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Mahdi Pakdaman Naeini, PhD

University of Pittsburgh, 2016

Learning probabilistic classification and prediction models that generate accurate probabilities is

essential in many prediction and decision-making tasks in machine learning and data mining. One

way to achieve this goal is to post-process the output of classification models to obtain more ac-

curate probabilities. These post-processing methods are often referred to as calibration methods in

the machine learning literature.

This thesis describes a suite of parametric and non-parametric methods for calibrating the out-

put of classification and prediction models. In order to evaluate the calibration performance of a

classifier, we introduce two new calibration measures that are intuitive statistics of the calibration

curves. We present extensive experimental results on both simulated and real datasets to evalu-

ate the performance of the proposed methods compared with commonly used calibration methods

in the literature. In particular, in terms of binary classifier calibration, our experimental results

show that the proposed methods are able to improve the calibration power of classifiers while re-

taining their discrimination performance. Our theoretical findings show that by using a simple

non-parametric calibration method, it is possible to improve the calibration performance of a clas-

sifier without sacrificing discrimination capability. The methods are also computationally tractable

for large-scale datasets as they run in O(N logN) time, where N is the number of samples.

In this thesis we also introduce a novel framework to derive calibrated probabilities of causal

relationships from observational data. The framework consists of three main components: (1) an

approximate method for generating initial probability estimates of the edge types for each pair

of variables, (2) the availability of a relatively small number of the causal relationships in the

network for which the truth status is known, which we call a calibration training set, and (3) a

iv



calibration method for using the approximate probability estimates and the calibration training set

to generate calibrated probabilities for the many remaining pairs of variables. Our experiments

on a range of simulated data support that the proposed approach improves the calibration of edge

predictions. The results also support that the approach often improves the precision and recall of

those predictions.
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1.0 INTRODUCTION

Obtaining accurate probabilities is crucial in many real-world decision-making and data mining

problems. Decision theory provides a rationale for intelligent agents to make decisions (Russell

and Norvig, 2009) in which the utilities and probabilities are combined in determining the actions

that maximize expected utility. In many of decision problems, the probabilities need to be well-

calibrated in order to achieve this goal of finding the best action. The predicted probabilities of a

forecaster are well-calibrated if they are close to the objective probabilities (i.e., the frequency of

the events in the long run). More specifically, we say that a classification model is well-calibrated

if events predicted to occur with probability p do occur about p fraction of the time for all p. This

concept applies to binary as well as multi-class classification problems. Figure 1 illustrates the

binary class calibration problem using a reliability curve (DeGroot and Fienberg, 1983; Niculescu-

Mizil and Caruana, 2005b). The curve shows the probability predicted by the classification model

versus the actual fraction of positive outcomes for a hypothetical binary classification problem,

where Z is the binary event being predicted. The curve shows that when the model predicts Z =

1 to have probability 0.2, the outcome Z = 1 occurs in about 0.3 fraction of the time. The

model is fairly well-calibrated, but it tends to underestimate the actual probabilities. In general,

the straight dashed line connecting (0, 0) to (1, 1) represents a perfectly calibrated model. The

closer a calibration curve is to this line, the better calibrated is the associated prediction model.

Deviations from perfect calibration are very common in practice and may vary widely depending

on the binary classification model that is used.

Producing well-calibrated probabilistic predictions is critical in many areas of science (e.g., de-

termining which experiments to perform), medicine (e.g., deciding which therapy to give a patient),

business (e.g., making investment decisions), and many others. These are only some examples of

cost-sensitive decision-making data mining problems, where different instances have different mis-
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Figure 1: The solid line shows a calibration (reliability) curve for predicting Z = 1. The dotted

line is the ideal calibration curve.

classification costs that might not be known at the training time. If in this type of problems we seek

to maximize the expected utility instead of accuracy, then generating well-calibrated probabilities

is critical (Korb and Nicholson, 2010; Fawcett and Niculescu-Mizil, 2007). For instance, using the

German credit card UCI dataset (Feng et al., 1993), Zonneveldt et al. evaluated the performance

of different types of classifiers in predicting whether a customer will default on a loan (Zonneveldt

et al., 2010). Their experiments showed that in terms of predictive accuracy, any decent classifier

(including NB, TAN, and augmented TANs) can perform better than the default prediction, i.e.,

simply granting every loan application. However, no classifier performed significantly better than

the default model when evaluated in terms of expected value of the loans whether they use an orig-

inal cost table or the refined version shown in Table 1. This can be as a result of calibration error

of the trained classifiers 1.

In data mining problems, obtaining accurate probabilistic models is also important when com-

paring and combining the output of different classification models (Bella et al., 2013). For instance,

a common way of addressing a multi-class classification problem is to reduce the problem to mul-

1Note that, however, the authors did not perform calibration analysis on the trained classifiers in their experiments
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Table 1: German Credit Cost Table

Original Cost Refined Cost

Repay Default Repay Default

Give loan 0 5 -1 10

Refuse loan 1 0 1 0

tiple binary classification problems using one-versus-one or one-versus-all method (Bishop, 2006).

The one-versus-all method (a.k.a. one-versus-rest) involves training a single classifier per class,

with the samples of that class as positive samples and all other samples as negatives. In the one-

versus-one method trains K(K−1)
2

binary classifiers for a K-class multiclass problem; each receives

the instances of a pair of classes from the original training set, and learn to discriminate the two

classes. The scores generated by K(K−1)
2

binary classifiers are combined in a voting scheme to

decide the final class of an instance. As noted in (Gebel and Weihs, 2007) performing multi-class

classification using the one-versus-one or one-versus-all method would not be very accurate unless

the scores generated by each binary classifier are comparable. Thus, calibrating the probability

scores could potentially give a good basis for building multi-class classification models using bi-

nary classification models. Furthermore, building calibrated classification models is also useful

when we aim to use the output of a classifier not only to discriminate the instances but also to rank

them 2 (Zhang and Su, 2004; Jiang et al., 2005; Hashemi et al., 2010).

Research on learning well-calibrated models has not been explored in the machine learning

and data mining literature as extensively as, for example, learning models that have high discrimi-

nation (i.e., high accuracy). Generally, there are two main approaches to obtaining well-calibrated

classification models. The first approach is to build a classification model that is intrinsically well-

calibrated ab initio. This approach will restrict the designer of the data mining model by requiring

major changes in the objective function (e.g, using a different type of loss function) and could

potentially increase the complexity and computational cost of the associated optimization program

2Note that, however, calibration is not necessary in order to rank the outputs of a classifier based on the class labels
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to learn the model. The other approach is to rely on the existing discriminative data mining models

and then calibrate their output using post-processing methods, which are referred to as classifier

calibration methods in the literature (Bella et al., 2013). This approach is general, flexible, and

it frees the designer of a data mining algorithm from modifying the learning procedure and the

associated optimization method. However, this approach also has the potential to decrease dis-

crimination when increasing calibration, if care is not taken.

This dissertation research focuses on post-processing methods to obtain well-calibrated classi-

fication models. The calibration methods we describe in this thesis are shown empirically to im-

prove calibration of different types of classifiers (e.g., LR, SVM, and NB) while maintaining their

discrimination performance well. Some commonly used post-processing binary classifier calibra-

tion methods include Platt scaling (Platt, 1999), histogram binning (Zadrozny and Elkan, 2001b),

and isotonic regression (Zadrozny and Elkan, 2002). In all of these methods, the post-processing

step can be seen as a function that maps the outputs of a prediction model to probabilities that are

intended to be well-calibrated. Figure 1 shows an example of such a mapping.

In general, there are two main applications of post-processing calibration methods. First, they

can be used to convert the outputs of discriminative classification methods with no apparent prob-

abilistic interpretation to posterior class probabilities (Platt, 1999). An example is an SVM model

that learns a discriminative model without a direct probabilistic interpretation. In this thesis, we

show this use of calibration to map SVM outputs to well-calibrated probabilities. Second, calibra-

tion methods can be applied to improve the calibration of predictions of a probabilistic model that

is miscalibrated. For example, an NB model is a probabilistic model, but its class posteriors are

often miscalibrated due to unrealistic independence assumptions (Niculescu-Mizil and Caruana,

2005b). The proposed binary calibration methods we describe in this thesis are shown empirically

to improve the calibration of NB models without reducing their discrimination. The proposed

method can also work well on models that are less egregiously miscalibrated than are NB models.
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1.1 HYPOTHESIS STATEMENT

Despite the importance of having calibrated prediction models, calibration should not be over-

emphasized and become the only concern when learning a useful predictor, especially in the finite

horizon decision-making problems, as noted first by DeGroot and Fienberg (DeGroot and Fienberg,

1983). To clarify, let us review the simple example presented in the decision theory book of

Parmigiani and Inoue (Parmigiani and Inoue, 2009) (Chapter 10.4.1). Assume a weather forecaster

will be only evaluated based on how well-calibrated her predictions are at the end of the year. We

take out all the days of the year that she announced the chance of the rain to be 10% and see how

close is the empirical frequency to 10%. We repeat the procedure for 20% announced prediction

and so on. If we only evaluate the forecaster based on how well-calibrated her predictions were

over a finite horizon, then she will make announcements that are radically at odds with her beliefs.

For instance, assume towards the end of the year she finds that the empirical frequency of her

predictions for 10% days is much lower than 10%. Even if she is completely confident that there

is going to be a heavy rain with flood tomorrow, it is still beneficial for her to announce the chance

of rain is 10%.

The above example shows that calibration is not a substitute for other evaluation criteria for a

classification model such as discrimination measures (e.g., AUC). However, it is beneficial in prac-

tice to build classification models that are well-calibrated in addition to being able to discriminate

the instances. Our first hypothesis in this thesis is that by using simple post-processing calibra-

tion methods, it is possible to improve the calibration capability of a classifier without sacrificing

much discrimination capability. This will justify the idea of building calibrated models using

post-processing methods. The machine learner can focus on building models that discriminate the

patterns well. Then he/ she can use post-processing calibration methods to calibrate the model

without overfitting or losing too much the discrimination capability of the base classifier.

As we will describe in the Background section, the existing calibration methods use single

mappings (either parametric or non-parametric) to obtain calibrated probabilities. As we will dis-

cuss in Chapter 2, the current methods are either biased about the output of the base classifier (e.g.,

isotonic regression-based calibration), or they are not using information that often the uncalibrated

scores are generated by a well-performing classifier, in terms of a discrimination measure (e.g.
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AUROC). Therefore, our second hypothesis states that one can systematically produce probabil-

ities that are more accurate than those obtained from existing calibration methods by using an

ensemble of calibration models that are generated based on rational, realistic assumptions about

the output of the classifier.

The remainder of this thesis is organized as follows. First, we present background concepts

on having calibrated probabilities and review related works and the existing calibration methods in

Chapter [2]. Next, we present the statement of the contributions of this thesis on introducing new

binary classifier calibration methods in Chapter [3]. In Chapter [4], we outline the results obtained

in our experiments on binary classifier calibration problem. Chapter [5] presents our theoretical

finding on binary classifier calibration. In Chapter [6] presents our proposed multi-class classifier

calibration model as well as its application in a causal network discovery problem. Finally, Chapter

[7] concludes the thesis and presents some potential future directions for our research.
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2.0 BACKGROUND

In this section, we will present a review of previous methods related to classifier calibration, as

well as a description of their theoretical properties. We will also discuss the concept of calibration

versus refinement of classifiers and will present the evaluation measures used in this thesis for

comparing the classifier calibration methods.

2.1 EXISTING CALIBRATION METHODS

Existing post-processing binary-classifier calibration models generally fall into one of two cate-

gories: parametric or non-parametric, and we discuss each in turn

2.1.1 Parametric Calibration Methods

2.1.1.1 Platt’s Method Platt’s method is a parametric binary classifier calibration method (Platt,

1999). While it was originally developed to transform the output of an SVM model into calibrated

probabilities, it has also been used to calibrate other types of classifiers (Niculescu-Mizil and

Caruana, 2005b; Gebel and Weihs, 2007; Niculescu-Mizil and Caruana, 2005a). It assumes that

the posterior probability of the positive class given the (uncalibrated) classification scores has the

form of a sigmoidal function as follows:

P (z|y) =
1

1 + exp(z(ay + b))
, (2.1)

where y is the predicted (uncalibrated) score generated by the classifier, z is the true class of the

instance (z ∈ {+1,−1}), and a and b are the parameters of the model. This approach is equivalent
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to assuming that the log odds of the calibrated scores are linear with respect to the (uncalibrated)

classification score: log P (Z=1|y)
P (Z=0|y)

= ax+ b

In order to find the model parameters, Platt used a model-trust minimization algorithm (Gill

et al., 1981) in a maximum likelihood framework. The method runs in O(1) at test time, and thus,

it is fast. Its key disadvantage is the restrictive shape of sigmoid function that rarely fits the true

distribution of the predictions (Jiang et al., 2012).

2.1.1.2 Beta Distribution In order to estimate a calibrated score, one can use Bayes rule as:

P (Z = 1|y) =
p(y|Z = 1)P (Z = 1)

p(y|Z = 0)P (Z = 0) + p(y|Z = 1)P (Z = 1)
, (2.2)

where p(y|Z = 1) and p(y|Z = 0) are conditional likelihoods, and P (Z = 0) and P (Z = 1)

are the prior probabilities of the positive and negative classes, respectively. Garczarek proposed

a calibration method using the inverted Beta distribution function to model the posterior class

conditional probabilities and tune the parameters of the distribution using a moment matching

method (Garczarek, 2002).

2.1.1.3 Asymmetric Laplace Method Bennett proposed a calibration method based on par-

titioning the space of calibrated probabilities into three different groups which was tailored for

information retrieval applications (Bennett, 2003). Based on his observations in many document

retrieval tasks, the score distributions behave quite differently in three regimes of “extremely irrel-

evant”, “hard to discriminate” and “obviously relevant”. He proposed the use of the asymmetric

Laplace distribution to estimate the class conditional probabilities in Equation 2.2 as follows:

p(y|θ, β, γ) =


βγ
β+γ

exp(−β(θ − y)) if y ≤ θ

βγ
β+γ

exp(−γ(y − θ)) if y > θ

Bennett showed empirically that the asymmetric Laplace method can perform better than

Platt’s method on information retrieval-related tasks.
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2.1.1.4 Piecewise Logistic Regression Zhang and Yang proposed an extension to Platt’s cal-

ibration method by assuming that the log-odds of calibrated probabilities is a piecewise linear

function. In their proposed method, the calibrated estimate is modeled as follows:

P (Z|y) =
1

1 + exp(−Zf(y))
, (2.3)

where y is the uncalibrated output of the classifier, Z is the true class of the instance (i.e., either

−1 or 1), and f(y) is a piecewise linear function. They defined f(y) with K + 1 knots (θ0 < θ1 <

. . . < θK) as f(y) =
∑K

j=0wjlj(y), where lj(y) is defined as:

lj(y) =


y−θj−1

θj−θj−1
if θj−1 ≤ y < θj (j = 1, 2, . . . , K)

y−θj+1

θj−θj+1
if θj ≤ y < θj+1 (j = 0, 1, . . . , K − 1)

0 Otherwise

The piecewise function f(y) is continuous at all the K + 1 knots, and its value will be equal

to wj at the j th knot. They used a maximum likelihood method to estimate the parameters wj .

In order to define the number of the knots and the position of the knots, they used an ad hoc

procedure. For the number of knots, they used a three-piece linear function based on an intuition

similar to the asymmetric Laplace distribution-based calibration method, described above. The

remaining task is to define the position of the knots θ0, θ1, θ2, θ3. They set θ0 = miny ∈ D and

θ3 = max{y ∈ D} + ε where D is the training data and ε is a small positive number. For setting

θ1 and θ2, they choose from 10%, 20%, . . . , 90% percentile of negative and positive instances,

respectively, using the maximum likelihood method.

2.1.2 Non-Parametric Calibration Methods

2.1.2.1 Histogram Binning A popular non-parametric calibration method is the equal fre-

quency histogram binning model which is also known as quantile binning (Zadrozny and Elkan,

2001b). In quantile binning, predictions are partitioned into B equal frequency bins. For each new

prediction y that falls into a specific bin, the associated frequency of observed positive instances

will be used as the calibrated estimate for P (z = 1|y), where z is the true label of an instance that

is either 0 or 1. Figure 2 shows a hypothetical example of using the equal frequency histogram
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binning method to calibrate a hypothetical binary classifier. By using simple caching technique,

histogram binning can be implemented in a way that allows it to be applied to large-scale data

mining problems at test time. However, its limitations include (1) bins inherently “pigeonhole”

calibrated probabilities into only B possibilities, (2) bin boundaries remain fixed over all predic-

tions, and (3) there is uncertainty in the optimal number of the bins to use (Zadrozny and Elkan,

2002).

Figure 2: An example of histogram binning method for calibrating the output of a binary classifica-

tion model. The green and red dots denote the instances that belong to positive and negative class,

respectively. If the classification score is any where between 0.35 and 0.55, then the corresponding

calibrated estimate will be 2
6
.

2.1.2.2 Isotonic Regression is the most commonly used non-parametric classifier calibration

method in machine learning and data mining applications is the isotonic regression-based cali-

bration (IsoReg) model (Zadrozny and Elkan, 2002). To build a mapping from the uncalibrated

output of a classifier to the calibrated probability, IsoReg assumes it is an isotonic (monotonic)

mapping following the ranking imposed by the base classifier. The commonly used algorithm for

isotonic regression is the Pool Adjacent Violators Algorithm (PAVA), which is linear in the number

of training data samples (Barlow et al., 1972). The IsoReg using PAVA works as follows: without

loss of generality, we assume that the instances are sorted based on their (uncalibrated) classifi-

cation scores yi, so we have y1 ≤ y2 ≤ . . . ≤ yN (if the instances are not sorted, we can sort

them in O(N logN)). First, PAVA sets the calibrated estimate for each instance equal to the true

class of the instance, so we have p̂∗i = zi. Traversing the instances, for each pair of consecutive

probabilities that violated the ordering if p̂∗i > p̂∗i+1 then they will be combined to form a new

group of instances, and the calibrated estimate for the group will be equal to the their average

p̂∗i , p̂
∗
i+1 =

p̂∗i+p̂∗i+1

2
. The process will continue until the isotonic calibrated estimates are achieved
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(i.e. until there is no pair of consecutive probabilities that violates the ordering).

An IsoReg model based on PAVA can be viewed as a histogram binning model (Zadrozny

and Elkan, 2002) where the position of the boundaries are selected by fitting the best monotone

approximation to the train data according to the ordering imposed by the classifier. While IsoReg

can perform well on some real datasets, the monotonicity assumption makes can fail in real data

mining applications. Specifically, this occurs in large scale data mining problems where we have

to make simplifying assumptions in making computationally tractable classification models (e.g.

naive Bayes classifiers) or learning algorithms (e.g. using variational methods in learning the

parameters). Thus, one may need to relax the assumption depending on the application.

2.1.2.3 Similarity Binning Averaging Similarity binning averaging is an extension to his-

togram binning using the idea of cascading (Gama and Brazdil, 2000) in which the similarity of

instances in the feature space will be taken into account when constructing the bins. The method

has two phases as shown in Figure 3 1. In the first stage, the trained model M is used to generate

uncalibrated probability estimates for the instances in the validation dataset. The estimated prob-

ability for the ith instance will be added as a new feature to its corresponding feature set. This

will yield a new dataset that is called validation data with probabilities (VDP). At the second stage

(i.e. the test time), to calibrate a new instance I , it will be presented first to the model M to find

the corresponding uncalibrated estimate p. The score will be added to the corresponding feature

set of that instance. Next, the k most similar instances in the VDP dataset will be selected and

the empirical class frequency of the neighboring instances will be used as the calibrated estimate

for the instance I . SBA can be extended for multi-class classification problems. However, it is

computationally intractable for large datasets and the correct choice of k is still a challenge in this

method.

2.1.2.4 Adaptive Calibration of Predictions Adaptive calibration of predictions (ACP) is an-

other extension to histogram binning (Jiang et al., 2012). ACP requires the derivation of a 95%

statistical confidence interval around each individual prediction to build the bins. It then sets the

calibrated estimate to the observed frequency of the instances with positive class, among all the

1The figure is taken from (Bella et al., 2009)
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Figure 3: The left panel shows the first stage of the SBA, and the right panel shows the second

stage of the SBA method

predictions in the training data, that fall within the bin. To date, ACP has been developed and

evaluated using only logistic regression as the base classifier (Jiang et al., 2012).

2.2 OTHER RELATED METHODS

There are some less well-known calibration methods in the literature. For instance, Rüping (Rüping,

2006) proposed a method to render the calibration methods more robust against outliers in the

dataset. The method trims the calibration datasets by removing outliers for which the generated

estimation error is above a predefined threshold.

Bennett proposed a parametric method to calibrate the output of a naive Bayes classifier (Ben-

nett, 2000). He modeled the probability of the positive class given the log-odds score generated

by the classifier using a sigmoid function. This is equivalent to assuming that the log-odds is the
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sufficient statistic to naive Bayes predictions. He proposed setting the parameters of the sigmoid

function either heuristically or using an approach similar to Platt’s method.

Rüping proposed a simple three-value (Rüping, 2004) scaling function to convert the classifi-

cation scores generated by an SVM classifier into a probability space.

There is also a variation of the isotonic regression-based calibration method for predicting

accurate probabilities with a ranking loss (Menon et al., 2012).

Another calibration method uses an optimization framework based on the alternating direction

method of multipliers (ADMM) optimization method (Hestenes, 1969) to combine the output of

multiple classifiers and obtain calibrated probabilities (Zhong and Kwok, 2013).

2.3 THEORETICAL WORKS

There exists a body of theoretical work on classifier calibration. For instance, Fawcett and Niculescu-

Mizi (Fawcett and Niculescu-Mizil, 2007) showed that isotonic regression-based calibration using

PAVA is equivalent to the receiver operating characteristics (ROC) convex hull method. As a re-

sult of this equivalence, for any given binary classification model and any given training data the

isotonic regression based calibration using PAVA is identical to the convex-hull of the base clas-

sification model. Thus, the calibrated estimates generated by isotonic regression calibration using

the PAVA algorithm on a given dataset will have discriminatin performance that is at least as good

as the original (uncalibrated) classification scores in terms of area under the curve (AUC).

Cohen and Goldszmidt showed that an unbiased classifier is always well-calibrated; however,

a well-calibrated classifier might not be unbiased. They also showed that the refinement error of

a well-calibrated classifier provides an upper bound on the Bayes error. More specifically, they

showed that eb < 2 ∗ eR, where eb is the Bayes error and eR is the refinement error of the well-

calibrated classifier. They also showed that using a threshold of 0.5 for the calibrated estimates

is equivalent to finding the point of minimum error in a ROC curve (Fawcett, 2004; Lachiche and

Flach, 2003). Finally, they also noted that calibrating a classifier is guaranteed not to decrease the

classification accuracy.
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2.4 HOW TO EVALUATE CALIBRATION METHODS

This section discusses the evaluation measures that we will use for comparing various classifier

calibration methods. We first describe the concept of scoring rules and proper scoring rules. Then,

we describe the concept of refinement versus calibration of a forecaster. Finally, we present the

actual measures used for evaluating calibration methods.

2.4.1 Proper Scoring Rules

In decision theory, it is common to use scoring rules in order to assess the quality of a probability

estimation made by a forecaster (in our case, a classification model). A score can be thought

of as a ”cost function” or ”loss function” in the pattern classification context (Friedman et al.,

2001). In terms of eliciting probability distributions, the role of a scoring rule is to encourage a

forecaster to be accurate and honest in assessing the probability of the events (i.e., the probability

of target class z in the context of classification problems) (Gneiting and Raftery, 2007; Garthwaite

et al., 2005). A scoring rule L(y, z) is defined as a function of the predicted probability y and

the true target class z (which is equal to 0 or 1 in binary classification problems). A scoring

function is deemed proper if its expected value is minimized by using P (Z = z), which is the

objective probability distribution of z. A strictly proper loss function is uniquely minimized by

the objective probability distribution. Several commonly used (strictly) proper scoring rules are

the Brier (Brier, 1950), logarithmic (Good, 1952) and spherical scores, which are shown in Table

2. More detailed information about proper scoring rules and their applications can be found in

(Bickel, 2007; Gneiting and Raftery, 2007).

Table 2: Proper Scoring Rules for Decision Problem with a Binary Outcome

L(y,0) L(y,1)

Brier scoring rule −y2 −(1− y)2

Logarithmic scoring rule log(1− y) log y

Spherical scoring rule 1−y√
y2+(1−y)2

y√
y2+(1−y)2
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2.4.2 Calibration vs. Refinement

As mentioned above, the Brier score, also known as the quadratic score, is one of the strictly

proper loss functions that will be minimized if the probability scores match the true probability

distribution of the target class. For a binary classification problem, the Brier score is defined as the

average square error between the estimated probability of Z = 1 and the true class z:

BS =
1

N

N∑
i=1

(yi − zi)2, (2.4)

where N is the number of training data, yi is the estimated probability of P (Z = 1|xi) and zi is

the true class of the i’th instance (i.e., zi ∈ {0, 1}). The Brier score states that if the classifier

makes a mistake in its decision over the two existing classes, then it will be penalized proportional

to its confidence with which it asserts its decision. It can be decomposed into two separate terms

that measures calibration and refinement (DeGroot and Fienberg, 1983; Cohen and Goldszmidt,

2004). To briefly review this concept in the context of binary classification problem, let y ∈ [0, 1]

be the estimated probability generated by a binary classification model M . Following (DeGroot

and Fienberg, 1983; Cohen and Goldszmidt, 2004), we assume that y takes a finite number of

values in the interval [0, 1] (e.g., y ∈ {0, 0.01, 0.02, . . . , 0.99, 1}). Assume p(Z = 1|y) denotes the

probability that the true class of an instance is positive given that estimated probability generated

by the classifier is y. Degroot showed that the Brier score can be rewritten as follows (DeGroot

and Fienberg, 1983):

BS =
∑
y

π(y)(y − P (Z = 1|y))2

︸ ︷︷ ︸
L2 Calibration error

+
∑
y

π(y)P (Z = 1|y)(1− P (Z = 1|y))︸ ︷︷ ︸
Refinement Error

, (2.5)

where π(y) is the prior probability that the classifier will output y on a randomly chosen instance

(it can be estimated using long time frequency of instances with classification score of y, as we will

do in Section 2.4.3). The first term in Equation 2.5 is the L2 calibration error that measures how

close the estimated probability y is to the true probability P (Z = 1|y) (i.e., the long run fraction

of positive instances when the classifier outputs y). The second term accounts for refinement that

is smaller if the value of P (Z = 1|y) is concentrated near 0 or 1. Refinement accounts for the

usefulness of each prediction. Informally, we dislike the predictions that are close to uncertainty
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0.5; we are more interested in those predictions that are close to certainty 0 or 1. Assume the prior

probability of a positive instance is p, then a default classifier that predicts p for all instances will

always be calibrated. However, in general the predictions that it makes are not very useful in terms

of making a decision about the class of the object.

2.4.3 Evaluation Measures

Although proper scoring rules can be used to evaluate the calibration performance of classifica-

tion models, in practice, it is more common to separately assess the calibration refinement, or

calibration and discrimination (Parmigiani and Inoue, 2009). In this thesis, we will use AUC and

Accuracy in order to evaluate discrimination performance of a classifier.

For evaluating calibration performance, we use two simple statistics that measure calibration

relative to the ideal reliability diagram (DeGroot and Fienberg, 1983; Niculescu-Mizil and Caru-

ana, 2005b). Figure 1 shows an example of such a diagram. These measures are called Expected

Calibration Error (ECE), and Maximum Calibration Error (MCE). In computing these measures,

the predictions are sorted and partitioned into 10 bins. The predicted value of each test instance

falls into one of the bins. The ECE calculates Expected Calibration Error of the bins, and MCE

calculates the Maximum Calibration Error among the bins, using empirical estimates as follows:

ECE =
10∑
i=1

π(i) · |oi − ei| , MCE = max (|oi − ei|) ,

where oi is the true fraction of positive instances in bin i, ei is the mean of the post-calibrated prob-

abilities for the instances in bin i, and π(i) is the empirical probability (fraction) of all instances

that fall into bin i. The lower the values of ECE and MCE, the better the calibration of a model.

Finally, we use root mean square error (RMSE) as a summary measure to evaluate the per-

formance of a (binary) classifiers. This is due to the fact that RMSE is equal to the square root

of the Brier score that evaluates the overall performance of a classifier in terms of calibration and

refinement.

16



3.0 BINARY CLASSIFIER CALIBRATION METHODS

This chapter describes our methodological and algorithmic contributions that includes five new

binary classifier calibration methods. These methods can be categorized as follows: (1) Extend-

ing histogram binning, also known as quantile binning, using non-parametric binary classification

in which we used kernel density estimation (KDE) and Dirichlet process mixtures (DPM), (2)

Extending histogram binning using Bayesian model averaging, (3) Extending histogram binning

using selective Bayesian model averaging, (4) Extending isotonic regression using an ensemble of

near isotonic regression models. (5) Extending all the binning based models using an ensemble

of linear trend estimation method. The reminder of this chapter describes the above extensions in

detail.

3.1 EXTENDING HISTOGRAM BINNING USING NON-PARAMETRIC BINARY

CLASSIFICATION

In this section, we show that the histogram binning calibration method (Zadrozny and Elkan,

2001b) is a simple nonparametric plug-in classifier. In the calibration problem, given an uncal-

ibrated probability estimate y, one way of finding the calibrated estimate ŷ = P(Z = 1|y) is to

apply Bayes’ rule as follows:

P(Z = 1|y) =
P (Z = 1) · P (y|Z = 1)

p(Z = 1) · P (y|Z = 1) + P (z = 0) · P (y|Z = 0)
, (3.1)

where P (z = 0) and P (z = 1) are the priors of class 0 and 1 that are estimated from the training

dataset. Also, P (y|z = 1) and P (y|z = 0) are predictive likelihood terms. If we use the histogram
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density estimation method for estimating the predictive likelihood terms in the Bayes rule equation

3.1 we obtain the following: P̂ (y|z = t) =
∑B

j=1

θ̂tj
hj
I(y ∈ Bj), where I(.) is an indicator function,

t = {0, 1}, θ̂0
j = 1

n

∑N
i=1 I(yi ∈ Bj, zi = 0), and θ̂1

j = 1
m

∑N
i=1 I(yi ∈ Bj, zi = 1) are the

empirical estimates of the probability of a prediction when class z = t falls into bin Bj . Also,

m and n define the total number of positive and negative instances in training data, respectively.

Now, let us assume y ∈ Bj; By substituting the value of empirical estimates of θ̂0
j =

nj
n

, θ̂1
j =

mj
m

,

P̂ (z = 0) = n
N

, P̂ (z = 1) = m
N

from the training data and performing some basic algebra we

obtain the following calibrated estimate: ŷ =
mj

mj+nj
, where mi and nj are the number of positive

and negative examples in bin Bj .

The above computations show that the histogram-binning calibration method is actually a sim-

ple plug-in classifier where we use the histogram-density method for estimating the predictive

likelihood in terms of Bayes rule as given by 3.1. By casting histogram binning as a plug-in

method for classification, it is possible to use more advanced frequentist methods for density esti-

mation rather than using simple histogram-based density estimation. For example, if we use kernel

density estimation (KDE) for estimating the predictive likelihood terms, the resulting calibrated

probability P (Z = 1|X = x) is as follows:

P̂ (Z = 1|Y = y) =
nh0

∑N
i=1K

(
|y−yi|
h1

)
I(zi = 1)

nh0

∑N
i=1K

(
|y−yi|
h1

)
I(zi = 1) +mh1

∑N
i=1K

(
|y−yi|
h0

)
I(zi = 0)

, (3.2)

where yi are uncalibrated probability estimates generated by the base classifier in the train-

ing data, and m and n are respectively the number of positive and negative examples in training

data. Also h0 and h1 are defined as the bandwidth of the predictive likelihood for class 0 and class

1 (Wasserman, 2006). The bandwidth parameters can be optimized using cross validation tech-

niques. However, in this thesis we use Silverman’s rule of thumb (Silverman, 1986) for setting the

bandwidth to h = 1.06σ̂N−
1
5 , where σ̂ is the empirical unbiased estimate of variance. It is possible

to use the same bandwidth for both class 0 and class 1, which leads to the Nadaraya-Watson kernel

estimator that we use in our experiments. However, we noticed that there are some cases for which

KDE with different bandwidths performs better.
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There are different types of smoothing kernel functions, such as the Gaussian, Boxcar, Epanech-

nikov, and Tricube functions. Due to the similarity of the results we obtained when using different

type of kernels, we only report here the results of the simplest one, which is the Boxcar kernel.

Boxcar : K(x) =
1

2
I(x > 0)

Gaussian : K(x) =
1

√
2πe

−x2
2

Epanechnikov : K(x) =
3

4
(1− x2)I(x > 0)

Tricube : K(x) =
70

81
(1− |x|3)3I(x > 0),

It has been shown in Wasserman (2006) that kernel density estimators are mini-max rate esti-

mators, and under the L2 loss function the risk of the estimator converges to zero with the rate of

OP (n
−2β

(2β+d) ), where β is a measure of smoothness of the target density, d is the dimensionality of

the input data, and n is the number of training instances. From this convergence rate, we can infer

that the application of kernel density estimation is likely to be practical when d is low. Fortunately,

for the binary classifier calibration problem, the input space of the model is the space of uncali-

brated predictions, which is a one-dimensional input space. This justifies the application of KDE

to the classifier calibration problem.

The KDE approach presented above represents a non-parametric frequentist approach for es-

timating the likelihood terms of equation 3.1. Instead of using the frequentist approach, we can

use Bayesian methods for modeling the density functions. The Dirichlet Process Mixture (DPM)

method is a well-known Bayesian approach for density estimation (Antoniak, 1974; Ferguson,

1973; Escobar and West, 1995; MacEachern and Muller, 1998). For building a Bayesian calibra-

tion model, we model the predictive likelihood terms P (Xi = x|Zi = 1) and P (Xi = x|Zi = 0)

in Equation 3.1 using the DPM method. Due to a lack of space, we do not present the details of

the DPM model here, but instead refer the reader to (Antoniak, 1974; Ferguson, 1973; Escobar and

West, 1995; MacEachern and Muller, 1998).

There are different ways of performing inference in a DPM model. One can choose to use

either Gibbs sampling (non-collapsed or collapsed) or variational inference, for example. In im-

plementing our calibration model, we use the variational inference method described in Kurihara

et al. (2007). We chose it because it has fast convergence. We will refer to it as DPM .
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3.2 BAYESIAN EXTENSION OF HISTOGRAM BINNING

In this section we describe the Bayesian extensions that we proposed for histogram binning cali-

bration method. The two proposed methods are published at SDM 2015 (Pakdaman Naeini et al.,

2015b), and AAAI 2015 (Pakdaman Naeini et al., 2015a). The main idea in both methods is to

consider ensemble of histogram binning models and their weighted average to build a calibration

model. In SDM 2015 we considered all possible binning models induced by the train data and we

used k2 Bayesian scoring function (Cooper and Herskovits, 1992) for the weights; in the AAAI

2015 we used a selective Bayesian approach and the BayesianBDeu scoring function (Heckerman

et al., 1995) for the weights. In the following we describe each calibration method in more detail1.

3.2.1 Full Bayesian Approach

In this section we present two new Bayesian non-parametric methods for binary classifier cali-

bration that generalize the histogram-binning calibration method (Zadrozny and Elkan, 2001b) by

considering all possible binnings of the training data. The first proposed method, which is based

on Bayesian model selection, is called Selection over Bayesian Binnings (SBB). We also gen-

eralize SBB by model averaging over all possible binnings; it is called Averaging over Bayesian

Binnings (ABB). There are two main challenges here. One is how to score a binning model; we

use a Bayesian score. The other is how to efficiently search over such a large space of binnings;

we use dynamic programming to address this issue.

3.2.1.1 Bayesian Calibration Score Let Y and Z define respectively an uncalibrated classifier

prediction and the associated true class of an instance. The i’th training sample is an instantiation

of Y and Z, denoted by yi and zi. Also, let S be the sorted set of all uncalibrated classifier

predictions {y1, y2, . . . , yN} and Sl,u be a list of the first elements of S, starting at l’th index

and ending at u’th index. Let Pa denote a partitioning of S into a fixed number of bins Pa =

{Bin1, Bin2, . . . , BinB} where, B is the total number of bins used to define Pa. A binning model

1Note that the K2 and BDeu scoring functions are two possible scoring functions among others that could be used
(e.g., BIC, AIC, and AICc).
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M induced by the training set is defined as:

M ≡ {B, S, Pa,Θ}, (3.3)

where, Θ is the set of all the calibration model parameters Θ = {θ1, . . . , θB}, which are defined

as follows. For a bin Binb, which is determined by Slb,ub , the distribution of the class variable

P (Z = 1|y ∈ Binb) is modeled as a binomial distribution with parameter θb. Thus, Θ specifies

all the binomial distributions for all the existing bins in Pa. We note that our binning model is

motivated by the model introduced in (Lustgarten et al., 2011) for variable discretization, which is

here customized to perform classifier calibration. We score a binning model M as follows:

Score(M) = P (M) · P (D|M), (3.4)

where D defines the set of all pairs {(zi, bi)|i = 1, . . . , N}, and bi is the index of the bin in which

i’th training instance is located. The marginal likelihood P (D|M) in Equation 3.4 is derived using

the marginalization of the joint probability of P (D,Θ) over all parameter space according to the

following equation:

P (D|M) =

∫
Θ

P (D|M,Θ)P (Θ|M)dΘ (3.5)

Equation 3.5 has a closed form solution under the following assumptions: (1) All samples are

i.i.d and the class distribution P (Z|y ∈ Binb) ,which is the class distribution for instances located

in Binb, is modeled using a binomial distribution with parameter θb, (2) the distribution of class

variables over two different bins are independent of each other, and (3) the prior distribution over

binning model parameters θs are modeled using a Beta distribution. We also assume that the

parameters of the Beta distribution α and β are both equal to one, which corresponds to having a

uniform distribution over each θb. Using K2 Bayesian model scoring, the closed form solution to

the marginal likelihood given the above assumptions is as follows (Heckerman et al., 1995; Cooper

and Herskovits, 1992):

P (D|M) =
B∏
b=1

nb!mb!

(Nb + 1)!
, (3.6)
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where Nb is the total number of training instances located in the Binb. Also, nb and mb are

respectively the number of class zero and class one instances among allNb training instances inside

the Binb.

The term P (M) in Equation 3.4 specifies the prior probability of a binning of calibration model

M . It can be interpreted as a structure prior, which we define as follows. Let Prior(k) be the prior

probability of there being a bin boundary between yk and yk+1 in the binning given by model M ,

and model it using a Poisson distribution with the mean parameter λ. For k from 1 to N − 1, we

define the Prior(k) function as:

Prior(k) = 1− e−λ
d(k,k+1)
d(1,n) (3.7)

where, d(i, j) = yj−yi represents the distance between the two (uncalibrated) classifier outputs

yj and yi, and yj is greater than yi. For the boundary cases where k = 0 and k = N , we define

Prior(0) = 1 and Prior(N) = 1 which correspond to having a bin boundary at the lowest and

the highest possible uncalibrated probabilities in S.

Consider the prior probability for the presence of bin Binb, which contains the sequence of

training instances Slb,ub according to model M . Assuming independence of the appearance of

partitioning boundaries, we can calculate the prior of the boundaries defining bin Binb by using

the Prior function as follows:

Prior(ub)

(
ub−1∏
k=lb

(1− Prior(k))

)
(3.8)

where the product is over all training instances from Slb to Sub−1 , inclusive. Expression 3.8

gives the prior probability that no bin boundary is present between any consecutive pairs of values

yk in the sequence Slb,ub and at least one bining boundary is between the values yub and yub+1.

Combining Equations 3.8 and 3.6 into Equation 3.4, we obtain the following Bayesian score for

calibration model M :

Score(M) =

B∏
b=1

Prior(ub)
ub−1∏
k=lb

(1− Prior(k))

 nb!mb!

(Nb + 1)!

 (3.9)
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3.2.1.2 The SBB and ABB models We can use the above Bayesian score to perform model

selection or model averaging. Selection involves choosing the best partitioning model Mopt and

calibrating a prediction x as P (x) = P (x|Mopt). As mentioned, we call this approach Selection

over Bayesian Binnings (SBB). Model averaging involves calibrating predictions over all possible

binnings. We call this approach Averaging over Bayesian Binnings (ABB) model. A calibrated

prediction in ABB is derived as follows:

P (x) =
2N−1∑
i=1

P (Mi|D)P (x|Mi)

∝
2N−1∑
i=1

Score(Mi)P (x|Mi),

(3.10)

where N is the total number of training instances.

Both (SBB) and (ABB) consider all possible binnings of the N predictions in the training

data, which is exponential in N . Thus, in general, a brute-force approach is not computationally

tractable. Therefore, we apply dynamic programming, as described in the next two sections.

3.2.1.3 Dynamic Programming Search of SBB This section summarizes the dynamic pro-

gramming method used in SBB. Recall that S is the sorted set of all uncalibrated classifier’s

outputs {y1, y2, . . . , yN} in the training data set. Let S1,u define the prefix of set S including the set

of the first u uncalibrated estimates {y1, y2, . . . , yu}. Consider finding the optimal binning models

M1,u corresponding to the subsequence S1,u for u ∈ 1, 2, . . . , N of the set S. Assume we have

already found the highest score binning of these models M1,1,M1,2, . . . ,M1,u−1, corresponding to

each of the subsequences S1,1, S1,2, . . . , S1,u−1. Let v1, v2, . . . , vu−1 denote the respective scores of

the optimal binnings of these models. Let Scorei,u be the score of subsequence {yi, yi+1, . . . , yu}

when it is considered as a single bin in the calibration model M1,u. For all l from u to 1, SBB

computes vl−1 × Scorel,u, which is the score for the highest scoring binning M1,u of set S1,u for

which subsequence Sl,u is considered as a single bin. Since this binning score is derived from two

other scores , we call it a composite score of the binning model M1,u. The fact that this composite

score is a product of two scores follows from the decomposition of Bayesian scoring measure we
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are using, as given by Equation 3.9. In particular, both the prior and marginal likelihood terms of

the score are decomposable.

In finding the best binning model M1,u, SBB chooses the maximum composite score over all

l, which corresponds to the optimal binning for the training data subset S1,u; this score is stored in

vu. By repeating this process from 1 to N , SBB derives the optimal binning of set S1,N , which is

the best binning over all possible binnings. The pseudo code for the SBB dynamic programming

is shown in Algorithm 1. The computational time complexity of the algorithm is O(N2).

input : D = {(y1, z1), . . . , (yN , zN)}

output : Best binning models M1,1, . . . ,M1,N and

corresponding Bayesian Scores v1,1, . . . , v1,N

v1,0 ← 1;

M1,0 ← {};

for u← 1 to N do

p← Prior(u);

v1,u ← 0;

for l← u to 1 do
Binb ← [yl, . . . , yu]; % Defining the bin Binb

ML← nb!mb!
(Nb+1)!

;

Scorelu ← p×ML;

if v1,l−1 × Scorelu > v1,u then

M1,l ←M1,l−1 ∪ {Binb};

v1,u ← v1,l−1 × Scorel,u;

end

p← p× (1− Prior(l − 1));

end

end
Algorithm 1: The pseudo code for the dynamic programming search of SBB. It will use M1,N ,

the highest scored binning model, to find the calibrated probability estimate of a new instance at

the test time.
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3.2.1.4 Dynamic Programming Search of ABB The dynamic programming approach used

inABB is based on the above dynamic programming approach in SBB. It focuses on calibrating a

particular instance P (x). The ABB algorithm uses the decomposability property of the Bayesian

binning score in Equation 3.9. Assume we have already found in one forward run of the SBB

method the highest score binning of the models M1,1,M1,2, . . . ,M1,N , which correspond to each

of the subsequences S1,1, S1,2, . . . , S1,N , respectively; let the values V f
1 , V

f
2 , . . . , V

f
N denote the re-

spective accumulative scores of the binning for these models 2, which we cache. We perform an

analogous dynamic programming procedure to SBB in a backward manner (from highest to low-

est prediction) and compute the highest score binning of these models MN,N ,MN−1,N , . . . ,M1,N ,

which correspond to each of the subsequences SN,N , SN−1,N , . . . , S1,N , respectively; let the val-

ues V b
N , V

b
N−1, . . . , V

b
1 denote the respective accumulative scores for these models, which we also

cache. Using the decomposability property of the binning score given by 3.9, we can write the

Bayesian model averaging estimate given by Equation 3.10 as follows:

P (x) ∝
∑

1≤l≤u≤N

(
V f
l−1 × Scorel,u × V

b
u+1 × p̂l,u(x)

)
(3.11)

where p̂l,u(x) is obtained using the frequency3 of the training instances in the bin containing the

predictions Sl,u. Remarkably, the dynamic programming implementation of ABB is also O(N2).

However, since it is instance specific, this time complexity holds for each prediction that is to be

calibrated (e.g., each prediction in a test set). To address this problem, we can partition the interval

[0, 1] into R equally spaced bins and stored the ABB output for each of those bins. The training

time is therefore O(RN2). During testing, a given pin is mapped to one of the R bins and the

stored calibrated probability is retrieved, which can all be done in O(1) time.

3.2.2 Selective Bayesian Approach

In this section we present a new non-parametric calibration method called Bayesian Binning into

Quantiles (BBQ) using a selective Bayesian approach. BBQ extends the simple histogram-binning

calibration method (Zadrozny and Elkan, 2001b) by considering multiple binning models and their

2Instead of recording the optimal score, it defines the sum of the scores for all the corresponding binning models
3We actually use smoothing of these counts, which is consistent with the Bayesian priors in the scoring function
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combination. The main challenge here is to decide on how to pick the models and how to combine

them. BBQ considers multiple equal-frequency binning models that distribute the data-points in

the training set equally across all bins. The different binning models differ in the number of bins

they have. We combine them using a Bayesian score derived from the BDeu (Heckerman et al.,

1995) score used for learning Bayesian network structures. Similar to what we did in SBB and

ABB we define the score of a binning model in BBQ as follows:

Score(M) = P (M) · P (D|M) (3.12)

In order to derive the marginal likelihood P (D|M) in Equation 3.12 we use the same notation

and the assumptions that we used for SBB and ABB in Section 3.2.1.1. However, in BBQ we

use BDeu Bayesian model scoring and we set the hyper-parameters of the Beta distribution 4 to

be equal to αb = N ′

B
pb and βb = N ′

B
(1 − pb), where N ′ is the equivalent sample size expressing the

strength of our belief in the prior distribution and pb is the midpoint of the interval defining the

b’th bin in the binning model M . Given the above assumptions, the marginal likelihood can be

expressed as (Heckerman et al., 1995):

P (D|M) =
B∏
b=1

Γ(N
′

B
)

Γ(Nb + N ′

B
)

Γ(mb + αb)

Γ(αb)

Γ(nb + βb)

Γ(βb)
,

where Γ is the gamma function and Nb is the total number of training instances located in the

b’th bin. Also, nb and mb are respectively the number of class zero and class one instances among

all Nb training instances in bin b. The term P (M) in Equation 3.12 specifies the prior probability

of the binning model M . In our experiments we use a uniform prior for modeling P (M). BBQ

uses the above Bayesian score to perform model averaging over the space of all possible equal

frequency binnings. We could have also used the above Bayesian score to perform the model

selection, which in our case would yield a single binning model. However, model averaging is

typically superior to model selection (Hoeting et al., 1999). Hence a calibrated prediction in our

BBQ framework is defined as:

P (z = 1|y) =
T∑
i=1

Score(Mi)∑T
j=1 Score(Mj)

P (z = 1|y,Mi),

4the prior distribution over binning model parameters θbs
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where T is the total number of binning models considered and P (z = 1|y,Mi) is the probability

estimate obtained using the binning model Mi, for the (uncalibrated) classifier output y. To choose

models Mi we choose a restricted range of binning models, each defined by a different number

of bins. We define the range of possible values of the number of bins as B ∈ {
3√N
C
, . . . , C 3

√
N},

where C is a constant that controls the number of binning models (C = 10 in our experiments).

The choice of the above range is due to some previous results that show that the histogram binning

classifier achieves the best convergence rate on the excess risk (i.e., the difference between the best

empirical-risk-minimizer classifier and the Bayes classifier) for Lipschitz Bayes decision bound-

aries when we set number of bins to θ( 3
√
N) (Klemela, 2009; Scott and Nowak, 2003; singh, 2011;

Nowak, 2009). Although the results are valid for histogram classifiers with fixed bin size, our

experiments show that both fixed bin size and fixed frequency histogram classifiers behave quite

similarly. We conjecture that a histogram classifier with equal frequency binning also achieves

the best convergence rate on the excess risk by setting the number of bins to θ( 3
√
N). This is an

interesting open problem for our future research.

Note that we can further restrict the number of binning models used in averaging in the appli-

cation stage. That is, we may start by calculating the Bayesian score for all models in the above

range, and select a subset of those that yield a higher Bayesian score afterwards. The number of

resulting models can be determined by apriori fixing the number of models to be used in aver-

aging or by checking for the sharp drops in the Bayesian scores over all such models. Assume

S1, S2, . . . , SN are the sorted Bayesian scores of histogram models in a decreasing order. We fix

a small number α > 0 (α = 0.001 in our experiments) and pick the first kα associated binning

models as the refined set of models, where kα = min{k : Sk−Sk+1

σ2 ≤ α} and σ2 is the empirical

variance of the Bayesian scores.

By using the above range the computational cost of BBQ will be equivalent to using a single

equal frequency histogram binning model both in training and test. For the training time, the dom-

inant computational cost is sorting uncalibrated probabilities, which is asymptotically θ(N logN).

The asymptotic computational cost of BBQ at test time is at the same order of time as single his-

togram binning since the number of binning models that will be selected after the post processing

refinement procedure will be very small in practice. By the way, at the worst case the number of

binning models in BBQ is equal to θ( 3
√
N), thus the worst case time complexity at the test time is
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equal to θ( 3
√
N logN).

3.3 CALIBRATION USING NEAR ISOTONIC REGRESSION

In this section we introduce the ensemble of near isotonic regression (ENIR) calibration method.

The essential idea in ENIR is to use prior knowledge that the scores to be calibrated are in fact

generated by a well-performing classifier in terms of discrimination. Isotonic Regression-based

calibration (IsoReg) also uses such prior knowledge; however, it is biased by constraining the cal-

ibrated scores to obey the ranking imposed by the classifier. In the limit, this is equivalent to

presuming the classifier has AUC equal to 1, which rarely happens in real world applications. In

contrast, BBQ does not make any assumptions about the correctness of classifier rankings. ENIR

provides a balanced approach that spans between IsoReg and BBQ. In particular, ENIR assumes

that the mapping from uncalibrated scores to calibrated probabilities is a near isotonic (monotonic)

mapping; it allows violations of the ordering imposed by the classifier and then penalizes them

through the use of a regularization term. Figure 4 shows the calibration curve of a logistic regres-

sion binary classifier trained on the liver-disorder UCI dataset. The dataset consists of 345 total

instances and the final AUC is equal to 0.73. The figure shows that the isotonicity assumption

made by IsoReg is violated when comparing the frequency of observations in the first and the

second bins.

ENIR utilizes the near isotonic regression method (Tibshirani et al., 2011) that seeks a nearly

monotone approximation for a sequence of data y1, . . . , yn. The proposed calibration model ex-

tends the commonly used isotonic regression-based calibration by a (approximate) selective Bayesian

averaging of a set of nearly isotonic regression models. The set includes the isotonic regression

model as an extreme member. From another viewpoint, ENIR can be considered as an extension

to a recently proposed calibration model BBQ (Pakdaman Naeini et al., 2015a) by relaxing the

assumption that probability estimates are independent inside the bins and finding the boundary of

the bins automatically through an optimization algorithm.

Before getting into the details of the method, we define some notation. Let yi and zi define

respectively an uncalibrated classifier prediction and the true class of the i’th instance. Since we
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Figure 4: Calibration curve based on the use of 5 equal frequency bins when we use a logistic re-

gression model for the binary classification task in the liver-disorder UCI dataset. Considering the

frequency of observations in the first and the second bin, we notice the violation of the isotonicity

assumption that was made by IsoReg.

aim to calibrate a binary classifier’s output5, thus, zi ∈ {0, 1} and yi ∈ [0, 1]. Let D define the

set of all training instances (yi, zi). Without loss of generality, we can assume that the instances

are sorted based on the classifier scores yi, so we have y1 ≤ y2 ≤ . . . ≤ yN , where N is the total

number of samples in the training data.

The standard isotonic regression based calibration model finds the calibrated probability esti-

mates by solving the following optimization problem:

p̂iso = argmin
p∈RN

1

2

N∑
i=1

(pi − zi)2

s.t. p1 ≤ . . . ≤ pN

0 ≤ pi ≤ 1 ∀i ∈ {1, . . . , N},

(3.13)

where p̂iso is the vector of calibrated probability estimates. The rationale behind the model is

to assume that the base classifier ranks the instances correctly. To find the calibrated probability

5For classifiers that output scores that are not in the unit interval (e.g. SVM), we use a simple sigmoid transforma-
tion f(x) = 1

1+exp(−x) to transform the scores into the unit interval.
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estimates, it seeks the best fit of the data that are consistent with the classifier’s ranking. A unique

solution to the above convex optimization program exists and can be obtained by an inductive

iterative algorithm called pool adjacent violator algorithm (PAVA) that runs in O(N). Note, how-

ever, that isotonic regression calibration still needs O(N logN) computations, due to the fact that

instances are required to be sorted based on the classifier scores yi. PAVA iteratively groups the

consecutive instances that violate the ranking constraint and uses their average over z (frequency

of positive instances) as the calibrated estimate for all the instances within the group. We define the

set of these consecutive instances that are located in the same group and attain the same predicted

calibrated estimate as a bin. Therefore, an isotonic regression-based calibration can be viewed

as a histogram binning method (Zadrozny and Elkan, 2002) where the position of boundaries are

selected by fitting the best monotone approximation to the training data according to the ranking

imposed by the classifier.

One can show that the second constraint in the optimization given by Equation 3.13 is redun-

dant, and it is possible to rewrite the equation in the following equivalent form:

p̂iso = argmin
p∈RN

1

2

N∑
i=1

(pi − zi)2 + λ
N−1∑
i=1

(pi − pi+1)νi

s.t. λ = +∞,

(3.14)

where νi = 1(pi > pi+1) is the indicator function of ranking violation. Relaxing the equality

constraint in the above optimization program leads to a new optimization problem called nearly

isotonic regression (Tibshirani et al., 2011).

p̂λ = argmin
p∈RN

1

2

N∑
i=1

(pi − zi)2 + λ

N−1∑
i=1

(pi − pi+1)νi, (3.15)

where λ is a positive real number that regulates the tradeoff between the monotonicity of the

calibrated estimates with the goodness of fit by penalizing adjacent pairs that violate the ordering

imposed by the base classifier. The above optimization problem is convex having a unique solution

p̂λ, where the use of the subscript λ emphasizes the dependency of the final solution to the value

of λ.

The entire path of solutions for any value of λ of the near isotonic regression problem can be

found using a similar algorithm to PAVA which is called modified pool adjacent violator algorithm

30



(mPAVA) (Tibshirani et al., 2011). mPAVA finds the whole solution path inO(N logN), and needs

O(N) memory space. Briefly, the algorithm works as follows: It starts by constructing N bins,

each bin containing a single instance of the train data. Next, it finds the solution path by starting

from the saturated fit pi = zi, that corresponds to setting λ = 0, and then increasing λ iteratively.

As the λ increases the calibrated probability estimates p̂λ,i, for each bin, will change linearly with

respect to λ until the calibrated probability estimates of two consecutive bins attain equal value. At

this stage, mPAVA merges the two bins that have the same calibrated estimate to build a larger bin,

and it updates their corresponding estimate to a common value. The process continues until there

is no change in the solution for a large enough value of λ that corresponds to finding the standard

isotonic regression solution. The essential idea of mPAVA is based on a theorem stating that if two

adjacent bins are merged on some value of λ to construct a larger bin, then the new bin will never

split for all larger values of λ (Tibshirani et al., 2011).

mPAVA yields a collection of nearly isotonic calibration models, with the over fitted calibration

model at one end (p̂λ=0 = z) and the isotonic regression solution at the other (p̂λ=λ∞ = p̂iso),

where λ∞ is a large positive real number. Each of these models can be considered as a histogram

binning model where the position of boundaries and the size of bins are selected according to how

well the model trades off the goodness of fit with the preservation of the ranking generated by the

classifier, which is governed by the value of λ, (As λ increases the model is more concerned to

preserving the original ranking of the classifier, while for the small λ it prioritizes the goodness of

fit.)

ENIR employs the approach just described to generate a collection of models (one for each

value of λ). It then uses the Bayesian Information Criterion (BIC) to score each of the models
6. Assume mPAVA yields the binning models M1,M2, . . . ,MT , where T is the total number of

models generated by mPAVA. For any new classifier output y, the calibrated prediction in the

ENIR model is defined using selective Bayesian model averaging (Hoeting et al., 1999):

P (z = 1|y) =
T∑
i=1

Score(Mi)∑T
j=1 Score(Mj)

P (z = 1|y,Mi),

where P (z = 1|y,Mi) is the probability estimate obtained using the binning model Mi for the un-

calibrated classifier output y. Also, Score(Mi) is defined using the BIC scoring function (Schwarz

6Note that we exclude the highly overfitted model that corresponds to λ = 0 from the set of models in ENIR
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et al., 1978). Next, for the sake of the completeness, we briefly describe the mPAVA algorithm;

more detailed information about the algorithm and the derivations can be found in (Tibshirani et al.,

2011).

3.3.1 The Modified PAV Algorithm

Suppose at a value of λwe haveNλ bins,B1, B2, . . . , BNλ . We can represent the unconstrained op-

timization program given by Equation 3.15 as the following loss function that we seek to minimize

:

LB,λ(z,p) =
1

2

Nλ∑
i=1

∑
j∈Bi

(pBi − zi)2+

λ

Nλ−1∑
i=1

(pBi − pBi+1
)νi,

(3.16)

where pBi defines the common estimated value for all the instances located at the bin Bi. The loss

function LB,λ is always differentiable with respect to pBi unless two calibrated probabilities are

just being joined (which only happens if pBi = pBi+1
for some i). Assuming that p̂Bi(λ) is optimal,

the partial derivative of LB,λ has to be 0 at p̂Bi(λ), which implies:

|Bi|p̂Bi(λ)−
∑
j∈Bi

zj + λ(νi − νi−1) = 0 for i = 1, . . . , Nλ (3.17)

Rewriting the above equation, the optimum predicted value for each bin can be calculated as:

p̂Bi(λ) =

∑
j∈Bi zj − λνi + λνi−1

|Bi|
for i = 1, . . . , Nλ (3.18)

While PAVA uses the frequency of instances in each bin as the calibrated estimate, Equation

3.18 shows that mPAVA uses a shrunken version of the frequencies by considering the estimates

that are not following the ranking imposed by the base classifier. In Equation 3.17, taking deriva-

tives with respect to λ yields:

∂p̂Bi
∂λ

=
νi−1 − νi
|Bi|

, for i = 1, . . . , Nλ, (3.19)
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where we set ν0 = νN = 0 for notational convenience. As we noted above, it has been proven

that the optimal values of the instances located in the same bin are tied together and the only

way that they can change is to merge two bins as they can never split apart as the λ increases

(Tibshirani et al., 2011). Therefore, as we make changes in λ, the bins Bi, and hence the values

νi remain constant. This implies the term ∂p̂Bi
∂λ

is a constant in Equation 3.19. Consequently, the

solution path remains piecewise linear as λ increases, and the breakpoints happen when two bins

merge together. Now, using the piecewise linearity of the solution path and assuming that the two

bins Bi and Bi+1 are the first two bins to merge by increasing λ, the value of λi,i+1 at which the

two bins Bi and Bi+1 will merge is calculated as:

λi,i+1 =
p̂Bi(λ)− p̂Bi+1

(λ)

ai+1 − ai
+ λ for i = 1, . . . Nλ − 1, (3.20)

where ai =
∂p̂Bi
∂λ

is the slope of the changes of p̂Bi with respect to λ according to Equation

3.19. Using the above identity, the λ at which the next breakpoint occurs is obtained using the

following equation:

λ∗ = min
i
λi,i+1

I
∗ = {i|λi,i+1 = λ∗},

(3.21)

where I
∗ indicates the set of the indexes of the bins that will be merged by their consecutive

bins changing the λ7. If λ∗ < λ then the algorithm will terminate since it has obtained the standard

isotonic regression solution, and by increasing λ none of the existing bins will ever merge. Having

the solutions of the near isotonic regression problem in Equation 3.15 at the breakpoints, and using

the piecewise linearity property of the solution path, it is possible to recover the solution for any

value of λ through interpolation. However, the current implementation of ENIR only uses the near

isotonic regression based calibration models that corresponds to the value of λ at the breakpoints.

The sketch of the algorithm is shown as Algorithm 2.

7Note that there could be more than one bin achieving the minimum in Equation 3.21, so they should be all merged
with the bins that are located next to them.
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3.4 CALIBRATION USING LINEAR TREND FILTERING

In all the classifier calibration methods, the post-processing step can be seen as a mapping func-

tion that transforms the outputs of a classification model to probabilities that are intended to be

well-calibrated. In all of the histogram binning-based calibration models —including quantile bin-

ning (Zadrozny and Elkan, 2001b), isotonic-regression-based calibration (IsoReg) (Zadrozny and

Elkan, 2002), and our previous Bayesian extensions to the histogram binning, ABB and BBQ,

(Pakdaman Naeini et al., 2015c,a) — the generated mapping function will be a piecewise constant

function. In this section we introduce the ensemble of linear trend estimation (ELiTE) calibration

method that has the following three main advantages relative to all the above histogram binning-

based calibration methods: (1) ELiTE assumes that the calibration mapping function is piecewise

linear while the mapping found by quantile binning, IsoReg, ABB, and BBQ are always piecewise

constant, (2) ELiTE removes the restrictive assumption that probability estimates are independent

between the neighboring bins, and (3) ELiTE automatically finds the boundary of the bins through

an optimization algorithm by trading off the best fit of the training instances for the tendency to

follow the same trend in probability estimates. This trade-off will be controlled by a regularization

parameter.

In order to describe the details of the method, we use similar notation used in describing

ENIR: Let yi and zi define respectively an uncalibrated classifier prediction and the true class

of the i’th instance. In this chapter, we focus on calibrating a binary classifier’s output8, and thus,

zi ∈ {0, 1} and yi ∈ [0, 1]. Without loss of generality, we can assume that the instances are sorted

based on the classifier scores yi, so we have y1 < y2 < . . . < yN , where N is the total number

of samples in the training data. Borrowing the term “bin” from the histogram binning literature,

we define each bin as the largest interval over the training data with a uniform slope of change.

The problem of finding an optimum piecewise linear calibration mapping can be formulated as the

8For classifiers that output scores that are not in the unit interval (e.g., SVM), we use a simple sigmoid transforma-
tion f(x) = 1

1+exp(−x) to transform the scores into the unit interval.
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following optimization program:

p̂ = argmin
p∈RN

1

2

N∑
i=1

(pi − zi)2

s.t. ||v||0 ≤ B − 1

(3.22)

where ||v||0 =
∑

i 1(vi 6= 0) is `0 norm defined as the number of nonzero elements of the vector v.

Also, the vector v ∈ RN−2 is defined as the second order finite difference vector associated with

the training data 9 vi = pi+2−pi+1

yi+2−yi+1
− pi+1−pi

yi+1−yi , and B is an optimization parameter that is defined as

the maximum number of bins that we could have over all the training data (Thus, B − 1 shows the

number of change points or kinks in the calibration mapping function). The above optimization

program tries to keep the estimated probability pi close to zi, the true class of the corresponding

training instance, while the program constrains the number of kinks or change points in the slope

of the calibration mapping 10. Solving the above optimization program is intractable and requires

combinatorial optimization methods (Kim et al., 2009). A natural convex relaxation of this problem

can be obtained by substituting the `0 norm with the `1 norm using the sparsity property of the `1

norm. After relaxing the `0 norm, it is possible to rewrite the resulting constrained optimization

program in the following equivalent Lagrangian form:

p̂ = argmin
p∈RN

1

2

N∑
i=1

(pi − zi)2 + λ||v||1 (3.23)

where p̂ = (p̂1, . . . , p̂n) is the vector of calibrated estimates and ||v||1 =
∑N

i=1 |
pi+2−pi+1

yi+2−yi+1
− pi+1−pi

yi+1−yi |.

Also, λ is a positive real number that regulates the trade-off between the complexity of the model

and the goodness of fit by penalizing the total variation over the slope of the resulting calibration

mapping function. The above optimization program is equivalent to the `1 (linear) trend filtering

signal approximation model (Kim et al., 2009). The linear trend filtering itself is a special case of

the recently introduced adaptive piecewise polynomial trend filtering model (Tibshirani, 2014) 11.

9Note that an element of v is zero when the slope remains the same between two successively predicted points.
10If some of the training instances obtain equal classification scores, they will be replaced by an instance with the

target value z that is equal to the average of their corresponding zi. In this case, we form a weighted objective in the
optimization program in Equation 3.22

11Note that the adaptive piecewise polynomial trend filtering model is itself a special case of generalized lasso
problem (Tibshirani and Taylor, 2011)
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The piecewise linear trend filtering estimation has the following properties that make it an

attractive choice for estimating the calibration mapping function: (1) The final solution to the

optimization program p̂ will be a continuous piecewise linear function with the change points

occurring on the training data (Kim et al., 2009), so the final calibration mapping function will

be a continuous function of uncalibrated scores yi, and the estimated probabilities will not have

any abrupt changes at the boundary of the bins, (2) Due to shrinkage property of the lasso-based

penalties, the final probability estimates in two neighboring bins will shrink toward each other

(Tibshirani and Taylor, 2011), as a result it will relax the restrictive independence assumption

made in histogram binning-based calibration models, (3) The solution path to the optimization

program in Equation 3.23 is piecewise linear with respect to the regularization parameter λ. This

will make it computationally efficient to find the entire path of the solutions to the trend filtering

problem for small sample sizes (Tibshirani and Taylor, 2011).

There are a few different methods to solve the trend filtering optimization problem: It is pos-

sible to convert the trend filtering problem into the standard lasso problem and then use the LARS

algorithm to find all the solution paths with respect to λ (Efron et al., 2004; Tibshirani and Tay-

lor, 2011). It is also possible to cast the problem as a special case of the generalized lasso signal

approximation (Tibshirani and Taylor, 2011), and then derive the dual program and utilize the

piecewise linearity property of the solution path in the dual program to find the entire path of the

solutions (Tibshirani and Taylor, 2011). However, these two methods do not scale well for large

N (Tibshirani, 2014). Another approach is to use coordinate descent methods to solve the dual

program of the generalized lasso problem (Tibshirani, 2014). There are two specialized optimiza-

tion methods designed to solve the trend filtering optimization problem. The first method is based

on the specialized interior-point method optimization that was proposed by Kim et al. (Kim et al.,

2009). The method requires O(N) computations to solve a banded linear system of equations in

each iteration of the interior-point optimization algorithm; in the worst-case it will solve the trend

filtering for a single value of λ in O(N1.5). However, the authors claim that in practice the interior-

point method converges in tens of iterations, in which case the general running time for solving the

optimization problem will still be O(N).

The other specialized optimization method for trend filtering problem is recently proposed by

Ramdas and Tibshirani (2014). They introduced a specialized alternating direction method of mul-
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tipliers (ADMM), and they showed that their method has better scalability and faster convergence

rate for large scale problems compared to the interior-point based method, while on the small sam-

ple sizes they have similar performance to the interior-point based method proposed by Kim et al.

(2009). In our implementation of ELiTE, we use the specialized ADMM optimization method 12.

For the sake of completeness, we briefly describe the method; more detailed information about the

algorithm and the derivations can be found in Ramdas and Tibshirani (2014).

In order to solve the trend filtering problem in Equation 3.23, the specialized ADMM method

introduces a new auxiliary parameterα to rewrite the unconstrained optimization program in Equa-

tion 3.23 as the following constrained optimization program:

p̂ = argmin
p∈RN ,α∈RN−1

1

2
||p− z||22 + λ||DN−1α||1

s.t. α = Ap,

(3.24)

where Dk ∈ Rk−1×k is defined as follows:

Dk =


−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
... . . . ...

...

0 0 0 . . . −1 1

 ,

and, A = diag( 1
y2−y1 ,

1
y3−y2 , . . . ,

1
yN−yN−1

)DN . The corresponding augmented Lagrangian of

the optimization program in Equation 3.24 will be as L(p,α,u) = 1
2
||p− z||22 + λ||DN−1α||1 +

ρ
2
||α − Ap + u||22 −

ρ
2
||u||22. Using the augmented Lagrangian and performing some calculations

(Boyd et al., 2011), the ADMM iterations will be as follows:

p ← (I + ρATA)−1(z + ρAT (α+ u))

α ← argmin
α∈RN−1

1

2
||Ap− u−α||22 +

λ

ρ
||DN−1α||1

u ← u +α− Ap

The tricky part in the above sequential updates is the second equation related to updating the

value of α. It requires solving an optimization problem that is equivalent to the fused lasso signal
12The specialized ADMM code is publicly available at https://github.com/statsmaths/glmgen
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approximation (Tibshirani et al., 2005). In implementing the specialized ADMM method, Ramdas

et al. used a computationally efficient dynamic programming method proposed by Johnson (2013)

that finds the fused lasso solution in O(N). They reported that ADMM iterations converge in a

constant number of iterations. As a result, the ultimate time for finding the trend filtering solution

will still be O(N) (Ramdas and Tibshirani, 2014).

ELiTE employs the specialized ADMM optimization method just described to generate a col-

lection of trend filtering models (one for each value of λ ranging equally in the log space from

λmax to λmax ∗ 10−4, where λmax is the corresponding value of λ that gives the best affine ap-

proximation of the calibration mapping that is λmax = ||(DN−1AA
TDT

N−1)−1DN−1Az||∞ (Kim

et al., 2009)). It then uses the Akaike information criterion with a correction for finite sample sizes

(AICc) (Cavanaugh, 1997) to score each of the models 13. We use the unbiased estimate of the

degree of freedom for each linear trend filtering model as the effective number of parameters in

computing the scores (Tibshirani, 2014). Assume ELiTE yields the piecewise linear calibration

models M1,M2, . . . ,MT , where T is the total number of generated models by changing λ (in our

experiments T = 50). For any new classifier output y, the calibrated prediction in the ELiTE model

is defined using the following weighted averaging (Hoeting et al., 1999):

P (z = 1|y) =
T∑
i=1

Score(Mi)∑T
j=1 Score(Mj)

P (z = 1|y,Mi),

where P (z = 1|y,Mi) is the probability estimate obtained using the trend filter model Mi for

the uncalibrated classifier output y. Also, Score(Mi) is obtained using the AICc scoring function

(Schwarz et al., 1978). A nice property of using ELiTE in calibrating binary classification models,

is its ability to include other type of prior knowledge to the optimization program through new

constraints. For instance, it is possible to add the near-isotonicity constraints to the linear trend

filtering optimization program to find a linear trend calibration mapping which is nearly isotonic.

This can be done by simply adding the near-isotonic constraint to our formulation (Ramdas and

Tibshirani, 2014).

13We also tried BIC and AIC model scoring functions. The AIC scoring shows extreme overfitting to the training
data, while BIC results were comparable to AICc scoring. We finally chose AICc since it performed slightly better
than BIC in general.
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input : D = {(y1, z1), . . . , (yN , zN )}
output : (1) a set of binning models M1, . . . ,MT ,

(2) their corresponding scoring S1, . . . , ST
Invariant: Pairs are sorted based on yi
λ← 0;
λ∗ ← 0;
t← 1;
Nλ = N ;
for i← 1 to N do

Bi = {i} ;
pi = zi ;

end
while λ∗ = λ do

Update the slopes ai using Equation 3.19;
Update merging values λi,i+1 using Equation 3.20;
Compute λ∗ and I

∗ using Equation 3.21;
if λ∗ ≤ λ then

terminate ;
end
for i← 1 to Nλ do

//update corresponding probability estimate as:
p̂Bi(λ

∗) = p̂Bi(λ) + ai × (λ∗ − λ);
end
Merge appropriate bins as indicated in the set I∗ ;
Update number of bins Nλ;
Store the corresponding calibration model in Mt;
Store the score of the calibration model in St;
λ← λ∗;
t← t+ 1 ;

end
Algorithm 2: The modified pool adjacent violators algorithm (mPAVA) that yields a set of near-

isotonic-regression-based calibration models M1, . . . ,MT
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4.0 EMPIRICAL RESULTS ON BINARY CLASSIFIER CALIBRATION METHODS

This chapter presents the results and findings of our newly introduced binary classifier calibration

methods compared with several commonly used calibration methods including Platt’s method,

histogram binning, and isotonic regression. We will present the results in seven main sections.

Section 4.1 presents the experimental results for our proposed calibration methods based on KDE

and DPM. Section 4.2.1 shows the results of our experiments on SBB and ABB. The results

are published in the SIAM Data Mining (SDM) 2015 (Pakdaman Naeini et al., 2015b). Section

4.2.2 presents our results and findings on utilizing BBQ for calibrating binary classifiers, these

set of the results have been published at AAAI 2015 (Pakdaman Naeini et al., 2015a). Section

4.3 presents the results of our proposed binary classifier calibration method ENIR, these set of

the results have been submitted to ICDM 2016. Section 4.4 presents the experimental result of

our newly introduced binary classifier calibration method ELiTE, these set of the results have

been published at SDM 2016 (Pakdaman Naeini et al., 2015a). Section 4.2.3 present the set of

experiments in comparing the two Bayesian extensions that we introduced to the histogram binning

calibration method. Finally, Section 4.5 concludes this chapter by presenting the set of experiments

we performed to compare our newly introduced binary classifier calibration methods including:

KDE based calibration method, BBQ, ENIR, and ELiTE.

4.1 EXPERIMENTAL RESULTS ON KDE-DPM

This section describes the set of experiments that we performed to evaluate the performance of

calibration methods based KDE and DPM described in section 3.1. To evaluate the calibration

performance of each method, we ran experiments on both simulated and on real data. For the
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Table 3: Experimental Results on Simulated dataset 5(b)

(a) SVM Linear

SVM Hist Platt IsoReg KDE DPM

RMSE 0.50 0.39 0.50 0.46 0.38 0.39

AUC 0.50 0.84 0.50 0.65 0.85 0.85

ACC 0.48 0.78 0.52 0.64 0.78 0.78

MCE 0.52 0.19 0.54 0.58 0.09 0.16

ECE 0.28 0.07 0.28 0.35 0.03 0.07

(b) SVM Quadratic Kernel

SVM Hist Platt IsoReg KDE DPM

RMSE 0.21 0.09 0.19 0.08 0.09 0.08

AUC 1.00 1.00 1.00 1.00 1.00 1.00

ACC 0.99 0.99 0.99 0.99 0.99 0.99

MCE 0.35 0.04 0.32 0.03 0.07 0.03

ECE 0.14 0.01 0.15 0.00 0.01 0.00

evaluation of the calibration methods, we used 5 different measures. The first two measures are

Accuracy (ACC) and the Area Under the ROC Curve (AUC), which measure discrimination. The

three other measures are the Root Mean Square Error (RMSE), Expected Calibration Error (ECE),

and Maximum Calibration Error (MCE), which measure calibration.

Simulated data. For the simulated data experiments, we used a binary classification dataset

in which the outcomes were not linearly separable. The scatter plot of the simulated dataset is

shown in Figure 5(b). The data were divided into 1000 instances for training and calibrating the

prediction model, and 1000 instances for testing the models.

To conduct the experiments on simulated datasets, we used two extreme classifiers: support

vector machines (SVM) with linear and quadratic kernels. The choice of SVM with a linear kernel

allows us to see how the calibration methods perform when the classification model makes over

simplifying (linear) assumptions. Also, to achieve good discrimination on the data in figure 5(b),

SVM with quadratic kernel is intuitively an ideal choice. So, the experiment using quadratic kernel

SVM allows us to see how well different calibration methods perform when we use an ideal learner

for the classification problem, in terms of discrimination.

As seen in Table 3, KDE and DPM based calibration methods performed better than Platt and

isotonic regression in the simulation datasets, especially when the linear SVM method is used as

the base learner. The poor performance of Platt is not surprising given its simplicity, which consists

of a parametric model with only two parameters. However, isotonic regression is a nonparametric
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model that only makes a monotonicity assumption over the output of base classifier. When we

use a linear kernel SVM, this assumption is violated because of the non-linearity of data. As a

result, isotonic regression performs relatively poorly, in terms of improving the discrimination and

calibration capability of a base classifier. The violation of this assumption can happen in real

data as well. In order to mitigate this pitfall, Menon et al. (2012) proposed using a combination

of optimizing AUC as a ranking loss measure, plus isotonic regression for building a ranking

model. However, this is counter to our goal of developing post-processing methods that can be

used with any existing classification models. As shown in Table 3(b), even if we use an ideal

SVM classifier for these linearly non-separable datasets, our proposed methods perform better or

comparable isotonic regression based calibration.

As can be seen in Table 3(b), although the SVM base learner performs very well in the sense

of discrimination based on AUC and ACC measures, it performs poorly in terms of calibration, as

measured by RMSE, MCE, and ECE. Moreover, all of the calibration methods retain the same dis-

crimination performance that was obtained prior of post-processing, while improving calibration.

Real data. In terms of real data, we used a KDD-98 dataset , which is available from the

UCI KDD repository. The dataset contains information about people who donated to a particular

charity. Here the decision making task is to decide whether a solicitation letter should be mailed

to a person or not. The letter costs $0.68. The training set includes 95, 412 instances in which it

is known whether a person made a donation, and if so, how much the person donated. Among all

these training cases, 4, 843 were responders. The validation set includes 96, 367 instances from the

same donation campaign of which 4, 873 where responders.

Following the procedure in (Zadrozny and Elkan, 2001b, 2002), we built two models: a re-

sponse model r(x) for predicting the probability of responding to a solicitation, and an amount

model a(x) for predicting the amount of donation of person x. The optimal mailing policy is

to send a letter to those people for whom the expected donation return r(x)a(x) is greater than

the cost of mailing the letter. Since in this research we are not concerned with feature selection,

our choice of attributes are based on (Mayer and Sarkissian, 2003) for building the response and

amount prediction models. Following the approach in (Zadrozny and Elkan, 2001a), we built the

amount model on the positive cases in the training data, removing the cases with more than $50 as

outliers. Following their construction, we also provided the output of the response model r(x) as
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an augmented feature to the amount model a(x).

In our experiments, in order to build the response model, we used three different classifiers:

SVM , LogisticRegression and naiveBayes. For building the amount model, we also used a

support vector regression model. For implementing these models, we used the liblinear package

(Fan et al., 2008). The results of the experiment are shown in Table 4. In addition to previous

measures of comparison, we also show the amount of profit obtained when using different methods.

As seen in these tables, the application of calibration methods results in at least $3000 more in

expected net gain from sending solicitations. This result also supports the general point made

in Chapter 1 about the importance of using calibrated probabilities in solving decision analysis

problems.

4.2 EXPERIMENTAL RESULTS FOR BAYESIAN BINNING METHODS

This section presents the results of our experiments on evaluating the performance of our Bayesian

extensions to histogram binning calibration method. Section 4.2.1 presents the empirical results

for evaluating the performance of the selective Bayesian binning (SBB) and averaging Bayesian

binning (ABB) models that presented in Section 3.2.1. Section 4.2.1 presents the results of exper-

iments on the Bayesian Binning into Quantile (BBQ) method. Section 4.2.3 presents the results of

experiments on comparing the performance of ABB versus BBQ. Finally, Section 4.2.4 presents

the results of experiments on comparing performance of the two scoring functions K2 and BDeu

in building our Bayesian binning calibration methods.

4.2.1 Experimental Results for ABB-SBB

This section describes the set of experiments that we performed to evaluate the calibration methods

described in Section 3.2.1. To evaluate the calibration performance of each method, we ran exper-

iments using both simulated data and real data. In our experiments on simulated data, we used

logistic regression (LR) as the base classifier, whose predictions are to be calibrated. The choice of

logistic regression was made to let us compare our results with the state-of-the-art method ACP ,
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Table 4: Experimental Results on KDD 98 dataset. The first column of each table shows the result

of a model without post-processing calibration

(a) Logistic Regression

LR Hist Plat IsoReg KDE DPM

RMSE 0.500 0.218 0.218 0.218 0.218 0.219

AUC 0.613 0.610 0.613 0.612 0.611 0.613

ACC 0.56 0.95 0.95 0.95 0.95 0.95

MCE 0.454 0.020 0.013 0.030 0.004 0.017

ECE 0.449 0.007 0.004 0.013 0.002 0.003

Profit 10560 13183 13444 13690 12998 13696

(b) Naı̈ve Bayes

NB Hist Plat IsoReg KDE DPM

RMSE 0.514 0.218 0.218 0.218 0.218 0.218

AUC 0.603 0.600 0.603 0.602 0.602 0.603

ACC 0.622 0.949 0.949 0.949 0.949 0.949

MCE 0.850 0.008 0.008 0.046 0.005 0.010

ECE 0.390 0.004 0.004 0.023 0.002 0.003

Profit 7885 11631 10259 10816 12037 12631

(c) SVM Linear

SVM Hist Plat IsoReg KDE DPM

RMSE 0.696 0.218 0.218 0.219 0.218 0.218

AUC 0.615 0.614 0.615 0.500 0.614 0.615

ACC 0.95 0.95 0.95 0.95 0.95 0.95

MCE 0.694 0.011 0.013 0.454 0.003 0.019

ECE 0.660 0.004 0.004 0.091 0.002 0.004

Profit 10560 13480 13080 11771 13118 13544
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which as published is tailored for LR. For the simulated data, we used two synthetic datasets in

which the outcomes were not linearly separable. The scatter plots of the two simulated datasets

are shown in Figures 5(a), 5(b). These extreme choices allow us to see how well the calibration

methods perform when the classification model makes over simplifying (linear) assumptions in

learning non-linear concepts. In the simulation data we used 600 randomly generated instances

for training the LR model, 600 random instances for learning calibration-models, and 600 random

instances for testing the models 1.

We also performed experiments on three different sets of real binary classification data. The

first set is the UCI Adult dataset. The prediction task is a binary classification problem to predict

whether a person makes over $50K a year using his or her demographic information. From the

original Adult dataset, which includes 48842 total instances with 14 real and categorical features,

we used randomly 2000 instances for training classifiers, 600 for calibration-model learning, and

600 instances for testing.

We also used the UCI SPECT dataset, which is a small biomedical binary classification dataset.

SPECT allows us to examine how well each calibration method performs when the calibration

dataset is small in a real application. The dataset involves the diagnosis of cardiac Single Proton

Emission Computed Tomography (SPECT) images. Each of the patients is classified into two

categories: normal or abnormal. This dataset consists of 80 training instances, with an equal

number of positive and negative instances, and 187 test instances with only 15 positive instances.

The SPECT dataset includes 22 binary features. Due to the small number of instances, we used

the original training data as both our training and calibration datasets, and we used the original test

data as our test dataset.

For the experiments on the Adult and SPECT datasets, we used three different classifiers: LR,

naı̈ve Bayes, and SVM with a polynomial kernels. The choice of the LR model allows us to include

the ACP method in the comparison, because as mentioned it is tailored to LR. Naı̈ve Bayes is a

well-known, simple, and practical classifier that often achieves good discrimination performance,

although it is usually not well calibrated. We included SVM because it is a relatively modern

1Based on our experiments, the separation between training set and calibration set is not necessary. However,
Zadrozny and Elkan (2001b) states that for the histogram model it is better to use another set of instances for calibrating
the output of classifier in order to prevent overfitting; thus, we do so in our experiments.

45



(a) Scatter plot of XOR configuration

(b) Scatter plot of Circular configuration

Figure 5: Scatter plots of the simulated data: The top panel shows the XOR configuration dataset in which
the black curves indicate the decision boundaries found by using SVM with RBF kernel. The bottom panel
shows the circular configuration dataset in which the black oval indicates the decision boundary found using
SVM with a quadratic kernel.
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classifier that is being frequently applied 2.

The other real dataset that we used for evaluation contains clinical findings (e.g., symptoms,

signs, laboratory results) and outcomes for patients with community acquired pneumonia (CAP)

(Fine et al., 1997). The classification task we examined involves using patient findings to predict

dire patient outcomes, such as mortality or serious medical complications. The CAP dataset in-

cludes a total of 2287 patient cases (instances) that we divided into 1087 instances for training of

classifiers, 600 instances for learning calibration models, and 600 instances for testing the calibra-

tion models. The data includes 172 discrete and 43 continuous features. For our experiments on

the naı̈ve Bayes model, we just used the discrete features of data, and for the experiments on SVM

we used all 215 discrete and continuous features. Also, for applying the LR model to this dataset,

we first used the PCA feature transformation because of the high dimensionality of data and the

existing correlations among some features, which produced unstable results due to singularity is-

sues.

The Tables 5(a), 5(b), . . . , 5(j) show the comparisons of different methods with respect to

evaluation measures on the simulated and real datasets. In these tables in each row we show in

bold the two methods that achieved the best performance with respect to a specified measure.

As can be seen, there is no superior method that outperforms all the others on all dataset s

on all measures. However, SBB and ABB are superior to Platt and isotonic regression in all the

simulation datasets. We discuss the reason why below. Also, SBB and ABB perform as well or

better than isotonic regression and the Platt method on the real dataset s.

In all of the experiments, both on simulated datasets and real dataset s, both SBB and ABB

generally retain or improve the discrimination performance of the base classifier, as measured by

ACC and AUC. In addition, they often improve the calibration performance of the base classifier

in terms of the RMSE, ECE and MCE measures.

4.2.1.1 Discussion Having a well-calibrated classifier can be important in practical machine

learning problems. There are different calibration methods in the literature and each one has its own

pros and cons. The Platt’s method uses a sigmoid as a mapping function. The parameters of the

sigmoidal transformation function are learned using a maximum likelihood estimation framework.

2The output of the SVM model is mapped to the interval [0, 1] using a simple sigmoid function
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Table 5: Experimental Results on Simulated and Real datasets

(a) Non-Linear XOR configuration results
LR ACP IsoReg Platt Hist SBB ABB

AUC 0.497 0.950 0.704 0.497 0.931 0.914 0.941
ACC 0.510 0.887 0.690 0.510 0.855 0.887 0.888
RMSE 0.500 0.286 0.447 0.500 0.307 0.307 0.295
MCE 0.521 0.090 0.642 0.521 0.152 0.268 0.083
ECE 0.190 0.056 0.173 0.190 0.072 0.104 0.062

(b) Non-Linear Circular configuration results
LR ACP IsoReg Platt Hist SBB ABB

AUC 0.489 0.852 0.635 0.489 0.827 0.816 0.838
ACC 0.500 0.780 0.655 0.500 0.795 0.790 0.773
RMSE 0.501 0.387 0.459 0.501 0.394 0.393 0.390
MCE 0.540 0.172 0.608 0.539 0.121 0.790 0.146
ECE 0.171 0.098 0.186 0.171 0.074 0.138 0.091

(c) Adult Naı̈ve Bayes
NB IsoReg Platt Hist SBB ABB

AUC 0.879 0.876 0.879 0.877 0.849 0.879
ACC 0.803 0.822 0.840 0.818 0.838 0.835
RMSE 0.352 0.343 0.343 0.341 0.345 0.343
MCE 0.223 0.302 0.092 0.236 0.373 0.136
ECE 0.081 0.075 0.071 0.078 0.114 0.062

(d) Adult Linear SVM
SVM IsoReg Platt Hist SBB ABB

AUC 0.864 0.856 0.864 0.864 0.821 0.864
ACC 0.248 0.805 0.748 0.815 0.803 0.805
RMSE 0.587 0.360 0.434 0.355 0.362 0.357
MCE 0.644 0.194 0.506 0.144 0.396 0.110
ECE 0.205 0.085 0.150 0.077 0.108 0.061

(e) Adult Logistic Regression
LR ACP IsoReg Platt Hist SBB ABB

AUC 0.730 0.727 0.732 0.730 0.743 0.699 0.731
ACC 0.755 0.783 0.753 0.755 0.753 0.762 0.762
RMSE 0.403 0.402 0.403 0.405 0.400 0.401 0.401
MCE 0.126 0.182 0.491 0.127 0.274 0.649 0.126
ECE 0.075 0.071 0.118 0.079 0.092 0.169 0.076

(f) SPECT Naı̈ve Bayes
NB IsoReg Platt Hist SBB ABB

AUC 0.836 0.815 0.836 0.832 0.733 0.835
ACC 0.759 0.845 0.770 0.824 0.845 0.845
RMSE 0.435 0.366 0.378 0.379 0.368 0.374
MCE 0.719 0.608 0.563 0.712 0.347 0.557
ECE 0.150 0.141 0.148 0.145 0.149 0.157

(g) SPECT SVM Quadratic kernel
SVM IsoReg Platt Hist SBB ABB

AUC 0.816 0.786 0.816 0.766 0.746 0.810
ACC 0.257 0.834 0.684 0.845 0.813 0.813
RMSE 0.617 0.442 0.460 0.463 0.398 0.386
MCE 0.705 0.647 0.754 0.934 0.907 0.769
ECE 0.235 0.148 0.162 0.180 0.128 0.131

(h) SPECT Logistic Regression
LR ACP IsoReg Platt Hist SBB ABB

AUC 0.744 0.742 0.733 0.744 0.738 0.733 0.741
ACC 0.658 0.561 0.626 0.668 0.620 0.620 0.626
RMSE 0.546 0.562 0.558 0.524 0.565 0.507 0.496
MCE 0.947 1.000 1.000 0.884 0.997 0.813 0.812
ECE 0.181 0.187 0.177 0.180 0.183 0.171 0.173

(i) CAP Naı̈ve Bayes
NB IsoReg Platt Hist SBB ABB

AUC 0.848 0.845 0.848 0.831 0.775 0.838
ACC 0.730 0.865 0.847 0.853 0.832 0.865
RMSE 0.504 0.292 0.324 0.307 0.315 0.304
MCE 0.798 0.188 0.303 0.087 0.150 0.128
ECE 0.161 0.071 0.097 0.056 0.067 0.067

(j) CAP Linear SVM
SVM IsoReg Platt Hist SBB ABB

AUC 0.858 0.858 0.858 0.847 0.813 0.863
ACC 0.907 0.900 0.882 0.887 0.902 0.908
RMSE 0.329 0.277 0.294 0.287 0.285 0.274
MCE 0.273 0.114 0.206 0.110 0.240 0.121
ECE 0.132 0.058 0.093 0.057 0.083 0.050

(k) CAP Logistic Regression
LR ACP IsoReg Platt Hist SBB ABB

AUC 0.920 0.910 0.917 0.920 0.901 0.856 0.921
ACC 0.925 0.932 0.935 0.928 0.897 0.935 0.932
RMSE 0.240 0.240 0.234 0.242 0.259 0.240 0.240
MCE 0.199 0.122 0.286 0.154 0.279 0.391 0.168
ECE 0.066 0.062 0.078 0.082 0.079 0.103 0.069
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The main advantage of the Platt scaling method is its fast recall time. However, the shape of the

sigmoid function can be restrictive, and it often cannot produce well calibrated probabilities when

the instances are distributed in feature space in a biased fashion (e.g. at the extremes, or all near

separating hyper plane) (Jiang et al., 2012).

Table 6: Time complexity of calibration methods in training on N samples and application on 1

test sample

Platt Hist IsoReg ACP SBB ABB
Time

O(NT )/O(1) O(NlogN)/O(b) O(N)/O(b) O(NlogN)/O(N) O(N2)/O(b) O(RN2)/O(1)Complexity
(Training/Application)
Note that N and b are the size of training sets and the number of bins found by the method respectively. T is the number of iteration required for
convergence in Platt’s method and R reflects the number of bins being used by cached ABB.

Histogram binning is a non-parametric method which makes no special assumptions about the

shape of mapping function. However, it has several limitations, including the need to define the

number of bins and the fact that the bins remain fixed over all predictions (Zadrozny and Elkan,

2002). ABB alleviates these problems by performing Bayesian averaging over all set of possible

binning models on the training data.

Isotonic regression-based calibration is another non-parametric calibration method which has

been shown to perform very well in comparison to other calibration methods in real datasets

(Niculescu-Mizil and Caruana, 2005b; Caruana and Niculescu-Mizil, 2006; Zadrozny and Elkan,

2002). However, isotonic regression has some weaknesses. The most significant limitation of the

isotonic regression is its isotonicity (monotonicity) assumption. As seen in Tables 5(a), 5(b) in the

simulation data, when the isotonicity assumption is violated through the choice of classifier and

the nonlinearity of data, isotonic regression performs relatively poorly, in terms of improving the

discrimination and calibration capability of a base classifier. The violation of this assumption can

happen in real data secondary to the choice of learning models and algorithms, specifically when

we encounter large scale classification problems in which we have to make simplifying assump-

tions to build the learning models. In order to mitigate this pitfall, Menon et al. (2012) proposed a

new isotonic based calibration method using a combination of optimizing AUC as a ranking loss

measure, plus isotonic regression for building an accurate ranking model. However, this is counter

to our goal of developing post-processing methods that can be used with any existing classification
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models. There is also another interesting extension of isotonic regression for calibrating the output

of multiple classifiers (Zhong and Kwok, 2013), but it is not included in our experiments, since we

focus on calibrating the output of a single binary classifier in these experiments.

A classifier calibration method called adaptive calibration of predictions (ACP) was recently

introduced (Jiang et al., 2012). A given application of ACP is tied to a particular model M , such

as a logistic regression model, that predicts a binary outcome Z. ACP requires a 95% confidence

interval (CI) around a particular prediction pin ofM . ACP adjusts the CI and uses it to define a bin.

It sets pout to be the fraction of positive outcomes (Z = 1) among all the predictions that fall within

the bin. On both real and synthetic datasets, ACP achieved better calibration performance than a va-

riety of other calibration methods, including simple histogram binning, Platt scaling, and isotonic

regression (Jiang et al., 2012). The ACP post-calibration probabilities also achieved among the

best levels of discrimination, according to the AUC. ACP has several limitations, however. First,

it requires not only probabilistic predictions, but also a statistical confidence interval (CI) around

each of those predictions, which makes it tailored to specific classifiers, such as logistic regression

(Jiang et al., 2012). Second, based on a CI around a given prediction pin, it commits to a single

binning of the data around that prediction; it does not consider alternative binnings that might yield

a better calibrated pout. Third, the bin it selects is symmetric around pin by construction, which

may not optimize calibration. Finally, it does not use all of the training data, but rather only uses

those predictions within the confidence interval around pin. The proposed ABB method mitigates

these problems by performing a Bayesian averaging over all set of possible binning models on the

training data. As one can see from the tables, ACP performed well when logistic regression is

the base classifier, both in simulated and real datasets. Also, as can be seen in the results of our

experiments, SBB and ABB performed comparable to ACP in both simulation and real dataset s.

In general, the SBB and ABB algorithms appear promising, especially ABB, which overall

outperformed SBB. Neither algorithm makes restrictive (and potentially unrealistic) assumptions,

as does Platt scaling and isotonic regression. They also are not restricted in the type of classifier

with which they can apply, unlike ACP.

The main disadvantage of SBB and ABB is their running time. If N is the number of training

instances, then SBB has a training time of O(N2), due to its dynamic programming algorithm that

searches over every possible binning, whereas the time complexity of ACP, histogram binning,
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and isotonic regression are O(NlogN) (Jiang et al., 2012). Also, the cached version of ABB

has a training time of O(RN2), where R reflects the number of bins being used. Nonetheless, it

remains practical to use these algorithms to perform calibration on a desktop computer when using

training datasets that contain thousands of instances. Note that, the amount of data that is needed

to calibrate classification models is much less than the amount needed to train them, because the

calibration feature space has only a single dimension 3. In addition, the testing time is onlyO(b) for

SBB where b is the number of binnings found by the algorithm and O(1) for the cached version of

ABB. Table 6 shows the time complexity of different methods in learning for N training instances

and recall for only one instance.

4.2.2 Experimental Results for BBQ

This section describes the set of experiments that we performed to evaluate the performance of the

proposed calibration method in section 3.2.2 in comparison to other commonly used calibration

methods: histogram binning, Platt’s method, and isotonic regression. To evaluate the calibration

performance of each method, we ran experiments on both simulated and on real data.

4.2.2.1 Simulated Data For the simulated data experiments, we used the simulated binary clas-

sification dataset is shown in Figure 5(b). The data were divided into 1000 instances for training

and calibrating the prediction model, and 1000 instances for testing the models.

As seen in Tables 7, BBQ outperforms Platt’s method and isotonic regression on the simulation

dataset, especially when the linear SVM method is used as the base learner. The poor performance

of Platt’s method is not surprising given its simplicity, which consists of a parametric model with

only two parameters. However, isotonic regression is a non-parametric model that only makes a

monotonicity assumption over the output of the base classifier. When we use a linear kernel SVM,

this assumption is violated because of the non-linearity of data. As a result, isotonic regression

performs relatively poorly, in terms of improving the discrimination and calibration capability

of the base classifier. As shown in Table 7(b), even if we use an ideal SVM classifier for our

linearly non-separable dataset, the proposed method performs as well as an isotonic regression-

3It is actually the space of (uncalibrated) classifier’s outputs, which is the interval [0, 1]
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Table 7: Experimental Results on th circular configuration simulated dataset shown in Figure 5(b)

(a) SVM Linear

SVM Hist Platt IsoReg BBQ

AUC 0.50 0.84 0.50 0.65 0.85
ACC 0.48 0.78 0.52 0.64 0.78
RMSE 0.50 0.39 0.50 0.46 0.38
ECE 0.28 0.07 0.28 0.35 0.03
MCE 0.52 0.19 0.54 0.58 0.09

(b) SVM Quadratic Kernel

SVM Hist Platt IsoReg BBQ

AUC 1.00 1.00 1.00 1.00 1.00
ACC 0.99 0.99 0.99 0.99 0.99
RMSE 0.21 0.09 0.19 0.08 0.08
ECE 0.14 0.01 0.15 0.00 0.00
MCE 0.35 0.04 0.32 0.03 0.03

based calibration.

As can be seen in Table 7(b), although the SVM based learner performs very well in terms of

discrimination based on AUC and ACC measures, it performs poorly in terms of calibration, as

measured by RMSE, MCE, and ECE. Moreover, while improving calibration, all of the calibration

methods retain the same discrimination performance that was obtained prior to post-processing.

4.2.2.2 Real Data In terms of real data, we used 30 different real world binary classification

dataset s from the UCI and LibSVM repository 4 (Bache and Lichman, 2013; Chang and Lin,

2011). We used three common classifiers, namely, Logistic Regression (LR), Support Vector Ma-

chines (SVM), and Naive Bayes (NB) to evaluate the performance of the proposed calibration

method. To evaluate the performance of calibration models, we used the recommended statisti-

cal test procedure by Janez Demsar (Demšar, 2006). More specifically, we used the (modified)

Friedman nonparametric hypothesis testing method (Friedman, 1937; Iman and Davenport, 1980)
4The datasets used were as follows: spect, breast, adult, pageblocks, pendigits, ad, mamography, satimage, aus-

tralian, code rna, colon cancer, covtype, letter unbalanced, letter balanced, diabetes, duke, fourclass, german numer,
gisette scale, heart, ijcnn1, ionosphere scale, liver disorders, mushrooms, sonar scale, splice, svmguide1, svmguide3,
coil2000, balance.
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followed by Holm’s step-down procedure (Holm, 1979) to evaluate the performance of BBQ in

comparison to the other calibration methods across the 30 real dataset s. Next, we briefly describe

the test procedure; more detailed information can be found in (Demšar, 2006).

(a) AUC results with LR as classifier

(b) AUC results with SVM as classifier

(c) AUC results with NB as classifier

Figure 6: Performance of each method in terms of average rank of AUC on the real datasets. All the
methods which are not connected to BBQ by the horizontal bar are significantly different from BBQ (using
FF test followed by Holm’s step-down procedure at a 0.05 significance level).

The Friedman test (Friedman, 1937) is a non-parametric version of the ANOVA test. For more

concrete description of how the test performs, assume we aim to compare the performance of the

calibration methods in terms of RMSE and our base classifier is LR. The Friedman test ranks

the RMSE of LR in addition to the RMSE of the calibration methods (Hist, Platt, IsoReg, BBQ)

for each dataset separately, with the best performing method getting the rank of 1, the second best

the rank of 2, and so on. In case of ties, average ranks are assigned to the corresponding methods.

Let ri,j be the rank of i’th of the 5 methods (LR, Hist, Platt, Isoreg, BBQ) at the j’th of the 30

datasets. The Friedman test computes the average rank of each method Ri = 1
30

∑30
j=1 ri,j . The

null hypothesis states that all the methods are statistically equivalent and so their associated rank
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(a) ACC results with LR as classifier

(b) ACC results with SVM as classifier

(c) ACC results with NB as classifier

Figure 7: Performance of each method in terms of average rank of ACC on the real datasets. There is no
statistically significant difference between the performance of the methods in terms of ACC (using the FF
test at a 0.05 significance level).
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Ri should be equal. Under the null-hypothesis, the Friedman statistic

χ2
F =

12N

k(k + 1)

[∑
j

R2
j −

k(k + 1)2

4

]
is distributed according to χ2

F with k − 1 degrees of freedom, where N is the number of datasets

(30 in our case) and k is the number of methods (5 in our case). However, it is known that the

Friedman statistic is often unnecessarily conservative; thus, as suggested in (Demšar, 2006; Iman

and Davenport, 1980), we use a more accurate FF statistic defined as follows:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

Under the null hypothesis the FF statistic is distributed according to the F distribution with k − 1

and (k− 1)(N − 1) degrees of freedom. If the null hypothesis is rejected, we proceed with Holm’s

step-down post-hoc test (Holm, 1979) to compare the RMSE of our targeted method (BBQ in

our case) to the RMSE of the other methods. In order to use Holm’s method, we define the zi

statistics as:

zi =
(Ri −RBBQ)√

k(k+1)
6N

,

where RBBQ is the average rank of the target method (BBQ), Ri is the average rank of i’th method,

k is the number of methods, and N is number of datasets. In Holm’s method of testing, the

zi statistic is used to find the corresponding pi value from the table of the normal distribution,

which is compared with an adjusted α values as follows. First, the p values are sorted so that

pπ1 ≤ pπ2 . . . ≤ pπk−1
. Then each pi is compared to α

k−i sequentially. So the most significant p

value, p1, is compared with α
k−1

. If p1 is below α
k−1

, the corresponding hypothesis is rejected and

we continue to compare p2 with α
k−2

, and so on. As soon as a certain null hypothesis cannot be

rejected, all the remaining hypotheses are retained as well. So, if pjis the first p value that is greater

than α
k−j , then we conclude that the rank of our target method BBQ is significantly different from

the methods π1, .., πj−1, and it is statistically equivalent to the rest of the methods.

The results on real datasets are shown in the Figures 6, 7, 8, 9, and 10. In these graphs, we in-

dicate the average rank of each method (1 is best) and we connect the methods that are statistically

equivalent with our target method BBQ using a horizontal bar (e.g in Figure 8(a) the average rank

of BBQ is 2.156, it is performing statistically equivalent to IsoReg ; however, its performance in
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(a) RMSE results with LR as classifier

(b) RMSE results with SVM as classifier

(c) RMSE results with NB as classifier

Figure 8: Performance of each method in terms of average rank of RMSE on the real datasets. All the
methods which are not connected to BBQ by the horizontal bar are significantly different from BBQ (using
the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

56



terms of RMSE is statistically superior to Hist, Platt’s method, and the base classifier LR). Figure

6 shows the result of comparing the AUC of BBQ with other methods. As shown, BBQ performs

significantly better than histogram binning in terms of AUC at a confidence level of α = 0.05.

Also, its performance in terms of AUC is always statistically equivalent to the base classifier (LR,

SVM, NB) and isotonic regression. Note that we did not include Platt’s method in our statistical

test for AUC, since the AUC of the Platt’s method would be the same as the AUC of the base

classifier; this pattern occurs because Platt’s method always uses a monotonic mapping of the base

classifier output as the calibrated scores.

Figure 7 shows the result of comparing ACC of the BBQ with the other methods. As shown,

the performance of BBQ is statistically equivalent to the rest of the calibration methods as well

as the base classifier in our experiments over 30 real datasets. Figure 8 shows the results of our

experiments on comparing the performance of BBQ with other calibration methods in terms of

RMSE. As it shows, BBQ always outperforms the base classifier, histogram binning, and Platt’s

method. However, its performance is statistically equivalent to isotonic regression, whether the

base classifier is LR, SVM, or NB.

Figures 9 and 10 show the results of comparing BBQ performance with the others in terms

of ECE and MCE, respectively. They show that BBQ performs statistically better than all other

calibration methods and the base classifier, in terms of ECE and MCE.

Overall, in terms of discrimination measured by AUC and ACC, the results show that the

BBQ either outperforms the other calibration methods or has a performance that is not statisti-

cally significantly different from the other methods and the base classifier. In terms of calibra-

tion performance, BBQ is statistically superior to all other methods measured by ECE and MCE.

Furthermore, the results show that BBQ and isotonic regression are not statistically significantly

different in terms of RMSE; however, it is still statistically superior to other calibration methods

and the base classifier in terms of RMSE.

4.2.3 ABB vs. BBQ

This section reports the results of a set of experiments to evaluate the performance of the full

Bayesian model averaging calibration method (i.e., ABB) in comparison to the selective Bayesian
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(a) ECE results with LR as classifier

(b) ECE results with SVM as classifier

(c) ECE results with NB as classifier

Figure 9: Performance of each method in terms of average rank of ECE on the real datasets. BBQ is statis-
tically superior to all the compared methods (using the FF test followed by Holm’s step-down procedure at
a 0.05 significance level).

58



(a) MCE results with LR as classifier

(b) MCE results with SVM as classifier

(c) MCE results with NB as classifier

Figure 10: Performance of each method in terms of average rank of MCE on the real datasets. BBQ is sta-
tistically superior to all the compared methods (using the FF test followed by Holm’s step-down procedure
at a 0.05 significance level).
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model averaging calibration method (i.e., BBQ). We subsampled real datasets to derive evaluation

datasets of a relatively small size (less than 1500) in order to make it feasible to run ABB on them5.

If these methods perform similarly, then it is worth choosing BBQ over ABB, as BBQ’s running

time is faster by orders of magnitude compared to ABB. If the performance of ABB is better, then

it is worth using it on smaller datasets to which it can be feasibly applied.

In our experiments, we used 5-fold cross validation, and we averaged the results on the 5-folds

in applying statistical significance tests. Also, we compared the performance of ABB and BBQ in

two cases by using either the K2 Bayesian scoring function or the BDeu scoring function.

Table 8 indicates the results of the comparisons when we use logistic regression (LR) as the

base classifier. The results show that ABB is statistically superior to BBQ in terms of accuracy

(ACC) in both cases of using K2 or BDeu as the scoring function. When we use BDeu as a scoring

function, ABB performs statistically significantly better than BBQ in terms of ECE. Also, when

K2 is used as the scoring function, ABB is statistically significantly superior to BBQ in terms of

MCE. In all other cases, according to the experimental datasets that are used, there is no statistically

significant difference between the performance of ABB and BBQ, based on the Wilcoxon signed

rank test at the 5% significance level.

Table 9 shows the results of experiments when we use a (linear kernel) support vector machine

(SVM) as the base classifier. The results indicate that except in one case (i.e., for ECE measure

when the BDeu score function is used in ABB and BBQ), there is no statistically significant dif-

ference between the performance BBQ and ABB with respect to all evaluation measures, relative

to the experimental datasets that are used.

Finally, Table 10 shows the results of experiments when we use naı̈ve Bayes (NB) as the base

classifier. The results indicate that, except in one case (i.e., for evaluating accuracy when K2 is

used as scoring function), in all other cases, there is no statistically significant difference between

BBQ and ABB, according to the experimental datasets that are used.

5The name of datasets were as follows: ’SPECT’, ’breast’, ’mamography’, ’australian’, ’breast-cancer’,
’colon-cancer’, ’diabetes’, ’duke’, ’fourclass’, ’german.numer’, ’heart’, ’ionosphere scale’, ’leu’, ’liver-disorders’,
’sonar scale’, ’svmguide3’, ’Balance’, ’solar’.
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Table 8: The results of experiments in comparing ABB versus BBQ when we use LR as the base

classifier. Bold face indicates the results that are significantly better based on the Wilcoxon signed

rank test at the 5% significance level.

Measure
K2 BDeu

BBQ ABB BBQ ABB

auc 0.841 0.840 0.835 0.840

accuracy 0.787 0.808 0.787 0.808

brier score 0.156 0.147 0.151 0.146

ece 0.126 0.112 0.130 0.111

mce 0.343 0.314 0.306 0.314

4.2.4 K2 vs. BDeu

This section presents the results of experiments that evaluate the performance of the two Bayesian

scoring functions that are used in our Bayesian binning methods. We are interested to know if they

perform differently. Tables 11, 12, and 13 indicate the results of experiments when LR, SVM, and

NB are used as the base classifier, respectively. The results show that in the case of using BBQ,

there was no statistically significant difference between the performance of calibration models by

changing the scoring function, except in one case (i.e., for the MCE measure when we use LR

as the base classifier). Similarly, when we used the ABB model for calibration, there were only

two cases (i.e., for MCE and ECE measure when SVM is used as the base classifier) when BDeu

performs statistically superior to K2. Overall, the results of our experiments, which are on the

particular experimental datasets that were used, show that the final performance is less sensitive

on the choice of the scoring function than on the choice of running full Bayesian model averaging

versus running selective Bayesian model averaging.
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Table 9: The results of experiments on comparing ABB versus BBQ when we use SVM as the

base classifier. Bold face indicates the results that are significantly better based on the Wilcoxon

signed rank test at the 5% significance level.

Measure
K2 BDeu

BBQ ABB BBQ ABB

auc 0.823 0.821 0.822 0.820

accuracy 0.775 0.798 0.787 0.798

brier score 0.169 0.154 0.160 0.154

ece 0.134 0.115 0.129 0.112

mce 0.341 0.325 0.319 0.321

4.3 EXPERIMENTAL RESULTS ON ENIR

This section describes the set of experiments that we performed to evaluate the performance

of ENIR described in section 3.3 in comparison to the Isotonic Regression-based calibration

(IsoReg) method (Zadrozny and Elkan, 2002), and our other proposed calibration method BBQ

(Pakdaman Naeini et al., 2015a) described in section 3.2.2. We use IsoReg because it is one of the

most commonly used calibration methods, which has showed good performance in real world ap-

plications (Niculescu-Mizil and Caruana, 2005b; Zadrozny and Elkan, 2002). Moreover ENIR is

an extension of IsoReg, and we are interested in evaluating whether it performs better than IsoReg.

We also include BBQ as a state of the art binary classifier calibration model, which is a Bayesian

extension of the simple histogram binning model (Pakdaman Naeini et al., 2015a). We did not

include Platt’s method since it is a simple and restricted parametric model and there is prior work

showing that IsoReg and BBQ perform superior to Platt’s method (Niculescu-Mizil and Caruana,

2005b; Zadrozny and Elkan, 2002; Pakdaman Naeini et al., 2015a). We also did not include the

ACP method since it requires not only probabilistic predictions, but also a statistical confidence

interval (CI) around each of those predictions, which makes it tailored to specific classifiers, such
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Table 10: The results of experiments on comparing ABB versus BBQ when we use NB as the base

classifier. Bold face indicates the results that are significantly better based on the Wilcoxon signed

rank test at the 5% significance level.

Measure
K2 BDeu

BBQ ABB BBQ ABB

auc 0.845 0.838 0.845 0.839

accuracy 0.785 0.828 0.784 0.825

brier score 0.144 0.126 0.144 0.127

ece 0.138 0.103 0.136 0.103

mce 0.292 0.281 0.298 0.284

as LR (Jiang et al., 2012); this is counter to our goal of developing post-processing methods that

can be used with any existing classification models. Finally, we did not include ABB in our ex-

periments mainly because it is not computationally tractable for real datasets that have more than

a couple of thousands instances. Moreover, even for small size datasets, we noticed that ABB

performs similarly to BBQ. To evaluate the performance of the methods, we ran experiments on

both simulated and on real data.

4.3.1 Simulated Data

For the simulated data experiments, we used two binary classification datasets that were used

in previous work and for which the outcomes are not linearly separable (Pakdaman Naeini et al.,

2015a,b). The scatter plots of these datasets are shown in Figures 5(b) and 5(a). In our experiments

the data are divided into 1000 instances for training and calibrating the prediction model, and 1000

instances for testing the models. We report the average of 10−fold cross validation results for the

simulated datasets. To conduct the experiments with the simulated data, we used support vector

machines (SVM) classifier with linear and non-linear kernels to solve the classification problem

shown in Figure 5.
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Table 11: The results of experiments comparing the performance of the K2 versus BDeu scoring

functions when we use LR as the base classifier. Bold face indicates the results that are statistically

significantly better based on the Wilcoxon signed rank test at the 5% significance level.

Measure
BBQ ABB

K2 BDeu K2 BDeu

auc 0.841 0.835 0.840 0.840

accuracy 0.787 0.787 0.808 0.808

brier score 0.156 0.151 0.147 0.146

ece 0.126 0.130 0.112 0.111

mce 0.343 0.306 0.314 0.314

As seen in Tables 14 and 15, ENIR generally outperforms IsoReg on the simulation datasets,

especially when the linear SVM method is used as the base learner. This is due to the monotonicity

assumption of IsoReg which presumes the best calibrated estimates will match the ordering im-

posed by the base classifier. When we use SVM with a linear kernel, this assumption is violated

due to the non-linearity of the data. Consequently, IsoReg only provides limited improvement of

the calibration and discrimination performance of the base classifier. ENIR performs very well

in these cases since it is using the ranking information of the base classifier, but it is not anchored

to it. The violation of the monotonicity assumption can happen in real data as well, especially in

large scale data mining problems in which we use simple classification models due to the compu-

tational constraints. As shown in Tables 14(b) and 15(b), even if we apply a highly appropriate

SVM classifier for our linearly non-separable datasets, for which IsoReg is expected to perform

well (and indeed does so), ENIR performs as well as IsoReg.

As can be seen in Tables 14 and 15, SVM with quadratic and RBF kernels performs very

well, as measured by AUC and ACC, in terms of discriminating the classes in the simulation

datasets; however, the quality of predicted probabilities are poor in terms of calibration, as mea-

sured by MCE, ECE, and RMSE. Moreover, all three calibration methods improve calibration of
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Table 12: The results of experiments comparing the performance of the K2 versus BDeu scoring

functions when we use SVM as the base classifier. Bold face indicates the results that are statisti-

cally significantly better based on the Wilcoxon signed rank test at the 5% significance level.

Measure
BBQ ABB

K2 BDeu K2 BDeu

auc 0.823 0.822 0.821 0.820

accuracy 0.775 0.787 0.798 0.798

brier score 0.169 0.160 0.154 0.154

ece 0.134 0.129 0.115 0.112

mce 0.341 0.319 0.325 0.321

the base classifiers, without loosing any discrimination performance that was obtained prior to

post-processing.

4.3.2 Real Data

We used 40 different baseline real dataset s from the UCI and LibSVM repositories6 (Bache and

Lichman, 2013; Chang and Lin, 2011). Five summary statistics of the size of the datasets and the

percentage of the minority class are shown in Table 16.

We used three common classifiers, Logistic Regression (LR), Support Vector Machines (SVM),

and Naı̈ve Bayes (NB) to evaluate the performance ENIR. In the experiments we used the average

over 10 random runs of 10-fold cross validation, and we always used the train data for calibrating

the models. To compare the performance of the calibration models, we used the statistical test

procedure recommended by Demsar (Demšar, 2006). More specifically, we used the Friedman

non-parametric hypothesis testing method (Friedman, 1937) followed by Holm’s step-down pro-

6The datasets used were as follows: spect, adult, breast, pageblocks, pendigits, ad, mamography, satimage, aus-
tralian, code rna, colon cancer, covtype, letter unbalanced, letter balanced, diabetes, duke, fourclass, german numer,
gisette scale, heart, ijcnn1, ionosphere scale, liver disorders, mushrooms, sonar scale, splice, svmguide1, svmguide3,
coil2000, balance, breast cancer, leu, w1a, thyroid sick, scene, uscrime, solar, car34, car4 , protein homology.
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Table 13: The results of experiments comparing the performance of the K2 versus BDeu scoring

functions when we use NB as the base classifier. Bold face indicates the results that are statistically

significantly better based on the Wilcoxon signed rank test at the 5% significance level.

Measure
BBQ ABB

K2 BDeu K2 BDeu

auc 0.845 0.845 0.838 0.839

accuracy 0.785 0.784 0.828 0.825

brier score 0.144 0.144 0.126 0.127

ece 0.138 0.136 0.103 0.103

mce 0.292 0.298 0.281 0.284

cedure (Holm, 1979) to evaluate the performance of ENIR in comparison with IsoReg and BBQ,

across the 40 baseline datasets.

Tables [17,18,19] show the results of the performance of ENIR in comparison with IsoReg

and BBQ. In these tables, we show the average rank of each method across the baseline datasets,

where boldface indicates the best performing method. In these tables, the marker ∗/~ indicates

whether ENIR is statistically superior/inferior to the compared method using the FF test followed

by Holm’s step-down procedure at a 0.05 significance level. For instance, Table 18 shows the

performance of the calibration models when we use SVM as the base classifier; the results show

that ENIR achieves the best performance in terms of RMSE by having an average rank of 1.675

across the 40 baseline datasets. The result indicates that in terms of RMSE, ENIR is statistically

superior to BBQ; however, it is not performing statistically differently than IsoReg.

Table 17 shows the results of comparison when we use LR as the base classifier. As shown,

the performance of ENIR is always superior to BBQ and IsoReg except for MCE in which BBQ is

superior to ENIR; however, the difference is not statistically significant for MCE. The results show

that in terms of discrimination based on AUC, there is not a statistically significant difference

between the performance of ENIR compared with BBQ and IsoReg. However, ENIR performs
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Table 14: Experimental Results on a simulated dataset: Circular configuration

(a) SVM Linear Kernel

SVM IsoReg BBQ ENIR

AUC 0.52 0.65 0.85 0.85
ACC 0.64 0.64 0.78 0.79
RMSE 0.52 0.46 0.39 0.38
ECE 0.28 0.35 0.05 0.05
MCE 0.78 0.60 0.13 0.12

(b) SVM Quadratic Kernel

SVM IsoReg BBQ ENIR

AUC 1.00 1.00 1.00 1.00
ACC 0.99 0.99 0.99 0.99
RMSE 0.21 0.09 0.10 0.09
ECE 0.14 0.01 0.01 0.00
MCE 0.36 0.04 0.05 0.03

Table 15: Experimental Results on Simulated dataset: XOR configuration

(a) SVM Linear Kernel

SVM IsoReg BBQ ENIR

AUC 0.50 0.68 0.90 0.89
ACC 0.64 0.67 0.83 0.83
RMSE 0.51 0.45 0.34 0.34
ECE 0.32 0.31 0.03 0.04
MCE 0.66 0.62 0.08 0.11

(b) SVM RBF Kernel

SVM IsoReg BBQ ENIR

AUC 0.99 0.99 0.99 0.99
ACC 0.96 0.96 0.96 0.96
RMSE 0.30 0.18 0.18 0.18
ECE 0.24 0.01 0.02 0.01
MCE 0.30 0.08 0.10 0.06
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Table 16: Summary statistics of the size of the real datasets and the percentage of the minority

class. Q1 and Q3 defines the first quartile and thirds quartile respectively.

Min Q1 Median Q3 Max

Size of data 42 683 1861 8973 581,012
Percentage of minority class 0.009 0.076 0.340 0.443 0.500

statistically better than BBQ in terms of ACC. In terms of calibration measures, ENIR is statisti-

cally superior to both IsoReg and BBQ in terms of RMSE. In terms of MCE, ENIR is statistically

superior to IsoReg.

Table 18 shows the results when we use SVM as the base classifier. As shown, the performance

of ENIR is always superior to BBQ and IsoReg except for MCE in which BBQ performs better

than ENIR; however, the difference is not statistically significant for MCE. The results show that

although ENIR is superior to IsoReg and BBQ in terms of discrimination measures, AUC and

ACC, the difference is not statistically significant. In terms of calibration measures, ENIR performs

statistically superior to BBQ in terms of RMSE and it is statistically superior to IsoReg in terms of

MCE.

Table 19 shows the results of comparison when we use NB as the base classifier. As shown,

the performance of ENIR is always superior to BBQ and IsoReg. In terms of discrimination, for

AUC there is not a statistically significant difference between the performance of ENIR compared

with BBQ and IsoReg; however, in terms of ACC, ENIR is statistically superior to BBQ. In terms

of calibration measures, ENIR is always statistically superior to IsoReg. ENIR is also statistically

superior to BBQ in terms of ECE and RMSE.

Overall, in terms of discrimination measured by AUC and ACC, the results show that ENIR

either outperforms IsoReg and BBQ or it has a performance that is not statistically significantly

different. In terms of calibration measured by ECE, MCE, and RMSE, ENIR either outperforms

the other calibration methods, or it has a statistically equivalent performance to IsoReg and BBQ.

In addition to comparing the performance of ENIR with IsoReg and BBQ, we also show in

Table 22 the 95% confidence interval for the mean of the random variable X , which is defined as
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Table 17: Average rank of the calibration methods on the real datasets using LR as the base classi-

fier. Marker ∗/~ indicates whether ENIR is statistically superior/inferior to the compared method

(using the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

IsoReg BBQ ENIR

AUC 1.963 2.225 1.813
ACC 1.675 2.663∗ 1.663
RMSE 1.925∗ 2.625∗ 1.450
ECE 2.125 1.975 1.900
MCE 2.475∗ 1.750 1.775

Table 18: Average rank of the calibration methods on the real datasets using SVM as the base

classifier. Marker ∗/~ indicates whether ENIR is statistically superior/inferior to the compared

method (using the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

IsoReg BBQ ENIR

AUC 1.988 2.025 1.988
ACC 2.000 2.150 1.850
RMSE 1.850 2.475∗ 1.675
ECE 2.075 2.025 1.900
MCE 2.550∗ 1.625 1.825

Table 19: Average rank of the calibration methods on the real datasets using NB as the base

classifier. Marker ∗/~ indicates whether ENIR is statistically superior/inferior to the compared

method (using the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

IsoReg BBQ ENIR

AUC 2.150 1.925 1.925
ACC 1.963 2.375∗ 1.663
RMSE 2.200∗ 2.375∗ 1.425
ECE 2.475∗ 2.075∗ 1.450
MCE 2.563∗ 1.850 1.588
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the percentage of the gain (or loss) of ENIR with respect to the base classifier:

X =
measureenir −measuremethod

measuremethod
, (4.1)

where measure is one of the evaluation measures AUC, ACC, ECE, MCE, or RMSE. Also,

method denotes one of the choices of the base classifiers, namely, LR, SVM, or NB. For instance,

Table 22 shows that by post-processing the output of SVM using ENIR, we are 95% confident

to gain anywhere from 17.6% to 31% average improvement in terms of RMSE. This could be a

promising result, depending on the application, considering the 95% CI for the AUC which shows

that by using ENIR we are 95% confident not to loose more than 1% of the SVM discrimination

power in terms of AUC (Note, however, that the CI includes zero, which indicates that there is not

a statistically significant difference between the performance of SVM and ENIR in terms of AUC).

Overall, the results in Table 22 show that there is not a statistically meaningful difference

between the performance of ENIR and the base classifiers in terms of AUC. The results support

at a 95% confidence level that ENIR improves the performance of LR or NB in terms of ACC.

Furthermore, the results in Table 22 show that by post-processing the output of LR, SVM, and NB

using ENIR, we can make dramatic improvements in terms of calibration measured by RMSE,

ECE, andMCE. For instance, the results indicate that at a 95% confidence level, ENIR improved

the average performance of NB in terms of ECE anywhere from 30.5% to 55.2%, which could be

practically significant in many decision-making and data mining applications.

Finally, Table 21 shows a summary of the time complexity of different binary classifier cali-

bration methods in learning for N training instances and the test time for only one instance.

4.4 EXPERIMENTAL RESULTS ON ELITE

This section describes the set of experiments that we performed to evaluate the performance of the

ELiTE calibration method in comparison to other commonly used calibration methods. The com-

parison methods include histogram binning (Zadrozny and Elkan, 2001b), Platt’s method (Platt,

1999), isotonic regression (Zadrozny and Elkan, 2002), and BBQ, which is a Bayesian extension

to the histogram binning method (Pakdaman Naeini et al., 2015a). We did not include ABB in our
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Table 20: The 95% confidence interval for the average percentage of improvement over the base

classifiers(LR, SVM, NB) by using the ENIR method for post-processing. Positive entries for

AUC and ACC mean ENIR is on average performing better discrimination than the base classifiers

Negative entries for RMSE, ECE, and MCE mean that ENIR is on average performing better

calibration than the base classifiers.

LR SVM NB

AUC [-0.008 , 0.003] [-0.010 , 0.003] [-0.010 , 0.000]
ACC [0.002 , 0.016] [-0.001 , 0.010] [0.012 , 0.068]
RMSE [-0.124 , -0.016] [-0.310 , -0.176] [-0.196 , -0.100]
ECE [-0.389 , -0.153] [-0.768 , -0.591] [-0.514 , -0.274]
MCE [-0.313 , -0.064] [-0.591 , -0.340] [-0.552 , -0.305]

Table 21: Note that N and B are the size of training sets and the number of bins found by the

method respectively. T is the number of iterations required for convergence of Platt’s method and

M is defined as the total number of models used in the associated ensemble model.

Training Time Testing Time

Platt O(NT ) O(1)
Hist O(N logN) O(logB)
IsoReg O(N logN) O(logB)
ACP O(N logN) O(N)
ABB O(N2) O(N2)
BBQ O(N logN) O(M logN)
ENIR O(N logN) O(M logB)
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experiments mainly because it is not computationally tractable for datasets that have more than

couple of thousands of instances.

Similar to our previous set of experiments, we used three common classifiers, Logistic Regres-

sion (LR), Support Vector Machines (SVM), and Naı̈ve Bayes (NB) to evaluate the performance of

ELiTE. In the experiments, we used the average over 10 random runs of 10-fold cross validation,

and we always used the training data for calibrating the models.

We ran two sets of experiments on 35 binary outcome classification datasets from the UCI

and LibSVM repositories7 (Bache and Lichman, 2013; Chang and Lin, 2011). In the first set of

experiments we were interested in evaluating if there is experimental support for using ELiTE as

a post-processing calibration method. Table 22 shows the 95% confidence interval for the mean

of the random variable X , which is defined as the percentage of the gain (or loss) of ELiTE with

respect to the base classifier:

X =
measureelite −measuremethod

measuremethod
, (4.2)

where measure is one of the evaluation measures AUC, ACC, ECE, MCE, or RMSE. Also,

method denotes one of the choices of the base classifiers, namely, LR, SVM, or NB. For instance,

Table 22 shows that by post-processing the output of SVM using ELiTE, we are 95% confident to

gain anywhere from 16% to 30% average improvement in terms of RMSE. This could be a promis-

ing result, depending on the application, considering the 95% CI for the AUC which shows that by

using ELiTE we are 95% confident not to lose more than 1% of the SVM discrimination power in

terms of AUC (Note also that the CI includes zero, which indicates that there is not a statistically

significant difference between the performance of SVM and ELiTE in terms of AUC).

Overall, the results in Table 22 show that there is not a statistically meaningful difference

between the performance of ELiTE and the base classifiers in terms of AUC. The results support at

a 95% confidence level that ELiTE improves the performance of the LR and NB base classifiers in

terms of ACC. Furthermore, the results in Table 22 show that by post-processing the output of LR,

SVM, and NB using ELiTE, we can make dramatic improvements in terms of calibration measured

7The datasets used were as follows: spect, adult, breast, pageblocks, pendigits, ad, australian, colon cancer, letter
unbalanced, letter balanced, diabetes, duke, fourclass, german numer, gisette scale, heart, ionosphere scale, liver
disorders, mushrooms, sonar scale, splice, svmguide1, svmguide3, coil2000, balance, breast cancer, w1a, thyroid sick,
scene, uscrime, solar, car34, car4, mamography, satimage.
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by RMSE, ECE, and MCE. For instance, the results indicate that at a 95% confidence level, ELiTE

improved the average performance of NB in terms of ECE anywhere from 27% to 55%, which

could be practically significant in many decision-making and data mining applications.

Table 22: The 95% confidence interval for the average percentage of improvement over the base

classifiers (LR, SVM, NB) by using the ELiTE method for post-processing. Positive entries for

AUC and ACC mean ELiTE is on average performing better discrimination than the base clas-

sifiers. Negative entries for RMSE, ECE, and MCE mean that ELiTE is on average performing

better calibration than the base classifiers.

LR SVM NB

AUC [-0.01 , 0.01] [-0.01 , 0.01] [-0.01 , 0.01]
ACC [0.00 , 0.02] [0.00 , 0.01] [0.02 , 0.08]
RMSE [-0.14 , -0.02] [-0.30 , -0.16] [-0.22 , -0.11]
ECE [-0.40 , -0.18] [-0.76 , -0.56] [-0.55 , -0.27]
MCE [-0.35 , -0.12] [-0.58 , -0.33] [-0.62 , -0.39]

In the second set of experiments on real data, we are interested in evaluating the performance

of ELiTE compared with the base classifier and other calibration methods. To evaluate the perfor-

mance of models, we used the recommended statistical test procedure by Janez Demsar (Demšar,

2006). More specifically, we used the non-parametric testing method based on the FF test statistics

(Iman and Davenport, 1980), which is an improved version of Friedman non-parametric hypoth-

esis testing method (Friedman, 1937), followed by Holm’s step-down procedure (Holm, 1979)

to evaluate the performance of ELiTE in comparison with other methods, across the 35 baseline

datasets.

The results on real datasets are shown in the Figures 6-10. In these graphs, we indicate the

average rank of each method (1 is best) and we connect the methods that are statistically equivalent

with our target method ELiTE using a horizontal bar (e.g., in Figure 8(a) the average rank of

ELiTE is 1.89, and it is performing statistically equivalent to isoreg in terms of RMSE; however,

its performance in terms of RMSE is statistically superior to Hist, Platt’s method, BBQ, and the

base classifier LR). Figure 6 shows the results of comparing the AUC of ELiTE with other methods.

As shown, ELiTE performs significantly better than all other calibration methods in terms of AUC

at a confidence level of α = 0.05. Also, its performance in terms of AUC is always statistically
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equivalent to the base classifier (LR, SVM, NB). Note that we did not include Platt’s method in

our statistical test for AUC, since the AUC of the Platt’s method would be the same as the AUC of

the base classifier; this pattern occurs because Platt’s method always uses a monotonic mapping of

the base classifier’s output as the calibrated score.

Figure 7 shows the results of comparing ACC of ELiTE with the other methods. As shown,

ELiTE performs statistically better than histogram binning and Platt’s method, as well as the base

classifiers NB, and LR. However, ELiTE is statistically equivalent to BBQ and IsoReg, as well as

the base classifier SVM, in our experiments over 35 real datasets. Figure 8 shows the results of our

experiments in comparing the performance of ELiTE with other calibration methods in terms of

RMSE. ELiTE always outperforms the base classifier and all other calibration methods. However,

its difference with isotonic regression is not statistically significant, when the base classifier is LR

or NB.

Figures 9, and 10 show the results of comparing ELiTE performance with the others in terms

of ECE and MCE, respectively. They show that ELiTE performs superior to all other calibration

methods and to the base classifier, in terms of ECE and MCE. However, its difference with BBQ is

not statistically significant in terms of ECE when the base classifier is SVM or NB. Also, in terms

of MCE, the difference between ELiTE and BBQ is not statistically significant when SVM is used

as the base classifier.

Overall, in terms of discrimination measured by AUC and ACC, the results show that the

proposed non-parametric calibration method either outperforms the other calibration methods or

has a performance that is not statistically significantly different from the other methods and the

base classifier. In terms of calibration performance, ELiTE is often statistically superior to the

other methods and is never statistically significantly worse.
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(a) AUC Results on LR

(b) AUC results on SVM

(c) AUC results on NB

Figure 11: Performance of each method in terms of average rank of AUC on the real datasets. All the
methods which are not connected to ELiTE by the horizontal bar are statistically significantly worse than
ELiTE (using an improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance
level).
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(a) ACC Results on LR

(b) ACC results on SVM

(c) ACC results on NB

Figure 12: Performance of each method in terms of average rank of ACC on the real datasets. All the
methods which are not connected to ELiTE by the horizontal bar are statistically significantly worse than
ELiTE (using an improved Friedman test at a 0.05 significance level).
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(a) RMSE Results on LR

(b) RMSE results on SVM

(c) RMSE results on NB

Figure 13: Performance of each method in terms of average rank of RMSE on the real datasets. All the
methods which are not connected to ELiTE by the horizontal bar are statistically significantly worse than
ELiTE (using an improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance
level).
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(a) ECE Results on LR

(b) ECE results on SVM

(c) ECE results on NB

Figure 14: Performance of each method in terms of average rank of ECE on the real datasets. All the
methods which are not connected to ELiTE by the horizontal bar are statistically significantly worse than
ELiTE (using an improved Friedman test followed by Holm’s step-down procedure at a 0.05 significance
level).

78



(a) MCE Results on LR

(b) MCE results on SVM

(c) MCE results on NB

Figure 15: Performance of each method in terms of average rank of MCE on the real datasets. ELiTE
is almost always statistically superior to all other competing methods (using the improved Friedman test
followed by Holm’s step-down procedure at a 0.05 significance level).
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4.5 EMPIRICAL EVALUATION OF KDE, DPM, ENIR, AND ELITE

This section reports the results of a set of experiments on real datasets to evaluate the performance

of ELiTE, as our final calibration method, in comparison to several other leading calibration meth-

ods introduced in this dissertation. In particular, EliTE is compared to calibration methods based

on kernel density estimation (KDE) and Dirichlet Process Mixtures (DPM) introduced in Section

3.1, and the ensemble of near-isotonic regression (ENIR) method introduced in Section 3.3. We

did not include BBQ in our experiments because we have already shown that ELiTE and ENIR

perform superior to BBQ in Section 4.4 and Section 4.3.

Similar to our previous experiments, we consider three commonly used binary classifiers: lo-

gistic regression (LR), support vector machine (SVM), and naı̈ve Bayes(NB). In the experiments,

we used 35 binary outcome classification datasets from the UCI and LibSVM repositories 8 (Bache

and Lichman, 2013; Chang and Lin, 2011). To compare the performance of the calibration meth-

ods, we used the Friedman non-parametric hypothesis testing method (Friedman, 1937) followed

by Holm’s step-down procedure (Holm, 1979) to evaluate the performance of ELiTE in comparison

with ENIR, KDE, and DPM, across the 35 baseline datasets.

Tables 23, 24, and 25 indicate the results of our experiments when we use LR, SVM, and NB as

the base classifier, respectively. In these tables, the bold face indicates the method that is perform-

ing the best in terms of average rank over the 35 baseline datasets that are used in our experiments.

Also, in these tables, the marker ∗/~ indicates whether ELiTE is statistically superior/inferior to

the compared method (using the FF test followed by Holm’s step-down procedure at a 0.05 sig-

nificance level). In addition, the bottom row of each table shows the overall running time of each

method in minutes over the 10 runs of the 10-fold cross validation experiments.

As indicated in Tables 23, 24, and 25, in terms of evaluation measures, ELiTE performed well

both in terms of calibration and discrimination measures in comparison to the other competing cal-

ibration methods. In particular, on the 35 real datasets used in our experiments, ELiTE commonly

performs statistically significantly better than the other methods, and never worse. However, in

8The datasets used were as follows: spect, adult, breast, pageblocks, pendigits, ad, australian, colon cancer, letter
unbalanced, letter balanced, diabetes, duke, fourclass, german numer, gisette scale, heart, ionosphere scale, liver
disorders, mushrooms, sonar scale, splice, svmguide1, svmguide3, coil2000, balance, breast cancer, w1a, thyroid sick,
scene, uscrime, solar, car34, car4, mamography, satimage.
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terms of running time, ELiTE runs slower in comparison to the competing methods even though

its running time complexity is still O(NlogN) (Ramdas and Tibshirani, 2014).

Table 23: Average rank of the calibration methods on the 35 real datasets using LR as the base

classifier. Marker ∗/~ indicates whether ELiTE is statistically superior/inferior to the compared

method (using the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

The bottom row of the table shows the overall Running Time (RT) of each method in minutes over

the 10 runs of the 10-fold cross validation experiments, using a single core of a MacBook Pro with

a 2.5 GHz Intel Core i7 CPU and a 16 GB RAM memory.

KDE DPM ENIR ELiTE

AUC 3.10∗ 2.53∗ 2.76∗ 1.61

ACC 2.69 2.87∗ 2.44 2.00

RMSE 2.51∗ 2.94∗ 2.66∗ 1.89

ECE 2.49 2.29 2.86 2.37

MCE 2.29 2.71∗ 3.00∗ 2.00

RT 262 205 226 1808

4.6 EFFECT OF CALIBRATION SIZE

This section presents the results of our experiments on the effect of calibration size on the perfor-

mance of different calibration methods. In these experiments, we used our simulated dataset with

a circular configuration. The scatter plot of the simulated dataset is shown in Figure 5(b). We used

a SVM classifier with linear and quadratic kernels in this set of experiments. Due to non-linearity

of data, the SVM with a linear kernel is expected to perform poorly in terms of calibration and

discrimination. In contrast, the SVM with a quadratic kernel is a perfect choice for discriminating

the patterns according to the circular separation boundary between the classes.

We run two set of experiments in this section based on the choice of the training and the

calibration instances. In the first configuration, we used 5000 randomly generated data to learn the
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Table 24: Average rank of the calibration methods on the 35 real datasets using SVM as the base

classifier. Marker ∗/~ indicates whether ELiTE is statistically superior/inferior to the compared

method (using the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

The bottom row of the table shows the overall Running Time (RT) of each method in minutes over

the 10 runs of the 10-fold cross validation experiments, using a single core of a MacBook Pro with

a 2.5 GHz Intel Core i7 CPU and a 16 GB RAM memory.

KDE DPM ENIR ELiTE

AUC 2.90∗ 2.07 2.97∗ 2.06

ACC 2.43 2.70 2.66 2.21

RMSE 2.37 2.77 2.69 2.17

ECE 1.86 2.66 3.06 2.43

MCE 1.97 2.83 3.06 2.14

RT 290 102 225 2082

SVM base classifiers. The calibration data were also generated randomly and were separate from

the 5000 cases used to train the base classifier. We changed the number of instances that are used

for calibrating the models and set them to be 10, 20, 50, 100, 500, 1000, 2000, and 5000. In the

second configuration, the training data and the calibration data are the same, and similar to the first

configuration we set the size data to be 10, 20, 50, 100, 500, 1000, 2000, and 5000. Note that in

both configurations, for each evaluation measure, we reported the average of 30 random samples

on a separate test dataset with 10000 samples.

Figure 16 shows the performance of different calibration methods on various sizes of the cali-

bration dataset, when we use a SVM with a linear kernel. There are a few important observations

here. First, the results show that the Platt’s method and isotonic regression have limited perfor-

mance in improving calibration and discrimination of the predictions even in the presence of a

large calibration dataset. Second, as we expected, the binning based models such as BBQ and

ENIR, require a fair amount of calibration instances (i.e., at least around 500) to reach close to
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Table 25: Average rank of the calibration methods on the 35 real datasets using NB as the base

classifier. Marker ∗/~ indicates whether ELiTE is statistically superior/inferior to the compared

method (using the FF test followed by Holm’s step-down procedure at a 0.05 significance level).

The bottom row of the table shows the overall Running Time (RT) of each method in minutes over

the 10 runs of the 10-fold cross validation experiments, using a single core of a MacBook Pro with

a 2.5 GHz Intel Core i7 CPU and a 16 GB RAM memory.

KDE DPM ENIR ELiTE

AUC 2.71∗ 2.77∗ 3.00∗ 1.51

ACC 2.53 2.89 2.43 2.16

RMSE 2.51 3.09∗ 2.49 1.91

ECE 2.60 2.46 2.77 2.17

MCE 2.49 2.66∗ 2.94∗ 1.91

RT 286 188 235 2056

their best performance. Finally, the results show that ELiTE and KDE based calibration perform

very well over all ranges of calibration data sizes.

Figure 17 shows the performance of different calibration methods on various sizes of cali-

bration data when we use a SVM with a quadratic kernel. As we expected, isotonic regression

performs very well in this case since the monotonicity assumption is valid (i.e., the AUC of the

base classifier is close to 1). We note that the performance of Platt’s method improves across

discrimination and calibration measures by increasing the calibration size. However, the rate of

improvement is still inferior compared to the rate of improvement for other methods. We note that

ELiTE still performs among the best models for calibration, especially when we have a fair amount

data for calibration (i.e., calibration size is around 500).

Figure 18, and 19 show the performance of different calibration methods on various sizes of

the (calibration/training) dataset, when we use a SVM classifier with a linear kernel and quadratic

kernel, respectively. We notice a similar pattern of observations in these graphs compared to the
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(a) Accuracy (b) AUC

(c) ECE (d) MCE

(e) RMSE

Figure 16: The effect of calibration size when using simulated data and a linear kernel SVM as the base
classifier. The x axis shows the number of calibration instances that are used in learning the calibration
models.
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(a) Accuracy (b) AUC

(c) ECE (d) MCE

(e) RMSE

Figure 17: The effect of calibration size when using simulated data and a quadratic kernel SVM as the
base classifier. The x axis shows the number of calibration instances that are used in learning the calibration
models.
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(a) Accuracy (b) AUC

(c) ECE (d) MCE

(e) RMSE

Figure 18: The effect of calibration size when using simulated data and a linear kernel SVM as the base
classifier. The x axis shows the number of (calibration/training) instances that are used in learning the
calibration models. In these set of experiments, we used the same set of data for learning the parameters of
the classification model and the calibration model.
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case that we used separate training and calibration datasets. However, there are some differences.

First, comparing the results of linear kernel SVM in Figures 16 and 18, the results indicate that

when we use a small sample size for building the calibration model (e.g., 10 or 20), the performance

of calibration models is boosted by using separate data for training and calibration. However, note

that according to these graphs when we use a large number of calibration instances (e.g., 2000 or

5000), the performance of calibration models in the two configurations is not different. We note

similar observations comparing Figures 17 and 19 for the case that we use a quadratic kernel SVM

as the base classifier. In addition, in the case of using a quadratic kernel SVM, we note that Platt’s

method has superior performance, in particular in terms of AUC and MCE, when we use a small

(training/calibration) sample size in our second configuration in which the training and calibration

data are the same. Overall, with a few exceptions on small sample sizes, the results support that

using the same versus separate calibration and training datasets produces about the same results

over different dataset sizes.
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(a) Accuracy (b) AUC

(c) ECE (d) MCE

(e) RMSE

Figure 19: The effect of calibration size when using simulated data and a quadratic kernel SVM as the
base classifier. The x axis shows the number of (calibration/training) instances that are used in learning the
calibration models. In these set of experiments, we used the same set of data for learning the parameters of
the classification model and the calibration model.
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5.0 THEORETICAL FINDINGS ON BINARY CLASSIFIER CALIBRATION

In this chapter we describe our theoretical findings to date for histogram binning models stating that

in the presence of large number of samples it is possible to make a classifier perfectly calibrated

without sacrificing the discrimination performance in terms of AUC. Before going into the details

of the theorems and the proofs, we present some notation we will use in the proofs.

5.1 NOTATION AND ASSUMPTIONS:

Assume a binary classifier is defined as a mapping φ : Rd → [0, 1]. As a result, for every input

instance x ∈ Rd the output of the classifier is y = φ(x), where y ∈ [0, 1]. For calibrating the

classifier φ(.), we assume there is a training set {(xi, yi, zi)}Ni=1 where xi ∈ Rd is the i’th instance

and yi = φ(xi) ∈ [0, 1], and zi ∈ {0, 1} is the true class of i’th instance. Also we define ŷi as the

probability estimate for instance xi achieved by using the histogram binning calibration method,

which is intended to yield a more calibrated estimate than yi. In addition, we have the following

notation and assumptions that are used in the remainder of this section:

• N is total number of instances

• m is total number of positive instances

• n is total number of negative instances

• pin is the space of uncalibrated probabilities {yi} which is defined by the classifier output

• pout is the space of transformed probability estimates {ŷi} using histogram binning

• B is the total number of bins defined on pin in the histogram binning model

• Bi is the i’th bin defined on pin
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• Ni is total number of instances xk for which the predicted value yk is located inside Bi

• mi is number of positive instances xk for which the predicted value yk is located inside Bi

• ni is number of negative instances xk for which the predicted value yk is located inside Bi

• η̂i = Ni
N

is an empirical estimate of P{y ∈ Bi}

• ηi is the value of P{y ∈ Bi} as N goes to infinity

• θ̂i = mi
Ni

is an empirical estimate of P{z = 1|y ∈ Bi}

• θi is the value of θ̂i as N goes to infinity

5.2 CALIBRATION THEOREMS

In this section we study the properties of the histogram-binning calibration method. We prove

three theorems that show that this method can improve the calibration power of a classifier without

sacrificing its discrimination capability.

5.2.1 Convergence Results on MCE

This section describes a new theorem and its proof that shows the MCE of the histogram binning

method is concentrated around zero as N →∞:

Theorem 5.2.1. Using histogram binning calibration, with probability at least 1 − δ we have

MCE ≤
√

2B log 2B
δ

N
.

Proof. For proving this theorem, we first use a concentration result for θ̂i. Using Hoeffding’s

inequality we have the following:

P{|θ̂i − θ| ≥ ε} ≤ 2e
−2Nε2

B (5.1)

Let’s assume B̃i is a bin defined on the space of transformed probabilities pout for calculating

the MCE of histogram binning method. Assume after using histogram binning over pin (space of

uncalibrated probabilities which is generated by the classifier φ), θ̂i1, .., θ̂iki will be mapped into

B̃i. We define oi as the true fraction of positive instances in bin B̃i, and ei as the mean of the
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post-calibrated probabilities for the instances in bin B̃i. Using the notation defined in section 5.1,

we can write oi and ei as follows:

oi =
ηi1θi1 + . . .+ ηikiθiki
ηi1 + . . .+ ηiki

, ei =
ηi1θ̂i1 + . . .+ ηiki θ̂iki
ηi1 + . . .+ ηiki

By defining αit = ηit
ηi1+...+ηiki

and using the triangular inequality we have that:

|oi − ei| ≤
∑

t∈{1,...,ki}

αit|θ̂it − θit| ≤ maxt∈{1,...,ki}|θ̂it − θit| (5.2)

Using the above result and the concentration inequality 5.1 for θ̂i we can conclude:

P{|oi − ei| > ε} ≤ P{maxt∈{1,...,ki}|θ̂it − θit| > ε} ≤ 2kie
−Nε2
2B , (5.3)

Where the last inequality is obtained by using a union bound and ki is the number of bins on the

space pin for which their calibrated probability estimate will be mapped into the bin B̃i.

Using a union bound again over different bins like B̃i defined on the space pout, we achieve the

following probability bound for MCE over the space of calibrated estimates pout :

P{ B
max
i=1
|oi − ei| ≥ ε} ≤ 2(k1 + . . .+ kB)e

−Nε2
2B =⇒ P{MCE ≥ ε} ≤ 2Be

−Nε2
2B

By setting δ = 2Be
−Nε2
2B we can show that with probability at least 1−δ the following inequal-

ity holds MCE ≤
√

2B log 2B
δ

N
.

Corollary 5.2.1.1. Using histogram binning calibration method, MCE converges to zero at a rate

of O(
√

B logB
N

).
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5.2.2 Convergence Results on ECE

This section describes a new theorem and its proof that shows the ECE of the histogram binning

method is also concentrated around zero as N →∞:

Theorem 5.2.2. Using the histogram binning calibration method, ECE converges to zero with the

rate of O(
√

B
N

).

Proof. Here we show that using histogram binning calibration method, ECE converges to zero with

the rate of O(
√

B
N

). Let’s define Ei as the expected calibration loss on bin B̃i for the histogram

binning method. Following the assumptions mentioned in Section 3 about MCE bound theorem,

we have Ei = E(|ei − oi|). Also, using the definition of ECE and the notations in Section 2, we

can rewrite ECE as the convex combination of Eis. As a result, in order to bound ECE it suffices

to show that all of its Ei components are bounded. Using the concentration results proved in MCE

bound theorem, we have:

P{|oi − ei| > ε} ≤ 2kie
−Nε2
2B , (5.4)

also let’s recall the following two identities:

Lemma 5.2.3. If X is a positive random variable then E[X] =
∫∞

0
P(X > t)dt

Lemma 5.2.4.
∫∞

0
e−x

2
dx =

√
π

2

Now, using the concentration result in Equation 5.4 and applying the two above identities we

can bound Ei to write Ei ≤ C
√

B
N

, where C is a constant. Finally, since ECE is the convex

combination of Ei’s we can conclude that using histogram binning method, ECE converges to

zero with the rate of O(
√

B
N

).

5.2.3 Convergence Results on AUC Loss

The above two theorems show that we can bound the calibration error of a binary classifier, which

is measured in terms of MCE and ECE, by using a histogram-binning post-processing method.

In this section we show that in addition to gaining calibration power, by using histogram binning

we are guaranteed not to sacrifice discrimination performance of the base classifier φ(.) measured

in terms of AUC. Recall the definitions of yi and ŷi, where yi = φ(xi) is the probability prediction
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of the base classifier φ(.) for the input instance xi, and ŷi is the transformed estimate for instance

xi that is achieved by using the histogram-binning calibration method.

We can define the AUC Loss of the histogram-binning calibration method as:

Definition 5.2.1. (AUC Loss)AUC Loss is the difference between the AUC of the base classifier

estimate and the AUC of transformed estimate using the histogram-binning calibration method.

Using the notation in Section 5.1, it is defined as AUC Loss = AUC(y)− AUC(ŷ)

Using the above definition, our third theorem bounds the AUC Loss of histogram binning

classifier as follows:

Theorem 5.2.5. Using the histogram-binning calibration method, the worst case AUC Loss is

upper bounded by O( 1
B

) as N →∞

Proof. For proving the theorem, let’s first recall the concentration results for η̂i and θ̂i. Using

Hoeffding’s inequality we have the following:

P{|θ̂i − θ| ≥ ε} ≤ 2e
−2Nε2

B (5.5)

P{|η̂i − η| ≥ ε} ≤ 2e−2Nε2 (5.6)

The above concentration inequalities show that with probability 1 − δ we have the following

inequalities:

|θ̂i − θi| ≤
√

B

2N
log(

2

δ
) (5.7)

|η̂i − ηi| ≤
√

1

2N
log(

2

δ
) (5.8)

The above results show that for the large amount of data with high probability, η̂i is concentrated

around ηi and θ̂i is concentrated around around θi.

Based on Agarwal et al. (2006), the empirical AUC of a classifier φ(.) is defined as follows:

ˆAUC =
1

mn

∑
i:zi=1

∑
j:zj=0

I(yi > yj) +
1

2
I(yi = yj) (5.9)
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Where m and n as mentioned in section 5.1 (notation and assumptions) are respectively the

total number of positive and negative examples. Computing the expectation of Equation 5.9 gives

the AUC as follows:

AUC = Pr{yi > yj|zi = 1, zj = 0}+
1

2
Pr{yi = yj|zi = 1, zj = 0} (5.10)

Using the MacDiarmid concentration inequality it is also possible to show that the empirical

ˆAUC is highly concentrated around true AUC (Agarwal et al., 2006), although we do not so here.

Recall pin is the space of outputs of base classifier (φ). Also, pout is the space of outputs of

the transformed probability estimates from histogram binning. Assume B1, . . . , BB are the non-

overlapping bins defined on the pin in the histogram binning approach. Also, assume yi and yj are

the base classifier outputs for two different instance where zi = 1 and zj = 0. In addition, assume

ŷi and ŷj are respectively, the transformed probability estimates for yi and yj using histogram

binning method.

Now using the above assumptions we can write the AUC loss of using histogram binning

method as follows:

AUC Loss = AUC(y)− AUC(ŷ)

= P{yi > yj|zi = 1, zj = 0}+
1

2
P{yi = yj|zi = 1, zj = 0}

− (P{ŷi > ŷj|zi = 1, zj = 0}+
1

2
P{ŷi = ŷj|zi = 1, zj = 0}) (5.11)

By partitioning the space of uncalibrated estimates pin one can write theAUC Loss as follows:

AUC Loss =∑
K,L

(P{yi > yj, yi ∈ BK , yj ∈ BL|zi = 1, zj = 0} − P{ŷi > ŷj, yi ∈ BK , yj ∈ BL|zi = 1, zj = 0})

+
∑
K

(P{yi > yj, yi ∈ BK , yj ∈ BK |zi = 1, zj = 0}

+
1

2
P{yi = yj, yi ∈ BK , yj ∈ BK |zi = 1, zj = 0}

− 1

2
P{ŷi = ŷj, yi ∈ BK , yj ∈ BK |zi = 1, zj = 0}),

(5.12)
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where BK and BL are two bins defined in the histogram binning method. Also, we make the

following reasonable assumption that simplifies our calculations:

• Assumption 1 : θ̂i 6= θ̂j if i 6= j

Now we will show that the first summation part in equation 5.12 will be less than or equal

to zero. Also, the second summation part will go to zero with the convergence rate of O( 1
B

) as

N →∞.

5.2.3.1 First Summation Part Recall that in the histogram binning method the calibration

estimate ŷ = θ̂K if y ∈ BK . Also, notice that if yi ∈ BK , yj ∈ BL and K > L then we have

yi > yj for sure. So, using the above facts we can rewrite the first summation part in equation 5.12

as follows:

Loss1 =
∑
K>L

P{yi ∈ BK , yj ∈ BL|zi = 1, zj = 0}

−
∑
K,L

P{θ̂K > θ̂L, yi ∈ BK , yj ∈ BL|zi = 1, zj = 0}

(5.13)

We can rewrite the above equation as following:

Loss1 =
∑
K>L

(P{yi ∈ BK , yj ∈ BL|zi = 1, zj = 0}

− P{θ̂K > θ̂L, yi ∈ BK , yj ∈ BL|zi = 1, zj = 0}

− P{θ̂L > θ̂K , yi ∈ BL, yj ∈ BK |zi = 1, zj = 0})

(5.14)
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Next by using Bayes’ rule and omitting the common denominators among the terms we have

the following:

Loss1 ∝
∑
K>L

(
P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BL}

− P{θ̂K > θ̂L, zi = 1, zj = 0|yi ∈ BK , yj ∈ BL}

− P{θ̂L > θ̂K , zi = 1, zj = 0|yi ∈ BL, yj ∈ BK}
)
× P{yi ∈ BL, yj ∈ BK}

(5.15)

We next show that the term inside the parentheses in equation 5.15 is less or equal to zero by

using the i.i.d. assumption and the notation we mentioned in Section 5.1, as follows:

Inside Term(IT ) = (θK(1− θL)

− I{θ̂K > θ̂L}θK(1− θL)

− I{θ̂L > θ̂K}θL(1− θK))

(5.16)

Now if we have the case θ̂K > θ̂L then IT term would be exactly zero. If we have the case that

θ̂L > θ̂K then the inside term would be equal to:

IT = θK(1− θL)− θL(1− θK)

' θ̂K(1− θ̂L)− θ̂L(1− θ̂K) as N →∞

≤ 0 (5.17)

where the last inequality is true with high probability which comes from the concentration results

for θ̂i and θi in equation 5.5.
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5.2.3.2 Second Summation Part Using the fact that in the second summation part ŷi = θ̂K

and ŷj = θ̂K , we can rewrite the second summation part as:

Loss2 =∑
K

((P{yi > yj, yi ∈ BK , yj ∈ BK |zi = 1, zj = 0}

+
1

2
P{yi = yj, yi ∈ BK , yj ∈ BK |zi = 1, zj = 0})

− (
1

2
P{yi ∈ BK , yj ∈ BK |zi = 1, zj = 0}))

≤
∑
K

(P{yi ∈ BK , yj ∈ BK |zi = 1, zj = 0} − 1

2
P{yi ∈ BK , yj ∈ BK |zi = 1, zj = 0})

=
1

2

∑
K

P{yi ∈ BK , yj ∈ BK |zi = 1, zj = 0})

(5.18)

Using the Bayes rule and iid assumption of data we can rewrite the equation 5.18 as following:

Loss2 ≤
1

2

∑
K P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BK} × P{yi ∈ BK , yj ∈ BK}

P{zi = 1, zj = 0}

=
1

2

∑
K P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BK} × P{yi ∈ BK}P{yj ∈ BK}∑
K,L P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BL} × P{yi ∈ BK}P{yj ∈ BL}

=
1

2

∑
K P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BK} × η2

K∑
K,L P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BL} × ηKηL

=
1

2

∑
K P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BK}∑
K,L P{zi = 1, zj = 0|yi ∈ BK , yj ∈ BL}

, (5.19)

where the last equality comes from the fact that ηK and ηL are concentrated around their em-

pirical estimates η̂K and η̂L which are equal to 1
B

by construction (we build our histogram model

based on equal frequency bins).
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Using the i.i.d. assumptions about the calibration samples, we can rewrite the equation 5.19 as

following:

Loss2 ≤
∑

K P{zi = 1|yi ∈ BK}P{zj = 0|yj ∈ BK}
2
∑

K P{zi = 1|yi ∈ BK} ×
∑

L P{zj = 0|yj ∈ BL}

=

∑B
k=1 θk(1− θk)

2
∑B

k=1 θk ×
∑B

l=1(1− θl)

≤ 1

2B
, (5.20)

where the last inequality comes from the fact that the order of {(1 − θ1), . . . , (1 − θB)}’s

is completely reverse in comparison to the order of {θ1, . . . , θB} and using Chebychev’s Sum

inequality as follows (Engel, 1998):

Theorem 5.2.6. (Chebyshev’s sum inequality) if a1 ≤ a2 ≤ . . . ≤ an and b1 ≥ b2 ≥ . . . ≥ bn then
1
n

∑n
k=1 akbk ≤ ( 1

n

∑n
k=1 ak)(

1
n

∑n
k=1 bk)

Now the facts we proved above about Loss1 and Loss2 in equations 5.20 and 5.17 show that

as N → ∞ the worst case AUC Loss is upper bounded by O( 1
B

) using the histogram binning

calibration method.

Remark. It should be noticed, the above proof shows that the worst case AUC loss in the pres-

ence of large number of training data point is bounded by O( 1
B

). However, it is possible that we

even gain AUC power by using the histogram binning calibration method as we showed in our

experiments on simulated datasets in Chapter 4.

Using the above three Theorems 5.2.1, 5.2.2, and 5.2.5, we can conclude that, as N → ∞

and B → ∞, by using the histogram-binning calibration method we can improve calibration

performance of a classifier measured in terms of MCE and ECE without losing discrimination

performance of the base classifier measured in terms of AUC. Note that by setting B = θ( 3
√
N),

which is the rate used for the number of bins in BBQ, the AUC Loss, ECE, and MCE all

converge to zero at a rate of θ( 1
3√N

) as N →∞.

In addition to our theoretical findings presented in this section, there are other related theoret-

ical results that support the setting of B = θ( 3
√
N). For instance, D. Freeman and Persi Diaconis

showed that, under mild assumptions over the true density function, the mean square difference
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between the estimated empirical density by an equal-size histogram method and the true den-

sity function is minimized by setting B = θ( 3
√
N) (Freedman and Diaconis, 1981). Also, it has

been shown that if equal size histogram binning is used for binary classification, then the setting

B = θ( 3
√
N) achieves the best convergence rate for minimizing the excess risk (i.e., the difference

between the best empirical-risk-minimizer classifier and the Bayes classifier) (Scott and Nowak,

2002; Scott et al., 2006; singh, 2011; Nowak, 2009). Although these results are related to his-

togram binning models with equal bin-size, we conjecture that similar theoretical results could be

obtained for equal frequency histogram binning models. This is an area for our future research.

5.3 EMPIRICAL EVALUATION

We also perform an empirical study on the effect of the size training dataset on the calibration

performance of the histogram binning method. Table 26 shows the results of experiments on using

the histogram-binning calibration method for different sizes of calibration sets on the simulated

data showed in Section 5(b) using SVM classifier with linear and quadratic kernels. In these

experiments the number of bins to be equal to B = 3
√
N . Also, we set the size of training data

to be 1000 and we fixed 10000 instances for testing the methods. For capturing the effect of

calibration size, we change the size of calibration data from 102 up to 106, running the experiment

10 times for each calibration set and averaging the results. As seen in Table 26, by having more

calibration data, we have a steady decrease in the values of the MCE and ECE errors.
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Table 26: Experimental results on the size of calibration data using histogram-binning method on

the simulated dataset 5(b).

(a) SVM Linear

102 103 104 105 106 Base SVM

AUC 0.82 0.84 0.85 0.85 0.85 0.49

MCE 0.40 0.15 0.07 0.05 0.03 0.52

ECE 0.14 0.05 0.03 0.02 0.01 0.28

(b) SVM Quadratic Kernel

102 103 104 105 106 Base SVM

AUC 0.99 1.00 1.00 1.00 1.00 1.00

MCE 0.14 0.09 0.03 0.01 0.01 0.36

ECE 0.03 0.01 0.00 0.00 0.00 0.15
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6.0 MULTI-CLASS CLASSIFIER CALIBRATION

This chapter is focused on the multi-class classifier calibration problem. Section 6.1 introduces a

new multi-class classifier calibration method. Section 6.1.1 presents the results and findings of the

method compared with baseline calibration methods on a set of real datasets. Finally, Section 6.2

presents the results of using the method in a causal network discovery application.

6.1 EXTENDING PLATT’S METHOD FOR MULTI-CLASS CALIBRATION

In designing a multi-class calibration method, we made a simple extension to Platt’s method which

is a commonly used parametric binary classifier calibration method. As we described in detail in

Section 2, Platt’s method uses the sigmoid transformation to map the output of a binary classifier

to a calibrated probability (Platt, 1999). It then optimizes a logistic loss function to learn the two

parameters of the model. The method has two advantages: (1) it has only two parameters that

make it a viable choice for low sample size calibration datasets, and (2) it runs in O(1) at test

time, and thus, is fast. A natural extension to Platt’s method for the multi-class calibration task

is to use a combination of a softmax transfer function and a cross-entropy loss function instead

of a sigmoid function and a logistic loss function, respectively. Minimizing the cross entropy is

equivalent to minimizing the empirical Kullback–Leibler divergence of the estimated probabilities

and the observed ones. The minimum will be achieved by the true probability distribution, and

minimizing the cross entropy function will result in finding the closest distribution parameterized

by the model to the observed distribution of the data (Nielsen, 2015).

The model that uses the softmax transfer function and optimizes the cross entropy loss func-

tion is called softmax regression (or multinomial logistic regression) (Nielsen, 2015). The softmax
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regression-based calibration model inherits the desirable properties of Platt’s method. However,

similar to Platt’s method, the mapping that the softmax regression-based calibration method can

learn is restrictive since the final separating boundaries between each pair of classes is always lin-

ear. A simple relaxation of this restriction is to use a shallow neural network with one hidden layer

(SNN) (Nielsen, 2015). Figure 20 shows the architecture of the shallow neural network model that

we used to post-process the uncalibrated probabilities. In our experiments, we trained 10 different
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Figure 20: The structure of the multi-class post-processing calibration method. The inputs on the

left are the k jointly exhaustive and mutually exclusive class probabilities generated by a multi-

class classifier. The outputs on the right are the corresponding post-processed probabilities that are

intended to be better calibrated.

such shallow neural networks by setting the number of neurons in the hidden layer to be 4, 5, 6, or

7 randomly. At test time, we use the average of the 10 different outputs generated by these models

as the final calibrated probability estimates. The averaging is helpful since it reduces the variance

error of the predictions and improves the final performance of the post-processed probabilities

(Domingos, 2000). We implemented our model using the scikit flow python package1, which uses

the tensor flow machine learning package (Abadi et al., 2016). We used the cross-entropy loss

function and the adagrad optimization method (Duchi et al., 2011) to learn the parameters, and we

set the learning rate and the batch size (two parameters of the stochastic gradient search) (Abadi

et al., 2016) to be equal to 0.1, and 10, respectively.

1https://github.com/tensorflow/skflow
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6.1.1 Experimental Results on UCI Datasets

This section describes the set of experiments that we conducted to evaluate the performance of the

SNN calibration method. We used 56 multi-class classification data sets collected from the UCI

and LibSVM repositories2 (Bache and Lichman, 2013; Chang and Lin, 2011).

We used three common classifiers, multi-class Logistic Regression (LR), multi-class Support

Vector Machines (SVM) (Smola and Schölkopf, 2004), and Naı̈ve Bayes (NB), to evaluate the

performance of our proposed multi-class calibration model. We used the average over five random

runs of 5-fold cross validation, and we always used the train data for calibrating the models.

To evaluate the performance of the model, we used a variety of evaluation measures including

the Brier score, cross entropy, accuracy (ACC), and multi-class AUC (Hand and Till, 2001). We

also used MCE micro, and ECE micro, which are explained next.

Assume a multi-class classification problem with k number of classes. Any probabilistic multi-

class classification model that is designed to solve this problem outputs k exhaustive and mutually

exclusive probabilities distribution vector p1, . . . , pk. To compute MCE micro and ECE micro, we

augmented the k-element probability distribution vectors p1, . . . , pk for all test instances to form

an aggregated vector Pall. We also augmented their corresponding one-hot binary labels (Nielsen,

2015; Abadi et al., 2016) to form an aggregated binary vector Zall. The ECE-micro and MCE-

micro are defined as the expected calibration error and the maximum calibration error calculated

based on Pall and Zall (See Section 2.4.3 for the definition of the MCE and ECE measures)..

Similar to our experiments on binary classifier calibration models in Section 4.4, we ran two

sets of experiments on the baseline multi-class outcome classification datasets. 3 In the first set of

experiments, we were interested in evaluating if there was experimental support for using the SNN

method as a post-processing calibration method. Table 27 shows the 95% confidence interval for

2The datasets used were as follows: sector, letter, dna, connect 4, glass, acoustic scale, iris, wine, vehi-
cle, digits, seismic, usps, svmguide4, svmguide2, vowel, segment, satimage, pendigits, shuttle, sensorless drive,
KingRook vs King, ecoli, contraceptive method choice, CNAE 9, cardiotocography, car evaluation, breast tissue,
balance scale, abalone, zoo 4class, yeast, white wine quality, red wine quality, waveform, wall following robot,
vertebral column, user knowledge, urban land cover, teaching assistant evaluation, steel plates faults, HAPT, se-
meion, seeds, page blocks, optdigits, plant species, libras movement, leaf data, gesture phase segmentation, hu-
man activity recognition, forest type, flag, ISOLET, firm teacher clave, online news popularity, PUC Rio

3Note that, however, we filter out those datasets that the base classifier (LR, SVM, or NB) is achieving a calibration
error of less than 0.05 in terms of ECE micro. In these cases, we assume the classifier is already well-calibrated and
there is no need for further calibration post processing.
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the mean of the random variableX , which is defined as the percentage of the gain (or loss) of SNN

with respect to the base classifier:

X =
measureSNN −measuremethod

measuremethod
, (6.1)

In the above equation, measure is one of the evaluation measures described earlier in this section.

Also, method denotes one of the choices of the base classifiers: LR (Softmax regression), SVM,

or NB. For instance, Table 27 shows that by post-processing the output of SVM using the SNN cal-

ibration method, we are 95% confident to gain anywhere from 23% to 37% average improvement

in terms of Brier-score. This could be a promising result, depending on the application, consider-

ing the 95% CI for the AUC which shows that by using the proposed calibration method, we are

95% confident not to lose more than 1% of the SVM discrimination power in terms of AUC (also

note that the CI includes zero, which indicates that there is not a statistically significant difference

between the performance of SVM and the SNN calibration method in terms of AUC).

Overall, the results in Table 27 show that there is not a statistically meaningful difference

between the performance of the SNN calibration method and the base classifiers in terms of

AUC. The results support at a 95% confidence level that our post-processing method improves

the performance of all of the base classifiers in terms of ACC. Furthermore, the results in Table 27

show that by post-processing the output of LR, SVM, and NB, we can make significant improve-

ments in terms of calibration measured by ECE micro and MCE micro, as well as Brier Score and

Cross Entropy.

In our second set of experiments, we used the Friedman non-parametric hypothesis testing

method (Friedman, 1937) followed by Holm’s step-down procedure (Holm, 1979) to evaluate the

performance of the SNN calibration method in comparison with the simple baseline model intro-

duced by Zadrozny and Elkan (Zadrozny and Elkan, 2002), across the baseline datasets. In imple-

menting the baseline calibration method, we utilize a binary calibration method such as isotonic

regression(Zadrozny and Elkan, 2002) or Platt’s method (Platt, 1999) to post-process the corre-

sponding output probabilities of each class separately. This is performed in a one-versus-remainder

fashion by considering the corresponding output probability of class i as a binary classification

score. We then use one of the binary classifier calibration methods (e.g., the isotonic regression or

Platt’s method) to calibrate the corresponding probabilities. Finally, we normalized the resulting
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Table 27: The 95% confidence interval for the average percentage of improvement over the base

classifiers (LR, SVM, NB) by using the SNN method for post-processing. Positive entries for

AUC and ACC mean SNN is on average performing better discrimination than the base classi-

fiers. Negative entries for Brier score, ECE micro, and MCE micro mean that SNN is on average

performing better calibration than the base classifiers.

LR SVM NB

AUC [-0.01, 0.02] [-0.01, 0.03] [0.00, 0.07]
ACC [0.00, 0.14] [0.01, 0.08] [0.03, 0.24]
cross entropy [-0.55, -0.19] [-0.42, -0.26] [-0.59, -0.34]
Brier score [-0.51, -0.18] [-0.37, -0.23] [-0.32, -0.22]
ECE micro [-0.64, -0.27] [-0.74, -0.57] [-0.81, -0.65]
MCE micro [-0.63, -0.25] [-0.74, -0.60] [-0.77, -0.58]

calibrated binary class probabilities so that they added to one as described in (Zadrozny and Elkan,

2002).

Table 28: Average rank of the calibration methods on the benchmark datasets using multi-class

LR as the base classifier. Marker ∗/~ indicates whether SNN is statistically superior/inferior to the

compared method (using an improved Friedman test followed by Holm’s step-down procedure at

a 0.05 significance level).

IsoReg Platt Softmax SNN

AUC 3.23∗ 2.67 2.00 2.10
ACC 2.47 2.30 2.83 2.40
CrosEntropy 3.60∗ 2.07 2.87∗ 1.47
Brier Score 2.33 2.47 3.47∗ 1.73
ECE micro 1.73 2.60 3.53∗ 2.13
MCE micro 1.87 2.33 3.60∗ 2.20

Tables [28,29,30] show the results of the performance of SNN in comparison with the two

baseline calibration methods using IsoReg and Platt, as well as softmax regression, which is a

multi-class extension to Platt’s method. In these tables, we show the average rank of each method

across the baseline datasets. In these tables, the marker ∗/~ indicates whether SNN is statistically
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superior/inferior to the compared method using the improved FF test followed by Holm’s step-

down procedure at a 0.05 significance level. For instance, Table 30 shows the performance of

the calibration models when we use the Naı̈ve Bayes as the base classifier; the results show that

SNN achieves the best performance in terms of Brier Score by having an average rank of 1.94

across the baseline datasets. The result indicates that in terms of Brier Score, SNN is statistically

superior to the baseline calibration method using Platt’s method; however, it is not performing

statistically differently than the softmax regression calibration and the baseline calibration method

using IsoReg.

Table 29: Average rank of the calibration methods on the benchmark datasets using multi-class

SVM as the base classifier. Marker ∗/~ indicates whether SNN is statistically superior/inferior to

the compared method (using an improved Friedman test followed by Holm’s step-down procedure

at a 0.05 significance level).

IsoReg Platt Softmax SNN

AUC 2.89 2.73 2.19 2.19
ACC 2.11 2.68 2.91 2.31
CrosEntropy 3.92∗ 1.70 2.41 1.97
Brier Score 1.86 2.41 3.22 2.51
ECE micro 1.81 2.38 3.35∗ 2.46
MCE micro 1.73~ 2.38 3.30∗ 2.59

Overall, the SNN method is often either outperforming the competing methods or there is

not a statistically meaningful difference between its performance compared with other methods;

however, there is one case in Table 29 that the SNN method performs statistically inferior to the

baseline calibration method using IsoReg for MCE micro measure when we use SVM as the base

classifier. Also, the SNN method always performs statistically significantly superior to the baseline

model using IsoReg in terms of cross entropy measure.

106



Table 30: Average rank of the calibration methods on the benchmark datasets using Naı̈ve Bayes

as the base classifier. Marker ∗/~ indicates whether SNN is statistically superior/inferior to the

compared method (using an improved Friedman test followed by Holm’s step-down procedure at

a 0.05 significance level).

IsoReg Platt Softmax SNN

AUC 2.73 2.64 2.39 2.24
ACC 2.45 3.27∗ 2.21 2.06
CrosEntropy 4.00∗ 2.76 1.70 1.55
Brier Score 2.39 3.45∗ 2.21 1.94
ECE micro 2.39 3.18∗ 2.64∗ 1.79
MCE micro 1.91 3.30∗ 2.82∗ 1.97

6.2 APPLICATION IN CAUSAL NETWORK DISCOVERY

In this section we present the results of applying the proposed SNN calibration model in a causal

network discovery application. Section 6.2.1 briefly introduces and explains the motivation for the

causal network discovery problem. Section 6.2.5 presents the results of our experiments. Section

6.2.6 discusses the results and presents future research directions.

6.2.1 Problem Definition and Motivation

Much of science consists of discovering and modeling causal relationships. Increasingly, scientists

have available multiple complex data types and a large number of samples, each of which has

an enormous number of measurements recorded, thanks to rapid advancements in sophisticated

measurement technology. Some such data may result from experiments in which one or more

variables were experimentally manipulated. Often, however, these data are purely observational.

In the past 25 years, there has been tremendous progress in developing general computational

methods for representing and discovering causal knowledge from observational data (Glymour and

Cooper, 1999; Spirtes et al., 2000; Pearl, 2003; Spirtes, 2010; Illari et al., 2011). A primary use of

such methods is to analyze observational data to generate novel causal hypotheses that are likely to
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be correct when subjected to experimental validation; such an approach can significantly increase

the efficiency of causal discovery in science.

To make informed decisions about which novel causal hypotheses to investigate experimen-

tally, scientists need to know how likely the hypotheses are to be true. In probabilistic terms, this

means they need to have the posterior probabilities of the hypotheses be calibrated.

In this section we focus on the discovery of causal Bayesian network (CBN) structures from

observational data. In particular, we focus on the discovery of the causal relationships (edge types)

between pairs of measured variables. If a causal arc is novel and important, it may be worthwhile

to experimentally investigate it. The extent to which it is worth doing so depends on how high

is the calibrated probability that the causal arc is present. In this initial investigation of the topic,

we consider CBNs without latent confounders, although the extension to latent confounders is

straightforward. The method requires the following: (1) a method for generating initial probabil-

ity estimates of the edge types for each pair of variables; in general those estimates need not be

well-calibrated, (2) the truth status of a relatively small, unbiased sample of the causal relation-

ships in the network, which we call a calibration training set, and (3) a calibration method for

using the uncalibrated probability estimates and the calibration training set to generate calibrated

probabilities for the relatively large number of remaining pairs of variables.

We use a bootstrapping method (Efron and Tibshirani, 1994) for generating probability esti-

mates of edge types. This method resamples a dataset n times with replacement and learns a model

for each dataset. In particular, for each dataset we use a heuristic search to find a relatively high

scoring CBN. For any given pair of nodes (A,B), the probability they have a given edge type (e.g.,

A → B) is estimated as the fraction of that edge type for (A,B) in the n networks. Previously,

Friedman, et al. successfully applied this approach for estimating the probabilities of edge types

in Bayesian networks (Friedman et al., 1999). These bootstrap estimates are not guaranteed to

represent unbiased posterior probabilities, even in the large sample limit of the dataset size and the

number of bootstrap samples. A key reason is that heuristic search, while practically necessary,

may get stuck in local maxima, even in the large sample limit4. Thus, there is a need to map those

estimates to calibrated probabilities, which is the focus of the current paper.

4Some search methods, such as GES (Chickering, 2003), provide asymptotic guarantees, while other methods,
such as greedy forward search, do not.
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The bootstrapping approach described above provides an empirically derived estimate of edge-

type posterior probabilities for both constraint-based and Bayesian CBN-structure-learning algo-

rithms. Constraint-based CBN learning methods, such as PC and FCI (Spirtes, 2010), do not

produce such probability estimates directly. Bayesian model averaging (Madigan et al., 1995;

Friedman and Koller, 2003; Koivisto and Sood, 2004; Eaton and Murphy, 2007; Koivisto, 2012)

provides an alternative approach for estimating edge probabilities. However, these methods are

typically applicable when using real world datasets in which the number of random variables

(nodes) is in the double digits (for exact methods) to triple digits (for heuristic methods). In con-

trast, we are interested in providing calibrated estimates of edge probabilities for datasets that may

be much larger. We also note that Bayesian model averaging methods are sensitive to the method

applied for heuristic search (Friedman et al., 1999) and to the structure and parameter priors that

are used, even if they are non-informative. Consequently, their generated probabilities are still

subject to being uncalibrated.

We assume the availability of a calibration training set that allows us to induce a mapping

from bootstrap probability estimates to unbiased posterior probabilities. The training set should

contain the truth status for the edge types of a sample of node pairs. In the domain of biomedical

applications, the truth status might come, for example, from the existing published results in the

literature. We emphasize that the calibration training set can be very small, relative to the number

of total node pairs. In the experiments we performed, it consists of less than 0.001% of all the node

pairs. Using it, we can generate better calibrated probabilities for the remaining 99.999% of node

pairs.

We applied SNN to the calibration training set to construct a mapping from bootstrap proba-

bility estimates to calibrated posterior probabilities of edge types for all the node pairs in a CBN

(except those few that are used for training). We applied that mapping to all of those remaining

node pairs.

In our experiments, we used simulated data to investigate two main questions. First, how cal-

ibrated are the bootstrap probabilities of edge types? Second, how calibrated are the probabilities

produced by our proposed SNN calibration method? Given a finite calibration training set, the

latter method is not guaranteed to always output perfectly calibrated probabilities either. Our main

hypothesis in this section is that this calibration method will output probabilities that are more
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calibrated than are the bootstrap probabilities, while being at least as discriminative in terms of

precision and recall.

6.2.2 Overview of Greedy Equivalent Search

In this section we briefly describe the causal network discovery algorithm that we applied in our

experiments. Chickering (Chickering, 2003) developed an algorithm called Greedy Equivalence

Search (GES), which identifies the generative structure of the data by searching over the equiv-

alence classes of Bayesian network structures, which are Directed Acyclic Graphs (DAGs). The

equivalence class of DAGs represents a set of DAGs that have the same d-separation properties

and can be represented by Partially Directed Acyclic Graphs (PDAGs), also known as patterns. A

PDAG is a mixed graph that contains both directed and undirected edges.

GES is a two-phase score-based algorithm that includes a forward equivalence search (FES)

and backward equivalence search (BES). It performs as follows: let ε be the current equivalence

class, i.e. the current search state or PDAG, and ε+(ε) be all equivalence-class neighbors of ε

during FES. ε+(ε) contains all PDAGs that can be generated by adding a single edge to DAGs in

ε (this transformation is based on (Chickering, 1995, 2003)). Similarly, ε−(ε) is the equivalence-

class neighbors of ε during BES, which is acquired by deleting a single edge from all DAGs in the

current state.

The first phase of GES starts with an empty graph (i.e. ε = ∅) and replaces the current state

with an equivalence class in ε+(ε) that has the highest score. It continues this phase until no further

local improvement can be achieved. The second phase starts from the local maximum achieved at

the first step and performs a backward search by replacing ε with the highest scored equivalence

class in ε−(ε). It stops when it reaches a local maximum. For more information about this method

see (Chickering, 2003).

6.2.3 Bootstrapped Greedy Equivalent Search

Considering the mixed graph generated by GES, it is possible to partition all pairs of nodes (A,B)

into the following four possible classes:

1. A · · ·B: There is no edge between A and B (i.e., they are marginally independent),
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2. A→ B: A has an arc into B,

3. B → A: B has an arc into A,

4. A — B: A and B are directly dependent, but the direction is indeterminate.

If we assume no latent common causes of the measured variables (i.e., no latent confounding)

then the directed arcs above can be interpreted as direct causation, although this assumption and

interpretation are not required.

The Bootstrapped Greedy Equivalent Search (BGES) method that we apply has three main

steps. In the first step, it performs bootstrap sampling over the training data n times (n = 200 in

our experiments) to create n different bootstrapped training datasets. In the second step, it runs

GES on each of those n datasets, which results in n PDAGs. Finally, for every pair of nodes, it uses

the frequency counts of each edge type for that pair over the generated PDAGs to determine a prob-

ability distribution for the four possible edge types. Figure 21 shows the graphical representation

of the BGES output for two random variables V1 and V2 in a hypothetical PDAG.

V1 V2

p = 0.15 

p = 0.7 

p = 0.05 

p = 0.1 

Figure 21: The graphical representation of the BGES output for two hypothetical nodes V1 and V2.

The labels show the associated probability of each edge type, where the dotted line indicates no

edge between V1 and V2.

For a pair of nodes (A,B), the resulting output of the BGES method will be four jointly

exhaustive and mutually exclusive class probabilities that correspond to the four classes ofA · · ·B,

A→ B, B → A, and A—B, where the dotted line indicates no edge between A and B. Therefore,

to calibrate the generated probabilities by the BGES method, we use our proposed SNN calibration

method that post-processes a multi-class classification score (in this case four classes).
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6.2.4 Experimental Methods

This section describes the experimental methods that we used to evaluate the performance of the

proposed calibrated network discovery method. The evaluation involves the following steps:

1. Create a random Bayesian network, BN .

2. Simulate a dataset, D, of size 1000 from BN , subject to constraints that are described below.

3. Generate 200 bootstrapped datasets, DB[1..200] from D.

4. For each of the bootstrapped datasets, learn a Bayesian network structure (PDAG) using a fast

implementation of GES; let PDAG[1..200] designate these PDAGs.

5. For each node pair (A,B), calculate the probability distribution Pe(A,B) of the edge types of

(A,B) using maximum likelihood estimates on the counts in PDAG[1..200].

6. Randomly partition the node pairs into train and test sets, where the train set is much smaller

than the test set. The training set is intended to represent causal relationships that are known

to exist, as reported in the literature.

7. Learn the calibration function fcal from the training data.

8. For each node pair (A,B) in the test set, derive P cal
e (A,B) = fcal (Pe(A,B)).

9. Compare the performance of P cal
e versus Pe in correctly predicting the data-generating struc-

ture of BN for the test set pairs, and doing so in a manner that is well calibrated.

In order to perform the first step, we set the number of nodes in the BN to be 1000 or 5000.

We also set the graph density, i.e. average edge per node, to be 1, 2, or 3. In each network,

the nodes correspond to discrete random variables that might take two or three values randomly.

We parametrize the conditional probability tables (CPTs) for each child node given its parents

by uniformly randomly sampling the probability distribution for the child given each state of its

parents.

In performing the fourth step, we used a parallelized and optimized implementation of GES,

which is called Fast Greedy Search (FGS) (Ramsey, 2015). FGS is much faster than GES and

makes it feasible to implement the proposed evaluation framework.

To compute Pe in step 5, we considered four different edge classes for each pair of nodes (A,B)

as we described in section 6.2.3: A · · ·B, A → B, B → A,and A — B. Then, we calculated the
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probabilities of these edge classes by counting the observed frequencies in the PDAG[1..200] that

are constructed in step 4.

In order to perform step 6, we set the size of the calibration training set to N, where N =

40, 80, or 120. This allows us to evaluate the effect of calibration training size on the prediction

performance. To collectN calibration training samples, we selectedN/4 samples from each of the

four edge classes to be observed using stratified random sampling5. In particular, we first sorted

the probability scores of edges in each edge class according to the bootstrap probabilities. We then

partitioned the instances into 5 bins of {[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1]} based on

their probability scores. Finally, we sampled separately from each bin with equal frequency.

Two common evaluation measures in multi-class classification problems are the accuracy and

the Brier-score (a.k.a., mean square error). However, due to the severe class imbalance in our

problem, the performance of the predictions before and after calibration were almost always the

same in terms of these two measures, up to three decimal points (accuracy for both measures

was always close to one and the Brier-score was always close to zero). Thus, to evaluate the

performance of the generated probabilities before and after calibration, we used four different

edge-type-based evaluation measures. Note that although there are four different edge classes, we

consider only three edge types for performance evaluation, because A → B and B → A are both

directed edge types. Table 31 shows the average number of each edge types for each configuration

of the BN graphs.

The first two edge-type based evaluation metrics are precision (P) and recall (R). To compute

these metrics for each edge type, we calculated the four basic statistics of true positives (TP),

false positives (FP), true negatives (TN), and false negatives (FN) for each of the types separately.

Calculating these statistics for the no-edge and undirected-edge type is straightforward since they

only consist of the instances that belong to only one of the four target classes6. For the directed

edge type (which consist of the classes (A → B) and (B → A)), Table 32 shows how we define

these statistics. After calculating the four basic statistics for each edge type, the precision will be

the ratio of TP
TP+FP

. Recall is defined as the ratio of TP
TP+FN

. We also report the F1-score, which is

5Note that it is not feasible to use random sampling due to severe class imbalance of the data (i.e., more than 99%
of the pairs belong to the no-edge class.)

6For instance, the number of true positives for the no-edge type is equal to the number of instances that the predicted
class is no-edge (i.e., the associated class probability is the highest among all the four predicted class probabilities),
and the true label of the instances are also no-edge.
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Table 31: Average number of no-edge, directed-edge, and undirected-edge types over the 10 ran-

domly generated datasets for every configuration of BN . V is the number of nodes and E is the

number of edges.

V, E no-edge directed-edge undirected-edge
1K, 1K 498500 746.6 253.4
1K, 2K 497500 1833.1 166.9
1K, 3K 496500 2886.5 113.5
5K, 5K 12492500 3718.4 1281.6
5K, 10K 12487500 9142.5 857.5
5K, 15K 12482500 14397.6 602.4

defined as the harmonic mean of the precision and recall. F1 is a summary measure that shows the

overall performance of the predictions in terms of both precision and recall.

Table 32: True positive (TP), false positive (FP), true negative (TN), and false negative (FN) statis-

tics for the directed-edge type pairs.

Prediction / Truth A · · ·B A→ B B → A A — B

A · · ·B TN FN FN TN
A→ B FP TP FP FP
B → A FP FP TP FP
A — B TN FN FN TN

We also evaluate the edge-type based predictions in terms of maximum calibration error (MCE)

(Pakdaman Naeini et al., 2015a). We calculated the MCE for each edge type by partitioning the

output space of the associated estimated edge type probabilities, which is the interval [0, 1], into

equal frequency bins with 100 instances. The estimated probability for each instance is located in

one of the bins. For each bin, we define the associated calibration error as the absolute difference

between the mean value of the predictions and the actual observed frequency of positive instances.

The MCE calculates the maximum calibration error among the bins. The lower the value of MCE,

the better the calibration of the probability scores.

We also report the overall MCE as a summary measure that shows the overall performance of

the predictions in terms of calibration. To compute this measure, we augmented the four-element
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probability distribution vectors, Pe(A,B) for all test instances to form an aggregated vector Pall.

We also augmented their corresponding one-hot binary labels (Nielsen, 2015; Abadi et al., 2016)

to form an aggregated binary vector Zall. The overall MCE is defined as the maximum calibration

error calculated based on Pall and Zall.

6.2.5 Experimental Results

This section presents the results of our experiments in evaluating the performance of the generated

probabilities for the three edge types before and after calibration. For each set of configurations

(e.g., N=80, V = 1000, E = 2000), we report the average results of 10 random runs on 10 randomly

simulated Bayesian networks. Tables 33 and 34 report the results of our experiments for random

CBNs with 1000 and 5000 nodes, respectively. In these tables bold face indicates the results that

are statistically significantly better than the others, based on a two-sided Wilcoxon signed rank test

at the 5% significance level. Note that we report only MCE measure for the no-edge type because

the precision, recall, and F1 are always very close to 1 for it.

The experimental results in Tables 33 and 34 show that by post-processing the bootstrapped

probabilities, we can often improve the overall edge-type performance both in terms of discrim-

ination (i.e., measured by precision and recall) and calibration (i.e., measured by MCE). Also,

these tables demonstrate that using a larger calibration training set will result in more accurate and

calibrated probabilities.

6.2.6 Discussion

In this section, we introduced a new approach for improving the calibration of CBN structure

discovery. We used a bootstrapping method to obtain probabilities of the causal relationships

between each pair of random variables. Although we applied the bootstrapping method to the

output of the FGS network discovery algorithm (i.e., an optimized and parallelized implementation

of the GES method), it can be applied on any other type of the network discovery method, as long

as the method is sufficiently fast to run hundreds of times on a dataset. We plan to investigate

the performance of this basic approach using other causal discovery algorithms, such as RFCI

(Colombo et al., 2012), which models latent confounders.
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To calibrate the bootstrapped probabilities, we devised a natural extension of Platt’s calibra-

tion method that supports multi-class calibration using a shallow neural network. A key advantage

of the shallow neural network approach for post-processing the estimated probabilities is that we

can readily condition on other types of features for learning a calibration mapping (e.g., features

extracted from the structure of the predicted PDAG by the FGS method, such as the indegree of

B when we are generating a calibrated probability for the edge type A → B). Such condition-

ing on local or global features of the learned graph could potentially yield improvements in the

post-processed calibrated probabilities. This is an area for future research. Our experiments show

that by using only a small set of instances for training the calibration model, we can obtain sub-

stantial improvements in terms of precision, recall, and calibration, relative to the bootstrapped

probabilities. Also, as the calibration training set size increased, the performance increased.
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Table 33: The results of experiments on CBNs with 1000 variables (i.e., V=1K). N is the num-

ber of instances in the calibration training set and E is number of edges in the CBN. Bold face

indicates the results that are significantly better, based on the Wilcoxon signed rank test at the 5%

significance level. The lower the value of MCE, the better the calibration of the probability scores.

N E method
directed edge undirected edge no edge overall

P R F1 MCE P R F1 MCE MCE MCE

40

1K
before 0.67 0.60 0.63 0.20 0.74 0.07 0.12 0.47 0.35 0.25
after 0.80 0.58 0.67 0.27 0.67 0.52 0.57 0.26 0.22 0.23

2K
before 0.82 0.41 0.55 0.21 0.50 0.02 0.04 0.32 0.54 0.27
after 0.81 0.47 0.60 0.25 0.56 0.35 0.38 0.25 0.24 0.23

3K
before 0.85 0.25 0.39 0.29 0.37 0.01 0.03 0.18 0.59 0.31
after 0.84 0.31 0.45 0.23 0.39 0.24 0.27 0.22 0.31 0.25

80

1K
before 0.67 0.59 0.63 0.21 0.72 0.04 0.08 0.49 0.32 0.26
after 0.83 0.58 0.68 0.16 0.68 0.57 0.61 0.16 0.14 0.16

2K
before 0.82 0.41 0.54 0.20 0.15 0.00 0.01 0.32 0.55 0.27
after 0.84 0.47 0.60 0.16 0.55 0.35 0.40 0.17 0.18 0.17

3K
before 0.86 0.25 0.39 0.28 0.03 0.00 0.00 0.18 0.58 0.31
after 0.86 0.30 0.45 0.18 0.37 0.21 0.24 0.15 0.26 0.21

120

1K
before 0.67 0.59 0.63 0.21 0.60 0.02 0.04 0.48 0.28 0.26
after 0.86 0.56 0.68 0.12 0.68 0.63 0.65 0.12 0.10 0.12

2K
before 0.83 0.40 0.54 0.23 0.07 0.00 0.00 0.31 0.54 0.26
after 0.85 0.46 0.60 0.15 0.55 0.33 0.40 0.13 0.17 0.15

3K
before 0.86 0.25 0.38 0.29 0.00 0.00 0.00 0.17 0.59 0.32
after 0.87 0.30 0.44 0.18 0.46 0.26 0.31 0.12 0.26 0.22
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Table 34: The results of experiments on CBNs with 5000 variables (i.e., V=5K). N is the num-

ber of instances in the calibration training set and E is number of edges in the CBN. Bold face

indicates the results that are significantly better, based on the Wilcoxon signed rank test at the 5%

significance level. The lower the value of MCE, the better the calibration of the probability scores.

N E method
directed edge undirected edge no edge overall

P R F1 MCE P R F1 MCE MCE MCE

40

5K
before 0.64 0.57 0.60 0.32 0.00 0.00 0.00 0.68 0.48 0.36
after 0.81 0.52 0.63 0.32 0.63 0.57 0.59 0.33 0.35 0.31

10K
before 0.79 0.38 0.52 0.25 0.00 0.00 0.00 0.48 0.62 0.35
after 0.82 0.43 0.57 0.30 0.47 0.28 0.31 0.35 0.32 0.30

15K
before 0.83 0.24 0.37 0.32 0.00 0.00 0.00 0.34 0.64 0.37
after 0.83 0.28 0.42 0.33 0.35 0.22 0.24 0.30 0.36 0.34

80

5K
before 0.64 0.57 0.60 0.32 0.00 0.00 0.00 0.67 0.49 0.35
after 0.83 0.54 0.65 0.23 0.66 0.62 0.63 0.24 0.24 0.19

10K
before 0.80 0.38 0.52 0.25 0.00 0.00 0.00 0.47 0.62 0.35
after 0.84 0.43 0.57 0.22 0.51 0.34 0.38 0.25 0.25 0.22

15K
before 0.83 0.24 0.37 0.31 0.00 0.00 0.00 0.35 0.63 0.38
after 0.84 0.29 0.43 0.23 0.40 0.23 0.27 0.24 0.29 0.24

120

5K
before 0.64 0.57 0.60 0.31 0.00 0.00 0.00 0.67 0.48 0.36
after 0.85 0.53 0.65 0.19 0.66 0.64 0.65 0.19 0.19 0.16

10K
before 0.80 0.38 0.52 0.25 0.00 0.00 0.00 0.48 0.61 0.36
after 0.85 0.43 0.57 0.18 0.51 0.38 0.42 0.19 0.23 0.20

15K
before 0.83 0.24 0.37 0.32 0.00 0.00 0.00 0.35 0.63 0.38
after 0.86 0.28 0.42 0.23 0.42 0.27 0.32 0.19 0.31 0.25

118



7.0 CONCLUSION AND FUTURE WORK

In this dissertation, we introduced several new binary classifier calibration methods by extending

the most commonly used calibration methods namely, histogram binning, isotonic regression, and

Platt’s method. The methods we introduced are classifier independent; thus, they can be readily

applied on the output of any existing binary classification model to calibrate the associated classifi-

cation scores. We also proved theorems that collectively show, in the presence of large calibration

samples, that it is possible to obtain perfectly calibrated predictions using a simple equal frequency

histogram binning method, while the worst-case AUC deterioration between the post-processed

calibrated estimates, and the original predictions made by the base classifier, converges to zero.

These theoretical results support our hypothesis that by using simple post-processing calibration

methods, it is possible to improve the calibration capability of a classifier without sacrificing much

discrimination capability. In addition, using experiments on a wide range of simulated and real

data, we showed that our newly introduced calibration methods, including BBQ, ENIR, and ELiTE,

can improve the calibration performance of predictions without losing any statistically significant

discrimination in terms of area under ROC curve (AUC) and accuracy (ACC).

The experimental results of the newly introduced binary classifier calibration methods support

our second hypothesis in Section 1.1 that “one can systematically produce probabilities that are

more accurate than those obtained from existing calibration methods by using an ensemble of cal-

ibration models that are generated based on rational, realistic assumptions about the output of

the classifier.” For instance, BBQ can be considered as an ensemble of equal frequency histogram

binning models. ENIR is also an ensemble of near-isotonic regression-based models. In addition,

ENIR makes a more reasonable assumption in finding the calibration mapping compared to IsoReg

and BBQ. Unlike IsoReg, which assumes that the probabilities output by a classifier are strictly iso-

tonic, ENIR assumes that the predictions made by the classifier are approximately (near) isotonic.
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Our experiments in Section 4.3 show that the near-isotonic assumption is less biased compared to

isotonicity assumption made by IsoReg.

The ELiTE algorithm is an ensemble of linear trend-filtering signal-approximation models.

ELiTE extends the binning-based calibration methods by finding a calibration mapping that is

piecewise linear. In contrast, in all the binning based calibration methods —including histogram

binning, isotonic regression, ABB, BBQ, and ENIR— the final calibration mapping is a piece-

wise constant function. Our experimental results show that while the piecewise linear assumption

is more flexible and improves the overall performance of the post-processed estimates, it is con-

strained enough to not to overfit the training data, even when we use the training data for both

model construction and calibration mapping. Our experimental results show that our newly intro-

duced calibration methods are usually superior to commonly used calibration methods.

We also introduced the SNN calibration model that is an extension to the Platt’s method using

a shallow neural network and cross-entropy loss function for multi-class calibration. Our results

show that the proposed calibration model performs well in terms of improving calibration per-

formance of predictions while maintaining discrimination performance in terms of accuracy and

AUC. The proposed model also performs well when the number of calibration training cases is

small (i.e., in order of tens of cases). In particular, we showed its superior performance on an

extrinsic application in obtaining well-calibrated causal network discovery methods in which there

are 4 different target classes. Our experiments show that by using only a small set of instances for

training the calibration model (less than 0.001% of existing node pairs), we can obtain substantial

improvements in terms of precision, recall, and calibration, relative to bootstrapped probabilities.

A key advantage of the shallow neural network (SSN) approach in calibrating causal discovery

methods (e.g., Greedy Equivalent Search (Chickering, 2003)) is that we can readily condition on

other types of features for learning a calibration mapping (e.g., features extracted from the struc-

ture of the predicted casual network, such as the indegree of B when we are generating a calibrated

probability for the edge type A→ B). Such conditioning on local or global features of the learned

graph could potentially yield improvements in the post-processed calibrated probabilities. This is

an area for future research.

There are a number of areas for future research. In terms of calibration evaluation measures, in

our experiments, we always used K = 10 equal frequency intervals in defining the MCE and ECE
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evaluation measures. Further development of methods for evaluating calibration, beyond using

just 10 intervals, is an interesting future research area. Even though our convergence theorems for

ECE and MCE for the quantile binning method remain valid as long as the number of intervals is

constant, in the finite sample situation, ECE and MCE may be affected by changing the number

of intervals similar to what has been observed in some applications of Hosmer-Lemeshow test

measure (Allison, 2014).

In terms of theoretical works, it would be interesting to show convergence results, similar to

those that we proved for histogram binning, for BBQ, ENIR, and ELiTE. Our experimental results

on simulated and real data show that these methods are superior to histogram binning, isotonic

regression, and Platt’s method. Also, our results on a wide range of simulated and real datasets

show that they are able to improve calibration performance of the baseline classifiers (i.e., LR,

SVM, NB) without losing statistically significant discrimination in terms of ACC and AUC. As we

described in Chapter 5, there are also existing theoretical results for the convergence of excess risk

for the equal-size histogram binning method. We conjecture that similar convergence theorems can

be developed for quantile binning methods. It is also possible to develop ways for deriving error

bounds on the calibrated probabilities. This can be readily done with histogram binning, ABB,

SBB, and BBQ, using concentration of measure inequalities (e.g., using Hoeffding inequality).

However, it is less obvious how to do so with the other new methods (e.g., ELiTE).

Another future research direction would be developing large-scale (in terms of the number of

classes) multi-class and multi-label calibration methods. Also, all of the experiments in this thesis

used all of the classifier training data for calibration training as well. It would be interesting to

study how using a separate dataset for calibration training would affect calibration performance.

Finally, in terms of the application in causal network discovery, it would be interesting to ex-

plore methods that construct a calibration dataset automatically, without the need for a dataset for

which the causal truth-status is known. This is an important capability in domains in which obtain-

ing the ground truth is not practical. It would also be beneficial to investigate the performance of

our proposed framework on other score-based and constrained-based causal discovery methods.
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