprint that can easily be cached. Hence, when

other more memory-demanding applications are blocked waiting for memory allocation (in

Baseline), it actually gets more CPU cycles. As a result, lbm grabs shared cache capacity

it needs and can complete to execute faster. We also find that slight memory shortage (e.g.

several dozens of MBs) is successfully handled by kswapd, whereas the huge gap between the

total required memory size and the currently available memory size (20% in our experiment)

is hard to overcome with the Linux page reclamation capability, resulting in crawling software

latencies very often.

Figure 18 shows that Memorage dramatically reduces the portion of system time in the

total execution time of the studied benchmarks. The programs spend a large portion of their

execution time in system execution under heavy memory pressure because they have to block

(in the sleep state) and yield the CPU to other processes until the faulting page becomes

available through page fault handling. Because this handling is slow, the faulting process

may be blocked for a long time. The increase of user time with Memorage implies that

CPU cycles are spent on useful work of the user application. More user time results in fast

program execution time and gives the system more chances to serve other user applications,

improving the overall system throughput.

49

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

A
v

g
.
n

u
m

b
er

 o
f

d
y

n
a

m
ic

 m
em

o
ry

 i
n

st
ru

ct
io

n
s

ex
e
cu

te
d

 p
er

 m
a

jo
r

p
a

g
e

fa
u

lt
 (

in
 l

o
g

-s
ca

le
)

Baseline Memorage

(a) Average number of memory instructions per major fault

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

1.00E+10

1.00E+11

1.00E+12

A
v

g
.
n

u
m

b
er

 o
f

d
y

n
a

m
ic

 m
em

o
ry

 i
n

st
ru

ct
io

n
s

ex
e
cu

te
d

 p
er

 m
in

o
r

p
a

g
e

fa
u

lt
 (

in
 l

o
g

-s
ca

le
)

Baseline Memorage

(b) Average number of memory instructions per minor fault

Figure 19: Memorage reduces the impact of major and minor page faults by increasing the

average number of memory instructions between two faults. A larger value in the plot means

more memory references are made without a page fault.

50

Finally, Figure 19 depicts the average number of dynamic memory instructions executed

between two successive major or minor page faults. In Memorage—having generous memory

capacity—the system rarely experiences a major fault. Baseline suffers a sizable number of

major faults, as many as three to six orders of magnitude more major faults than Memor-

age. It also shows that minor page faults occur more frequently than major faults. They

occur even when there is enough memory capacity to elude memory pressure because modern

operating systems implement many in-memory cache structures and resource management

schemes. For example, the widely used copy-on-write mechanism may cause a minor page

fault due to a write on a shared page. Minor page faults have smaller impact on system

performance compared to major faults because handling them merely require to create new

page mappings without accessing storage. Hence, the performance of a system with Memor-

age is relatively insensitive to the number of minor faults. Nonetheless, Memorage decreases

the number of minor faults as well because page faults often incur additional minor faults

(e.g., swap cache hit) during fault handling but Memorage avoid them.

3.4 SYSTEM LIFETIME MODEL OF NVRAM RESOURCE SHARING

In this chapter, we develop a model to assess the system-level lifetime improvement of

NVRAM resources by the proposed Memorage architecture.

3.4.1 Modeling Main Memory Lifetime

Main memory lifetime improvement when system lifetime is maximized. In a

typical platform use scenario where main memory update rate is substantially higher than

storage update rate, the system lifetime would be determined by the main memory lifetime.

In this section, we analytically obtain the lifespan improvement of NVRAM main memory

with Memorage’s virtual over-provisioning. Let us first focus on the case when the system

lifetime is maximized (i.e., main memory lifetime equals storage lifetime).

Let Lm and Ls be the lifespan of NVRAM main memory and PSD in the conventional

51

system, respectively. They represent the time taken until all NVRAM cells are worn out

through memory and storage writes. Also, let Cm and Cs be the main memory capacity and

the PSD capacity and let Em and Es be the specified write endurance of NVRAM resources

for main memory and PSD. Then, in the conventional system, the total data volume, Dm and

Ds, writable to the main memory or the PSD before their write endurance limit is reached,

are: Dm = Em · Cm and Ds = Es · Cs.

Now, let Bm and Bs denote the average data update rate or write data bandwidth, for the

main memory and the PSD, respectively. Then the lifetime of the two entities are calculated

by: Lm = Dm/Bm and Ls = Ds/Bs. At this point, we assume that perfect wear-leveling is

in place for both the main memory and the PSD.

In order to relate the resources initially dedicated to main memory and PSD, we introduce

α and β. Then, Cs = α · Cm and Bm = β · Bs. Because storage capacity is in general

larger than that of main memory (Cs > Cm) and the data update rate of main memory is

higher than that of storage (Bm > Bs), α > 1 and β > 1 would normally hold. Similarly,

we introduce γ to relate the endurance limit of the main memory and the PSD. That is,

Em = γ · Es. We normally expect γ to be greater than 1.

On a system with Memorage, let Lnew be the lifespan of the main memory. Ideally,

Memorage could expose the whole NVRAM resource capacity to global wear-leveling because

it manages all NVRAM resources. If we define Dnew and Bnew to be the total writable data

volume and the data update rate for the total, Memorage-managed NVRAM capacity, we

have Lnew = Dnew/Bnew, where Dnew = Em ·Cm +Es ·Cs and Bnew = Bm +Bs. Finally, by

rewriting Lnew we obtain:

Lnew =
Em · Cm + Es · Cs

Bm +Bs

=
Em · (Cm + α

γ
· Cm)

Bm + 1

β
· Bm

=
Em · Cm · (1 + α

γ
) · β

Bm · (1 + β)

= Lm ·
(1 + α

γ
) · β

(1 + β)
(3.1)

52

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70

M
e

m
ro

y
 L

if
e

ti
m

e
 I

m
p

ro
v

e
m

e
n

t

The ratio of memory bandwidth to storage bandwidth (t�

Lifetime_new(rAïì� Lifetime_new(rAòì� , where v A�10

Figure 20: Main memory lifetime improvement.

Equation (3.1) captures the key trade-offs that determine the new lifetime. For example,

with a higher α (i.e., storage is larger than memory), the main memory lifetime increases.

If γ is larger, implying that the write endurance of the main memory is better than the

write endurance of the PSD, the relative benefit of global wear-leveling of NVRAM resource

decreases. Finally, given that α/γ is reasonably greater than 0 (e.g., PSD capacity is large

enough and/or the write endurance of the PSD is close to that of the main memory), β

determines the overall lifetime gain. With a larger β, the lifetime improvement increases.

Suppose for example a platform that has 8 GB main memory and a 240 GB or 480 GB

PSD (α is 30 or 60, common in high-end notebooks). Figure 20 illustrates how the lifetime

improvement of NVRAMmain memory changes as we vary the relative data write bandwidth

to main memory and PSD (β). We assumed γ is 10. The lifetime improvement is shown to

rapidly reach a maximum value, even when β is small—write bandwidth difference is small

(e.g., see the points near β = 10). Even in an unrealistic worst-case scenario of β = 1,

Memorage achieves 2× and 3.5× longer lifetime than the conventional system. Realistically,

write bandwidth seen by the main memory tends to be much larger (β is large) [92, 2], and

hence, we expect that the large main memory lifetime improvement of Memorage will be

effectively achieved.

53

3.4.2 System Lifetime Analysis via Model

Understanding trade-offs in global wear-leveling

Our formulation so far assumed that Lm = Ls = Lnew and a perfect, global wear-leveling

method with zero overhead. To gain insights about realistic wear-leveling, we consider a

hypothetical wear-leveling method where the main memory borrows an extra capacity of η

from the PSD constantly. This borrowed capacity resides within the main memory realm

for time τ and is then returned back. The PSD immediately lends a fresh capacity of η

to replace the returned capacity. To improve lifetime, the main memory “rests” its own

capacity of η, covered by the borrowed capacity.

The hypothetical wear-leveling method follows the spirit of Memorage in two ways. First,

it involves the available physical resources in the main memory and the PSD only, without

assuming any over-provisioned physical resources. Second, it uses borrowed capacity from

the PSD to improve the main memory lifetime, across the traditional memory and storage

boundary. Furthermore, the method exposes two important trade-offs (η and τ) a realistic

wear-leveling scheme may also have. η captures the amount of provisioned capacity and

determines the degree of lifetime improvement. On the other hand, τ dictates the frequency

of resource exchange, and hence, reveals the overhead of resource management and the

potential wear amplification.

Let us assume that η < Cm < Cs (i.e., the borrowed capacity is relatively small, compared

with Cm and Cs) and let L′

m and L′

s denote the new lifetime of the main memory and

the PSD under the hypothetical wear-leveling scheme. Deriving the new lifetimes is fairly

straightforward.

L′

m = (Dm · Cm)/(Bm · (Cm − η)),

L′

s = Ds/(Bs +
η

Cm

· Bm +
2η

τ
) (3.2)

The effect of exchanging resource is manifested by the transfer of bandwidth from the

main memory to the PSD (η ·Bm/Cm). The overhead of resource trading is revealed by the

added bandwidth (2η/τ) to the PSD side.

54

Introducing a new variable h = η/Cm, main memory lifetime improvement and PSD lifetime

degradation are expressed by Equation 3.3.

As expected, the memory side lifetime improvement is a function of h (h is the relative

size of η to Cm). It is also shown that h and β (Bm/Bs) plays a role in the PSD lifetime.

Intuitively, the PSD’s lifetime degrades faster if: (1) the main memory bandwidth is relatively

large and (2) larger capacity is delegated from the PSD to the main memory. Lastly, the

wear-leveling overhead becomes larger with the traded capacity size and decreases with a

longer capacity trading period and higher storage side bandwidth.

L′

m/Lm =
1

(1− h)
,

Ls/L
′

s = 1 + β · h +
2h · Cm

τ ·Bs

(3.3)

To express the above as a function of h and τ only, let us fix other variables. Like

before, imagine a platform with 8 GB main memory and a 480 GB PSD. Also, assume

Bs = 12 GB/day [2] and β = 720 (large write bandwidth difference between main memory

and PSD storage).

Figure 21 plots Equation (3.3). It is shown that the main memory lifetime increases

with h while the lifetime of PSD decreases. Furthermore, the degradation of PSD lifetime is

affected substantially by the choice of τ (expressed in “days”). For example, the degradation

ratio difference between τ = 1 (resource exchange occurs once a day) and τ = 0.01 (hundred

times a day) was more than an order of magnitude. Given the trend, how would the user

choose h and τ? A feasible strategy would consider the lifetime improvement or degradation

ratio target. For example, if the user desires at least 2× main memory lifetime improvement,

h need to be 0.5 or larger (shown in the lower circle on the plot). If the same user would

like the maximum PSD lifetime degradation of 1,500, he/she could choose τ = 0.0001 and

ensure h = 0.7 or less (upper circle). The user could use any value between 0.5 and 0.7 for

h. This concrete example demonstrates that the developed model is powerful and can guide

wear-leveling management policies.

55

1

10

100

1,000

10,000

100,000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Li
fe

ti
m

e
 r

a
ti

o

h (= { / Cm)

� = 1

� = 0.1

� = 0.01

� = 0.001

� = 0.0001

Ls / L’
s

L’
m / Lm

Figure 21: Main memory lifetime improvement and PSD lifetime degradation as a function

of h (a ratio of the capacity borrowed from PSD to memory capacity) and τ (a time period

for main memory to own the borrowed capacity. more frequent transfer with smaller τ).

The improvement of main memory lifetime comes at a high cost of degrading the PSD

lifetime. In the previous example, obtaining 2× improvement in the main memory lifetime

corresponds to 1,000× PSD lifetime degradation. This cost may appear excessive. However,

in fact, the cost is justified when the system lifetime is limited by the main memory lifetime.

For example, if Es = 105, the expected lifetime of the 480 GB PSD is over 10,000 years when

Bs = 12 GB/day. When Em = 106, the lifetime of the 8 GB NVRAM main memory, even

with perfect wear-leveling, is only 2.5 years at Bm = 100 MB/s. In this case, reducing the

PSD lifetime from 10,000 years to 10 years (1,000× degradation) to increase the main memory

lifetime to 5 years makes perfect sense. Our analysis demonstrates that Memorage’s ability

to trade resources between PSD and main memory is extremely valuable toward improving

not only the performance but also the lifetime of a platform.

56

3.5 RELATED WORK

The work by Freitas et al. [37] gives an excellent overview of the NVRAM technologies.

They suggest that a NVRAM is a “universal memory,” providing capacity to both main

memory and storage of a platform. They also suggest that the PCM technology is closest to

mass production. However, they do not discuss in detail the notion of system-wide, dynamic

co-management of memory and storage resources in an integrated framework and how the

notion can be realized.

Recently the computer architecture community paid due attention to building PCM main

memory [118, 68, 92]. Because PCM has lower performance and smaller write endurance

than DRAM, the focus was on developing techniques to hide the long PCM access latency,

reduce write operations, and distribute wearing among PCM cells. These studies looked only

at the main memory architecture.

On the other hand, Jung et al. [57], Caulfield et al. [19, 20] and Akel et al. [6] evaluated

the potential of NVRAM as a storage medium. They studied the performance of a block

storage device that employs NVRAM and is connected to the host system through the high

bandwidth PCI-e interface. Furthermore, like our work, Caulfield motivated the need to

revamp the key OS components like the block I/O layer; however, they assume a conventional

DRAM main memory and stick to the traditional main memory and storage dichotomy.

Accordingly, their work focused only on streamlining the storage access path in the OS and

the storage hardware built with NVRAM.

Work done by other researchers also reveals that the maximum SSD performance is not

realized without streamlining the traditional I/O software layers. Accordingly, they propose

specific techniques to optimize the OS I/O stack and file system [54, 99, 100]. However, their

concerns so far are for NAND flash SSDs on a legacy interface rather than byte-addressable

PSDs. Even if these changes are applicable to the PSD, the techniques are strictly for the

storage side of the NVRAM technology.

Badam et al. [9] proposed to use SSD as main memory extension rather than storage by

providing users with new set of APIs to explicitly allocate pages from SSD. While the method

improves the performance of large memory footprint applications, it requires applications

57

using the APIs to be recompiled. Also, they treat SSD just as memory resources without

considering the role as file storage. In our proposal, PSD is not only used as memory

extension without modifications to an application, but also keeps performing its innate duty

to store files.

Qureshi et al. [91] and Dong et al. [32] proposed to improve the access latency of MLC

PCM by adaptively changing the operating mode from slow MLC to fast SLC mode. While

the former focused only on main memory, the latter dealt only with storage. By comparison,

Memorage makes use of both main memory and storage resources together to obtain the

best system performance. Memorage is a flexible architecture in that it neither binds itself

to the PCM technology, nor does it require the use of fast page mode in MLC.

Finally, there are two inspiring studies that address the inefficient resource utilization

in main memory and the storage system. Waldspurger [109] shows that memory usages

are uneven among co-scheduled virtual machines and proposes “ballooning” to flexibly re-

allocate excess memory resources from a virtual machine to another. This technique helps

manage the limited main memory resources more efficiently. Similarly, Hough et al. [44]

present “thin provisioning” to enhance the storage resource utilization by allocating storage

capacity on demand. While both proposals tackle an important problem, their focus is

limited to a single resource—main memory or storage (but not both).

Compared to the above prior work, we address the system-level performance and re-

source utilization issue of a future platform whose main memory and storage capacity collo-

cated at the memory bus are both NVRAM. A Memorage system collapses the traditional

main memory and the storage resource management and efficiently utilizes the available

NVRAM resources of the entire system to realize higher performance and longer lifetime of

the MVRAM resources.

3.6 SUMMARY

Emerging NVRAM technologies have the potential to find their place in a computer sys-

tem and replace DRAM and (a portion of) traditional rotating storage medium. This work

58

discussed potential architectural and system changes when that happens. Furthermore, we

proposed Memorage, a novel system architecture that synergistically co-manages the main

memory and the storage resources comprised of NVRAM. Our experimental results using a

prototype system show that Memorage has the potential to significantly improve the per-

formance of memory-intensive applications (by up to 40.5%) with no additional memory

capacity provisions. Furthermore, carefully coordinated NVRAM resource exchange be-

tween main memory and NVRAM storage is shown to improve the lifetime of the NVRAM

main memory (by up to 6.9 ×) while keeping PSD lifetime long enough for the studied

system configurations. Memorage presents a practical, plausible evolution path from the

long-standing memory-storage dichotomy to integration and co-management of memory and

storage resources.

59

4.0 HARDWARE-DRIVEN PAGE SWAP IN HYBRID MAIN MEMORY

In this chapter, we develop an analytical model to assess the profitability of in-memory page

swap between DRAM and NVRAM in a hybrid main memory subsystem, and evaluate the

effectiveness of a hardware-driven page swap mechanism which is guided by that model.

4.1 MOTIVATION

Over the last three decades, DRAM has been a de-facto standard memory technology to

build system’s main memory. However, as semi-conductor process technology continuously

advances at the pace of Moore’s law [101], DRAM is approaching its scaling wall due to man-

ufacturing constraints which cannot further shrink a DRAM cell in a functionally correct and

cost-effective way [61]. Moreover, current leakages are accelerated with a smaller transistor

feature size, thus data retention time decreases. As a result, the relative fraction of wasteful

power consumption dissipated by DRAM refresh operations is growing to compensate for

weaker retention capability [13].

Due to two critical system-level problems caused by the above DRAM challenges, system

designers cannot stay with a traditional DRAM-only approach to build a system memory.

First, since DRAM is not scalable, the main memory capacity of a future platform is insuffi-

cient to accommodate an ever-increasing memory footprint that is required from applications

running on a much larger number of cores. After all, the deficit of memory capacity becomes

a major system bottleneck that considerably degrades the application performance. Second,

a system power budget is prone to being violated by the addition of excessive wasteful refresh

power consumption to that dissipated by demand memory references. Though putting mem-

60

ory devices in power-down mode may delay the violation, a DRAM cell must be refreshed

before losing the stored data.

To address these problems, a variety of emerging memory technologies such as PCM

(phase change memory) [7], ReRAM (Resistive RAM) [71], and STT-MRAM (spin-transfer

torque magneto-resistive RAM) [103] have been considered for a DRAM surrogate or ex-

tension in system memory. However, emerging NVRAM technologies have drawbacks as

well as advantages compared to DRAM. For instance, PCM achieves higher density than

DRAM, but the latter is faster than the former. For that reason, it is a promising design

choice to have both DRAM and NVRAM collaboratively form a system main memory [31]

until NVRAMs become as fast as DRAM. There are two main design approaches to build

a DRAM+NVRAM system memory. One is a DRAM cache that uses DRAM as an OS-

invisible caching store of NVRAM main memory, and another is a hybrid memory which

makes both DRAM and NVRAM visible to OS [68, 91, 94, 118]. A hybrid memory allows

more flexible resource management than DRAM cache because a system can address the

entire memories across both.

In a hybrid memory, it is important to maximize synergy from both types of memories by

hiding downsides of DRAM with advantages of NVRAM or vice versa. The synergistic effect

can be enabled by a page swap which allows a system to dynamically place frequently ac-

cessed (hot) pages in DRAM and less frequently referenced (cold) pages in NVRAM [88],[94].

A sound page swap can boost the performance of applications running on a system with a

hybrid memory by timely relocating NVRAM resident pages to DRAM and by servicing most

memory accesses from DRAM, as if applications run with a fast and colossal DRAM-only

memory system.

For a page swap to be feasible, a system should be able to classify pages into hot and

cold ones, and fulfill the required page swaps with low overhead. Unfortunately, in mod-

ern systems, OS-managed page LRU lists are too dormant to classify hot and cold pages.

Figure 22 displays OS LRU lists’ length changes measured from a real server system while

running 429.mcf, one of the most memory-intensive programs from SPEC CPU2006 [105].

The program starts at 1 and finishes at 4 . The x-axis shows a wall-clock time of program

execution and y-axis represents the number of pages in each LRU page list. From the figure,

61

X

Y Z

[

active page list of anonymous pages

inactive page list of anonymous pages

L
R

U
 L

en
g

th
 i

n
 p

ag
es

LRU_ACTIVE_ANON

LRU_INACTIVE_ANON

LRU_ACTIVE_FILE

LRU_INACTIVE_FILE

Runtime (Sec)

100K

200K

300K

400K

500K

600K

700K

Figure 22: Change of OS LRU list length while running 429.mcf.

Runtime (Sec)

inactive page list of anonymous pages

L
R

U
 L

en
g

th
 i

n
 p

ag
es

\

]

~2.4MB

20.1K

20K

19.9K

19.5K

19.8K

19.7K

19.6K

Figure 23: Change of OS LRU list length for inactive pages while running 429.mcf.

we can observe that as soon as the program starts running, an LRU list of active anonymous

pages 1 rapidly grows up to its memory footprint of about 1.7GB as measured with top.

Thereafter, all of LRU lists remain stationary without a noticeable change until the program
1An anonymous page in Figure 22 denotes a page which is not backed by a file. In this work, we define

a memory-intensive application as a program using many anonymous pages (e.g. heap or stack pages), not
file-backed pages. Hence, if a program is dominated by the file-backed pages, it is not a memory-intensive
application, but an I/O-intensive application. Note that we study memory-intensive applications here.

62

exits (see 2 to 3). Interestingly, an LRU list of inactive pages to which a cold page belongs

does not vary, erroneously meaning that no page is cold! Zooming-in inactive page list at

Figure 23 shows that its maximum variation between peak (5) and valley (6) is at most

2.4 MB. We have consistently observed this phenomenon for all memory-intensive programs

in the benchmark suite. Different from a conventional wisdom, OS’s LRU lists rarely update

their length throughout the entire program execution. Accordingly, one cannot resort to

page reference information from OS to decide a page swap. Instead, a system must maintain

a hardware-driven page reference history for a page swap to be feasible. From this obser-

vation, we study a hardware-driven page swap, assuming that a hardware-managed page

reference history is available to a future hybrid memory system.

4.2 ANALYTICAL MODEL OF HARDWARE-DRIVEN PAGE SWAP IN

HYBRID MAIN MEMORY

In this section, we identify key parameters in which a hybrid memory system is affected by

a page swap, and develop an analytical model to investigate the effect of a hardware-based

page swap in the context of the flow control.

4.2.1 A Studied System Architecture and Model Parameters

In this chapter, we develop a model to assess the system-level lifetime improvement of

NVRAM resources by the proposed Memorage architecture. A studied system architec-

ture which features a hybrid main memory is shown in Figure 24. We assume that a hybrid

memory system consists of DRAM and PCM currently available, but hereafter we refer to

them as FM and SM (Faster and Slower Memory) for notational simplicity and generality.

Table 4 describes key model parameters used in our model. Our model is based on a

simple queuing theory, specifically Little’s law [70],[43] which relates the average request

arrival rate, the average number of requests in memory system, and the average service time

of a request. From Figure 24, we can see that memory requests arrive at a rate of λ0, and a

63

CN-1C0

LLC (Last-level cache)

$ CTRL

Hardware

Page Swap

Controller (HSC)

M

N

Demand memory requests

from applications

FM

(Faster Memory)

SM

(Slower Memory)

�0|�~í-r0)-Pr}

Hybrid Memory Subsystem

Memory request

aggregator

�
0

+ +
P�P�

�0|~r0=Pr��=�P� �0|�~í-r0)-Pr} =�P�

Extra memory requests

from page swaps

�0|~r0=Pr)

FM

(Faster Memory)

SM

(Slower Memory)

FM
 C

T
R

L

SM
 C

T
R

L

Figure 24: System architecture with hybrid main memory.

fraction of α0 to total memory requests accesses FM while the remaining fraction of (1−α0)

to total requests is serviced by SM. When page swap is enabled, swap operations not only

increase memory request rate by ∆λ to each memory region, but also change a fraction of FM

references by ∆α. These two changes have an opposite effect on the application performance.

In this work, we assume that HSC (Hardware Page swap Controller) chooses and swaps a

hot page from SM with a cold page from FM pairwise instead of moving a page in only one

direction.

Since we aim at improving the performance of memory-intensive workloads via page

swap, we employ a metric of CPI (cycles per instruction) [33] or IPC (instruction per cy-

cle) to compare the application performance improvement. Note that an average access

64

time improvement of a memory subsystem is not always directly proportional to the appli-

cation performance improvement. For instance, an application with high instruction-level

parallelism may effectively hide long-latency memory access penalties. In this case, the

application performance may not be sensitive to small improvement of memory access time.

4.2.2 Baseline CPI Model without In-Memory Page Swap

Let us consider an application running on a system with a hybrid main memory. The CPI

of the application can be formulated as the sum of the CPI achieved with an ideal LLC

and the memory access penalty per instruction. An ideal LLC can serve all LLC references

without accessing main memory. However, a non-ideal LLC has a limited capacity, and a

missed LLC reference costs memory access penalty. We can consider an average memory

access penalty as AMAT (Average memory access time) in cycles. Therefore, an application

performance without page swap can be expressed as follows:

CPIbase = CPIideal +MPIbase × {α0 · (TFM + Tqueue,FM)+

(1− α0) · (TSM + Tqueue,SM)}
(4.1)

Considering λ0 = MRLLC × AFLLC and MPIbase = λ0 × CPIbase
fcore

, we can rearrange

equation 4.1 by applying the above relations to MPIbase and solving it for CPIbase. Then,

we get the following equation 4.2 to represent the baseline CPI performance for an application

running on a system without page swap.

CPIbase =
CPIideal

1− λ0

fcore
· F0

,

where F0 = {α0 · (TFM + Tqueue,FM) + (1− α0) · (TSM + Tqueue,SM)}

(4.2)

F0 in equation 4.2 includes queuing delay terms, Tqueue,FM and Tqueue,SM for FM and

SM, respectively, thus we further need to derive the queuing delays which a memory request

experiences in a memory controller’s request queue on average. According to Little’s law,

65

Parameters Description of model parameters

fcore CPU clock frequency (Hz = cycles/sec)

TFM Average FM access latency (cycles)

TSM Average SM access latency (cycles)

Tqueue,FM Average FM access queuing delay without page swap

Tqueue,SM Average SM access queuing delay without page swap

Tpqueue,FM Average FM access queuing delay with page swap

Tpqueue,SM Average SM access queuing delay with page swap

CPIideal Cycles per instruction with 100% LLC hit

CPIbase CPI without page swap

CPIpg CPI with page swap

MPIbase LLC misses per instruction without page swap

MPIpg LLC misses per instruction with page swap

MRLLC LLC miss rate (misses/access)

AFLLC LLC access frequency (accesses/sec)

α0 Fraction of FM accesses without page swap

α Fraction of FM accesses with page swap

∆α Changed fraction of FM accesses by swap: α− α0

λ0 Memory access rate without page swap (accesses/sec)

λ Memory access rate with page swap (accesses/sec)

∆λ Increased memory access rate by page swap: λ− λ0

F0 Average memory access time without page swap

F Average memory access time with page swap

x Relative ratio of access latency of FM and SM : x = TSM

TFM

Table 4: Performance Model Parameters

66

the length of queue and the expected queuing delay of a memory request in each type of

memory region can be expressed as follows:

Lenq,FM = λ0,FM ·
TFM

fcore
= α0 · λ0 ·

TFM

fcore

Tqueue,FM = Lenq,FM · TFM = α0 · λ0 ·
TFM

2

fcore

Lenq,SM = λ0,SM ·
TSM

fcore
= (1− α0) · λ0 ·

x · TFM

fcore

Tqueue,SM = Lenq,SM · TSM = (1− α0) · λ0 ·
x2 · TFM

2

fcore

(4.3)

Note that Tqueue,SM in equation 4.3 has been expressed with TFM by relating TSM to TFM

with the assumption that FM is x times faster than SM (i.e. x = TSM/TFM and x > 0).

This allows us to investigate the effect of various relative latency performance differences

between FM and SM.

For this model, we employ m/m/1 queuing model to simplify our model and the hard-

ware implementation. Although it is possible to extend our model to use m/m/c or non-

memoryless queuing model to take the device-level parallelism or request burstiness into

account, we show that the simple queuing model is accurate enough to determine the prof-

itability of page swap in section 4.3.

4.2.3 New CPI Model with In-Memory Page Swap

Similar to the baseline CPI model, we can derive a CPI performance model of a system with

page swap as follows:

CPIpg =
CPIideal

1− λ0

fcore
· F

,

where F = {α · (TFM + Tpqueue,FM) + (1− α) · (TSM + Tpqueue,SM)},

and α = α0 +∆α

(4.4)

Now let us formulate the queuing delay terms, Tpqueue,FM and Tpqueue,SM in equation 4.4.

Using Little’s law again and memory access rates seen by FM, SM, and the overall hybrid

67

memory (i.e. λFM , λSM , and λ = λFM + λSM), we finally get the formula of per-region

queuing delays in equation 4.5.

Lenpq,FM = λFM ·
TFM

fcore
= {α · λ0 +∆λ} ·

TFM

fcore

Tpqueue,FM = Lenpq,FM · TFM = λFM ·
TFM

2

fcore

Lenpq,SM = λSM ·
TSM

fcore
= {(1− α) · λ0 +∆λ} ·

x · TFM

fcore

Tpqueue,SM = Lenpq,SM · TSM = λSM ·
x2 · TFM

2

fcore
,

where λFM = α · λ0 +∆λ, and λSM = (1− α) · λ0 +∆λ

(4.5)

From Figure 24, equation 4.4, and 4.5, we observe that a hardware-based page swap

allows an application’s demand memory access rate, λ0 to be independent of an additional

memory request rate, ∆λ induced by page swap because LLC is oblivious to swap activities

generated by a hardware page swap controller beneath it.

4.2.4 Profitability of page swap

For a page swap to be justified, the CPI of an application with page swap must be smaller

than or equal to CPIbase. That is, the advantage of ∆α (i.e. having a larger proportion of

access to the faster memory) should outweigh the disadvantage of ∆λ (i.e. additional load

on the memory system due to page swaps). From this simple axiom, we can derive a formula

to determine whether or not a page swap operation is justifiable. A page swap may harm

the application performance unless the inequality in equation 4.6 holds.

CPIpg ≤ CPIbase

CPIideal

1− λ0

fcore
· F

≤
CPIideal

1− λ0

fcore
· F0

(4.6)

By eliminating common variables from both sides in equation 4.6, we notice that ex-

amining F ≤ F0 has the same effect as checking CPIpg ≤ CPIbase. In other words, F , an

average memory access penalty of a page swap-enabled system should be smaller than or

equal to F0 in order to improve application performance via page swap.

68

4.3 COMPARING MODEL WITH SIMULATION

In this section, we compare the outcome of our page swap model with the result of an

architecture simulation, and make observations of page swap behavior in a hybrid memory.

4.3.1 Experimental Setup and Simulation Methodology

Simulator and configuration

We employ the Ramulator [63] as a reference architecture simulator over which the outcome

of the model is compared. The simulator has been validated against Micron Technology’s

hardware-level DRAM device model as well as JEDEC DDR specification. However, we

extended the simulator to support a hardware page swap controller, HSC and a hardware

page table. Also, each memory controller has a global request queue. Table 5 details our

simulation configurations.

Benchmark applications

For the performance evaluation, we use instruction traces of 21 memory-intensive SPEC

CPU2006 benchmarks (configured with reference input data) as input to Ramulator. The

instruction traces were collected using Pin [76] and SimPoint [89], and filtered through

512KB cache. Using these traces, we form a total of 11 multiprogrammed, memory-intensive

workloads, each of which is comprised of 6 applications. Table 6 shows the workloads used

for our study 2. Note that an average memory footprint of our workloads for single core is

1.93× larger than that from recent research [25].

Simulation methodology

We assume other workloads in a system already occupy a portion of FM memory capacity, so

our workload is not allowed to allocate its entire pages to FM. In particular, we assume that

our workload could get allocated just a half of its footprint on FM due to other workloads.

For that, we first allocate the same number of pages to each memory region via a pre-
2Since SimPoint helps Pin tool collecting traces only for representative phases of a program execution

through a sampling, the memory footprint size of our workloads is smaller than that observed during the
complete execution of the applications.

3We simulate a scenario that memory footprint size of our workloads entirely fit in a hybrid memory
and perform page swappings only within the given memory footprint without an additional page allocation.
Therefore, having smaller SM device than FM device does not harm our simulation purpose.

69

Parameters Configuration

CPU 3.2GHz, out-of-order, 4-wide issue superscalar processor, 128-entry ROB

LLC 512KB L2 cache

FM Controller 128-entry request queue, FR-FCFS scheduling, closed page mode, row-

col-rank-bank addressing, 1 channel, 1 rank

SM Controller 128-entry request queue, FR-FCFS scheduling, open page mode, row-col-

rank-bank addressing, 1 channel, 1 rank

FM DDR4-2400 DRAM, 8 banks, 1KB page size, tCL-tRCD-tRP-tRAS=16-

16-16-39, tREFI=7.8us, 4GB

SM DDR3-1600 PCM-like, 8 banks, 1KB page size, tCL-tRCD-tRP-

tRAS=11-44-0-59, tREFI=∞ (no refresh), 512MB 3, slower than FM (R:

4×, W: 10×)

Table 5: Simulation configuration

execution before measuring page swap performance. This allows us to decouple the effect

of a page swap from a disputable side-effect caused by the memory capacity available in

each region. For example, if FM has a sufficient memory capacity and bandwidth to serve

the entire memory footprint of a workload, we hardly find a reason to harness SM or move

any page from FM to SM. After a pre-execution, since a page swap always deals only with

already memory-resident pages which may be recycled as destination pages for a page swap,

it is possible to evaluate the usefulness of a page swap for a specific memory footprint size.

To do a page swap, HSC monitors page access frequency in each region for an observation

interval or epoch. Then, HSC classifies pages by the frequency at the end of the interval,

and performs zero or some number of page swaps for a subsequent interval. We repeat this

“monitoring-and-swap” process.

For this simulation, we set an observation interval to one full execution of a workload

trace, and iterate the execution 5 times after a pre-execution. Since a collected instruction

trace is a representative phase of execution in an application, the phase is executed multiple

70

WL Six applications in a workload (WL) Footprint

mix1 cactusadm, gemsfdtd, soplex, libquantum, lbm, mcf 577 MB

mix2 bzip2, namd, hmmer, leslie3d, cactusadm, leslie3d 120 MB

mix3 omnetpp, lbm, astar, zeusmp, h264ref, sjeng 671 MB

mix4 libquantum, lbm, wrf, zeusmp, h264ref, sjeng 435 MB

mix5 soplex, lbm, wrf, libquantum, dealII, sphinx3 270 MB

mix6 lbm, cactusadm, gcc, dealII, gemsfdtd, xalancbmk 537 MB

mix7 milc, lbm, h264ref, wrf, cactusadm, libquantum 634 MB

mix8 mcf, zeusmp, astar, sphinx3, gromacs, omnetpp 419 MB

mix9 libquantum, leslie3d, cactusadm, sjeng, gobmk, soplex 281 MB

mix10 gemsfdtd, omnetpp, namd, hmmer, gromacs, milc 719 MB

mix11 mcf, bzip2, gcc, sjeng, leslie3d, milc 587 MB

Table 6: Multiprogrammed workloads

times throughout the program’s execution. Therefore, it makes sense to repeat a chosen

phase of run. Meanwhile, we statically set the maximum number of page swaps within an

iteration to 500. This static swap capability eases a comparison of the behavior of page swap

between simulation and model.

4.3.2 Evaluation Results

In this section, we demonstrate that the developed page swap model is valuable as an off-line

analysis tool for page swap. Our model is useful for studying how a page swap affects the

application performance.

Let us compare the AMAT of an analytical model over that measured and reported by

the architecture simulation, because F0 and F are key factors of assessing the profitability of

a page swap in our model. To compute the AMAT from the analytical model, we measure the

proportion of FM access (α0 and ∆α), memory request rate (λ0 and ∆λ), runtime latency

71

0.85

0.9

0.95

1

1.05

1.1

1.15

IPC improvement relative AMAT

Figure 25: IPC improvement and AMAT decrease of a static page swap over the baseline.

difference between memory regions (x), and memory access counts and cycles per region,

then apply them to equations 4.2 and 4.4. Figure 25 shows simulation results of the IPC

improvement and the AMAT decrease over the baseline (i.e. no swap). From the figure, we

can observe that the page swap achieves 6.5% performance improvement on average, and

that the AMAT improvement of a workload results in the IPC performance improvement in

most cases. For example, the workloads mix01, mix08, and mix11 achieve the largest AMAT

improvement with page swaps, and they achieve the largest IPC improvement thanks to the

AMAT improvement. On the contrary, the AMAT of mix04 becomes worse, thus its IPC

performance also degrades. We found that a page swap rarely increases FM use for mix04 and

mix07. Thus, their resulting performance degrades or improves little. However, we note that

the resulting performance improvement across all workloads is somewhat small, considering

the media access latency difference of FM and SM in Table 5. This happens because the

access latency of FM and SM as a memory module is different from their cell-level latencies

due to the system-level effect (e.g. parallelism).

Observation1: “dynamic access latency gap of two memory regions is small.”

Figure 26 depicts that a dynamic latency gap (x) between FM access and SM access is

72

0

0.5

1

1.5

2

2.5

3

3.5

4

R
a

ti
o

 o
f

A
M

A
T

SM
to

 A
M

A
T

FM

Dynamic latency gap (x) between FM and SM

baseline ub.500

Figure 26: Dynamic access latency gap between two memory regions, FM and SM.

smaller than the media latency configured in Table 5. Different from 4× and 10× gap for

read and write respectively, the actual average memory access latency gap at a runtime for

both reads and writes is 2.11× which is much smaller than the media latency. This is mainly

attributed to the convoluted effect of three factors. First, the write-back policy of LLC

effectively alleviates the direct impact of an inferior SM write performance on the application

performance. Second, a memory request is decomposed into multiple media specific sub-

commands inside a memory controller, then these commands are executed with ones from

other memory requests in parallel [13]. This further reduces the latency gap between FM

and SM. Third, workloads hardly saturate the provisioned memory system [11],[60], so the

application performance is not proportional to a given device-level latency gap. Since the

dynamic latency gap between two regions is small, the gain achieved by a page swap becomes

small as well.

Observation2: “direction of AMAT variation is closely correlated.”

Figure 27 shows the comparison of the AMAT change of the model to the simulation. A

total of 10 workloads as much as 90.9% have a positive correlation, which suggests that if the

73

0.8

0.85

0.9

0.95

1

1.05

1.1

A
M

A
T

 n
o

rm
a

liz
e

d
 t

o
 n

o
 s

w
a

p

AMAT_pg F

Worse

Better

Figure 27: AMAT comparison of simulation (AMATpg) over model (F)

AMAT calculated from our model improves over the baseline, the AMAT from the simulation

also shows the improvement, and vice versa. However, mix07 has a negative correlation that

AMAT change direction of the simulation mismatches with the model. That is, the model

indicates the AMAT improvement for mix07, but the AMAT measured from the simulation

deteriorates. This discrepancy happens because mix07 is a write-heavy workload and our

model does not differentiate the queuing effect of read and write requests. As a result, our

model trades accuracy for model simplicity. Although there may exist a disagreement on

AMAT increment or decrement between the model and the simulation, it is important to

note that our “simple” model can effectively evaluate the profitability of a page swap only

with modest error (9.1%) based on the measured values of α and λ. Note that knowing the

direction of AMAT change, not its magnitude, suffices to evaluate the profitability of a page

swap.

Figure 28 comparatively depicts AMAT changes of a system-wide as well as each memory

region for mix01 and mix04 4. The baseline in the figure denotes a scheme that has no swap,
4We compare mix01 and mix04 to examine cases in which their AMAT improves and deteriorates, re-

spectively.

74

100

120

140

160

180

200

1 2 3 4 5 6

FM
 A

M
A

T
 in

 c
o

re
 c

yc
le

Iteration

FM AMAT

TFM.base TFM.500baseline swap_500

(a) mix1 AMATFM

100

102

104

106

108

1 2 3 4 5 6

FM
 A

M
A

T
 in

 c
o

re
 c

yc
le

Iteration

FM AMAT

TFM.base TFM.500baseline swap_500

(d) mix4 AMATFM

300

320

340

360

1 2 3 4 5 6

SM
 A

M
A

T
 in

 c
o

re
 c

yc
le

Iteration

SM AMAT

TSM.base TSM.500baseline swap_500

(b) mix1 AMATSM

320

340

360

380

1 2 3 4 5 6
SM

 A
M

A
T

 in
 c

o
re

 c
yc

le
Iteration

SM AMAT

TSM.base TSM.500baseline swap_500

(e) mix4 AMATSM

0.4

0.45

0.5

0.55

0.6

0.65

220

230

240

250

260

1 2 3 4 5 6

Fr
a

c.
 o

f
FM

 a
cc

e
ss

 (
r

)

A
M

A
T

 in
 c

o
re

 c
yc

le

Iteration

Overall AMAT across both regions

Tmem.base Tmem.500 rbaseline swap_500

(c) mix1 AMAT

0.4

0.5

0.6

240

245

250

255

1 2 3 4 5 6

Fr
a

ct
.

o
f

FM
 a

cc
e

ss
 (
r
�

A
M

A
T

 in
 c

o
re

 c
yc

le

Iteration

Overall AMAT across both regions

Tmem.base Tmem.500 rbaseline swap_500

(f) mix4 AMAT

Figure 28: AMAT and α change for mix01 and mix04.

while the swap 500 represents a scheme which performs 500 page swaps per iteration. From

Figure 28a and 28b of mix01, we see the AMAT of FM region degrades with 500 page

swaps, whereas SM region’s AMAT improves over the baseline. Since the page swap has FM

75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

IPC improvement ROB full relaxation

Figure 29: IPC improvement and ROB fullness decrease over baseline.

serve 13% more memory requests than the baseline, the overall AMAT of mix01 improves.

Note that the gain from AMAT improvement of SM region outweighs the loss by AMAT

degradation in FM region, because SM is slower than FM by 2.4 times at runtime in the

baseline (see Figure 26). On the contrary, Figure 28d and 28e of mix04 show the AMAT

of both regions deteriorates after page swaps. In particular, we can observe that SM region

does not benefit from page swaps due to its high utilization. After all, page swaps add more

requests to the overloaded SM region, and the overall AMAT of mix04 degenerates. Also, it

is noteworthy that page swap could redirect just 5% more memory requests to FM.

Observation3: “ROB fullness affects a page swap.”

mix05 and mix07 in Figure 25 seemingly show counter-intuitive results because even if the

AMAT degrades by a page swap, a system achieves better IPC performance. This happens

because the bottleneck of a hybrid memory system for these workloads is at ROB (Re-Order

Buffer) in a processor front-end. Figure 29 depicts the relationship of the IPC improvement

to the decrease of ROB fullness. We observe that both mix05 and mix07 experience less

number of ROB fullnesses with a page swap. Due to the in-order retirement property of

ROB entries, entries occupied by memory instructions which require long-latency SM access

76

Model

B:EJLQPO;

FM accesses

SM accesses

elapsed core cycles

swap count to perform

[0, 10, 100, 300, or 500]

AMATFM

AMATSM

core frequency

Figure 30: Illustration of model-guided page swap. The model f determines the number of page
swaps to perform at the end of current epoch τi, expecting to improve the application performance
in next epoch τi+1.

cause a HOL (Head-Of-Line) blocking problem, which prevents subsequent non-memory

instructions from being retired and releasing their ROB entries. Accordingly, ROB resources

become a bottleneck for issuing new instructions in the baseline. The page swap mitigates the

problem by making these non-memory instructions own ROB entries for a shorter time, thus

a system achieves better performance. This implies that a hybrid main memory sometimes

needs to perform a page swap in order to relax ROB bottleneck even if the overall AMAT

slightly gets worse.

4.4 MODEL-GUIDED HARDWARE-DRIVEN PAGE SWAP

The model in Section 4.2 can also serve as an online page swap tool to regulate both rate and

volume of a page swap on-the-fly, adapting to the change of a program execution phase. In

this chapter, we assess the usefulness of our model by applying the model to the architecture

simulator and observing a dynamic behavior of application performance.

Figure 30 depicts what the model takes as an input and yields as an output. The inputs of

the model-guided page swap are straightforward and simple enough to derive from hardware

performance counters in modern processors. To calculate F and F0 per epoch, the model in

HSC takes FM access count, SM access count, and total elapsed cpu cycles from a previous

epoch τi−1, and uses them to derive α0 and λ0. Likewise, HSC newly counts FM and SM

77

Configuration Description

baseline This scheme does no page swap.

ub.c This scheme does page swap with static, upper-bound c that performs

at most 5 c (∈ {10, 100, 300, 500}) page swaps in an epoch.

model This scheme does a model-guided page swap. A page swap count to take

is dynamically chosen from above c ranges by our model.

RaPP 6 This scheme does a rank-based page swap from previous work [94]. A

page swap is determined by multi-queue based page ranking system.

Table 7: The considered page swap schemes

access during current epoch τi. In addition, it continuously measures the average memory

access time to FM and SM, which enables us to derive a dynamic latency gap x. Meanwhile,

instead of deriving ∆α in F , HSC needs to predict ∆α for next epoch τi+1 at the end of the

current epoch because it is nearly impossible to know how many more requests will be served

by FM after performing a current page swap decision. As a proxy to approximate ∆α, we

use the difference between total access counts of the considered hottest SM pages and total

reference counts of the considered coldest FM pages. The number of hottest or coldest pages

to consider is decided by iteratively checking values in a finite set of upper-bounds, which are

the number of page swaps allowable for an epoch. The model can derive the estimated ∆α

for each upper-bound value, and in turn derive ∆λ because we know that a page swap incurs

128 page references on each region. Then, the model is ready to assess the profitability of a

page swap using the derived parameter values.

5These schemes try to do at most c page swappings in an epoch, even if more than c pages in SM have
greater page access frequencies than cold pages in FM. For instance, when 513 hottest pages in SM region
have larger access counts than 513 coldest pages in FM region, ub.500 scheme performs only 500 page swaps
instead of 513. This static upper bound can simplify hardware implementation.

6The Rank-based Page Placement (RaPP) leverages hardware multi-queue (MQ) to not only rank pages
on the basis of the page access frequency but also determine when and what pages are replaced between FM
and SM. For this simulation, we faithfully configure MQ parameters as described in Ramos et al. [94] (e.g.
the number of rank queues, a threshold queue, the page liftime, and a filter threshold). Refer to [94] for
other details of RaPP-specific parameters and their algorithm.

78

4.4.1 Simulation Methodology

To evaluate the effectiveness of our model-guided page swap, we continue to use an exper-

imental setup from previous Section 4.3.1. However, for this simulation, we continuously

switch applications in a workload every 128 instruction execution that an application can fill

up ROB once, until the workload completes one run. This has an effect similar to running

a multiprogrammed workload on a multi-core processor. Even if we rapidly switch an ap-

plication with another to alternate the ownership of a processor, note that each application

maintains its locality and memory reference order.

Meanwhile, we set an epoch to a time span to execute 12.8 million instructions, which

corresponds to 4 milliseconds in our processor clock speed. As before, we perform an epoch-

based page swap at the end of an epoch, and the memory requests by a page swap compete for

a request queue in a memory controller with demanding requests from applications. However,

this simulation additionally takes into account a rank-based page swap scheme (RaPP) from

previous page migration research so that we can compare our scheme over the existing related

work. This RaPP scheme continuously determines the need of page swap based on a page

ranking system, and performs page swaps on-the-fly throughout an epoch, not just at the

end of epoch. In addition, different from others, RaPP scheme has no upper-limit on the

number of pages that can swap in an epoch as original authors assumed. Table 7 specifies the

page swap schemes that we consider, all of which use the access frequency for hot and cold

page classification. However, RaPP scheme additionally leverages a time-based information

for that classification to consider a page decaying interval.

4.4.2 Evaluation Results

In this section, we present the simulation results of the proposed model-guided, hardware

page swap. Figure 31 compares the overall IPC performance improvement of our model-

guided swap to baseline, static schemes, and RaPP policy. From the figure, we find that

the model-guided page swap improves application performance by 28.9%, 13.3%, and 26.1%

compared to the baseline, static page swap cases, and RaPP, respectively. In contrast to the

static schemes that simply rely on page access frequency, our model-guided scheme carries

79

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
IP

C
 i

m
p

ro
v

em
en

t
n

o
rm

al
iz

ed
 t

o
 b

as
el

in
e

baseline ub.10 ub.100 ub.300 ub.500 model RaPP

Figure 31: Comparison of IPC performance improvement.

out a page swap only when the model predicts that the page swap can improve performance

by considering the memory request arrival rate as well as the service rate of FM and SM

region. Figure 32 shows how our model-guided page swap adaptively selects the number of

page swaps to regulate page swap rate so that an application can benefit from page swaps.

Meanwhile, Figure 33 displays how RaPP scheme performs the page swap over epoch. We

only explain the most interesting, representative workloads.

In Figure 31, mix1 benefits from static page swap schemes. Specifically, it achieves

higher IPC performance improvement with a larger number of page swaps. However, we also

observe that our model-guided scheme outperforms the ub.500 scheme even if the number

of page swaps of the model-guided scheme is less than that of the ub.500. While the ub.500

resorts only to page hot and cold information and continues to swap pages, the model-

guided scheme selectively accomplishes page swaps, depending on the condition of each

memory region. Moreover, the ub.10 and ub.100 try to swap even when there are insufficient

swappable pages around the 50th epoch in Figure 32a. These unjustifiable page swaps hurt

the performance. The negative performance impact caused by bad page swaps can be clearly

80

observed in RaPP scheme, which achieves only 1.3% performance improvement over baseline

even if it performs 18.7×more page swaps than the model-guide scheme (see Figure 33). This

implies that RaPP scheme, which does not evaluate the achievable gain from page swaps,

produces a significant amount of non-profitable page swaps and they offset the performance

improvement achieved by page swap.

For mix6, our model-guided scheme greatly outperforms other schemes, and the gain

comes from ameliorating heavy SM utilization. According to page access frequency, the

workload has many hot and cold pages appropriate for swap, so static schemes continuously

swap pages, although the actual gain achieved by swap is small. However, since the SM

region has high utilization, a careless addition of write traffic by a page swap to the region

offsets the benefit of swap. Due to the same reason, we found that RaPP scheme under-

performs the baseline by 7.9% with 3× more page swaps than the model-guided scheme. In

contrast, our model-guided scheme throttles page swaps if the profitability condition is not

met, though swappable pages exist. Note that our model-guide scheme makes a difference

on the application performance with the capability that swaps the right number of pages at

the right moment.

For mix10, static schemes ub.10 and ub.100 boost the IPC performance. Afterward,

the application performance degrades as the number of page swaps increases. Specifically,

we observe that later epochs commit the mistake of executing non-profitable page swaps

and thus servicing demand memory requests from applications is delayed. We also observe a

similar but worse situation with RaPP scheme, whose performance is lower than the baseline

by 4.7% due to more unjustifiable page swaps. Compared to this, the model-guided page

swap scheme forbids page swap in most epochs immediately after a system accomplishes

profitable page swaps in the early stages of execution.

As for mix11, all static schemes underperform the baseline. This implies that suppressing

any page swap achieves the best performance for this workload. The access pattern of pages

in mix11 is mostly uniform in terms of access frequency, and thus there are not many pages

to swap. For example, we can see that the number of page swaps with the ub.100 scheme

goes to zero more frequently compared to mix6. Different from static schemes which do

not consider the expected profit or loss, our model-guided scheme is capable of identifying

81

0

100

200

300

400

500

1 6 11 16 21 26 31 36 41 46 51 56 61

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

ub.10 ub.100 ub.300 ub.500 model

(a) mix1

0

100

200

300

400

500

1 6 11 16 21 26

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

ub.10 ub.100 ub.300 ub.500 model

(b) mix6

82

0

100

200

300

400

500

1 6 11 16 21 26

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

ub.10 ub.100 ub.300 ub.500 model

(c) mix10

0

100

200

300

400

500

1 6 11 16 21 26 31 36

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

ub.10 ub.100 ub.300 ub.500 model

(d) mix11

Figure 32: Number of page swaps over epoch.

83

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

1 6 11 16 21 26 31 36 41 46 51 56 61

N
u
m

b
er

 o
f

p
ag

e
sw

ap
s

EpochID

mix1 mix2 mix3 mix4 mix5 mix6

mix7 mix8 mix9 mix10 mix11

Figure 33: Number of page swaps over epoch with RaPP [94].

and suppressing detrimental page swaps. As a result, the number of page swaps with our

model-guided scheme dramatically decreases by 17.3× over the ub.500. For NVRAMs with

the limited write endurance, this is another important factor to consider. Meanwhile, it

is notable that RaPP scheme outperforms our model-guided scheme by 38.6%. Figure 33

shows that RaPP scheme always generates high volume of page swaps throughout mix11’s

entire execution, and on average, executes 3.68K page swaps per epoch. On the other hand,

other schemes including the model-guided scheme have a constraint that they can do only

maximum 500 page swaps per epoch. The upper-limit of 500 page swaps per epoch prevents

these schemes from achieving the performance improvement. In addition, it is another factor

for them to underperform RaPP that they perform page swap following a “monitoring-and-

swap” rule which initiate page swaps at the end of an epoch. We expect that having a shorter

epoch than 12.8M instructions as well as a broader range of the number of page swaps to

select will ameliorate this performance issue for mix11.

In summary, our model-guided scheme outperforms both static schemes and the existing

RaPP scheme by 13.3% and 26.1%, respectively by filtering out non-profitable page swaps.

84

4.5 RELATED WORK

Ramos et al. [94] studied page ranking and migration policies in a hybrid memory. Using

hardware multi-queues (MQ), they ranked pages based on the access frequency and decaying

period, and moved a page to another region when it reached a specific MQ level, which

represents a migration threshold. However, the overhead of extra traffic by page migrations

has not been addressed in their works, and various heuristic (so, hard to tune) knobs governs

a process of deciding a page decaying interval and suppressing a harmful migration. Unlike

their work, our approach considers the overhead of the swap-induced extra requests, and

does not rely on tunable parameters for page swap decision.

Pavlovic et al. [88] studied the effect of data placement and migration policies in HPC

architectures with a hybrid memory. By running HPC applications whose memory footprints

were much larger than ours, they made a similar observation to ours that a DRAM+PCM

hybrid memory with a dynamic migration policy was several dozen percentages slower than

DRAM-only systems. However, they did not study why a hybrid memory system achieves

a performance comparable to a DRAM-only system, while our work answers the question.

In addition, they used a migration parameter whose value should be changed and tuned

whenever the running application changes.

Shen et al. [102] investigated the data placement of parallel benchmarks in a software-

managed hybrid memory, using an in-house profiling tool and emulator. A profiler named

DataPlacer instrumented a program on every function call to collect a per-function memory

access pattern, then used the information for guiding a data placement. However, a software-

based profiling that requires the per-function instrumentation is inapplicable to programs

whose source codes are not public. Different from their work, our hardware based approach

is transparent to user applications and does not require any code modification.

Bock et al. evaluate the impact of page migration in DRAM+PCM hybrid memory

on system performance [15]. By breaking down various types of overhead in the memory

hierarchy experienced by a memory request, they found the queuing delay at NVM banks as

well as an external memory bus is a key limiting factor that hinders performance improvement

by a software-managed hybrid memory. Different from our work, they assumed a software-

85

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(a) mix2

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(b) mix3

86

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(c) mix4

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(d) mix5

87

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(e) mix7

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(f) mix8

88

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

N
u

m
b

e
r

o
f

p
a

g
e

 s
w

a
p

s

Epoch ID

num_swap.ub10 num_swap.ub100 num_swap.ub300 num_swap.ub500 num_swap.model

(g) mix9

Figure 34: Number of page swaps over epoch for other workloads.

managed hybrid memory which is dependent on OS-level page usage information, and they

did not provide an exact analytical model to consider the queuing effect within a memory

controller while making a page migration decision.

4.6 SUMMARY

In this work, we present an analytical model to investigate the effect of hardware-based page

swap in a hybrid memory, and evaluate the effectiveness of a model-guided, hardware-driven

page swap using the proposed model. Our approach to address a page swap in a hybrid

memory is novel in that the effect of page swap is understood from a perspective of the

flow control. Instead of just considering page references for a swap decision, the proposed

model explicitly evaluates the profitability of a page swap at a system-level by observing the

varying latency gap and traffic ratio between memory regions.

89

Our simulation results show that the proposed model is correlated to the architecture

simulation as close as 90.9% with regard to the direction of AMAT variation. Meanwhile,

the model-guided page swap improves IPC performance, on average, by 28.9% and by 13.3%

over no page swapping and the studied static page swap schemes. In addition, the model-

guided page swap considerably reduces the number of page swaps by up to 17.3× compared

to the static schemes while achieving better performance. In summary, the model-guided,

hardware-driven page swap is a viable choice for improving the performance of a system with

a hybrid memory.

The following highlights some of our interesting findings.

• On a system that can run a memory-intensive workload in-memory, page reference history

in OS’s page LRU list is coarse-grained and a system should not rely on the software

information to identify pages for a page swap.

• A page swap model built upon simple queuing theory can precisely appraise the prof-

itability of a page swap, although the absolute CPI from the model may deviate from

architecture simulation results. This is due to an accurate prediction of a performance

direction change which enables assessing the profitability of a page swap.

• The access latency ratio of NVRAM to DRAM seen at program runtime 7 is much smaller

than that shown at a device-level. This implies that naively considering a transistor-level

latency ratio to evaluate the profitability of a page swap may result in detrimental page

swaps at a system-level due to an incorrect expectation of attainable profits.

• The model-guided, hardware-driven page swap scheme which captures a dynamic vari-

ation of access latency and traffic distribution in a hybrid memory significantly outper-

forms static swap schemes as well as no swap (baseline) via its systematic and adaptive

page swap decision.

7we call this runtime access latency ratio as a dynamic latency gap.

90

5.0 CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize key contributions that this dissertation work made, and

describes our future works.

5.1 CONCLUDING REMARKS

In this dissertation, we studied effective methods to integrate an emerging NVRAM into the

memory hierarchy of an existing system platform. Since the main memory and secondary

storage of current systems have not taken emerging NVRAM technologies into account, the

lack of understanding the difference and uniqueness of NVRAMs causes the inefficient system

designs.

To address the inefficiencies and fully exploit the advantages of emerging NVRAM tech-

nologies, we proposed and evaluated two new ideas, which are the Memorage architecture,

and the model-guided, hardware-driven page swap mechanism.

The former improves the system performance by dynamically sharing emerging NVRAM

resources across main memory and storage system when a system is under high memory

pressure. Compared to the conventional methods to handle high memory pressure, our

experimental results indicate that the proposed Memorage architecture not only achieves the

large application performance improvement, but also considerably extends the system-level

NVRAM lifetime. We expect that this work will spur researchers to reconsider the system-

level implications of the relationship between memory and storage in future NVRAM-based

systems. In addition, the relevant industries may benefit from our experimental methodology

which allow them to evaluate NVRAM-based systems at the early system development stage.

91

Meanwhile, the later improves the performance of applications running with a hybrid

main memory by judiciously swapping pages from the faster memory with those from the

slower memory. We showed that examining the profitability of a page swap while making

page swap decisions is very important to better utilize the faster memory and improve the

performance. Also, we observed the a conventional OS is incapable of identifying hot/cold

pages of memory-intensive applications, suggesting that the page classification for page swap-

ping should be performed in hardware. We believe that our analytical model to evaluate

the profitability of a page swap and our findings of page swap behaviors will inspire other

researchers to address this in-memory page swap from a perspective of the system-level flow

control, not the traditional approaches based only on page access frequency.

5.2 FUTURE WORK

In this dissertation, we have successfully evaluated the Memorage architecture through a

working prototype system, and demonstrated that dynamic NVRAM resource sharings across

the conventional memory hierarchy could considerably boost the application performance un-

der heady memory pressure. However, the current prototype system can be further improved

by introducing better policy modules in order to adaptively determine the capacity of the

memory and storage, respectively. When a high-level policy maker to control Memorage op-

erations has been integrated into Memorage architecture, a system administrator can more

flexibly change the behavioral rules of Memorage (e.g. a ratio of capacity partitioning be-

tween memory and storage) according to a recent system usage pattern. Therefore, we plan

to conduct a research on Memorage’s policy module.

As for in-memory page swap, we have dealt with only anonymous pages allocated by

the non-file oriented applications such as SPEC CPU2006 to evaluate our hardware-driven

in-memory page swap in a hybrid main memory. However, the OS VMM manages not only

anonymous pages but also file pages. These file object-oriented applications which frequently

issue access requests to NVRAM storage devices will have different page reference patterns

from that of heap and stack-oriented applications. Hence, a future work is to investigate

92

the potential of our model-guided page swap for those storage applications. In addition, the

proposed models can be extended to consider the impact of page swaps between heap and

file pages on system-wide performance.

Lastly, we plan to explore the value of Memorage architecture and in-memory page swap

by running recent commodity applications on a large-scale system. For example, it will be

interesting to evaluate how the studied system-level techniques influence the performance of

IMDB (In-Memory Database) or Spark’s clustered data processing applications.

We expect this dissertation work to inspire other researches on the integration of various

emerging NVRAM technologies into current NVRAM-unaware memory hierarchy, and we as-

pire to see our proposed architecture/techniques applied to the design of a future commodity

computing system.

93

BIBLIOGRAPHY

[1] Linux memory hotplug. http://tinyurl.com/memory-hotplug, 2007.

[2] Nand evolution and its effects on solid state drive (ssd) usable life. http://www.wdc.
com, 2009.

[3] Micron announces availability of phase change memory for mobile devices. http://

tinyurl.com/micron-PCM, 2012.

[4] Nidhi Aggarwal, Jason F. Cantin, Mikko H. Lipasti, and James E. Smith. Power-
efficient DRAM speculation. HPCA, pages 317–328, 2008.

[5] Nitin Agrawal, William Bolosky, John Douceur, and Jacob Lorch. A five-year study of
file-system metadata. TOS, 3(3):1553–3077, October 2007.

[6] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven
Swanson. Onyx: A protoype phase-change memory storage array. HotStorage, pages
2–2, 2011.

[7] A. Athmanathan and et al. Multilevel-cell phase-change memory: A viable technology.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 6(1):87–100,
March 2016.

[8] Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John Reppy. Garbage collection
for multicore numa machines. In Proceedings of the 2011 ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness, MSPC ’11, pages 51–57, New York,
NY, USA, 2011. ACM.

[9] Anirudh Badam and Vivek Pai. Ssdalloc: hybrid ssd/ram memory management made
easy. NSDI, pages 16–16, 2011.

[10] Luiz Andr Barroso, Jimmy Clidaras, and Urs Hlzle. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines, Second Edition. 2013.

[11] Scott Beamer, Krste Asanovic, and David Patterson. Locality exists in graph process-
ing: Workload characterization on an ivy bridge server. In Proceedings of the 2015
IEEE International Symposium on Workload Characterization, IISWC ’15, pages 56–
65, Washington, DC, USA, 2015. IEEE Computer Society.

94

http://tinyurl.com/memory-hotplug
http://www.wdc.com
http://www.wdc.com
http://tinyurl.com/micron-PCM
http://tinyurl.com/micron-PCM

[12] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. C. Buda,
F. Pellizzer, D. W. Chow, A. Cabrini, G. Calvi, R. Faravelli, A. Fantini, G. Torelli,
D. Mills, R. Gastaldi, and G. Casagrande. A bipolar-selected phase change memory
featuring multi-level cell storage. JSSC, 44:217–227, 2009.

[13] I. Bhati, M. T. Chang, Z. Chishti, S. L. Lu, and B. Jacob. Dram refresh mechanisms,
penalties, and trade-offs. IEEE Transactions on Computers, 65(1):108–121, Jan 2016.

[14] Tim Bird. Measuring function duration with Ftrace. Japan Linux Symposium, 2009.

[15] S. Bock, B. R. Childers, R. Melhem, and D. Mosse. Characterizing the overhead
of software-managed hybrid main memory. In Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2015 IEEE 23rd Interna-
tional Symposium on, pages 33–42, Oct 2015.

[16] Santiago Bock, Bruce R. Childers, Rami Melhem, and Daniel Mossé. Concurrent page
migration for mobile systems with os-managed hybrid memory. In Proceedings of the
11th ACM Conference on Computing Frontiers, CF ’14, pages 31:1–31:10, New York,
NY, USA, 2014. ACM.

[17] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly & Associates
Inc, 2005.

[18] Ravi Budruk, Don Anderson, and Ed Solari. PCI Express System Architecture. Pearson
Education, 2003.

[19] Adrian Caulfield, Arup De, Joel Coburn, Todor I. Mollow, Rajesh K. Gupta, and
Steven Swanson. Moneta: A high-performance storage array architecture for next-
generation, non-volatile memories. MICRO, pages 385–395, 2010.

[20] Adrian Caulfield, Todor Mollov, Louis Alex Eisner, Arup De, Joel Coburn, and Steven
Swanson. Providing safe, user space access to fast, solid state disks. ASPLOS, pages
387–400, 2012.

[21] R. Chen, Z. Shao, C. L. Yang, and Tao Li. Mcssim: A memory channel storage
simulator. In 2016 21st Asia and South Pacific Design Automation Conference (ASP-
DAC), pages 153–158, Jan 2016.

[22] Yiran Chen, Weng-Fai Wong, Hai Li, and Cheng-Kok Koh. Processor caches with
multi-level spin-transfer torque ram cells. ISLPED, pages 73–78, 2011.

[23] Sangyeun Cho and Hyunjin Lee. Flip-N-write: a simple deterministic technique to
improve PRAM write performance, energy and endurance. MICRO, pages 347–357,
2009.

[24] Youngdon Choi, Ickhyun Song, Mu-Hui Park, Hoeju Chung, Sanghoan Chang, Beakhy-
oung Cho, Jinyoung Kim, Younghoon Oh, Dukmin Kwon, Jung Sunwoo, Junho Shin,
Yoohwan Rho, Changsoo Lee, Min Gu Kang, Jaeyun Lee, Yongjin Kwon, Soehee Kim,

95

Jaewhan Kim, Yong jun Lee, Qi Wang, Sooho Cha, Sujin Ahn, Hideki Horii, Jaewook
Lee, KiSeung Kim, Han-Sung Joo, KwangJin Lee, Yeong-Taek Lee, Jei-Hwan Yoo,
and Gitae Jeong. A 20nm 1.8V 8gb PRAM with 40MB/s program bandwidth. ISSCC,
pages 46–48, 2012.

[25] Chia-Chen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. Batman: Maximizing
bandwidth utilization for hybrid memory systems. In Proceedings of the 42th Annual
International Symposium on Computer Architecture, ISCA ’15, pages 72–83, New York,
NY, USA, 2015. ACM.

[26] Chih-Hsun Chou, Daniel Wong, and Laxmi N. Bhuyan. Dynsleep: Fine-grained power
management for a latency-critical data center application. In Proceedings of the 2016
International Symposium on Low Power Electronics and Design, ISLPED ’16, pages
212–217, New York, NY, USA, 2016. ACM.

[27] G. F. Close, U. Frey, J. Morrish, R. Jordan, S. Lewis, T. Maffitt, M. Breitwisch,
C. Hagleitner, C. Lam, and E. Eleftheriou. A 512mb phase-change memory (pcm) in
90nm cmos achieving 2b/cell. VLSIC, pages 202–203, 2011.

[28] Elliott Cooper-Balis, Paul Rosenfeld, and Bruce Jacob. Buffer-on-board memory sys-
tems. In Proceedings of the 39th Annual International Symposium on Computer Ar-
chitecture, ISCA ’12, pages 392–403, Washington, DC, USA, 2012. IEEE Computer
Society.

[29] Dell. Solid state drive vs. hard disk drive price and performance study. http://

tinyurl.com/Dell-SSD-Price-Performance, 2011.

[30] Advanced Micro Devices. High bandwidth memory, reinventing memory technol-
ogy. http://www.amd.com/en-us/innovations/software-technologies/hbm, 2015.
(Last accessed October 12th, 2016).

[31] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. Pdram: a hybrid pram and dram
main memory system. In Proceedings of the 46th Annual Design Automation Confer-
ence, DAC ’09, pages 664–469, New York, NY, USA, 2009. ACM.

[32] Xiangyu Dong and Yuan Xie. AdaMS: Adaptive MLC/SLC phase-change memory
design for file storage. ASP-DAC, pages 31–36, 2011.

[33] P. G. Emma. Understanding some simple processor-performance limits. IBM J. Res.
Dev., 41(3):215–232, May 1997.

[34] A. Foong and F. Hady. Storage as fast as rest of the system. In 2016 IEEE 8th
International Memory Workshop (IMW), pages 1–4, May 2016.

[35] International Technology Roadmap for Semiconductors. 2011 edition. http://public.
itrs.net, 2011.

96

http://tinyurl.com/Dell-SSD-Price-Performance
http://tinyurl.com/Dell-SSD-Price-Performance
http://www.amd.com/en-us/innovations/software-technologies/hbm
http://public.itrs.net
http://public.itrs.net

[36] International Technology Roadmap for Semiconductors. 2013 edition. http://public.
itrs.net, 2013.

[37] Richard Freitas and Winfried Wilcke. Storage-class memory: The next storage system
technology. IBM J. of R & D, 52(4-5):439–448, 2008.

[38] F. Furuta and K. Osada. 6 tbps/w, 1 tbps/mm2, 3d interconnect using adaptive timing
control and low capacitance tsv. In 3D Systems Integration Conference (3DIC), 2011
IEEE International, pages 1–4, Jan 2012.

[39] FusionIO. ioDrive2 datasheet. http://www.fusionio.com/platforms/iodrive2,
2012.

[40] M. Gries, U. Hoffmann, M. Konow, and M. Riepen. Scc: A flexible architecture for
many-core platform research. Computing in Science Engineering, 13(6):79–83, Nov
2011.

[41] Laura Grupp, Adrian Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H.
Siegel, and Jack K. Wolf. Characterizing flash memory: anomalies, observations, and
applications. MICRO, pages 24–33, 2009.

[42] Tae Jun Ham, Bharath K. Chelepalli, Neng Xue, and Benjamin C. Lee. Disintegrated
control for energy-efficient and heterogeneous memory systems. In Proceedings of the
2013 19th IEEE International Symposium on High-Performance Computer Architec-
ture, HPCA ’13, pages 101–112, Shenzhen, China, 2013. IEEE Computer Society.

[43] John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A
Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
5th edition, 2011.

[44] Geoffrey Hough. 3par thin provisioning: Eliminating allocated-but-unused storage and
accelerating roi. Technical report, 3PAR Coporation, 2003.

[45] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl, D. Jenkins, H. Wilson,
N. Borkar, G. Schrom, F. Pailet, S. Jain, T. Jacob, S. Yada, S. Marella, P. Salihundam,
V. Erraguntla, M. Konow, M. Riepen, G. Droege, J. Lindemann, M. Gries, T. Apel,
K. Henriss, T. Lund-Larsen, S. Steibl, S. Borkar, V. De, R. V. D. Wijngaart, and
T. Mattson. A 48-core ia-32 message-passing processor with dvfs in 45nm cmos. In
2010 IEEE International Solid-State Circuits Conference - (ISSCC), pages 108–109,
Feb 2010.

[46] H. F. Huang and T. Jiang. Design and implementation of flash based nvdimm. In
Non-Volatile Memory Systems and Applications Symposium (NVMSA), 2014 IEEE,
pages 1–6, Aug 2014.

[47] Changgyu Hwang. Nanotechnology enables a new memory growth model. the IEEE,
91(11):1765 – 1771, 2003.

97

http://public.itrs.net
http://public.itrs.net
http://www.fusionio.com/platforms/iodrive2

[48] J. W. Im, W. P. Jeong, D. H. Kim, S. W. Nam, D. K. Shim, M. H. Choi, H. J. Yoon,
D. H. Kim, Y. S. Kim, H. W. Park, D. H. Kwak, S. W. Park, S. M. Yoon, W. G.
Hahn, J. H. Ryu, S. W. Shim, K. T. Kang, S. H. Choi, J. D. Ihm, Y. S. Min, I. M.
Kim, D. S. Lee, J. H. Cho, O. S. Kwon, J. S. Lee, M. S. Kim, S. H. Joo, J. H. Jang,
S. W. Hwang, D. S. Byeon, H. J. Yang, K. T. Park, K. H. Kyung, and J. H. Choi. 7.2
a 128gb 3b/cell v-nand flash memory with 1gb/s i/o rate. In 2015 IEEE International
Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pages 1–3, Feb
2015.

[49] INCITS. Technical Committee T10 SCSI Storage Interfaces. http://www.t10.org,
2013.

[50] Intel. Intel memory latency checker v3.1a. https://software.intel.com/en-us/

articles/intelr-memory-latency-checker, October 2016. (Last accessed October
23rd, 2016).

[51] Intel. Persistent memory programming. http://pmem.io, October 2016. (Last ac-
cessed October 23rd, 2016).

[52] Intel and Micron. Intel and micron produce breakthrough memory technology. http://
tinyurl.com/3DXpoint2015, July 2015.

[53] J. Jeddeloh and B. Keeth. Hybrid memory cube new dram architecture increases
density and performance. In VLSI Technology (VLSIT), 2012 Symposium on, pages
87–88, 2012.

[54] William Josephson, Lars Bongo, Kai Li, and David Flynn. Dfs: A file system for
virtualized flash storage. TOS, 6(3):14:1–14:25, September 2010.

[55] Madhura Joshi, Wangyuan Zhang, and Tao Li. Mercury: A fast and energy-efficient
multi-level cell based phase change memory system. HPCA, pages 345–356, 2011.

[56] Ju-Young Jung and Sangyeun Cho. Dynamic co-management of persistent ram main
memory and storage resources. In Proceedings of the 8th ACM International Conference
on Computing Frontiers, CF ’11, pages 13:1–13:2, New York, NY, USA, 2011. ACM.

[57] Ju-Young Jung and Sangyeun Cho. Prism: Zooming in persistent ram storage behavior.
In Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium on, pages 22–31, April 2011.

[58] Ju-Young Jung and Sangyeun Cho. Memorage: Emerging persistent ram based mal-
leable main memory and storage architecture. In Proceedings of the 27th International
ACM Conference on International Conference on Supercomputing, ICS ’13, pages 115–
126, New York, NY, USA, June 2013. ACM.

[59] Ju-Young Jung and Rami Melhem. Empirical, analytical study of hardware-based page
swap in hybrid main memory system. In Computer Architecture and High Performance

98

http://www.t10.org
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
http://pmem.io
http://tinyurl.com/3DXpoint2015
http://tinyurl.com/3DXpoint2015

Computing (SBAC-PAD), 2016 28th International Symposium on, pages 82–89, Oct
2016.

[60] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp
Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale computer. In
Proceedings of the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, pages 158–169, New York, NY, USA, 2015. ACM.

[61] Kimberly Keeton. The machine: An architecture for memory-centric computing. In
Proceedings of the 5th International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS ’15, pages 1:1–1:1, New York, NY, USA, 2015. ACM.

[62] Dong Kim, Kwanhu Bang, Seung-Hwan Ha, Sungroh Yoon, and Eui-Young Chung.
Architecture exploration of high-performance PCs with a solid-state disk. Trans. Com-
puters, 59(7):878–890, 2010.

[63] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A fast and extensible dram simulator.
Computer Architecture Letters, PP(99):1–1, 2015.

[64] Dean Klein. The future of memory and storage: Closing the gaps. Microsoft WinHEC,
2007.

[65] Mark Kryder and ChangSoo Kim. After hard drives–what comes next? Trans. Mag-
netics, 45:3406 – 3413, 2009.

[66] Karthik Kumar, Kshitij Doshi, Martin Dimitrov, and Yung-Hsiang Lu. Memory energy
management for an enterprise decision support system. In Proceedings of the 17th
IEEE/ACM international symposium on Low-power electronics and design, ISLPED
’11, pages 277–282, Piscataway, NJ, USA, 2011. IEEE Press.

[67] Stefan Lankes, Boris Bierbaum, and Thomas Bemmerl. Affinity-on-next-touch: An
extension to the linux kernel for numa architectures. In Proceedings of the 8th Interna-
tional Conference on Parallel Processing and Applied Mathematics: Part I, PPAM’09,
pages 576–585, Berlin, Heidelberg, 2010. Springer-Verlag.

[68] Benjamin Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting phase change
memory as a scalable DRAM alternative. ISCA, June 2009.

[69] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. Disaggregated memory for expansion and sharing
in blade servers. SIGARCH Comput. Archit. News, 37(3):267–278, June 2009.

[70] John D. C. Little. Or forum—little’s law as viewed on its 50th anniversary. Oper. Res.,
59(3):536–549, May 2011.

[71] T. Y. Liu and et al. A 130.7mm2 2-layer 32gb reram memory device in 24nm technology.
In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
ISSCC ’13, pages 210–211, Feb 2013.

99

[72] Wenjie Liu, Ping Huang, Kun Tang, Ke Zhou, and Xubin He. Car: A compression-
aware refresh approach to improve memory performance and energy efficiency. SIG-
METRICS Perform. Eval. Rev., 44(1):373–374, June 2016.

[73] X. Liu, D. Buono, F. Checconi, J. W. Choi, X. Que, F. Petrini, J. A. Gunnels, and
J. A. Stuecheli. An early performance study of large-scale power8 smp systems. In
2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 263–272, May 2016.

[74] Robert Love. In Linux Kernel Development, 2nd Edition. Novell Press, 2005.

[75] Jason Lowe-Power, Mark D. Hill, and David A. Wood. When to use 3d die-stacked
memory for bandwidth-constrained big data workloads. CoRR, abs/1608.07485, 2016.

[76] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[77] Wolfgang Mauerer. In Professional Linux Kernel Architecture. Wrox, 2008.

[78] J. McCalpin. Stream: Sustainable memory bandwidth in high performance computers.
http://www.cs.virginia.edu/stream/, 1995.

[79] Lucas Mearian. Flash memory’s density surpasses hard drives for first time. http://
tinyurl.com/FlashDensitySurpassHDD.

[80] David Meisner, Brian T. Gold, and Thomas F. Wenisch. Powernap: eliminating server
idle power. In Proceedings of the 14th international conference on Architectural support
for programming languages and operating systems, ASPLOS XIV, pages 205–216, New
York, NY, USA, 2009. ACM.

[81] Jie Meng and A.K. Coskun. Analysis and runtime management of 3d systems with
stacked dram for boosting energy efficiency. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2012, pages 611–616, 2012.

[82] Dutch Meyer and William Bolosky. A study of practical deduplication. TOS, 7(4):14,
2012.

[83] H. Midorikawa, H. Tan, and T. Endo. An evaluation of the potential of flash ssd as
large and slow memory for stencil computations. In High Performance Computing
Simulation (HPCS), 2014 International Conference on, pages 268–277, July 2014.

[84] G. E. Moore. Cramming more components onto integrated circuits. Proceedings of the
IEEE, 86(1):82–85, Jan 1998.

100

http://www.cs.virginia.edu/stream/
http://tinyurl.com/FlashDensitySurpassHDD
http://tinyurl.com/FlashDensitySurpassHDD

[85] D. Nagaraj and C. Gianos. Intel xeon processor d: The first xeon processor optimized
for dense solutions. In 2015 IEEE Hot Chips 27 Symposium (HCS), pages 1–22, Aug
2015.

[86] D. S. Nikolopoulos, T. S. Papatheodorou, C. D. Polychronopoulos, J. Labarta, and
E. Ayguade. User-level dynamic page migration for multiprogrammed shared-memory
multiprocessors. In Parallel Processing, 2000. Proceedings. 2000 International Confer-
ence on, pages 95–103, 2000.

[87] S. Park, A. Wang, U. Ko, L. S. Peh, and A. P. Chandrakasan. Enabling simultaneously
bi-directional tsv signaling for energy and area efficient 3d-ics. In 2016 Design, Au-
tomation Test in Europe Conference Exhibition (DATE), pages 163–168, March 2016.

[88] M. Pavlovic, N. Puzovic, and A. Ramirez. Data placement in hpc architectures with
heterogeneous off-chip memory. In Computer Design (ICCD), 2013 IEEE 31st Inter-
national Conference on, pages 193–200, 2013.

[89] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad
Calder. Using simpoint for accurate and efficient simulation. SIGMETRICS Perform.
Eval. Rev., 31(1):318–319, June 2003.

[90] H. Pozidis, N. Papandreou, A. Sebastian, A. Pantazi, T. Mittelholzer, G. F. Close, and
E. Eleftheriou. Enabling technologies for multi-level phase change memory. E\PCOS,
2011.

[91] Moinuddin Qureshi, Michele Franceschini, Luis Alfonso Lastras-Montano, and John P.
Karidis. Morphable memory system: A robust architecture for exploiting multi-level
phase change memories. ISCA, pages 153–162, June 2010.

[92] Moinuddin Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. Scalable high
performance main memory system using phase-change memory technology. ISCA,
June 2009. IBM T.J. Watson RC.

[93] Moinuddin K. Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J. Nair, and Onur
Mutlu. Avatar: A variable-retention-time (vrt) aware refresh for dram systems. In
Proceedings of the 2015 45th Annual IEEE/IFIP International Conference on Depend-
able Systems and Networks, DSN ’15, pages 427–437, Washington, DC, USA, 2015.
IEEE Computer Society.

[94] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page placement in hybrid
memory systems. In Proceedings of the international conference on Supercomputing,
ICS ’11, pages 85–95, New York, NY, USA, 2011. ACM.

[95] Simone Raoux, Geoffrey W. Burr, Matthew J. Breitwisch, Charles T. Rettner, Yi-Chou
Chen, Robert M. Shelby, Martin Salinga, Daniel Krebs, Shih-Hung Chen, Hsiang-
Lan Lung, and Chung Hon Lam. Phase-change random access memory: A scalable
technology. IBM J. of R & D, 52(4-5):465–480, 2008.

101

[96] Samsung. Samsung Fusion Memory. http://www.samsung.com, 2010.

[97] Samsung. Samsung starts mass producing industry’s first 128-gigabyte ddr4 modules
for enterprise servers. http://www.samsung.com/semiconductor/about-us/news/

24441, November 2015.

[98] SATA-IO. The Serial ATA International Organization. http://www.sata-io.org,
2013.

[99] Mohit Saxena and Michael Swift. Flashvm: virtual memory management on flash.
USENIXATC, pages 14–14, 2010.

[100] Eric Seppanen, Matthew O’Keefe, and David Lilja. High performance solid state stor-
age under linux. MSST, pages 1–12, 2010.

[101] J. M. Shalf and R. Leland. Computing beyond moore’s law. Computer, 48(12):14–23,
Dec 2015.

[102] Du Shen, Xu Liu, and Felix Xiaozhu Lin. Characterizing emerging heterogeneous
memory. In Proceedings of the 2016 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2016, pages 13–23, New York, NY, USA, 2016.

[103] Alexander Smith and Yiming Huai. STT-RAM - a new spin on universal memory.
Future Fab International, 23:28–32, 2007.

[104] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S. Hutsell,
R. Agarwal, and Y. C. Liu. Knights landing: Second-generation intel xeon phi product.
IEEE Micro, 36(2):34–46, Mar 2016.

[105] Cloyce D. Spradling. Spec cpu2006 benchmark tools. SIGARCH Comput. Archit.
News, 35(1):130–134, March 2007.

[106] Dmitri Strukov, Gregory Snider, Duncan Stewart, and Stanley Williams. The missing
memristor found. Nature, 453(7191):80–83, 2008.

[107] Mustafa M. Tikir and Jeffrey K. Hollingsworth. Hardware monitors for dynamic page
migration. J. Parallel Distrib. Comput., 68(9):1186–1200, September 2008.

[108] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendelson,
N. Navarro, A. Cristal, and O. S. Unsal. Didi: Mitigating the performance impact
of tlb shootdowns using a shared tlb directory. In Parallel Architectures and Com-
pilation Techniques (PACT), 2011 International Conference on, pages 340–349, Oct
2011.

[109] Carl Waldspurger. Memory resource management in vmware esx server. SIGOPS OSR,
36(SI):181–194, December 2002.

102

http://www.samsung.com
http://www.samsung.com/semiconductor/about-us/news/24441
http://www.samsung.com/semiconductor/about-us/news/24441
http://www.sata-io.org

[110] D. Wei, L. Deng, L. Qiao, P. Zhang, and X. Peng. Peva: A page endurance variance
aware strategy for the lifetime extension of nand flash. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 24(5):1749–1760, May 2016.

[111] Z Wei, Y Kanzawa, K Arita, Y Katoh, K Kawai, S Muraoka, S Mitani, S Fujii,
K Katayama, M Iijima, , and et al. Highly reliable taox reram and direct evidence of
redox reaction mechanism. IEDM, pages 1–4, 2008.

[112] NVM Express Workgroup. Nvm express - the optimized pci express ssd interface.
http://www.nvmexpress.org/, June 2016. (Last accessed October 23rd, 2016).

[113] Xiaojian Wu and Narasimha Reddy. SCMFS: a file system for storage class memory.
SC, pages 39:1–39:11, 2011.

[114] Yun-Chao Yu, Chih-Sheng Hou, Li-Jung Chang, Jin-Fu Li, Chih-Yen Lo, Ding-Ming
Kwai, Yung-Fa Chou, and Cheng-Wen Wu. A hybrid ecc and redundancy technique
for reducing refresh power of drams. In VLSI Test Symposium (VTS), 2013 IEEE 31st,
pages 1–6, 2013.

[115] Wangyuan Zhang and Tao Li. Exploring phase change memory and 3d die-stacking
for power/thermal friendly, fast and durable memory architectures. In Proceedings
of the 2009 18th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’09, pages 101–112, Washington, DC, USA, 2009. IEEE Computer
Society.

[116] Yuang Zhang, Li Li, Zhonghai Lu, Axel Jantsch, Minglun Gao, Hongbing Pan, and
Feng Han. A survey of memory architecture for 3d chip multi-processors. Microprocess.
Microsyst., 38(5):415–430, July 2014.

[117] Jishen Zhao, Sheng Li, Jichuan Chang, John L. Byrne, Laura L. Ramirez, Kevin Lim,
Yuan Xie, and Paolo Faraboschi. Buri: Scaling big-memory computing with hardware-
based memory expansion. ACM Trans. Archit. Code Optim., 12(3):31:1–31:24, October
2015.

[118] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A durable and energy efficient
main memory using phase change memory technology. ISCA, 2009.

103

http://www.nvmexpress.org/

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Technology comparisons
	2. Memorage emulator platform
	3. Evaluated memory configurations
	4. Performance Model Parameters
	5. Simulation configuration
	6. Multiprogrammed workloads
	7. The considered page swap schemes

	LIST OF FIGURES
	1. An illustration of a future platform with hybrid memory and PSD
	2. 3D XPoint technology
	3. Hardware interfaces for storage devices
	4. Linux I/O stack
	5. Linux page movement syscalls
	6. A future system platform with NVRAM memory and storage
	7. Illustration of Memorage concept
	8. Memorage zone seen by OS buddy allocator
	9. Effect of Memorage on page reclamation thresholds
	10. Cooperation between OS VM manager and storage subsystem
	11. Illustration of emulation methodology.
	12. Unloaded platform characterization
	13. Loaded platform characterization
	14. Breakdown of software latency of the Linux page fault handler
	15. Bandwidth performance difference between main memory and PSD
	16. Latencies for Memorage to offer and retrieve PSD resource
	17. Application performance improvement by Memorage
	18. A portion of kernel time over total execution time
	19. Impact on the number of page faults and the increased inter-fault distance
	20. Main memory lifetime improvement.
	21. PSD lifetime degradation
	22. OS LRU length change while running 429.mcf
	23. OS LRU length change for inactive pages while running 429.mcf
	24. Architecture illustration
	25. IPC and AMAT Improvement of a static page swap
	26. Dynamic access latency gap x between two memories
	27. Error rate b.t.w. simulation and model
	28. AMAT and change for mix01 and mix04.
	29. Validation of IPC and ROB fullness improvement
	30. Input/output of model-guided page swap
	31. IPC improvement
	32. Number of page swaps over epoch.
	33. Number of page swaps in RaPP
	34. Number of page swaps over epoch for other workloads.

	1.0 INTRODUCTION
	1.1 Recent Trends of Memory Hierarchy Design
	1.2 Research Overview and Contributions
	1.2.1 An NVRAM-based System Platform
	1.2.2 Problem Overview
	1.2.2.1 Effective Handling of Memory Pressure
	1.2.2.2 Efficient Utilization of Fast DRAM Resources
	1.2.2.3 How Are Both Problems Related To Each Other?

	1.2.3 Research Contributions
	1.2.3.1 Contributions to the External Page Swap Problem
	1.2.3.2 Contributions to In-Memory Page Swap Problem

	1.3 Dissertation Organization

	2.0 BACKGROUND
	2.1 Emerging NVRAM Technologies
	2.2 System Hardware Interfaces to NVRAM-based SSD
	2.3 OS Memory Management and I/O Stack
	2.3.1 OS Memory Management
	2.3.2 OS I/O Stack

	2.4 OS Page Movement Techniques

	3.0 UNIFIED MANAGEMENT OF SYSTEM'S NVRAM RESOURCES
	3.1 Motivation and A Studied System Architecture
	3.2 The Memorage Architecture
	3.2.1 Memorage Philosophy
	3.2.2 Key Design Goals
	3.2.3 Memorage Design and Implementation
	3.2.3.1 Managing Resource Information
	3.2.3.2 Memory Expansion and Shrinkage

	3.2.4 Comparison with Possible Alternatives
	3.2.5 Further Discussions

	3.3 Experimental Results
	3.3.1 Evaluation Methodology
	3.3.2 Characterization of Platform Performance
	3.3.3 Software Latency of a Page Fault
	3.3.4 Application Performance

	3.4 System Lifetime Model of NVRAM Resource Sharing
	3.4.1 Modeling Main Memory Lifetime
	3.4.2 System Lifetime Analysis via Model

	3.5 Related Work
	3.6 Summary

	4.0 HARDWARE-DRIVEN PAGE SWAP IN HYBRID MAIN MEMORY
	4.1 Motivation
	4.2 Analytical Model of Hardware-driven Page Swap in Hybrid Main Memory
	4.2.1 A Studied System Architecture and Model Parameters
	4.2.2 Baseline CPI Model without In-Memory Page Swap
	4.2.3 New CPI Model with In-Memory Page Swap
	4.2.4 Profitability of page swap

	4.3 Comparing Model with Simulation
	4.3.1 Experimental Setup and Simulation Methodology
	4.3.2 Evaluation Results

	4.4 Model-guided Hardware-driven Page Swap
	4.4.1 Simulation Methodology
	4.4.2 Evaluation Results

	4.5 Related Work
	4.6 Summary

	5.0 CONCLUSIONS AND FUTURE WORK
	5.1 Concluding Remarks
	5.2 Future Work

	BIBLIOGRAPHY

