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ABSTRACT 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that overtime interferes 

with daily tasks. Late-onset Alzheimer’s disease (LOAD) is a multifactorial disease with a 

combination of genetic and environmental risk factors. The APOEε4 allele of Apolipoprotein E 

(APOE) is the major genetic risk factor for LOAD. However, APOEε3 patients still account for 

the majority of LOAD cases, suggesting additional genetic, environmental, and lifestyle factors 

as risk modifiers.  

We examined the effect of high-fat diet (HFD) and liver x receptor (LXR) agonist 

T0901317 (T0) in representative mouse models of AD phenotype. LXRs regulate cholesterol and 

lipoprotein metabolism. ATP-binding cassette transporter A1 (ABCA1) and APOE are major 

LXR target genes involved in lipid and cholesterol generation and transport and are implicated in 

AD pathology. We determined that Abca1ko mice have cognitive deficits. Lack of ABCA1 

impaired neurite morphology in the CA1 region of the hippocampus. We then examined the 

effect of HFD on memory deficits and microglia morphology in AD model mice expressing 

either mouse Apoe or human APOE isoforms. HFD exacerbated cognitive deficits in APP23 

mice. Microglia morphology resembled activation state in HFD fed female APOE4 mice, 

suggesting differential response to diet. Lastly, we examined the effects of T0 on the phenotype 
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and transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient mice, revealing the ability of 

T0 to ameliorate APOE4-driven pathological phenotype.  

These findings suggest that disturbances in cholesterol metabolism may negatively 

impact AD-related patholoy, HFD exacerbates AD-related pathology, and that T0 treatment 

ameliorates APOE4-induced AD pathogenesis. These results could have clinical implications on 

lifestyle or dietary and pharmacological interventions for AD patients. The public health 

significance of this research supports efforts in developing primary prevention techniques, with 

the end goal of inhibiting or delaying disease onset, AD-related pathology, and promoting 

healthy brain aging. Targeting the LXR-ABCA1-APOE regulatory axis could be an effective 

therapy for individuals at risk of dementia and to treat AD patients regardless of APOE genotype. 

Further developing studies that better assess cholesterol metabolism genes in AD pathology are 

essential for modifying guidelines and therapies for those at risk of dementia. 
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1.0  INTRODUCTION 

1.1 OVERVIEW OF ALZHEIMER'S DISEASE  

1.1.1 History, Definitions, and Criteria 

In the early 1900s, Auguste Deter – commonly known as Auguste D. – was admitted to the 

Frankfurt mental asylum in her 50s for rapid changes in personality accompanied by memory 

weakness, disorientation, unpredictable behavior, paranoia, and auditory hallucinations. German 

neuropathologist Alois Alzheimer documented August D.’s mental and psychosocial 

deterioration. After Auguste D.’s death in 1906, Alzheimer published his lecture detailing the 

clinical aspects and histological findings from the cerebral cortex of his former patient. In 1910, 

a Clinical Psychiatry textbook first introduced the eponym Alzheimer’s disease (AD), now 

characterized by neurofibrillary tangles (NFT) and beta-amyloid (Aβ) plaques, as distinguishable 

from historically familiar senile dementia [1-3]. Extracellular Aβ plaques result from the 

abnormal proteolytic processing of amyloid precursor protein (APP). Intraneuronal 

hyperphosphorylated tau results from the abnormal addition of phosphate molecules and 

dissociation of tau protein from microtubules, which form tangles within the cell. 

The National Institute of Neurological and Communicative Disorders and Stroke and the 

Alzheimer Disease and Related Disorders Association developed the first set of criteria for AD 
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diagnosis based on clinical symptoms only. Diagnostic criteria included patient and family 

history, clinical examination, neuropsychological testing, and assessment of symptoms over time 

[4]. However, the National Institute of Aging and Alzheimer’s Association revised the diagnostic 

framework to update the diagnostic guidelines of AD. ‘Preclinical AD’ represents pathological 

changes in cognitively healthy individuals that can progress to the pre-dementia stage and 

manifest as prodromal AD for upwards of ten years. Cerebrospinal fluid (CSF) biomarker 

evidence of Aβ, tau, neurodegeneration and mild cognitive impairment (MCI) are indicative of 

pre-dementia. Additionally, individuals who have undergone magnetic resonance imaging and 

identify as amyloid positive by amyloid positron emission tomography are at an increased risk of 

clinical AD progression. Furthermore, cerebrospinal Aβ is a strong predictive indicator of 

subsequent clinical progression in individuals with subjective complaints of cognitive decline [5-

8].  

A definitive AD diagnosis occurs postmortem. The National Institute on Aging/Reagan 

Institute of the Alzheimer Association Consensus Recommendations for the Postmortem 

Diagnosis of AD, published in 1997, was updated because some older individuals classified as 

cognitively intact before death had significant AD neuropathological changes. Quantification and 

distribution of Aβ, NFT, and neuritic plaques receive Amyloid [9], Braak [10, 11], and the 

Consortium to Establish, a Registry for AD [12] scores respectively to correlate 

clinicopathological findings and neuropathological changes. The revisions also include assessing 

non-AD brain lesions to recognize co-morbidities in cognitively impaired elderly [13], 

illustrating the scope and complexity of AD.  

Aβ pathology occurs synonymously with the hierarchial organization of brain regions, 

first appearing in cortical regions responsible for complex, high-ordered thinking. As AD 



 

 3 

progresses, Aβ pathology lastly affects the brainstem, which regulates vital processes such as 

heart rate, body temperature, and blood pressure. Observations show that Aβ may drive tau 

pathology although these proteins have fundamentally different patterning in AD [9, 14, 15]. 

1.1.2 Epidemiology of Alzheimer’s disease 

According to the Alzheimer’s Association, AD is the most common cause of dementia 

accounting for 60 to 80 percent of cases. Age is the greatest risk factor for AD. The likelihood of 

having AD increases with age, except for individuals who harbor rare genetic mutations. AD is 

not a normal part of aging, and age alone is not sufficient to cause disease. For those who do not 

harbor genetic abnormalities, AD is a multifactorial disease. The ε4 allele of apolipoprotein E 

(APOE4) is the major genetic risk factor for “sporadic” late-onset AD (LOAD). Although age 

and genetics are risk factors that cannot change, cardiovascular disease, obesity, diabetes, and 

lifestyle factors may also increase dementia risk. The prevalence, or existing cases, of Americans 

who have AD, is approximately 5.4 million, 5.2 million people age 65 and older, and 200,000 

people under age 65 with familial AD (FAD). Further indicating the magnitude of AD, 

approximately one in nine people age 65 and older (11 percent) has AD. Of people age 85 and 

older, described as the “oldest-old”, the number increases to one-third (32 percent). 4.2 million 

people (81 percent) who have AD are age 75 or older [16]. 

The incidence, or rate, of the United States population age 65 or older developing AD is 

approximately 476,000 in 2016. Of these incidences, the number of new cases of AD is 

estimated to be 63,000 among people age 65 to 74, 172,000 among people age 75 to 84, and 

241,000 among people age 85 and older, considered the “oldest-old.” The number of Americans 
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living with AD is expected to escalate as the “baby boomer” generation continues to age. By 

2050, the number of new AD and dementia cases is projected to double [17]. 

According to the National Center for Health Statistics of the Centers for Disease Control 

and Prevention, AD is the sixth-leading cause of death in the United States, killing 84,767 people 

in 2013 [18]. Variations in case definitions and recording mortality on death certificates result in 

underreported AD deaths in part because of intercurrent infection like pneumonia that occurs in 

advanced stages of AD. Between 2000 and 2013, deaths attributed to HIV, stroke, heart disease, 

breast, and prostate cancer decreased, while deaths attributed to AD increased 71 percent [18]. 

On average, people age 65 and older survive 4 to 8 years after AD diagnosis, with some living up 

to 20 years with the disease [19-24], reflecting the slow progression of and morbidity associated 

with AD [16]. 

1.2 FAMILIAL ALZHEIMER’S DISEASE SUSCEPTIBILITY GENES  

1.2.1 Amyloid Precursor Protein Domain Structure and Processing 

Human APP belongs to the APP family of single-pass transmembrane proteins and includes 

APP-like proteins 1 and 2 (APLP1 and APLP2) in mammals [25, 26], APP-like 1 (APL-1) in C. 

elegans, and APP-like (APPL) in D. melanogaster. The extracellular N-terminus of APP 

contains the conserved E1 and E2 domains with heparin- and copper-binding regions. The 

Kunitz protease inhibitor domain in human APP can undergo alternative splicing. The short 

intracellular C-terminus has the highest homology due to the highly conserved YENPTY 
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(Tyrosine-Glutamic Acid-Asparagine-Proline-Threonine-Tyrosine) sorting motif. The Aβ 

domain is present only in human APP. APP domain structure illustrated in Figure 1. 

The human APP gene on chromosome 21q21.3 contains 18 exons and is approximately 

240 kilobases [27]. Alternative splicing of human APP yields three major isoforms with 695, 751 

and 770 amino acids. APP695, the major brain isoform predominantly expressed in neurons, was 

the first cloned APP splice variant [28]. Unlike APP695 isoform, APP770 and APP751 

expression is in non-neuronal cells [29] and peripheral tissues like the thymus, heart, muscle, 

lung, kidney, adipose tissue, liver, spleen, skin, and intestine [30-32]. APP714 isoform 

expression is in peripheral tissues like APP770 and APP751. The shorter APP639 isoform 

expression is exclusive to fetal tissue and the adult liver [33].  

Figure 1: Domain structure of human APP 
The extracellular N-terminus contains E1 and E2 domains. The KPI domain, also part of the N-
terminus, serves as the site for alternative splicing. The C-terminus is intracellular and contains 
the highly conserved YENPTY sorting motif. Only human APP contains the Aβ domain. 
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APP undergoes amyloidogenic and non-amyloidogenic processing. In the non-

amyloidogenic pathway, APP on the cell surface is cleaved by α-secretase [34] in the Aβ domain 

(also known as α-cleavage) producing sAPPα released into the extracellular environment and 

prevents Aβ generation. APP α-cleavage also yields membrane-associated C-terminal fragment 

(CTF) C83 also known as αCTF. Sequential cleavage of C83 occurs by the multiprotein complex 

γ-secretase at two potential intracellular sites: the late endosome/lysosomal compartment or in 

the TGN. Cleavage of C83 by γ-secretase yields pathologically irrelevant p3 fragment, released 

through the secretory pathway or exocytosis. Cleavage of C83 by γ-secretase also yields APP 

intracellular domain (AICD) fragment. APP processing illustrated in Figure 2. 
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APP located on the cell surface undergoes amyloidogenic processing. APP on the cell 

surface is endocytosed and translocated to the early endosome containing the major β-secretase 

known as β-site APP-cleaving enzyme 1 (BACE1; the process also known as β-cleavage). APP 

cleavage by BACE1 yields sAPPβ in the endosomal lumen and targeted to the lysosome for 

degradation. The sAPPβ fragment released into the extracellular environment occurs after being 

exocytosed from the lysosome or sorted into recycling endosomes. Similar to α-cleavage, β-

Figure 2: Amyloid Precursor Protein Metabolism 
Metabolism of APP occurs by two competing pathways. APP is cleaved by the red Aβ domain 
first by α-secretase, followed by subsequent cleavage by γ-secretase to produce non-pathogenic 
fragments. Autosomal dominant mutations in APP, mutations in presenillins 1 and 2, which are 
components of the γ-secretase complex cause early-onset AD and lead to the amyloidogenic 
pathway. The amyloidogenic pathway involves APP cleavage by β- and γ- secretase that yields 
amyloid-beta peptides the length of 40 and 42 amino acid residues. 
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cleavage of sAPPβ yields a CTF C99 or βCTF that is sequentially cleaved by γ-secretase in the 

late endosome/lysosomal compartment or trans-Golgi network. Cleavage of C99 by γ-secretase 

also yields AICD. Similar to the p3 fragment, Aβ is either released via the secretory pathway or 

exocytosis. Only 16 amino acids differ between the fragments generated by α- or β-cleavage 

(non-amyloidogenic versus amyloidogenic processing); however, only amyloidogenic processing 

is thought to lead to AD pathology [31, 35-37]. 

 APP putative functions include neurite outgrowth, neural stem cell proliferation and 

differentiation, and synaptogenesis. Early studies showed that sAPPα stimulates proliferation of 

neural stem or progenitor cells isolated from embryonic rat neocortex [38, 39]. More recently, 

recombinant sAPPα added to cell medium rescued neural stem or progenitor cells proliferation 

after α-secretase inhibition [40]. Because early APP expression corresponds to the timing of 

neuronal differentiation, APP, sAPPα and sAPPβ may increase neural [41] and glial cell 

differentiation [42]. Although results from in vitro studies are inconsistent, sAPPα, sAPPβ, and 

AICD participate in the induction of neurite outgrowth [43, 44]. By fast axonal transport, APP 

translocates to the synaptic terminals after delivery to the axon [31, 45].  

APP gene knock-out studies enhanced understanding of APP molecular and cellular 

functions. APL-1 knockout in C. elegans is lethal because it prevents the exoskeleton from 

shedding, a process known as molting [46, 47]. APPL knockout in D. melanogaster are viable, 

but have behavior deficits [48] and defects at the neuromuscular junction [49]. APP, APLP1, or 

APLP2 knockout mice [50] are viable and fertile but possess phenotype defects. APP knockout 

mice have reduced body (15 to 20 percent) and brain weight, reduced locomotor activity, 

disturbed forelimb strength, gliosis, altered long-term potentiation responses and performance in 

the Morris Water Maze, and defects in axonal growth, transport and white matter [51-58]. APP 
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and APLP2 or APLP1 and APLP2 double knockouts are postnatally lethal [59], suggesting that 

APP and APLP2 functions may be related or overlap in mammals [35].  

1.2.2 The Genetic Etiology of Familial Alzheimer’s disease 

Familial AD (FAD), also known as early-onset AD (EOAD), is practically a genetically 

determined disease caused by high-penetrant mutations in APP and presenilins 1 and 2 (PSEN1 

and PSEN2) genes with an autosomal dominant mode of inheritance. Mutations in 18 of the 770 

amino acid residues of APP affect substrates for APP proteolytic processing and cause FAD. The 

majority of APP mutations are a combination of single dominant amino acid substitutions. 

Identification of APP mutations in FAD stemmed from Down syndrome patients [60]. Aβ 

plaques from the cerebral vascular walls in DS and AD brains were purified and sequenced [61]. 

Along with whole-genome-linkage studies in AD families, it became evident that APP was the 

genetic defect on chromosome 21q [62-64], encouraging segregation studies to identify 

mutations in AD patients and their families. However, some families participating in the 

segregation studies were negative for APP mutations, indicating the involvement of other genes 

in FAD.  

Segregation studies [65-68], genetic mapping, gene cloning and mutation screening 

identified PSEN1 on chromosome 14q24.3 as a FAD gene [69-71]. Based on protein homology, 

PSEN2 was identified and mapped to chromosome 1q31-q42 [72, 73]. Once discovered, the 

function of presenilin was unknown. We now know that presenilin is one of four different, 

necessary and sufficient integral membrane proteins of the γ-secretase protease complex. During 

maturation of the complex, the 9-TMD of presenilin is proteolytically processed, with amino and 

carboxyl termini that are oriented to the cytoplasmic and luminal/extracellular sides respectively 
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[74]. One transmembrane catalytic aspartic acid residue resides in each terminus. Presenilins 

provide the catalytic subunits to γ-secretase. Along with presenilin, nicastrin, Aph-1, and Pen-2 

subunits complete the γ-secretase complex.  

Missense mutations in PSEN1 and PSEN2 affect Aβ generation by skewing the cleavage 

of CTF C99 and altering the ratio of Aβ42 (Aβ with 42 amino acid residues) to Aβ40 (Aβ with 40 

amino acid residues) peptides that are susceptible to aggregation [75]. An increase in Aβ42 in 

plasma and fibroblasts from carriers of PSEN1, PSEN2, and APP mutations has been observed 

[76]: In vitro, overexpressing mutant presenilins in N2a neuroblastoma [77] and 293 cells [78] 

lead to an increase in Aβ42. In vivo, transgenic mice overexpressing mutant presenilin in the brain 

with various promoters [77-80] or knock-in mutations in the endogenous mouse presenilin gene 

have an increase in Aβ42 [81, 82].  

To date, there are 52 pathogenic APP mutations in 119 probands, 215 pathogenic PSEN1 

mutations in 475 probands, and 15 pathogenic PSEN2 mutations in 24 probands of autosomal 

dominant families (http://www.molgen.vib-ua.be/ADMutations). The estimated mutation 

frequency in FAD patient cohort is less than one percent for APP, six percent for PSEN1, and 

one percent for PSEN2, accounting for 5 to 10 percent of FAD patients [83], suggesting that 

there is still unknown genetic etiology of FAD.  

1.3 BETA-AMYLOID PROPAGATION AND TOXICITY 

Because Aβ plaque pathology occurs in both FAD and the common sporadic late-onset AD 

(LOAD), there is an association between Aβ and AD pathogenesis. The Amyloid Cascade 

Hypothesis formed in 1992 by John Hardy marked amyloid plaques as the earliest lesion in the 

http://www.molgen.vib-ua.be/ADMutations
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etiology of AD. The hypothesis proposed excessive Aβ accumulation and deposition of either Aβ 

itself or APP cleavage products as the causative agent of AD. NFT, progressive neuronal loss, 

and cognitive decline were a direct result of insoluble Aβ filaments and caused AD [84-86]. 

However, as reflected in the revised AD diagnostic framework, individuals considered 

cognitively intact present advanced AD neuropathology and significant Aβ plaque burden that 

does not correspond to impaired memory, degeneration, or change in brain volume. Also, 

individuals diagnosed with AD may not show pathological changes. Therefore, a paradigm shift 

in AD pathology proposes that soluble Aβ oligomer (AβO) intermediates, not Aβ plaques, are 

the toxic Aβ species that correlate with the manifestation of AD [87-90]. 

As previously described, C99 cleavage by γ-secretase produces monomeric Aβ peptides 

released into the extracellular space as a four kilodalton (kDa) peptide. Aβ monomers range from 

39 to 43 amino acids (Aβ39 to Aβ43) and have different solubility, stability, biological and toxic 

properties. Aβ40 is the major Aβ peptide identified in healthy and diseased brains (approximately 

90 percent). The production of other Aβ peptides occurs at lower levels. Studies utilizing 

thermodynamic solubility models of Aβ peptides illustrate that longer Aβ peptides are less stable 

[91]. Lack of stability is characteristic of Aβ42 compared to Aβ40 and therefore is more prone to 

aggregation and fibril formation [92]. Aβ plaque formation illustrated in Figure 3. 
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Nucleation-dependent polymerization, an unordered, abnormal polymerization event, 

leads to the formation of three Aβ assemblies comprised as monomers, AβO, and insoluble 

fibrils in three parallel steps in vitro. In the lag phase, soluble Aβ monomers first slowly create a 

thermodynamically unfavorable assembly of nuclei and then undergo a conformational change 

from α-helical to β-sheet conformation. The exponential or growth phase drives the fast and 

thermodynamically favorable addition of newly conformed Aβ monomers to the nuclei, creating 

soluble ordered aggregates known as AβO. As identified by electron and atomic force 

microscopy, toxic AβOs are spherical and are between 3 to 10 nm in size [89]. AβOs give rise to 

larger ordered protofibrils and completely formed fibrils during the final saturation phase [89, 

93]. 

A “seeding effect” can accelerate nucleation-dependent aggregation mechanism that 

occurs during the growth phase. This event leads to rapid aggregation of Aβ by circumventing 

Figure 3: Generation of Aβ Plaques 
Aβ peptide released into the extracellular space as a monomer can self-assemble to create 
intermediate structures such as oligomers due to “aggregation” of the peptide. The continued 
aggregation event leads to the formation of insoluble Aβ plaques, which represents one of the 
neuropathological hallmarks of AD identified during autopsy. 
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nucleus formation and utilizing established kinetics of pre-formed fibrils. A seed may result from 

an admixture of Aβ species to accelerate amyloid formation. Before aggregating into fibrils, Aβ40  

in vitro remains monomeric, whereas Aβ42 remains in a combination of monomer, trimer, and 

tetramer. Therefore, the Aβ42/Aβ40 ratio may propagate the formation of smaller, stable toxic 

structures [94]. Therefore, seeding rather than the major Aβ peptide constituent may influence 

AβO and plaque formation [93, 95-97]. 

1.4 AMYLOID PRECURSOR PROTEIN TRANSGENIC MICE 

APP23 and APP/PS1 transgenic mice are widely used in AD research because they recapitulate 

the Aβ-dependent pathology seen clinically [98]. APP23 mice express the 695 amino acid 

isoform of the Swedish human mutation (APPswe) commonly associated with FAD. Found in two 

families from Sweden with FAD, APPswe is a double mutation that substitutes leucine and lysine 

for asparagine and methionine at codons 670 and 671 (KM670/671NL) near the β-cleavage site 

[99, 100]. Therefore, APPswe is a better substrate for BACE1, increasing total Aβ generation 

[101, 102]. Aβ-dependent pathology driven by the murine Thy-1 promoter drives neuron-specific 

APP expression [103, 104]. Cognitive deficits progress in an age-dependent manner, with 

recognition and spatial working memory apparent at three moths of age [105]. At the age of six 

months, APP23 mice have Aβ deposits [103]. Activated glia and degeneative neurites and 

synapses are commonly identified near Aβ plaques [103, 106]. APP23 mice develop moderate 

neuronal loss in the neocortex and hippocampus brain region responsible for learning and 

memory [103, 107, 108]. 
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APP/PS1 mice express mouse App and human APPswe mutation. APPswe mice crossed 

with mice harboring mutant human PSEN1 gene carrying exon 9 deletion (PS1dE9) lead to 

excessive Aβ plaque formation [98]. APP/PS1 mice present with plaque deposition and amyloid 

burden at 6 and 18 months respectively. Well characterized cognitive deficits begin at three and 

six months of age in the radial arm water maze (RAWM) and Morris water maze (MWM) spatial 

working memory tasks respectively [105, 109, 110]. Reference memory impairments begin at six 

months of age and persist through the life of the mouse [105, 111]. Aβ pathology in APP/PS1 

mice by 18 months correspond to behavioral deficits [112]. Further supporting the role of AβOs, 

APP/PS1 mice present increased low-n-oligomers (dimers, trimers, and tetramers) and high-

ordered oligomeric assemblies (approximately 50 to 150 kDa) in the CSF [113]. AβOs may 

impair memory and cognition due to their accumulation in the brains and CSF of AD patients 

[114-116]. AβOs impair microglial phagocytosis, which is important for preventing early Aβ 

deposition and contribute to brain damage by stimulating an inflammatory response [114]. 

Overall, these findings implicate smaller soluble Aβ oligomers, not larger aggregates or Aβ 

plaques, as the toxic Aβ species in AD. 

1.5 CHOLESTEROL METABOLISM AND ALZHEIMER’S DISEASE 

PATHOGENESIS 

1.5.1 Apolipoprotein E Isoforms Structure and Function 

Apolipoproteins are the proteinaceous component required for the assembly, structure, function, 

and metabolism of lipoproteins. The apolipoprotein E (APOE) gene, located on chromosome 
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19q13.2, encodes three polymorphic 34 kDa glycoproteins each with 299 amino acids. The ε2, 

ε3, and ε4 alleles of APOE (APOE2, APOE3, and APOE4 respectively) occur at different 

frequencies in the human population: ε2, 5 to 10 percent; ε3, 65 to 70 percent; ε4, 15 to 20 

percent. The three alleles result in six phenotypes: APOE2/2, APOE3/3, APOE4/4, APOE3/2, 

APOE4/2, and APOE4/3 [117-119]. 

The hinge region of ApoE contains approximately 20 to 30 amino acids separating the 

amino- (amino acid residues 1 to 191) and carboxy-terminal (approximate amino acid residues 

225 to 229) domains. Residues 112 and 158 distinguish the three ApoE isoforms. Amino acid 

residues 136 to 150 in the amino-terminal house 6 to 8 arginine and lysine and a histidine residue 

critical for the interaction between ApoE and the ligand binding domain of the low-density 

lipoprotein receptor. A domain interaction unique to the ApoE4 enables an ionic interaction 

between an arginine at residue 61 (Arg-61) and Glu-255 on the amino- and carboxy-terminal 

domains respectively. Arg-112 instigates the domain interaction by causing the Arg-61 side 

chain to extend away from the amino-terminal domain. Because ApoE2 and ApoE3 possess Cys-

112, the Arg-61 side chain remains tucked into the helical domain of the amino terminus. Amino 

acid residue 158 in the amino-terminal has various implications for each ApoE isoform. ApoE2 

has Cys-158 which alters the conformation of the side chains of amino acid residues 136 to 150 

causing defective binding to the low-density lipoprotein receptor. Although ApoE4 also has Cys-

158, disruption of the salt bridge causes an interaction between Asp-154 and Arg-150 completely 

altering the receptor binding region. In ApoE3, salt bridge formation with Arg-158 and Asp-154 

results in normal binding to low-density lipoprotein receptor. The lipid-binding region resides in 

the carboxy-terminal domain and ranges from amino acid residues 240 to 260 [119-121]. 
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ApoE, discovered in the early 1970s, is important in controlling lipoprotein metabolism 

and cholesterol homeostasis [119, 122]. Liver hepatocytes are the primary site for ApoE 

synthesis, accounting for approximately 75 percent of ApoE production in the human body. 

Peripherally, ApoE participates in the endogenous pathway aiding transportation of triglycerides 

from the liver, through the plasma, and to sites of utilization such as adipose tissue or muscle 

critical for meeting energy demands. Defective receptor binding as seen with APOE2 

homozygosity, along with pre-existing conditions like diabetes or obesity, can precipitate 

hyperlipidemia. Overproduction of triglyceride- and cholesterol-rich very low-density 

lipoprotein accumulates in the plasma, causes cholesterol accumulation, and increases the risk of 

atherosclerosis in the peripheral arteries [119]. 

The brain is the most cholesterol-rich organ in the body containing 25 to 30 percent of 

total body cholesterol and the second most common organ that synthesizes ApoE [119, 123, 

124]. The central nervous system (CNS) relies heavily on ApoE for cholesterol homeostasis and 

maintenance of myelin sheaths and neuronal membranes and synapses [125, 126]. ApoE and 

cholesterol are unable to cross the blood-brain barrier from the peripheral circulation; therefore 

ApoE and cholesterol synthesis occurs in situ [119]. Glial cells in the brain, primarily astrocytes, 

synthesize cholesterol de novo and ApoE. Astrocytes secrete cholesterol and ApoE via 

Adenosine triphosphate binding casette transporters A1 (ABCA1) and G1 (ABCG1), that 

together with phospholipids generate high-density lipoprotein (HDL)-like nascent particles. 

Low-density liporptein receptor family members expressed on neurons facilitate uptake of 

nascent HDL-like particles to maintain physiological functions [127, 128]. ApoE is abundant in 

the CSF, lymph, and interstitial fluid (ISF).  
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In the 1980s and 1990s, the Duke University Alzheimer’s Disease Research Center 

pioneered the discovery between the genetic association of APOE genotypes and AD. In the mid-

1980s, the Alzheimer’s Disease Research Center performed a genetic linkage study in 

individuals who had first- or second-degree relatives with an AD diagnosis and found a linkage 

on chromosome 19q13 [129-131]. One decade later, Aβ-binding studies consistently presented 

an impurity, which after sequencing was APOE. In 1993, the Alzheimer’s Disease Research 

Center published three papers once realizing that APOE is on chromosome 19. The earliest 

submission reported the association between FAD and APOE4  [130, 132]. The second report 

indicated that APOE4 carriers had an increased risk of AD and lower age of disease onset [130, 

133]. The third report demonstrated the association between APOE4 and LOAD [133, 134].  

APOE4 is the major genetic risk factor for LOAD [134]. Approximately 40 to 65 percent 

of individuals afflicted with AD carry one APOE4 allele. Age of disease onset decreases in a 

dose-dependent manner with APOE4 allele. Compared to APOE3 homozygosity, the risk of 

developing AD increases 3-fold if heterozygous for APOE4 and 15-fold if homozygous APOE4. 

The APOE2 is thought to be protective against AD and delay age of onset.[135]. Unlike the role 

of APP, PSEN1, and PSEN2 in FAD, APOE4 is neither necessary nor sufficient to cause disease, 

nor can it be used alone to diagnose AD [136-138]. ApoE isoform, structure, and function 

illustrated in Figure 4. 
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1.5.2 Apolipoprotein E Isoforms and Beta-Amyloid 

Some individuals considered cognitively intact before death present with significant plaque 

burden. Research suggests that ApoE influences Aβ aggregation, degradation, and efflux in an 

isoform-dependent manner. However, the molecular mechanisms of ApoE isoforms and AD 

pathogenesis are not fully understood. APOE4 carriers and CSF from AD patients have fewer 

ApoE/Aβ complexes and higher levels of AβO [139]. ApoE4/Aβ complexes are less stable than 

complexes formed with ApoE2 or ApoE3, suggesting that ApoE4 has a poor lipidation status. 

ApoE prefers to interact with Aβ that has conformed to β-sheets [139-141]. Therefore, ApoE4 

Figure 4: ApoE isoforms, protein structure, and function 
ApoE is the major cholesterol carrier in the brain. The three ApoE isoforms have structural 
differences. The hinge region of ApoE separates the receptor-binding domain in the amino-
terminal and the lipid-binding domain in the carboxy-terminal. ApoE2 is defective in receptor 
binding activity due to the cysteine at amino acid residue 158 resulting in defective low-density 
lipoprotein receptor binding. ApoE3 is the most common variant with function receptor and 
lipoprotein binding activity with an arginine at amino acid residue 158 in the N-terminus. 
ApoE4, the strongest genetic risk factor for LOAD, has arginine at both 112 and 158 amino acid 
residues with altered protein confirmation and binding preference to lipoprotein. 
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likely promotes Aβ aggregation by accelerating the formation of ApoE4/Aβ complexes. Aβ 

fibrils that result from nucleation-dependent polymerization bind to ApoE4/Aβ complexes 

creating larger ApoE4/Aβ complexes. These large co-aggregates deposit as Aβ plaques. [139, 

142] 

In vivo experiments illustrate how amyloid model mice with gene targeted replacement 

human APOE (APOE-TR) influence Aβ deposition. APOE4-TR mice had more Aβ deposition 

than APOE3-TR on an amyloid mouse model background [139, 143, 144]. In 5x familial AD 

mutations (FAD) mice crossed with APOE4-TR, APOE3-TR, and APOE2-TR mice, Aβ deposits 

as compact plaques in E4FAD mice, which aggressively develop Aβ pathology, compared to 

E2FAD and E3FAD mice that deposit Aβ as diffuse plaques [145]. Overall, ApoE4 may promote 

Aβ fibrillogenesis, ineffectively prevent Aβ aggregation, or both. APP transgenic mice lacking 

mouse ApoE have a reduction in Aβ deposition in the form of amyloid plaques, which illustrates 

how critical ApoE is for Aβ deposition [139, 146, 147].  

Impaired clearance of soluble Aβ consequentially leads to Aβ accumulation in the brain. 

Proteolytic degradation, microglia phagocytosis, and cerebrovascular system-mediated clearance 

through the interstitial fluid and BBB are the three major pathways for Aβ clearance from the 

brain. Proteases neprilysin (NEP) and insulin-degrading enzyme (IDE) degrade soluble Aβ and 

produce smaller enzymatic products [148]. Microglia clears soluble Aβ through either an NEP-

mediated pathway or microglial phagocytosis in the interstitium [139, 149]. Aβ uptake also 

occurs by neurons and astrocytes in the interstitium. However, in the perivascular space, smooth 

muscle cells, perivascular macrophages, and astrocytes uptake Aβ. Aβ clearance across the BBB 

through low-density lipoprotein receptor-related protein 1, a major pathway, enters the blood and 

systemically cleared in the kidney and liver [150]. APOE mediates Aβ clearance in an isoform-



 

 20 

dependent manner (APOE4 > APOE3 > APOE2), with APOE4 being the least efficient [139]. 

Clearance of Aβ aggregates through microglial phagocytosis and migration are slower in 

APOE4-TR mice compared to E3-TR mice [151]. APOE4/Aβ complexes at the BBB clear 

through low-density lipoprotein receptor-related protein 1 and very low-density lipoprotein 

receptors at a much slower rate compared to APOE3/Aβ and APOE2/Aβ complexes [139, 152]. 

Although APOE4 contributes to AD pathogenesis, it is debatable if APOE4 allele confers 

insufficient protection towards Aβ or if it has deleterious effects. Therefore, it is also debatable if 

drugs should inhibit APOE4-stimulated Aβ deposition or increase the APOE4 activity. 

1.5.3 Cholesterol and Alzheimer’s disease Pathology 

In addition to ApoE4 as the major genetic risk factor for LOAD, cholesterol affects AD 

pathogenesis by influencing APP processing although the mechanism remains unclear. 

Cholesterol metabolism and transport are crucial to the brain because the BBB prevents 

exchange between brain and plasma lipoproteins [123, 153, 154]. De novo synthesis of 

cholesterol from the endoplasmic reticulum produces active, “free” unesterified cholesterol 

necessary for myelin sheaths and glial and neuronal cell membranes [123, 153]. Free cholesterol 

converted to cholesteryl esters either accumulate in intracellular lipid droplets or effluxed 

through the plasma membrane by ATP-binding cassette transporter A1 (ABCA1) to extracellular 

lipid acceptors like un-lipidated APOE [123, 155, 156]. The role of cholesterol and ApoE 

illustrated in Figure 5. 
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The first piece of evidence showing the impact of cholesterol on Aβ production 

demonstrated dietary cholesterol increasing amyloid production in rabbits [157, 158]. 

Researchers now investigate how cholesterol levels and distribution alter APP processing that 

influences Aβ generation. Cholesterol-enriched in membrane microdomains known as ‘lipid 

rafts’ at the plasma membrane directly modulate secretase activity. APP is present in both raft 

and non-raft regions of the membrane. APP processing occurring within lipid rafts appears to be 

amyloidogenic, whereas APP processing occurring outside lipid rafts favors the non-

amyloidogenic, α-secretase pathway [123, 159, 160]. The use of cholesterol-extracting 

Figure 5: The role of cholesterol in the brain 
In the adult brain, cholesterol and ApoE synthesis occurs in astrocytes. Efflux of cholesterol 
and ApoE occurs in an ABCA1-dependent process. ABCA1 is responsible for cholesterol 
efflux and ApoE lipidation to form discoidal HDL-like particles. ApoE mediates neuronal 
lipoprotein uptake to supply cholesterol to neurons for various neuronal functions.  
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compounds in vitro reduces membrane cholesterols and decreases the activity of both BACE1 

and γ-secretase leading to reduced Aβ generation [123, 159-161]. Cholesterol depletion 

decreases BACE1 association with lipid rafts and correlates to decreased amyloidogenic APP 

processing [123, 162-164]. However, acute cholesterol exposure in vitro promotes APP and 

BACE1 co-clusters in lipid raft domains which encourage rapid endocytosis. Components of the 

γ-secretase complex, including presenilins, associate with lipid raft, suggesting cholesterol-

enriched microenvironments could directly influence secretase activity and modulate proteolytic 

processing of APP [160, 165-167]. 

1.5.4 ATP-Binding Cassette A1 and Alzheimer’s disease 

Members of the ABC transmembrane transporter superfamily shuttle lipids, sterols, metabolic 

products, and drugs across intracellular and extracellular membranes [168-171]. For example, 

ABCA1 translocates phospholipids and cholesterol primarily to lipid-free apolipoprotein A-I 

(ApoA-I), and to a lesser extent ApoA-II and ApoE, for generation of discoidal HDL particles 

peripherally [168, 172]. ATP-binding and hydrolysis cause conformational changes within the 

two large extracellular domains or loops of ABCA1 that are connected by intramolecular 

disulfide bonds and allow direct binding to ApoA-I. Intracellular lipids and cholesterol 

translocate and undergo ‘loading’ onto ApoA-I bound to ABCA1. Lipid loading occurs when 

lipid-free ApoA-I undergoes a conformational change to become lipidated. Lipidated ApoA-I 

dissociates from ABCA1 to generate discoidal HDL [173]. HDLs, primarily synthesized in the 

liver, participate in reverse cholesterol transport, which is a function to remove and transport 

excess cholesterol to the liver from cells for excretion [168, 171].  
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The frequency of ABCA1 heterozygosity in the general population is 3:1,000 resulting in 

decreased HDL cholesterol levels [168, 174]. ABCA1 heterozygotes with missense mutations 

have an increased incidence of atherosclerosis. However, not all ABCA1 functional mutations 

associate with increased risk of cardiovascular disease. With over 180 mutations, missense 

mutations in ABCA1 can lead to a relatively small reduction of HDL or Tangiers disease, a rare, 

monogenic disorder characterized by impaired cellular cholesterol efflux, extremely low HDL 

levels, and inefficient reverse cholesterol transport [168]. Mice lacking whole body ABCA1 

demonstrated a reduction in HDL and ApoA-I, a decrease of low-density lipoprotein, and foam 

cell accumulation in the lungs [168, 175]. 

ApoE was the first genetic link between LOAD and lipid metabolism, prompting the 

search to associate genes involved in cholesterol metabolism and transport as AD susceptibility 

genes [133]. Since ABCA1 modulates apolipoproteins ApoA-I in the periphery, the significance 

of ABCA1 in AD originates from its ability to lipidate and stabilize APOE. ApoE modulates Aβ 

aggregation, toxicity, and clearance, therefore, the thought is that ABCA1 modulates ApoE 

metabolism in AD pathogenesis. 

All brain cells express ABCA1. The presumptive role of ABCA1 in the brain is to 

maintain cholesterol transport primarily from astrocytes and other glial cells to neurons [168]. 

Research supports the role of ABCA1 in amyloid deposition, clearance, and memory deficits in 

representative mouse models of AD. Along with others, we demonstrated that lack of ABCA1 

increases amyloid deposition, cognitive decline, and decreases soluble APOE levels in APP 

transgenic mice [168, 176-179]. Overexpressing brain Abca1 in transgenic mice resulted in fewer 

amyloid plaques [180]. Targeted disruption of Abca1 in mice lead to a significant reduction of 
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APOE in CNS and a drastically low level of APOE-HDL in CSF [181]. These results make 

ABCA1 and APOE attractive therapeutic interventions for AD. 

1.6 APOE DIRECTED THERAPEUTICS  

Nuclear receptors are master regulators of transcriptional programs involved in whole body 

homeostasis. The two liver x receptors (LXR) LXRα and LXRβ, which are members of the 

nuclear receptor family, physiologically regulate lipid and cholesterol homeostasis. LXRα 

expression in the liver, kidney, small intestine, spleen, and adipose tissue is critical for peripheral 

lipid metabolism. LXRβ expression is more common in the liver and brain. In the presence of 

endogenous and synthetic ligands like oxysterols and LXR/RXR agonists T0901317 (T0) and 

Bexarotene respectively, LXRs form obligate heterodimers with retinoid x receptors (RXRs) and 

peroxisome proliferator-activated receptors along with a coactivator complex to directly regulate 

the transcription of APOE and ABCA1. 

Numerous studies confirm the beneficial effect of LXR agonists on AD pathology. 

Importantly, LXR agonists consistently mediate cognitive improvements in various AD mouse 

models and treatment paradigms [149, 182-190]. LXR agonists are beneficial by reducing Aβ 

plaques and soluble Aβ [149, 168, 182, 183, 185, 187-189, 191, 192]. Since LXR forms 

heterodimers with RXR, APP-expressing mice treated with an FDA approved Bexarotene 

showed a decrease in plaque load, increase in Aβ clearance, and cognitive improvement [193]. 

However, follow-up studies using Bexarotene confirmed cognitive improvement [194, 195], but 

lacked an effect on amyloid deposition [196, 197]. 
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Two main concerns arise from the use of LXR and RXR agonists. Because RXR agonists 

increase plasma triglycerides, the assumption is that LXR agonist would produce a similar side 

effect [168, 198, 199]. However, the only published clinical trial with an LXR agonist only 

reported adverse CNS effects [192]. Secondly, the mechanisms underlying the ApoE4 and AD 

risk are still unknown, and therefore using an LXR or RXR agonist to increase ApoE levels may 

not be equally beneficial for APOE3 and APOE4 carriers. Although Bexarotene decreases AβOs 

and restores cognitive deficits effectively in both transgenic mice expressing human APOE3 and 

APOE4 [194, 200], additional research is needed to determine if LXR and RXR activation are 

worth targeting for AD therapies. 

1.7 HIGH-FAT DIET AS A MODIFIABLE RISK FACTOR FOR ALZHEIMER’S 

DISEASE 

Chronic exposure to high-energy diets may induce cognitive deficits. Readily available, low cost, 

energy dense, and nutrient poor foods create an obesogenic environment. Obesity and being 

overweight increases the risk of metabolic syndrome, type 2 diabetes, cardiovascular disease, 

certain cancers, respiratory conditions, fatty liver disease, and reproductive disorders. Obesity 

and being overweight also negatively affect mental health conditions like depression [201]. 

Saturated fats and simple carbohydrates are the principal components of a modern 

Western diet and linked to the development of obesity and AD [202]. Four major categories exist 

for saturated fats: saturated (SFA), trans, monounsaturated, and polyunsaturated fatty acids  

[203]. The composition of fatty acids, which are essential for normal physiological function, 

influences lipoprotein levels in the body. Although saturated fatty acid compositions vary in 
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natural foods, meats, and dairy products tend to have higher saturated fatty acid composition, 

meaning that these fatty acids lack double bonds in their composition. However, fruits and 

vegetables tend to be lower in total fatty acids, which are predominantly unsaturated [203]. 

Human epidemiological studies address fatty acid composition and cognitive decline and 

dementia. Population-based prospective studies evaluating the relationship between dietary fat 

intake and the development of age-related cognitive change over a four- and six-year timespan 

reported that subjects aged 65 years and older had a greater risk of developing MCI and AD due 

to consuming a diet with high SFAs [202, 204, 205]. A longitudinal study spanning a 21 year 

period examined the relationship between SFA intake and development of clinical MCI. The 

authors found that consumption of dietary SFA midlife increases the risk of MCI and impact 

specific learning and memory tasks rather than impairing global cognition [206]. Although a 

limitation of these studies arises from a lack of measuring body mass index (BMI) or adiposity, a 

relationship between SFA intake and cognitive decline became relevant after adjusting for 

measures like hypertension and type II diabetes which strongly correlates with BMI [202, 206, 

207]. 

Results from rodent models are parallel to epidemiological studies and tend to support the 

hypothesis that high SFA intake leads to cognitive impairment. Chronically feeding high levels 

of SFA and trans fatty acids to rodents induces BBB dysfunction, increase Aβ aggregation, and 

poor cognitive performance. APP transgenic mice fed either a high SFA diet or high cholesterol 

diet had decreased BBB integrity and increased cerebrovascular inflammation [208]. In vitro 

administration of trans fatty acids increased amyloidogenic APP and decreased non-

amyloidogenic APP compared to administration of polyunsaturated fatty acids [209].  
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Rodents fed a Western diet demonstrated impaired hippocampal-dependent learning and 

memory. Importantly, this brain region is vulnerable to toxicity and insults. The MWM behavior 

paradigm assesses spatial learning and memory in rodents. This task requires mice to learn to 

find an escape platform hidden below the surface of the pool. Visual cues placed outside the pool 

serve as spatial landmarks. Trials given differ depending on the spatial location at the edge of the 

pool. Mice with damage to brain regions vital to learning and memory such as the hippocampus 

will not learn to use the cues efficiently across trials and therefore will not remember the location 

of the platform in the MWM task [202]. Several studies illustrate that consuming high levels of 

SFA, a component of a Western diet disrupts learning and memory in the MWM behavior 

paradigm. HFD disrupts memory retention component of MWM tasks as well, which requires 

animals to learn to swim to the location of the hidden escape platform [202]. 

1.8 STATEMENT OF PUBLIC HEALTH SIGNIFICANCE 

Although FAD involves a large genetic component, the risk for developing sporadic LOAD is 

largely dependent on modifiable risk factors like lifestyle and environment. Diets high in fat may 

alter cholesterol metabolism and increase the risk of a multitude of diseases such as obesity, 

cardiovascular disease, diabetes, metabolic syndrome and even AD. It is important to reiterate 

that AD is not a normal part of aging. Cholesterol metabolism is tightly regulated process 

throughout the body, including the brain. Altered cholesterol metabolism, implemented in 

cardiovascular disease, influences AD pathogenesis. Therefore the public health significance is 

that knowledge gained from this research could potentially support efforts in developing primary 

prevention techniques, which is imperative to the field of public health, to help reduce 
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modifiable risk factors for AD. This research also supports the possibility of using LXR or RXR 

agonists to treat AD patients regardless of APOE genotype. Overall, the hope is that these 

interventions, whether dietary, lifestyle or pharmacological will inhibit or delay disease onset 

and AD-related pathology and promote healthy brain aging. 



 

 29 

2.0  ABSTRACT 

LXRs regulate cholesterol and lipoprotein metabolism. ABCA1 and APOE are major LXR target 

genes involved in lipid generation and transport. APOE4, the major genetic risk factor for 

LOAD, is less lipidated compared to the APOE3 isoform. ABCA1 mediates cholesterol efflux to 

lipid-free apolipoproteins and regulates HDL generation. Previously, we showed that lacking 

Abca1 significantly increases amyloid deposition and cognitive deficits in AD model mice 

expressing human APP. However, it is conceivable that transcriptional control of LXR target 

genes APOE and ABCA1 combined with environmental factors influence AD pathogenesis in 

mouse models representative of AD phenotypes. 

To determine if ABCA1 is involved in memory deficits caused by AβOs, Abca1ko and 

WT mice were intracerebrally infused with AβOs in the hippocampus, compared to control 

infusion of scrambled Aβ peptide. We found a statistically significant difference between WT 

and Abca1ko mice infused with control peptide, suggesting that Abca1ko mice are vulnerable to 

the effect of mild stressors. Examination of hippocampal neurite architecture revealed a 

significant decrease in neurite length, number of neurite segments, and branches in Abca1ko mice 

compared to WT mice. We conclude that mice lacking ABCA1 have basal cognitive deficits 

preventing coping from additional stressors that do not affect WT mice. 

We then examined the effect of high-fat diet (HFD) on memory deficits and microglia 

morphology in AD model mice expressing mouse Apoe or human APOE isoforms respectively. 
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HFD exacerbated cognitive deficits. Microglia morphology resembled activation state in HFD 

fed female APOE4 mice, suggesting differential response to diet. Lastly, we examined the effects 

of T0 on the phenotype and transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient mice, 

revealing the ability of T0 to ameliorate the APOE4-driven pathological phenotype. T0 increased 

ABCA1 and ABCG1 mRNA expression. These findings were associated with restoration of 

APOE4 lipidation, cognition and reduced soluble Aβ levels. After identifying “biological 

processes” by GSEA, we found up-regulated genes in “Microtubule Based Process” and 

“Synapse Organization” biological categories in T0-treated APP/E4/Abca1+/- mice. In 

conclusion, the results suggest that T0 treatment ameliorates APOE4-induced AD pathogenesis 

and targeting the LXR-ABCA1-APOE regulatory axis could be an effective therapy for those at 

risk of dementia. 
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3.0  INTRODUCTION 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. Accumulation of soluble 

extracellular high molecular weight oligomeric Aβ species in the brain influences the onset and 

progression of cognitive deficits, Aβ plaques, and tangles with hyperphosphorylated tau. In 

general, human amyloid precursor protein (APP) transgenic mice recapitulate AD amyloid 

pathology and cognitive deficits [210-212]. There are two forms of AD: A relatively rare 

familial, early-onset form (EOAD) and sporadic LOAD that encompasses the vast majority of 

AD cases. Whereas genetic factors clearly cause EOAD, no single risk factor for LOAD has 

been identified. LOAD bears the characteristics of a multifactorial disease where the risk is a 

complex interplay of genetic and environmental factors [213]. Inheritance of APOEε4 allele of 

Apolipoprotein E (APOE) is the major genetic risk factor for LOAD [134]. APOEε4 carriers 

have an earlier onset of the disease and a higher level of amyloid plaques, but the mechanism by 

which APOEε4 affects amyloid deposition is still unclear [139]. At the same time, homozygous 

APOEε3 AD patients still account for the majority of LOAD cases, suggesting additional 

genetic, environmental, and lifestyle factors as risk modifiers. 

Liver X Receptors (LXRα and LXRβ) are nuclear receptor transcription factors that form 

obligate heterodimers with retinoid X receptors (RXR) and peroxisome proliferator-activated 

receptors (PPAR). LXRs are critical for executing essential functions such as cholesterol 

regulation, fatty acid homeostasis, and the formation of high-density lipoproteins (HDL) [214]. 
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One of the main LXR target genes is ATP-binding cassette transporter A1 (ABCA1). ABCA1 

plays a critical function in cholesterol transport by regulating the efflux of lipids from cells to 

lipid-poor apolipoprotein A-I (ApoA-I) and apolipoprotein E (APOE) to form HDL in the 

periphery and HDL-like particles in the brain (reviewed in [168]). Previous data from our lab and 

other groups have demonstrated significantly increased amyloid plaques in different APP 

transgenic mice lacking Abca1 [178, 215-217] associated with a significantly decreased ApoE 

protein level in the brain. In contrast, Abca1 overexpression in PDAPP mice decreases amyloid 

burden [218]. We have reported that mice expressing human APOE4 were more susceptible to 

Abca1 haplo-deficiency than APOE3 mice [219] suggesting that Abca1 genotype can interact 

with other genetic risk factors to worsen AD phenotype. Recently, using APP/PS1dE9 transgenic 

mouse model crossed to Abca1ko mice we demonstrated an increased level of Aβ oligomers in 

APP/Abca1ko mice. We also observed that the dendritic complexity in the CA1 region of the 

hippocampus but not in CA2 region was significantly impaired in APP/Abca1ko mice. An 

unexpected finding was that lack of ABCA1 affected the performance of Abca1ko mice in 

contextual fear conditioning paradigm similarly in APP transgenic and wild-type mice [220]. 

Previous studies demonstrated that treatment with synthetic LXR ligands decreased Aβ 

burden and increased its clearance [149, 182, 221]. LXR agonists significantly affect the 

transcriptome in the brain and decrease inflammation in mouse models representative of AD 

[186, 222]. Since LXRs create heterodimers with RXRs, uncovering the mechanism to establish 

RXR therapeutic targets has also been suggested to treat AD. It has been shown that RXR 

agonist bexarotene can ameliorate AD phenotype in APP transgenic mice [193]. We have 

demonstrated that bexarotene improves cognitive deficits in APP and wild type (WT) mice 

expressing human APOE isoforms [194, 200]. Furthermore, our recent data suggest that 
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activating RXR/LXR improves neuronal differentiation and neurogenesis in APOE4 and APOE3 

targeted replacement mice [223, 224]. These studies demonstrate that increasing APOE protein 

level and its lipidation by targeting LXR/RXR has favorable effects on cognition, Aβ oligomers 

and neuronal differentiation in mice expressing human APOE4 isoform.  

In addition to the genetic variants, environmental and life-style factors such as stress 

[225], diet [226] and physical activity were shown to affect cognition [227] and could also affect 

the risk of LOAD. Among those environmental factors high fat/high cholesterol diet (HFD) is 

one obvious culprit with several possible connections. First, APOE is the major brain cholesterol 

transporter and an important component of the circulating lipoproteins.  Second, epidemiological 

studies have pointed to the significant overlap between cardiovascular and LOAD risk factors 

such as obesity, hypertension and type 2 diabetes; likely increasing the burden of dementia [228] 

especially in midlife [229]. Numerous studies with mouse models of AD suggest that HFD 

affects amyloid pathology and cognitive performance in adult mice [183, 230-232] and 

prenatally exposed offspring [233], without affecting tau pathology [234]. Recent studies 

examining the effect of HFD on phenotype, demonstrate significant effects on both, 

inflammation and cognition [235, 236]. The complexity of LOAD, encompassing interactions 

between APOE genotype, other genetic variants and environmental factors complicates the 

pursuit for a detailed etiology and successful strategy for therapeutic intervention. Therefore, we 

hypothesize that transcriptional control of LXR target genes such as APOE and Abca1 in 

combination with HFD and LXR agonism influences amyloid deposition, cognitive decline in 

mouse models representative of AD phenotypes. 
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4.0  MATERIALS AND METHODS 

4.1 USE OF APPROVAL FOR TRANSGENIC MICE 

All experiments followed NIH guidelines for the Care and Use of Laboratory Animals and were 

approved by the University of Pittsburgh Institutional Animal Care and Use Committee and 

carried out in accordance with PHS policies on the use of animals in research. 

4.2 MOUSE STRAINS 

4.2.1 APP/Abca1wt, APP/Abca1ko, non-transgenic Abca1wt, Abca1ko 

Abca1het mice were bred to Abca1het mice to yield Abca1ko, Abca1het, and Abca1wt littermates. All 

mice used in this study were purchased from Jackson Laboratory and bred onto a C57BL/6J 

background for greater than 11 generations. APP/PS1ΔE9 (B6.Cg-Tg(APPswe, 

PSEN1ΔE9)85Dbo/Mmjax; referred to as APP) transgenic mice, also purchased from Jackson 

Laboratory, were crossbred to Abca1het mice to generate APP/Abca1ko, APP/ Abca1het, 

APP/Abca1wt and corresponding non-APP expressing littermates. Non-APP expressing - Abca1wt 

littermates are referred here in as wild-type (WT) mice. The progeny were identified by PCR. All 

reagents purchased through Fisher Scientific unless otherwise stated. 
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4.2.2 APP/E3/Abca1het, APP/E4/Abca1het, non-transgenic E3/Abca1het, E4/Abca1het 

APP/PS1ΔE9 mice [237, 238] and Abca1+/- heterozygous mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME). Human APOE4+/+ and APOE3+/+ targeted replacement mice 

(APOE-TR) were originally purchased from Taconic (Germantown, NY). All mice that were 

either purchased or bred for at least ten generations were on C57BL/6 genetic background. 

APP/PS1ΔE9/APOE4+/+/Abca1+/- and APP/PS1ΔE9/APOE3+/+/Abca1+/- (referred to as 

APP/E4/Abca1+/- and APP/E3/Abca1+/- respectively) as well as non–transgenic, expressing 

endogenous APP littermates (referred to as E4/Abca1+/- and E3/Abca1+/-) were bred as 

previously described [219].  

4.2.3 APP23, APP/E3, APP/E4 

APP23 transgenic mice (C57Bl6 background) express human APP751 familial Swedish AD 

mutation (APPK670N, M671L) that is driven by the murine Thy-1 promoter and restricted to 

neurons [239]. APP/PS1ΔE9 mice were bred to targeted replacement APOE3+/+ and APPE4+/+ 

mice to generate APP/PS1ΔE9/APOE3+/+ and APP/PS1ΔE9/APOE4+/+ (referred to as APP/E3 

and APP/E4, respectively) [219].  
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4.3 ANIMAL DIETS  

4.3.1 LXR Agonist T0901317  

T0901317 (T0) was purchased from Cayman Chemical (Ann Arbor, MI). All other materials 

were purchased through Fisher Scientific, unless otherwise noted. At five–months of age, 104 

APP transgenic and non–transgenic controls (APP/E4/Abca1+/-, 11 females and 15 males; 

APP/E3/Abca1+/-, 12 females and 17 males; E4/Abca1+/-, 14 females and 9 males; E3/Abca1+/-, 

13 females and 13 males) were randomly assigned to vehicle (control) or T0 fed diet. Each diet 

was prepared as previously described [191]. Briefly, T0 was dissolved in dimethyl sulfoxide 

(DMSO), Cremophor (Sigma–Aldrich, St. Louis, MO), then double distilled water (final 0.03% 

DMSO in prepared food), mixed with milled standard chow (Prolab® Isopro® RMH 3000, 

5P76, LabDiet®, St. Louis, MO) and divided into daily portions. The diet was dried in order to 

achieve a 0.028% (w/w) T0 drug concentration and a dosage of 20 to 25 mg T0/kg mouse/day. 

Standard chow for the vehicle group was prepared as described, but only containing DMSO and 

Cremophor. Mice were subjected to behavioral testing after one month (28 days) on 

corresponding diet. Age– and gender matched non–transgenic littermates were used as controls 

for behavior experiments. 

4.3.2 High Fat Diet 

Male and female APP23 mice (mean age 11.7 months) were randomly assigned to ND (Prolab 

Isopro RMH 3000, Lab Diet) or HFD (D12079B RD Western Diet, Research Diets). After 3 

months of feeding, behavior was assessed at mean age of 14.7 months. Similarly, male and 
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female APP/E3 and APP/E4 mice at mean age of 3.5 months were randomly assigned to a diet 

and feed for a 3-month period followed by behavioral testing (mean age 6.5 months).  

4.4 CANNULA IMPLANTATION 

To examine the effects of Aβ oligomers on memory, mice were infused with Aβ oligomers 

directly into the hippocampus through guide cannulas. Following anesthesia with isoflurane, the 

head was shaven and sterilized with two separate iodine - alcohol washes. A 50% mixture of 

bupivacaine and lidocaine were applied to the surgical site and ophthalmic ointment applied to 

the eyes. The head was leveled in a stereotaxic frame and an incision made exposing the dorsal 

aspect of the skull. Two holes were drilled into the skull (coordinates: P=2.46 mm, L= +/-1.50 

mm) and 26-gauge guide cannulas (Plastics One) were lowered into the dorsal part of the 

hippocampi to a depth of 1.30 mm. Cannulas were fixed to the skull with acrylic dental cement 

attached to two bone anchoring screws and the surgical opening sutured closed. Animals were 

allowed to recover for 8 days before behavioral testing started.  

4.5 BETA-AMLOID OLIGOMER PREPARATION 

Under a fume hood, 1 mg of Aβ42 peptide (American Peptide Company) was dissolved in ice 

cold 1,1,1,3,3,3-Hexafluoro-2-Propanol (HFIP, Fluka) to obtain a 1 mM solution then vortex for 

few seconds. The solution was quickly aliquoted into 3 polypropylene vials and dried with a 

gentle stream of N2 to obtain a clear peptide film in the bottom of the vials. Prior to use, one film 
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was re-suspend in anhydrous DMSO to form a 5 mM solution, sonicated in water bath for 10 min 

and diluted 200X with sterile PBS buffer. Aβ samples were left at room temperature for 24 hrs to 

form oligomer complexes and stored at –20° C until use. The same concentration of scrambled 

Aβ (AnaSpec) was dissolved in vehicle and utilized as a negative control. 

4.6 BETA-AMYLOID OLIGOMER CHARACTERIZATION 

4.6.1 Western Blot 

To examine Aβ oligomers on Western blotting, proteins were resolved on 4–12% Bis-Tris gels 

(Invitrogen) and transferred onto nitrocellulose membranes. These membranes were probed with 

6E10 antibody (1:1000; Signet) and immunoreactive signals visualized using enhanced 

chemiluminescence. 

4.6.2 Dot Blot 

For detection of prefibrillar Aβ oligomers, 1 μg of protein was spotted on a nitrocellulose 

membrane and probed with A11 antibody (1:2000, Invitrogen). The membranes were probed 

with anti-rabbit secondary antibody, and immunoreactive signals visualized using enhanced 

chemiluminescence. The exact same amount of samples was spotted on additional dot blots and 

probed with 6E10 antibody and Bradford reagent for normalization. 



 

 39 

4.6.3 Electron Microscopy 

Imaging was performed as before [240]. Briefly, time zero and 24 hr incubated Aβ oligomer 

aliquots were placed on freshly glow-discharged carbon-coated grids (Electron Microscopy 

Sciences) and incubated for 1 min. Excess sample was removed with filter paper and the sample 

grid was then washed with deionized water, stained with 1% uranyl acetate (w/v) solution for 3 s, 

and blotted. Grids were imaged using Tecnai T12 microscope (FEI Co.) operating at 120 kV and 

30,000 × magnification and equipped with an ultrascan 1000 CCD camera (Gatan) with post-

column magnification of 1.4×.  

4.7 BEHAVIORAL TESTING 

4.7.1 Morris Water Maze 

Behavioral tests to assess spatial navigational learning and memory retention were performed 

with a modified version of the Morris water maze (MWM) as before [183]. Briefly, in a circular 

pool of water (diameter 122 cm, height 51 cm, temperature 21 ± 1 °C), we determined the ability 

of mice to form a spatial representation between a safe but invisible platform (10 cm diameter; 

submerged 1 cm below the surface or the water) and visual cues surrounding the pool. Animals 

were handled for two days prior to testing and received a habituation trial, during which they 

were allowed to explore the pool of water without the platform present for 1 min. Beginning the 

next day, they received four daily hidden platform training (acquisition) trials with 5 min inter-

trial interval over five consecutive days. Animals were allowed 60 s to locate the platform and 
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rest there for 20 s. Mice that failed to find the platform were lead to the platform by the 

experimenter and allowed to rest there for 20 s. Twenty-four hours following the last acquisition 

trial, a single 60-s probe trial was administered to assess spatial memory retention. For the probe 

trial, animals were returned to the maze as during training but with no platform present. 

Performance was recorded with AnyMaze video tracking (Stoelting Co.) during all phases. 

During the acquisition trials, escape latency and path length were subsequently used to analyze 

and compare the performance between different genotypes. In addition, the swimming speed 

during the acquisition phase was analyzed (this was used to evaluate the locomotor activity), and 

mice with swimming speed significantly lower than the mean speed were disqualified from the 

analysis. The latency to reach the target quadrant and time spent in the target quadrant were 

recorded and analyzed during the probe trials. 

4.7.2 Radial Water Maze 

Two day radial arm water maze (RWM) was used to measure the ability of mice to form a spatial 

relationship between a safe, but hidden platform and visual cues surrounding the maze [219]. 

The RWM consisted of six arms (20 cm wide, 40 cm long, 8 cm high walls above the water) and 

a central area (30 cm diameter), filled with water (temperature, 21 ± 1°C) to a level 1 cm above 

the hidden platform (10 cm diameter). All animals were handled for 2 min for 2 consecutive days 

before behavioral testing and 1 day before testing allowed to explore the water maze without the 

platform present. Acquisition testing was performed over 2 consecutive days with mice trained in 

groups of five or six. Each day, a mouse received two 6 trial blocks and a final 3 trial block (total 

of 15 trials per day) with a 30 min rest between blocks. Thirty minutes prior to each training 

block animals were infused with the Aβ oligomer or scrambled Aβ. Briefly, the dummy cannulas 
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were removed and infusion cannulas, attached to microsyringe pump by polyethylene tubing, 

were placed in the guide cannula. Aβ oligomer or scrambled Aβ (final volume of 1 µl per 

hemisphere) was infused over 1 min, the cannulas left in place for 1 min to allow for diffusion of 

sample and finally dummy cannulas replaced. Each animal received three infusions of Aβ 

oligomer or scrambled Aβ prior each of the 3 training blocks (2 - 6 trial blocks and 1 - 3 trial 

block).  

During day 1 of training, a visible platform (flag projecting 6 cm from the platform) was 

used during trials 1, 3, 5, 7, 9, and 11 to define the rule of a safe platform. All other trials 

consisted of animals finding the location of a hidden platform. Animals were allowed 60 s to find 

the platform and 20 s to rest on it. Mice that failed to find the platform were led there by the 

experimenter and allowed to rest there for 20 s. All animals in a group completed the trial before 

proceeding, providing a 5 min inter-trial interval. The start location was changed for each trial 

and the platform location was changed between groups. Performance was recorded with an 

automated tracking system (AnyMaze; Stoelting Co.) during training. During the acquisition 

phase, total number of incorrect arm entries and time errors were combined for the overall 

performance of an animal during a trial. An incorrect arm entry was defined as the entry of 50% 

of the animal's body into an arm that did not contain the hidden platform. A time error was 

defined as the failure of an animal to enter an arm after 15 s elapsed. For the 15 daily trials, 

performance during 3 consecutive trials was averaged into a block (total of 5 blocks per day). 

During the open pool task of training, speed and latency to the platform were used to compare 

the performance between genotypes. 
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4.7.3 Novel Object Recognition 

Changes in long term memory were assessed utilizing a novel object recognition paradigm as 

before [194]. On day 1 of testing mice were acclimated to the behavioral arena (40cm X 40cm X 

30cm tall- white plastic box) for 5 min. For training, 24 hrs following acclimation mice were 

placed into the center of the arena with two similar objects and allowed to explore the objects for 

30 total visits but no longer than 10 min. The two identical objects were made of weighted 

plastic to prevent movement and located in the southeast and northwest quadrant, spaced 

equidistant from the arena walls. This training trial was completed twice separated by a 10 min 

interval. Twenty-four hours following the last training trial one object was replaced with a novel 

object, the object replaced was alternated for each mouse to avoid a side preference and mice 

were again placed into the arena and allowed to explore the objects for 30 total visits or 10 min. 

An exploratory visit was defined as the mouse sniffing, climbing on, or touching an object or 

within 1 cm while facing an object. Testing was recorded with automated tracking system 

(AnyMaze; Stoelting Co.) and the arena was cleaned with 70% alcohol between trials to 

eliminate olfactory cues. An increased percentage of visits exploring the novel object (number of 

novel object visits / total visits × 100) was considered an index for improved long term memory 

retention in this task. 

For the publication, “Liver X Receptor Agonist Treatment Significantly Affects 

Phenotype and Transcriptome of APOE3 and APOE4 Abca1 Heterozygous Mice,” novel object 

recognition (NOR) was performed as previously described with modifications [241]. On day one, 

mice were acclimated to the behavioral arena (White plastic box, 40–cm x 40–cm x 30–cm) for 

ten minutes. Twenty-four hours following acclimation, mice were placed in the center of the 

arena with two similar objects (Tower of Lego® bricks 8cm x 3.2cm, built in white, blue, 
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yellow, red and green bricks) and allowed to explore the objects for two trials lasting five 

minutes each, with a five-minute inter-trial interval. The similar objects were located in the east 

and west quadrant and spaced equidistant from the arena walls. Twenty-four hours following the 

habituation, one object was replaced with a novel object (large metal bolt and nut of similar 

size). Mice were placed in the arena and allowed to explore the objects for ten minutes. 

Exploratory visit was defined as the mouse sniffing, climbing on, or touching an object or within 

three centimeters while facing an object. Exploration time was recorded and scored with ANY-

maze software (Stoelting Co., Wood Dale, IL). The arena was cleaned with 70% ethanol between 

animals to eliminate olfactory cues. Exploration time was calculated by dividing time exploring 

the novel object by total time exploring objects. Animals exhibiting memory impairments spent 

less time exploring the novel object. 

4.7.4 Contextual Fear Conditioning 

Contextual fear conditioning (Equipment obtained from Stoelting Co., Wood Dale, IL) was 

performed as previously described with minor modifications [239]. Briefly, mice were placed in 

a conditioning chamber for two minutes, followed by 30 seconds of tone representing the 

conditioned stimulus (Sound, 2800 Hz; Intensity, 85 dB). At the end of the tone, mice received a 

foot shock (0.7 mA) for two seconds through the floor of the chamber. The cycle was repeated 

once more. At the end of the second cycle, the mice remained in the chamber for 30 seconds 

before returning to their housing cages. Twenty-four hours after the training phase, contextual 

fear conditioning was assessed and consisted of measuring freezing behavior for five minutes in 

the original conditioning chamber. Twenty-four hours after the contextual phase, freezing 

behavior during the cued fear conditioning was assessed and consisted of placing mice in a novel 
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context for two minutes (plain gray walls replace by black and white stripped walls), followed by 

exposure to the conditioned stimulus for three minutes. Freezing behavior was defined as the 

absence of movement except for respiration. Freezing behavior was recorded using ANY-maze 

software and calculated as percent freezing of the total time spent in the chamber. 

4.8 ANIMAL TISSUE PROCESSING 

Mice were anesthetized with Avertin (250 mg/kg of body weight, i.p.) and blood was drawn 

from the heart. The mice were perfused transcardially with 25 ml of cold 0.1 m PBS, pH 7.4. 

One hemisphere was drop fixed in 4% phosphate-buffered paraformaldehyde at 4°C for 48 h 

before storage in 30% sucrose.  

4.9 HISTOLOGY, IMMUNOHISTOCHEMISTRY, AND QUANTITATION 

4.9.1 X34 

Histology, X-34 and 6E10 immunohistochemistry was performed as previously described [223, 

239]. Brain hemispheres were removed from the 30% sucrose solution and embedded in 

HistoPrep™. Brain hemispheres were cut into 30 μm coronal sections. Six sections starting at the 

formation of the dentate gyrus (-1.2mm from Bregma) and separated by 450 μm were used for 

immunohistochemistry. Sections were stored in glycol-based cryoprotectant at -20°C until 

staining.  For X-34 staining, sections mounted on positively charged glass slides were washed in 
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PBS and treated with 1,4-bis(3-carboxy-4-hydroxyphenylethenyl)-benzene (X-34) for 10 min 

each. Slides were destained with 0.2% NaOH in 80% ethanol for 3 min and washed with PBS 

before and after destaining. 

4.9.2 6E10 

For 6E10 staining, sections adjacent to those used for X-34 were immunostained with 

biotinylated 6E10 antibody (803009, Biolegend, San Diego, CA). Antigen retrieval was done on 

free-floating sections with 70% formic acid. Blocking of endogenous peroxidases and avidin-

biotin followed antigen retrieval. Then, sections were incubated with 6E10 biotin-labeled 

antibody (1:1000) overnight at 4°C and developed with Vectastain ABC Elite kit and DAB 

substrate (Vector Laboratories, Burlingame, CA). After staining, sections were coverslipped with 

Permafluor. All sections were examined under the microscope using the Nikon Eclipse 90i at 

10× magnification. For quantitative analysis, percent positive staining was defined as the percent 

area covered by X-34 or 6E10 staining using NIS Elements software (Nikon Instruments Inc., 

Melville, NY).  

4.9.3 IBA1 

For identification of activated microglia, brain sections were incubated with IBA-1 primary 

antibody (019-19741, Wako Chemicals) followed by incubation with secondary Dylight 594 

labeled antibody (Vector Labs) and counterstained with H33342[242]. For IBA-1 imaging in 

cortices, 2 confocal images were captured dorsal and lateral to the hilus of the dentate gyrus 

(Nikon A1, 40X magnification). The FilamentTracer (Imaris, version 7.1.1, Bitplane) was 
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utilized to determine neuronal patterning in the hippocampal CA1 region and IBA-1 positive 

microglia. Unbiased examination and quantitation of neurite size and length required manual 

introduction. Neurite length was normalized to the number of H33342 stained nuclei. The 

morphology of IBA-1 positive microglia was determined by seed points labeling cell bodies and 

dendrites and normalized to the filament count.  

4.9.4 MAP2 and Neurite Morphology  

Neurite morphometry analysis was performed as described before [220]. Coronal brain sections 

(30 μm thickness) were obtained with a sliding microtome. Sections were stored in 

cryoprotectant at -20°C until staining commenced. For immunofluorescence labeling, brain 

tissue sections were rinsed 3 times in PBS for 10 min and incubated with 1% Triton X-100 

(permeabilizing reagent) in PBS solution for 5 h at 4ºC.  The tissue was washed 3 times in PBS 

for 10 min each and blocked with 10% serum and 0.3% Triton X-100 in PBS solution for 30 min 

at RT. The sections were incubated for 72 h at 4ºC with microtubule-associated protein 2 

(MAP2) primary antibody (1:2000; Millipore), a cytoskeletal protein that binds to tubulin and 

stabilizes microtubules and is essential for the development and maintenance of neuronal 

morphology. Tissue was rinsed 3 times in PBS for 10 min each to remove unreacted primary 

antibodies. Tissue sections were incubated with Cy3-conjugated anti-sheep antibody (1:500; 

Jackson-ImmunoResearch) secondary antibody for 2 hr at RT. Sections were washed 2 times in 

PBS for 10 min and counterstained with H33342 nuclear reagent (1:3000; Sigma-Aldrich) for 5 

min at RT. Sections were washed 3 times in PBS for 10 min each and then, were mounted onto 

plus-coated slides and coverslipped using gelvatol mounting media. The FilamentTracer module 

of Imaris (Bitplane), which facilitates 3D neuron reconstruction, was utilized to determine 
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neuronal patterning and connections of hippocampal brain sections.  The MAP2 (Cy3) channel 

was used to quantify total neurite length, the number of segments, and the number of branches in 

the CA1 and CA2 regions of the hippocampus. 5 sections per animal starting at the beginning of 

the dentate gyrus and every 300 μm were used. For neurite analysis, 4-5 confocal images 

(considered replicates) were acquired for the CA1 region while 3-4 confocal pictures were 

captured for the CA2 region. Confocal fluorescence micrographs were obtained using a 60x lens 

magnification at very high resolution (100 µs exsposure). For unbiased examination, the size and 

the length of the neurites were the only parameters that required manual introduction. For parity, 

image assessment must use identical grid dimensions. Neurite length was normalized to the 

number of MAP2 neurons.  

4.10 TRANSCRIPTOME ANALYSIS 

4.10.1 RNA Isolation, qPCR, and Sequencing 

RNA was isolated from the cortex and purified according to the RNAeasy mini kit manufacturer 

protocol (Qiagen, Valencia, CA) as previously described [224]. RNA quality was determined 

using the 2100 Bioanalyzer instrument (Agilent Technologies, Santa Clara, CA). Samples with a 

RIN > 8 were used for library generation and sequencing (mRNA Library Prep Reagent Set; 

Illumina, San Diego, CA) on the Illumina HiSeq2000 instrument at the Functional Genomics 

Core, University of Pennsylvania, Philadelphia, PA (http://fgc.genomics.upenn.edu/). Subread 

(v1.5.0, http://subread.sourceforge.net) was used to align sequencing reads to the mouse genome 

(mm9). EdgeR package (v3.14.0) in R environment (v3.2.4) was used to analyze the differential 
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gene expression. qPCR assays were performed using TaqMan™ Gene Expression Assay or 

Power SYBR® Green PCR Master Mix (Applied Biosystems, Foster City, CA). cDNA was 

synthesized using EcoDry™ Premix, Random Hexamers (Clontech, Mountain View, CA). 

4.10.2 Functional Annotation Analysis 

Functional annotation clustering was performed using two different bioinformatics databases. 

We first used Database for Annotation, Visualization and Integrated Discovery (DAVID; 

http://david.abcc.ncifcrf.gov/; Huang et al., 2009) to determine gene ontology (GO) terms. 

Additional analysis with data from EdgeR output tables was performed using Gene set 

enrichment analysis (GSEA v2.2.2, https://www.broadinstitute.org/GSEA) with a gene matrix set 

for Biological Process (BP) (c5.bp.v5.1.symbols.gmt) [243, 244]. 

4.11 BIOCHEMICAL ANALYSIS 

4.11.1 Western Blot 

To prepare lysate for both Western blotting and ELISA, frozen cortices were homogenized in a 

glass Dounce containing tissue homogenization buffer (250 mM sucrose, 20 mM Tris base, 1 

mM EDTA, and 1 mM EGTA (Sigma–Aldrich, St. Louis, MO), 1 ml per 100 mg of tissue) and 

protease and phosphatase inhibitor cocktail (Roche, Indianapolis, IN). The Bradford assay was 

used to determine protein concentration of all samples. The supernatant of the initial homogenate 

(TBS extract) was used to determine soluble APOE (EMD Millipore, Temecula, CA) and APOJ 
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(Santa Cruz Biotechnology, Dallas, TX) concentration. The pellet was re-suspended, sonicated 

and spun with RIPA buffer containing protease and phosphatase inhibitors. 30 μg of total protein 

was mixed with Tris-Glycine denaturing loading buffer, loaded, and electrophoresed on 10% 

Tris-Glycine or 4-12% Bis-Tris gels. On nitrocellulose membranes ABCA1 was detected using 

polyclonal antibody, ab7360 (Abcam, Cambridge, MA), and APPfl with 6E10 antibody. β-Actin 

served as a loading control for all Western blots and detected using a monoclonal antibody 

(Sigma-Aldrich, St. Louis, MO). Membranes were incubated with respective secondary 

antibodies conjugated to horseradish peroxidase, and visualized by enhanced chemiluminescence 

Plus-ECL (PerkinElmer, Waltham, MA). Blots were imaged using the chemiluminescent setting 

on the Amersham Imager 600 (GE Healthcare Life Sciences, Marlborough, MA). All bands were 

quantified by densitometry (ImageQuant, version 5.2; GE Healthcare) and normalized to β-

Actin. To quantify APPfl and ABCA1, bands were normalized to respective vehicle groups. 

Quantification of APOE and APOJ is represented as fold of vehicle treated APP/E3/Abca1+/- 

mice. 

4.11.2 Aβ Dimer ELISA 

Aβ dimer ELISA was performed as previously published [239] with few modifications. As a 

standard we used a standard curve of Aβ1–40Ser26Cys dimer. 6E10 antibody was used as the 

capture antibody (10 µg/ml) to coat a 96 well Nunc MaxiSorp plate overnight at 4°C. After 

removing the antibody, the plate was washed with PBS and blocked with Block Ace for four 

hours. Following the removal of Block Ace, Aβ1–40Ser26Cys dimer standards and RIPA fraction 

from the cortex were diluted in EC buffer and loaded on the plate in duplicates. Biotinylated 
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6E10 antibody was used as the detection antibody (0.167 µg/ml) and incubated 4 hours at room 

temperature. The assay was developed with HRP-labeled streptavidin (1:30,000) for 1.5 hours at 

RT, followed by the use of the TMB Microwell Peroxidase Substrate System (KPL, 

Gaithersburg, MD). Plate was read on the SpectraMax i3 (Molecular Devices, Sunnydale, CA) at 

650 nm. Final values were compared to Aβ1–40Ser26Cys dimer standard curve using linear 

regression analysis, normalized to the total protein concentration in each sample, and expressed 

as ng Aβ/mg protein. 

4.11.3 Native-PAGE 

Native PAGE was performed according to a previously published protocol [245] with slight 

modifications. TBS brain extract was mixed with 2× non-denaturing loading buffer and resolved 

on Novex™ 4-20% Tris-Glycine gels. TBS brain extract from Apoeko mice was used as a 

negative control. Amersham™ HMW calibration kit was used as a native ladder (GE Healthcare, 

Marlborough, MA). Polyclonal anti-APOE (EMD Millipore, Temecula, CA) along with 

respective secondary antibody was used for incubation and developed as described for Western 

blot. Quantification of lipidated APOE is represented as the fold of respective vehicle groups.  

4.12 STATISTICAL ANALYSIS 

For the article, “ABCA1 deficiency affects basal cognitive deficits and dendritic density in 

mice,” data are reported as means ± SEM. Statistical differences between mean scores during 

acquisition phase of training in the MWM were analyzed with two-way ANOVA and t-test was 
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used to determine difference for each trial day. One-way ANOVA followed by Tukey's post hoc 

analysis for multiple comparisons was used to analyze the MWM probe trial data. Performance 

in RWM was assessed with two-way ANOVA Repeated measure (using Genotype or Infusion 

Group and Trial as sources of variation) followed by Tukey's post hoc analysis. Significant 

differences between groups for the rest of the data were determined by t-test. All statistical 

analyses were performed in GraphPad Prism, version 6.0 and differences were considered 

significant where p < 0.05. 

For the article, “Liver x receptor agonist treatment significantly affects phenotype and 

transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice,” All results are reported as 

means ± SEM. All data was analyzed by two-way ANOVA for genotype and treatment factors 

followed by Bonferroni’s or Sidak’s (Aβ dimer ELISA) post hoc test. One-way ANOVA 

followed by Tukey’s post hoc analysis was applied only to contextual fear conditioning. All 

statistical analyses were performed in GraphPad Prism, version 6.0. Significance was determined 

as p < 0.05. 
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5.0  RESULTS AND DISCUSSION 

5.1 ABCA1 DEFICIENCY AFFECTS BASAL COGNITIVE DEFICITS AND 

DENDRITIC DENSITY IN MICE 

Accepted on December 1, 2016 to the journal, Journal of Alzheimer’s disease 

5.1.1 Abca1 deficiency significantly impairs spatial memory in APP transgenic mice 

Recently we showed that lack of Abca1 increases amyloid load and worsens the performance of 

APP expressing mice in the contextual fear conditioning test [220]. Contextual fear condition 

paradigm assesses hippocampal-dependent associative learning to unconditional stimulus such as 

electric shock [212]. To test if ABCA1 deficiency affects other types of memory such as spatial 

learning and retention and long-term memory we employed MWM and novel object recognition 

test respectively. We used 7 month old APP mice that express wild type Abca1 (APP/Abca1wt) or 

Abca1ko (APP/Abca1ko) and their non APP transgenic littermates (WT and Abca1ko). As 

illustrated in Fig. 6A and B, during the acquisition phase, APP mice with intact Abca1 performed 

similarly to WT mice (no significant main effect of genotype); however there was a statistical 

difference on the last day of testing (p < 0.05) suggesting impaired acquisition. In contrast, 

APP/Abca1ko mice performed much worse than Abca1ko (significant main effect of genotype, 

p<0.001), particularly on the last days of MWM. This suggests that the lack of ABCA1 impairs 
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spatial acquisition in mice expressing human APP. In the MWM probe trial, APP/Abca1ko mice 

demonstrated decreased memory retention exemplified by a longer latency time to enter the 

target zone compared to APP/Abca1wt and non-transgenic Abca1ko mice (Fig. 6C). APP/Abca1ko 

mice also spent the shortest time in the target quadrant compared to the other genotypes however 

the difference with Abca1ko was not significant (Fig. 6D). These changes in performance were 

not due to swim speeds as there was no difference in the swim speeds of the assessed genotypes. 

To confirm that the memory impairment is not restricted only to MWM, the mice were 

also tested using the novel object recognition paradigm as before [194]. Once more, 

APP/Abca1ko mice demonstrated the worst performance (Fig. 6E, p < 0.05 compared are 

APP/Abca1ko and APP/Abca1wt) with APP/Abca1ko mice exploring the novel object far less than 

the other genotypes.  

The behavior experiments presented on Fig. 6 demonstrate that ABCA1 deficiency 

exaggerates cognitive deficits in APP transgenic mice that could be a result of either increased 

endogenously formed Aβ oligomers or amyloid plaques present in APP/Abca1ko mice. 
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Figure 6 Abca1 deficiency negatively affects memory of APP transgenic mice 
On A, B, C and D, are presented the MWM results from 7 month old APP mice expressing 
mouse Abca1 (APP/Abca1wt; N=16) or Abca1ko (APP/Abca1ko; N=14). Age- and gender-matched 
non-APP expressing Abca1wt (N=14) or Abca1ko (N=16) littermates were used as controls. 
Analysis is by two-way ANOVA to determine interaction and main effect of genotype or 
training, and t-test to determine genotype differences in performance within trial days. A & B, 
Training phase of MWM with each bar representing performance from all trials for a training 
day. A, Escape latency to the hidden platform: APP/Abca1wt vs WT, no interaction and no main 
effect of genotype. APP/Abca1ko vs Abca1ko, no interaction and significant main effect of 
genotype; F(1,140) = 22.26, p < 0.001. B, Path length to the hidden platform: APP/Abca1wt vs 
WT, no interaction and no main effect of genotype. APP/Abca1ko vs Abca1ko, no interaction and 
significant main effect of genotype; F(1,140) = 21.09, p < 0.001. For A and B, **, p < 0.01, *, p 
< 0.05 vs non-APP expressing controls by t-test. C & D represents probe trial of MWM 
performed 24 hrs following last training trial. Analysis is by one-way ANOVA followed by 
Tukey’s post-test (shown on the graph). C, Latency to reach the target quadrant of the hidden 
platform. p < 0.0001. D, Time spent in the target quadrant of the hidden platform. p < 0.05. E, 
Novel object recognition was performed on a different group of 7 month old mice of the same 
genotypes. Shown is percent novel object recognition as indicated in the Methods. Analysis is by 
one-way ANOVA followed by Tukey’s post-test. N=8-12 male and female mice per group. 



 

 55 

5.1.2 Characterization of Aβ oligomers utilized in this study 

It has been reported that Aβ oligomers affect synaptic plasticity and cognitive function [246]. 

Recently we have shown that amyloid load and A11-positive Aβ oligomers are significantly 

increased in 7 month old APP/Abca1ko mice in comparison with APP mice expressing Abca1wt 

[220]. To determine how the acute infusion of Aβ oligomers into hippocampus affects the 

memory of WT and Abca1ko mice, we used Aβ42 peptide and employed several methods to 

characterize the Aβ oligomers. On Fig. 7A is shown SDS PAGE followed by Western blotting 

with anti-Aβ 6E10 antibody. As visible, at time 0, Aβ existed only as monomers and low MW 

oligomers such as dimers, trimers and tetramers. Upon oligomerization, following 24 hrs 

incubation, there was an increase of higher MW oligomers such as 9-mer, 12-mer etc.; however, 

we were unable to detect oligomers with MW higher than 100 kDa. For comparison on the right 

of Fig. 7A is shown WB of Aβ fibrils. Aβ oligomers were also confirmed using conformation 

specific A11 antibody. As seen on Fig. 7B, when the dot blot was probed with A11 there was an 

increase in the intensity of oligomeric Aβ from time 0 to 48 hrs incubation. Finally, on Fig. 7C 

are shown electron micrographs of Aβ at time 0 and 24 hrs incubation. At time 0 (Fig. 7C-a) 

disaggregated Aβ42 is present as a monomer. After incubation for 24 hrs at room temperature 

Aβ42 was converted into rod-shaped oligomers with diameter of approximately 10 nm and length 

between 20-50 nm (Fig. 7C-b). 
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5.1.3 Infusion of Aβ oligomers in hippocampus differentially affects cognitive deficits in 

WT and Abca1ko mice 

To test the effect of the oligomers shown on Fig. 7 on cognition we infused WT and Abca1ko 

mice, which do not express human APP transgene, with the 24 hr oligomeric Aβ preparation. 

Young 7 month old mice were implanted with cannulas into both hippocampi (see picture on Fig. 

8A) followed by a recovery period of 8 days before behavioral testing. Aβ42 oligomers were 

infused bilaterally into the hippocampus 30 mins prior to each of the RWM training blocks (2 - 6 

trial blocks and 1 - 3 trial block) for a total of 3 infusions. RWM paradigm tests reference 

memory [212] and was used as a more demanding task, compared to MWM, to detect relatively 

subtle changes in cognitive function. Control mice were infused with scrambled Aβ. In addition, 

Figure 7: Characterization of Aβ oligomer 
Disaggregated Aβ42 was incubated at room temperature for 24 hrs as indicated in the Methods. 
A, SDS PAGE of Aβ42 at time 0 and 24 hrs after the start of incubation. Western blotting was 
performed with anti-Aβ antibody, 6E10. On the left are shown molecular weight markers. Aβ 
oligomers migrate between 40 and 90 kDa marker. Western blot of Aβ fibrils is shown for 
comparison. B, Aβ oligomers were identified by dot blotting performed with A11 antibody. 
Notice with the dot blot an increase in Aβ oligomers with increased incubation time.  C, Electron 
micrograph of Aβ42 at time 0 (a) and 24 hrs after the start of incubation (b). 



 

 57 

mice were compared to naïve mice that were not subjected to surgery. As shown on Fig. 8B, in 

WT mice Aβ42 oligomers significantly affected cognitive performance as compared to the control 

mice infused with scrambled Aβ (compare purple circles to grey squares). In contrast there was 

no statistical difference between naïve (no surgery) and mice infused with scrambled Aβ (Fig. 

8B, compare grey squares to black triangles). This experiment suggests that surgical procedures 

followed by the infusion of scrambled peptide do not affect the memory of WT mice. 

We next examined how Aβ oligomers infused into the hippocampus would impact 

cognitive performance of age-matched Abca1ko mice and compare them to controls of Abca1ko 

and WT mice infused with scrambled Aβ. Surprisingly, we found a statistically significant 

difference between WT and Abca1ko infused with control scrambled Aβ (see Fig. 8C, compare 

black to grey squares) suggesting that Abca1ko mice are vulnerable to the effect of stress/trauma 

induced by surgery and infusion of scrambled Aβ.  Due to the worsened performance of the 

control Abca1ko mice (injected with scrambled Aβ) there was no statistical difference between 

their behavior and Abca1ko mice infused with Aβ oligomers (compare black squares to red 

circles). Our conclusion is that Abca1ko mice have basal cognitive deficits that prevent them from 

coping with additional stressors that do not impact performance of normal healthy WT mice.  
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5.1.4 Deficiency of Abca1 significantly impairs neurite morphology in CA1 but not in CA2 

region of the hippocampus 

Recently we have demonstrated that Abca1 as well as Apoe deficiency significantly affects 

dendrite architecture in human APP transgenic mice [220]. The behavior tests shown on Fig. 8 

prompted us to examine the dendritic parameters of Abca1ko mice that do not express human 

Figure 8: Infusion of Aβ oligomers into the hippocampus differentially affects cognitive 
performance in WT and Abca1ko mice 
Aβ42 oligomers (characterized on Fig. 2) were infused into the hippocampus of 7 month old WT 
or Abca1ko mice and cognitive performance was evaluated by Radial arm water maze (RWM) 
paradigm. Control mice were infused with scrambled Aβ. As additional control, we used WT 
naïve mice without surgery. A, Represents the location of cannulas implanted into the 
hippocampus. B, Cognitive performance of WT mice is significantly affected by Aβ42 oligomers 
but not by scrambled Aβ. Analysis by two-way repeated measures ANOVA shows no interaction 
between training and treatment; however there was a significant main effect of treatment (Aβ42 
oligomers); F(2,279) = 17.84, p < 0.0001 and trial block (trial block); F(9,279) = 7.99, p < 
0.0001. Post-test for multiple comparisons demonstrates the difference between mice infused 
with Aβ42 oligomers and scrambled Aβ (compare purple circles to grey squares): ***, p < 0.001; 
**, p < 0.01; *, p < 0.05. N=11-12 mice per group. C, There is a significant difference in RWM 
performance between WT and Abca1ko mice infused with scrambled Aβ. In contrast there is no 
significant difference in RWM performance between Abca1ko mice infused with Aβ42 oligomers 
and scrambled Aβ. Analysis by two-way repeated measures ANOVA shows no interaction 
between training and treatment; but a significant main effect of treatment; F(2,90) = 5.56, p = 
0.0238 and training F(9,90) = 6.29, p < 0.0001. Post-test for multiple comparisons demonstrates 
the difference between WT and Abca1ko mice infused with scrambled Aβ (compare black to grey 
squares): *, p < 0.05. N=4-5 mice per group. 
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APP transgene. To test the effect of Abca1 deficiency we used 7 months old Abca1ko mice and 

compared to WT mice (the same age as in Fig. 8). For neurite morphometry of pyramidal 

hippocampal neurons we used MAP2 stained brain sections and performed analysis in two 

different regions (CA1 and CA2) of medial hippocampal sections. Since neurites form complex 

tree-like structures, 3D image reconstruction is necessary to obtain accurate measurements. 

Examination of neurites in the CA1 region (Fig. 9A) revealed a significant decrease in neurite 

length, number of neurite segments and number of branches (Fig. 9A & B, p < 0.05) in Abca1ko 

mice when compared to WT. These changes in neurite architecture were restricted to the CA1 

region of the hippocampus as we did not observe any changes in the CA2 region when 

comparing Abca1ko to WT mice (Fig. 9C & D). The data were normalized to the number of 

neurons and there was no significant change in the numbers of counted nuclei (not shown) when 

comparing Abca1ko mice and WT mice in either region of the hippocampus. Our data 

demonstrate that the genetically engineered deletion of Abca1 disrupts neurite morphology in the 

hippocampus, and this effect is specific for CA1 region. 
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Figure 9: Lack of Abca1 significantly affects dendritic architecture in CA1 but not CA2 
region of the hippocampus 
MAP2 and DAPI staining were used for dendritic tree reconstruction in the hippocampal CA1 
and CA2 regions of WT and Abca1ko mice. Data were analyzed from a total of four images 
(60X confocal imaging) from each of the four sections for each mouse (N=5-7 mice per group; 
16 images per mouse). The total dendritic length, branch points and segments were quantified 
using Imaris filament tracing macros and were normalized to the total DAPI positive nuclei of 
the CA1 and CA2 regions. Analysis by t-test. A, Shows representative images for CA1 region 
(a – MAP2 staining in red, b – DAPI staining in blue, c – Merged MAP2 and DAPI staining, d 
– Imaris neurite tracings in yellow); while B, indicates the quantification of neurite length, 
segments and branches. C, Shows representative images for CA2 region (scale bar = 100 µM); 
while D, indicates the quantification of neurite length, segments and branches in the CA2 
region. Note that lack of Abca1 significantly affects dendritic architecture in CA1 but not CA2 
region of the hippocampus. 
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5.1.5 Discussion 

In this study we examined the effect of global deletion of Abca1 on cognitive performance and 

neurite morphology. We also determined the potential impact the deletion of Abca1 has on 

cognitive impairment induced by oligomeric Aβ. In regards to cognitive performance and in 

correlation to the level of soluble Aβ oligomers, we have previously shown that old APP23 mice 

with one copy of Abca1 performed significantly worse than mice with intact Abca1 in a MWM 

paradigm [178]. Furthermore, we have reported that simultaneous deletion of Apoe and Apoa1 in 

the AD mouse model used in the current study, significantly aggravated memory impairment, 

similarly to deletion of Abca1, revealed in contextual fear conditioning. Consistent with the 

behavior data, APP expressing mice with double - Apoe and Apoa1, or Abca1 knockout, both 

demonstrated significant impairment in dendrite morphology compared to APP/WT mice. 

Herein, we confirmed the behavior deficits caused by Abca1 deletion in APP/PS1ΔE9 mice at an 

early stage of amyloid pathology utilizing two behavioral tests – MWM and novel object 

recognition.  

Accumulation of soluble extracellular high molecular weight oligomeric Aβ species in 

brain is considered pathogenic for onset and progression of cognitive deficits associated with 

AD. Studies have found that soluble oligomers of Aβ rapidly and potently inhibit long-term 

potentiation [247]. Aβ oligomers also activate glial/neuronal stress kinases and increase the 

production and release of nitric oxide, superoxide and other mediators [248]. It has been shown 

that Aβ oligomers negatively impact neuronal viability [249, 250] and synaptic plasticity [246]. 

We have previously shown that cognitive performance can be correlated to levels of soluble Aβ 

oligomers [178] and here we wanted to demonstrate that ABCA1 influences the effects of Aβ 

oligomers on cognitive performance. In this study we utilized mice which express endogenous 
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APP only and determined the effects of Aβ oligomers without the context of amyloid pathology. 

While we have been able to demonstrate impairments in cognitive performance in both WT and 

Abca1ko mice following infusion of Aβ oligomers into the hippocampi, we found a statistically 

significant difference between WT and Abca1ko mice infused with control scrambled Aβ peptide, 

suggesting that Abca1ko mice have basal deficits that prevent them from coping with additional 

stressors that do not affect performance of a normal healthy WT mouse. A possible explanation 

of the results could be, Abca1ko mice are, generally, unable to cope with additional stressors 

ultimately resulting in diminished cognitive performance. However, since ABCA1 regulates 

cholesterol and phospholipids efflux from cells to lipid-poor ApoE and controls the generation of 

HDL-like particles in brain, the overall impact could be a result of insufficient supply of 

cholesterol to neurons, emphasizing the regulatory role of ABCA1-ApoE axis on cholesterol 

homeostasis and promotion of synaptogenesis. While our study has not been designed to answer 

all these questions, the overall consequence of deficient, properly lipidated ApoE could explain 

reduced number of synapses [251], negative effects on reactive sprouting response following 

lesions in entorhinal cortex [252] and decreased MAP2-positive staining of neurons in the 

amygdala [253]. While evidence exists that adult neurons can synthesize cholesterol [254, 255], 

they cannot produce cholesterol efficiently, depend on an external source and rely on 

exogenously supplied lipids especially during periods of increased demands such as repair 

following additional stressors [256, 257]. Yet, another plausible explanation could be, ApoE as 

the main carrier of cholesterol and phospholipids in the brain, in conditions of nonfunctional 

ABCA1 not only inefficiently delivers cholesterol and lipids to neurons to support growth and 

connectivity, but indirectly influences transcriptional activity of genes, and thus the expression of 
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proteins critical for synaptogenesis, and cognitive performance. The exact molecular mechanism 

by which ApoE influences neuronal structure and complexity remains unresolved, however. 

In conclusion, our study demonstrates behavior deficits caused by Abca1 deletion in 

APP/PS1ΔE9 mouse model at an early stage of amyloid pathology.  The basal deficits of 

Abca1ko, manifested by diminished cognitive performance, prevent them from coping with 

additional stressors which is in part due to the impairment of neurite morphology of the 

hippocampus. The results of this study emphasize the important role of ABCA1 in brain 

cholesterol homeostasis and its ability to cope with external insults: environmental, diet induced, 

physical trauma, or disease associated neuropathology. 

5.2 LIVER X RECEPTOR AGONIST TREATMENT SIGNIFICANTLY AFFECTS 

PHENOTYPE AND TRANSCRIPTOME OF APOE3 AND APOE4 ABCA1 HAPLO-

DEFICIENT MICE 

Submitted on December 5, 2016 to the journal, PLOS ONE 

5.2.1 Pharmacological Activation of LXR/RXR transcription factors improves cognitive 

performance of Abca1 haplo-deficient APP/E4 mice 

We have previously demonstrated that Abca1 deficiency differentially affects AD-like phenotype 

in mice expressing human APOE4 or APOE3. To determine if ligand activated LXR can 

alleviate cognitive deficits in APP/E4/Abca1+/- mice, we treated six-month-old APP/E4/Abca1+/- 

mice with T0 and compared changes in their AD-like phenotype to those of non-transgenic 
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littermates and to APP/E3/Abca1+/- mice. First, we examined changes in cognitive function 

following T0 treatment in a novel object recognition paradigm. As seen in Fig.10A, two-way 

ANOVA analysis revealed both main variables T0 and APOE isoform significantly affected 

performance in APP-expressing mice. In contrast, neither LXR ligand treatment nor APOE 

isoform had an effect on non-transgenic littermates (Fig.10B). To confirm the effect seen in 

novel object recognition, we used contextual fear conditioning paradigm that tests hippocampal-

associated learning. As visible from Fig.10C, T0 treatment significantly improved the 

performance of both APP/E4/Abca1+/- mice compared to vehicle treated APP/E4/Abca1+/- mice 

(Sidak’s post-test, p < 0.05) while in APP/E3/Abca1+/- the response did not reach a significant 

level. Interestingly, in difference to novel object test, LXR ligand treatment and APOE genotype 

had a significant main effect on the performance of WT controls (Fig.10D). Cued test 

demonstrated no effect of T0 and APOE genotype confirming that the effect of T0 is reflected by 

hippocampal-associative memory (Fig.10E and F). Thus, the conclusion from these experiments 

is that LXR ligand treatment significantly improves cognition of APP/E4/Abca1+/- mice.  
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Figure 10: LXR agonist treatment improves cognitive performance 
T0 treatment restores cognition in APP/E4/Abca1+/-. 6-month-old APP/E3/Abca1+/-, 
APP/E4/Abca1+/- and non-transgenic mice were treated with T0 and vehicle (control) for one 
month. Cognitive function was assessed with novel object recognition (A and B) and contextual 
fear conditioning behavioral paradigms (C and D). A, T0 affected the performance of APP 
transgenic mice in the novel object recognition test. Analysis by two-way ANOVA shows no 
interaction between APOE genotype and T0 treatment with a significant main effects of APOE 
genotype (F(1, 51)= 7.44, p < 0.01) and T0 treatment (F(1, 51)= 4.45, p< 0.05). B, T0 treatment 
did not affect the performance of non-APP littermates. APOE genotype (F(1, 45)= 1.9) and T0 
treatment (F(1, 45)= 0.002). C, LXR agonist significantly improved the performance of 
APP/E4/Abca1+/- mice in contextual fear conditioning paradigm. Analysis by two-way ANOVA 
shows no interaction between APOE genotype and T0 treatment and significant main effects of 
T0 treatment (F(1, 51)= 5.94, p= 0.018) and APOE genotype (F(1, 51)= 10.6, p= 0.002). Sidak’s 
multiple comparison test shows a significant difference between T0 and vehicle treated 
APP/E4/Abca1+/- mice (p < 0.05). D, T0 also affected the behavior of non-APP controls in the 
contextual fear conditioning behavior paradigm. Analysis by two-way ANOVA shows no 
interaction and significant main effects of T0 treatment (F(1, 45)= 4.47, p= 0.03) and APOE 
genotype (F(1, 45)= 4.49, p= 0.04). T0 had no effect on APP (E) and non-APP mice (F) during 
the cued phase of fear conditioning. For all panels, N=11-15 mice per group. Data represented as 
means ±SEM. 
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5.2.2 Ligand activated LXR/RXR do not affect amyloid plaque level but significantly 

decrease soluble Aβ oligomers in APP/E4/Abca1+/- mice  

To examine if LXR/RXR agonist treatment can alleviate amyloid plaque pathology in 

APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, brain sections were stained with X-34 to visualize 

compact fibrillary amyloid plaques. Representative images of X-34 staining in the cortex and 

hippocampus are shown in Fig.11A. While simple comparison of areas occupied by deposited 

compact amyloid plaques (t-test) did not reveal a difference (Fig.11B), a two-way ANOVA 

confirmed a significant main effect of APOE genotype but not T0 treatment. To visualize diffuse 

and compact (total) amyloid plaques, brain sections were stained with anti-Aβ antibody 6E10. 

Representative images of 6E10 staining in the cortex and hippocampus are shown in Fig.11C. 

Similarly, to the results of X-34 staining, the analysis showed a significant main effect of APOE 

genotype on the total amyloid burden, regardless of the T0 treatment (Fig.11D). Next, we 

determined the effect of T0 on the level of soluble Aβ dimers in the cortices of APP/E3/Abca1+/- 

and APP/E4/Abca1+/- mice (Fig.11E). We found a statistically significant interaction between 

APOE genotype and T0 treatment and a difference in the amount of Aβ dimers in T0 and vehicle 

treated APP/E4/Abca1+/- mice (Sidak’s post-hoc test p < 0.05). These changes were not a 

consequence of T0 effect on full length APP processing as its protein level was unchanged 

(Fig.11F). The conclusion is that LXR ligand T0 does not affect amyloid plaques but 

significantly decreases soluble Aβ oligomers that confirms our previous data on the effect of 

activated LXR/RXR on amyloid pathology. 
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Figure 11: T0 treatment significantly decreased soluble Aβ oligomers, not amyloid 
plaque pathology in APP/E4/Abca1+/- mice 
T0 treatment significantly decreased soluble Aβ dimers, but not amyloid plaque pathology 
in APP/E4/Abca1+/- mice. Amyloid plaque pathology was assessed by immunostaining. A, 
Brain sections were stained with X-34 to visualize compact fibrillary amyloid plaques in 
vehicle and T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice. Representative 
images of X-34 staining were captured at 10× magnification. B, X-34 positive amyloid 
plaques were analyzed by two-way ANOVA. There is no interaction between APOE 
genotype and T0 treatment and a significant main effect of APOE genotype (F (1, 55)= 
34.7, p < 0.0001), but not of T0 treatment. N=14-16 mice per group. N.S., not significant. 
C, Brain sections were stained with anti-Aβ antibody, 6E10, to visualize diffuse and 
compact (total) amyloid plaques in vehicle and T0 treated APP/E3/Abca1+/- and 
APP/E4/Abca1+/- mice. Representative images of 6E10 staining are shown (10× 
magnification). D, 6E10 positive amyloid plaque load analyzed by two-way ANOVA. 
There is no interaction between APOE genotype and T0 treatment and a significant main 
effect of APOE genotype (F(1, 19)= 4.41, p=0.049), but not of T0 treatment. N= 5-6 mice 
per group. E, T0 treatment significantly decreases Aβ oligomers in APP/E4/Abca1+/- mice. 
RIPA fraction was evaluated for soluble Aβ by dimer-specific ELISA. Analysis by two-
way ANOVA revealed an interaction between APOE genotype and T0 treatment (F(1, 
32)=4.82, p= 0.036). Sidak’s post-test demonstrated a significant difference between T0 
and vehicle treated APP/E4/Abca1+/- mice (p < 0.05). N=6-10 mice per group. F, T0 has 
no effect on full-length APP. For all panels the data are means ±SEM. 
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5.2.3 Genome-wide effects of activated LXR/RXR on brain transcriptome in APOE-TR 

mice 

To determine the effect of T0 treatment on the transcriptome of APP/E3/Abca1+/- and 

APP/E4/Abca1+/-, we performed RNA-seq using total RNA extracted from cortices of 

APP/E3/Abca1+/- and APP/E4/Abca1+/- male mice treated with T0 or vehicle and analyzed the 

sequencing datasets using edgeR v. 3.14.0 (http://bioconductor.org/).  First, we evaluated the 

source of the variation in gene expression. We applied Principal Component Analysis (PCA) to 

process the abundance matrix of observed variables (static normalized expression level of genes 

across the genotypes and treatment) and to calculate Principal Components that account for most 

of the variance in the datasets. The scattered plot on Fig.12A is a two-dimensional (PC1 vs PC2) 

representation of T0 treatment and genotype. Interestingly, APP/E3/Abca1+/- and 

APP/E4/Abca1+/- mice formed two very distinct clusters encompassing the type of treatment. 

Thus it demonstrates that the effect of APOE isoform on gene expression is higher than the T0 

treatment, yet APP/E4/Abca1+/- mice were more responsive to pharmacological activation of 

LXR/RXR.  

Next we compared expression profiles of vehicle and T0 treated APP/E3/Abca1+/- mice 

and identified a total of 411 differentially expressed genes: 137 up- and 274 down-regulated by 

T0 at a cut-off of p < 0.05 (Fig.12B). Using the same criteria, we found 746 differentially 

expressed genes in APP/E4/Abca1+/- mice: 438 up- and 308 down-regulated following T0 

treatment (Fig.12D). In mice expressing either APOE isoform, among common up-regulated 

genes known to affect brain lipoprotein metabolism and APOE lipidation were Abca1, Abcg1 

and Lpcat3 (marked on the volcano plots shown on Fig.12B and D). Surprisingly, T0 treatment 

did not affect APOE mRNA level in mice expressing either isoform. To examine biological 
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categories affected by the treatment, we used DAVID. As visible from Table 1A, similarly 

upregulated by T0 in both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, were processes related 

to lipid and cholesterol metabolism, DNA repair and chromatin modifications. In contrast there 

was a little similarity between biological processes down regulated in APOE3 and E4 mice. As 

shown on Table 1B, in APP/E3/Abca1+/- mice, significantly downregulated by T0 was GO term 

“innate immune response” including toll like receptor 3 (Tlr3), bone marrow stromal cell antigen 

2 (Bst2), as well as interferon induced genes such as Ifit1 and Ifit3, and Oas2 and Oasl2. In 

contrast, uniquely and significantly downregulated in APP/E4/Abca1+/- mice were transforming 

growth factor beta receptor signaling, cell differentiation, cell chemotaxis and synaptic 

transmission among others.  

In validation qPCR assays we confirmed up-regulation of Abca1, Abcg1, Scd1 and Scd2, 

Srebf1 and Lpcat3 using total RNA isolated from brains of male and female mice of both 

genotypes (Fig.12C and E). To confirm the effect of activated LXR/RXR on transcription is 

translated into increased protein level, we performed western blotting on ABCA1 and APOE. As 

visible from Fig.13A, T0 treatment increased ABCA1 protein level in both genotypes. Fig.13B, 

shows that pharmacological LXR/RXR activation by T0 did not change total APOE protein level 

which is in agreement with gene expression data. Similarly, we did not observe any significant 

effect of activated LXR/RXR on APOJ/CLU protein level (Fig.13B). Lastly, we examined 

APOE lipidation using native PAGE. As shown in Fig.13C, T0 treatment increased APOE 

lipidation in APP/E3/Abca1+/- and APP/E4/Abca1+/- mice. We conclude that in both isoforms, 

LXR treatment increased gene expression of genes related to cholesterol efflux and APOE 

lipidation, such as Abca1. 
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Figure 12: Transcriptional analysis of T0 treatment from the cortices of six-month-
old APP/E3/Abca1+/- and APP/E4/Abca1+/- mice 
A, Principle component analysis (PCA) plot shows two dimensional comparison (PC1 vs 
PC2) of APOE genotype and T0 treatment in APP/E3/Abca1+/- and APP/E4/Abca1+/- 
mice. B and D, The volcano plots show differential gene expression between T0 treated 
APP/E3/Abca1+/- (B) and APP/E4/Abca1+/-  (D) mice when compared to their vehicle 
treated counterparts using EdgeR RNA-sequencing results analysis. The up-regulated 
genes are represented in red, down-regulated genes are represented in blue and the cut off 
is at p<0.05. Up-regulated genes represent target genes of T0 treatment. C and E, qPCR 
validation of upregulated genes in T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/- 
from the volcano plot analysis. N=12 mice per group. qPCR values are mean ± SEM. 
Analysis were performed by student t-test. 
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Table 1. Gene ontology categories (GO) differentially affected by LXR agonist 

A. Up-regulated GO terms in T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice  

APP/E3/Abca1+/-: T0 vs Vehicle 

Term Count % PValue FE Benjamini 
GO:0006629~lipid metabolic process 12 8.51 1.88E-04 4.01 0.11 
GO:0006633~fatty acid biosynthetic process 5 3.55 0.001131 10.84 0.22 
GO:0055091~phospholipid homeostasis 3 2.13 0.001518 49.88 0.22 
GO:0006281~DNA repair 8 5.67 0.004104 3.94 0.32 
GO:0042632~cholesterol homeostasis 4 2.84 0.007355 9.98 0.45 
GO:0006310~DNA recombination 4 2.84 0.015530 7.58 0.64 
GO:0006974~cellular response to DNA damage stimulus 8 5.67 0.018579 2.94 0.67 
GO:0016568~chromatin modification 6 4.26 0.032402 3.36 0.74 

APP/E4/Abca1+/-: T0 vs Vehicle 
Term Count % PValue FE Benjamini 
GO:0006355~regulation of transcription, DNA-templated 69 14.90 2.50E-05 1.66  0.04 
GO:0006974~cellular response to DNA damage stimulus 20 4.32 7.88E-04 2.39  0.43 
GO:0006351~transcription, DNA-templated 57 12.31 0.001272 1.52 0.46 
GO:0006281~DNA repair 14 3.02 0.010360 2.24  0.92 
GO:0006633~fatty acid biosynthetic process 6 1.30 0.013636 4.22  0.94 
GO:0006810~transport 50 10.80 0.020717 1.36  0.95 
GO:0000723~telomere maintenance 4 0.86 0.034595 5.55  0.98 
GO:0016568~chromatin modification 11 2.38 0.049604 2.00 0.99 

In Red are shown pathways related to lipid and cholesterol metabolism 

In bold are marked GO terms overlapping in both APOE isoforms 
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B. Down-regulated GO terms in T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/-mice 

APP/E3/Abca1+/-: T0 vs Vehicle 

Term Count % PValue FE Benjamini 

GO:0007155~cell adhesion a 18 6.19 3.48E-04 2.72 0.40 
GO:0045087~innate immune response 15 5.15 4.11E-04 3.06 0.26 
GO:0043410~positive regulation of MAPK cascade 8 2.75 6.72E-04 5.44 0.28 
GO:0042127~regulation of cell proliferation 11 3.78 9.34E-04 3.63 0.24 
GO:0043065~positive regulation of apoptotic processb 13 4.47 0.001376 3.00 0.29 
GO:0005977~glycogen metabolic process 5 1.72 0.001427 10.10 0.26 
GO:0030335~positive regulation of cell migration 10 3.44 0.001575 3.70 0.25 
GO:0008284~positive regulation of cell proliferation 15 5.15 0.004897 2.35 0.45 
GO:0035458~cellular response to interferon-beta 4 1.37 0.008467 9.42 0.52 
GO:0055114~oxidation-reduction process 18 6.19 0.010928 1.95 0.53 

APP/E4/Abca1+/-: T0 vs Vehicle 
Term Count % PValue FE Benjamini 

GO:0009968~negative regulation of signal transduction 7 2.16 1.45E-04 8.67 0.18 
GO:0030512~negative regulation of transforming growth factor 
beta receptor signaling pathway 6 1.85 0.001225 7.43 0.57 
GO:0030154~cell differentiation 23 7.10 0.002570 2.01 0.59 
GO:0032436~positive regulation of proteasomal ubiquitin-
dependent protein catabolic process 6 1.85 0.003043 6.06 0.57 
GO:0006469~negative regulation of protein kinase activity 6 1.85 0.014215 4.19 0.92 
GO:0090090~negative regulation of canonical Wnt signaling 
pathway 6 1.85 0.015452 4.10 0.91 
GO:1901214~regulation of neuron death 3 0.93 0.021139 13.13 0.91 
GO:0060326~cell chemotaxis 4 1.23 0.034302 5.59 0.94 
GO:0007268~synaptic transmission 6 1.85 0.036113 3.28 0.94 
GO:0046777~protein autophosphorylation 7 2.16 0.049486 2.64 0.97 

a, In Green are shown pathways differentially downregulated in both APOE isoforms 

b, Bold: similar GO terms 
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Figure 13: T0 treatment increases ABCA1 protein level and APOE lipidation 
T0 treatment increases ABCA1 protein level and APOE lipidation. ABCA1, APOE 
and APOJ protein levels were determined by SDS-PAGE. Additionally, APOE 
lipidation was determined by Native PAGE. A, Representative image of ABCA1 
protein level is shown above the graph. T0 significantly affected ABCA1 protein 
level. Analysis by two-way ANOVA shows no interaction between APOE genotype 
and T0 treatment. There is a significant main effect on T0 treatment (F(1, 34)= 26.12, 
p < 0.0001), but not on APOE genotype. Bonferroni’s post-test shows a significant 
difference between T0 and vehicle treated APP/E3/Abca1+/- mice (****p<0.0001). B, 
T0 treatment did not affect APOE or APOJ protein levels. N=9-10 mice per group. C, 
APOE lipidation state in APP/E3/Abca1+/- (left) and APP/E4/Abca1+/- (right) mice. 
Representative images of APOE lipidation are shown. Arrows are indicative of 
lipidation status. N=4-5 mice per group. 
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5.2.4 Genes commonly affected by APOE isoform regardless of treatment  

Since PCA (Fig.12A) showed high isoform-dependent variability in APP/E3/Abca1+/- and 

APP/E4/Abca1+/- datasets, we tested the effect of APOE genotype in conditions of T0 or vehicle 

treatment. First, we compared vehicle treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice and 

identified 1,524 differentially expressed genes at p ≤ 0.05 cut-off (Fig.14A). In the T0 treated 

APP/E3/Abca1+/- and APP/E4/Abca1+/- datasets the number of the genes above the cut-off was 

1,068 (Fig.14B).  

We focused on few target genes which were up- or down-regulated in APP/E4/Abca1+/- 

mice regardless of treatment. We were particularly interested in genes implicated in immune 

response and receptor mediated phagocytosis such as Fyn, Cxcl10, Olig1, Oscar and autophagy - 

several Serpina isoforms (3g, 3h, 3m, and 3n). As visible from the volcano plots on Fig.14A and 

B, these genes were significantly up-regulated in vehicle and T0 treated APP/E4/Abca1+/- mice 

when compared to their respective APP/E3/Abca1+/- counterparts (shown in Fig.5A and B as 

red). On Fig.14C are presented RNA-seq results from the comparison of T0 treated 

APP/E4/Abca1+/- and APP/E3/Abca1+/- mice. The result demonstrates that there is a significant 

increase of Cxcl10, Fyn, Olig1, Oscar and Serpina isoforms (3g, 3h, 3m, and 3n) mRNA 

expression in APP/E4/Abca1+/- when compared to APP/E3/Abca1+/- mice in the same T0 treated 

group. We also identified genes downregulated in APP/E4/Abca1+/- mice, regardless of the 

treatment, were related to lipid metabolism (Pip5kl1) and vesicular transport – Stx17, Stx2 and 

Stx3 (shown in Fig.14A and B as blue). mRNA level of these genes as determined by RNA-seq 

is shown on Fig. 14D. 
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Figure 14: Transcriptional analysis of APOE genotype on APP/E3/Abca1+/- 
and APP/E4/Abca1+/- mice transcriptome 
A, Comparison between vehicle treated APP/E3/Abca1+/- and APP/E4/Abca1+/- 
mice. B, Comparison between T0 treated APP/E3/Abca1+/- and 
APP/E4/Abca1+/- mice. Data were analyzed using EdgeR and the volcano plots 
are built using p < 0.05 cut-off. Up- and down-regulated genes are represented 
in red and blue respectively. On C and D are shown genes that are up- or 
down-regulated in APP/E4/Abca1-/+ mice regardless of the treatment. C, 
shown is RNA-seq result for genes that are significantly upregulated in 
APP/E4/Abca1+/- vs APP/E3/Abca1+/- mice regardless of treatment. D, shown 
is RNA-seq result for genes that are significantly down-regulated in 
APP/E4/Abca1+/- vs APP/E3/Abca1+/- mice regardless of treatment. 
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5.2.5 Differential effect of T0 treatment in APP/E4/Abca1+/- and APP/E3/Abca1+/-  mice  

Next, to examine if LXR treatment differentially affects biological processes in isoform-

dependent manner, we applied Gene Set Enrichment Analysis (GSEA) and compared T0 treated 

APP/E4/Abca1+/- and APP/E3/Abca1+/- mice. We included expression data for all transcripts 

without setting a cut-off to avoid a bias towards the effect of highly affected genes [244]. Using 

GSEA we ranked the top 50 up- (Fig.15A) and down-regulated (Fig.15B) genes of the gene-

ontology (GO) category “biological process”. The bubble plot shown on Fig.15C represents 

biological processes affected by T0 treatment in APP/E3/Abca1+/- (right) and APP/E4/Abca1+/- 

mice (left) and is based on the number of genes in each category and the nominal p-value (see 

also Table 2). To further illustrate significantly enriched biological process terms, we show 

enrichment plots with corresponding heat maps for “Microtubule Based Process” (Fig. 15D) and 

“Synapse Organization and Biosynthesis” (Fig. 15F). While the morphological and functional 

validation of the affected biological processes in APP/E4/Abca1+/- is beyond the scope of this 

study, the results are suggesting APOE isoform specific response to LXR/RXR activation and 

enrichment in sets of genes that help to better understand positive effects of treatment on 

cognitive performance. 
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Figure 15: APOE isoform-specific effect on gene expression in APP/E3/Abca1+/- and 
APP/E4/Abca1+/- mice 
Comparison between T0 treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice. Heat-maps 
provided by GSEA analysis were used to identify and rank the top 50 up-regulated genes 
(A) and top 50 down regulated genes (B) in APP/E3/Abca1+/- mice. C, Bubble plot shows 
top ranked “biological process” (BP) differentially affected by T0 treatment in 
APP/E3/Abca1+/- vs APP/E4/Abca1+/- mice. The gene lists were derived from edgeR 
output tables and included expression data for all transcripts. Color indicates nominalized 
p-value. Significant BP are represented in red to purple shades (p<0.05 and FDR≤0.25). 
Size of bubble indicates the number of significant genes in each represented BP. GSEA 
enrichment score curves and corresponding heat-maps show BP significantly enriched in 
T0 treated APP/E4/Abca1+/- mice, D and E, “Microtubule Based Process”. D, GSEA 
analysis provided a heat-map (right) and enrichment score (left) for this category. E, 
RNA-seq results of significantly changed mRNA expression levels of representative 
genes from category “Microtubule Based Process”. F-G, “Synapse Organization and 
Biosynthesis”. F, GSEA analysis provided a heat-map (right) and enrichment score (left). 
G, RNA-seq results of significantly changed mRNA expression levels of representative 
genes from category “Synapse Organization and Biosynthesis”. 
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Table 2. Top 20 up- and down-regulated GSEA Biological Process in APP/E4/Abca1+/- vs 
APP/E3/Abca1+/- T0 treated mice 
 

UP regulated in APP/E4/Abca1+/- vs APP/E3/Abca1+/- 

NAME SIZE NES NOM 
p-val 

FDR 
q-val 

MICROTUBULE_CYTOSKELETON_ORGANIZATION_AND_BIOGENESIS a 31 -1.87 0.00 0.16 
NEGATIVE_REGULATION_OF_PROTEIN_METABOLIC_PROCESS 31 -1.68 0.01 0.24 
ANTI_APOPTOSIS 89 -1.64 0.00 0.31 
REGULATION_OF_PROTEIN_MODIFICATION_PROCESS 28 -1.63 0.01 0.26 
SYNAPSE_ORGANIZATION_AND_BIOGENESIS b 20 -1.60 0.01 0.25 
ONE_CARBON_COMPOUND_METABOLIC_PROCESS 25 -1.55 0.04 0.37 
REGULATION_OF_ORGANELLE_ORGANIZATION_AND_BIOGENESIS 35 -1.54 0.02 0.38 
ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATION 21 -1.54 0.00 0.36 
REGULATION_OF_CELL_ADHESION 23 -1.51 0.01 0.40 
PEPTIDYL_TYROSINE_PHOSPHORYLATION 16 -1.49 0.04 0.39 
CELL_CYCLE_ARREST_GO_0007050 46 -1.49 0.05 0.38 
NEGATIVE_REGULATION_OF_PROGRAMMED_CELL_DEATH 112 -1.49 0.03 0.36 

Down regulated in APP/E4/Abca1+/- vs APP/E3/Abca1+/- 

NAME SIZE NES NOM 
p-val 

FDR 
q-val 

NUCLEOTIDE_METABOLIC_PROCESS 34 1.44 0.06 1 
NUCLEOTIDE_EXCISION_REPAIR 18 1.38 0.10 1 
PROTEIN_CATABOLIC_PROCESS 55 1.31 0.13 1 
TRANSCRIPTION_INITIATION 24 1.27 0.18 1 
PHOSPHOLIPID_METABOLIC_PROCESS 55 1.24 0.11 1 
STRESS_ACTIVATED_PROTEIN_KINASE_SIGNALING_PATHWAY 41 1.19 0.18 1 
REGULATION_OF_DNA_METABOLIC_PROCESS 36 1.16 0.28 1 
PROTEIN_MODIFICATION_BY_SMALL_PROTEIN_CONJUGATION 39 1.15 0.26 1 
PROTEIN_DNA_COMPLEX_ASSEMBLY 36 1.15 0.27 1 
NEGATIVE_REGULATION_OF_MAP_KINASE_ACTIVITY 16 1.12 0.27 1 
JNK_CASCADE 39 1.11 0.32 1 
MEMBRANE_LIPID_METABOLIC_PROCESS 79 1.09 0.31 1 

a, With bold are marked statistically significant Biological Process (BP) (FDR≤0.25) 
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5.2.6 Discussion 

In this study we analyzed the effect of LXR agonist T0 on the phenotype of Abca1 haplo-

deficient APP/E3 and APP/E4 mice. The results demonstrate that T0 significantly ameliorates 

cognitive deficits seen in APP/E4/Abca1+/- mice, as examined by Novel Object Recognition and 

Contextual Fear Conditioning paradigms. T0 treatment also reduced soluble Aβ oligomers 

without affecting amyloid plaques, confirming our recent study [191]. Importantly, RNA-seq 

results and the analysis of changes in the transcriptome demonstrated that commonly up-

regulated genes in response to T0 induced LXR/RXR activation affect lipoprotein metabolism 

and APOE lipidation. We postulate that the ultimate changes in the phenotype of AD animal 

model used here are the result of interconnected effects T0 on molecular, cellular and organism 

levels. 

Prior studies have demonstrated that treatment with LXR agonists ameliorates memory 

deficits in APP mice [182, 183, 187, 189, 191, 214, 258]. There are several explanations for this 

effect. First – the increased lipidation of APOE, even without an increase in APOE  mRNA or 

APOE protein level. As seen on the Native-PAGE, our findings illustrate that T0 increases the 

level of lipidated APOE in cortical homogenates of both APP/E3/Abca1+/- and APP/E4/Abca1+/- 

mice (Fig. 4). Based on our transcriptomics and expression validation data we postulate that the 

increased APOE lipidation is a result of the upregulated expression of Abca1, Abcg1, Scd1, Scd2 

and Lpcat3 genes, and thus proteins, essential for cholesterol efflux. These genes were identified 

as commonly up-regulated in brain of mice expressing either APOE isoform. In this respect it is 

important to emphasize the previous studies showing that the deficiency of ABCA1 results in 

lack of lipidated APOE in brain parenchyma and CSF [176, 177, 179, 259, 260].  
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We hypothesize that clearance of Aβ oligomers out of the brain via BBB or an increased 

phagocytosis by microglia are possible and important consequences of the increased level of 

fully lipidated APOE (a general discussion can be found in [168]). Whereas in this study we did 

not specifically examine which one of those clearance routes is affected, our data clearly show 

that Aβ dimers in T0-treated APP/E4/Abca1+/- mice are decreased. Published data from our 

group also demonstrated that LXR/RXR agonists decrease the level of soluble Aβ40 and Aβ42 in 

ISF [183, 191, 261], and the treatment of APP/E3 and APP/E4 mice with RXR ligand, 

bexarotene, decreases the level of soluble Aβ oligomers in brain parenchyma. Altogether, these 

data are suggesting that the effect of T0 treatment on clearance of Aβ soluble species could be a 

result of concerted action of activated RXR homodimers and  LXR/RXR heterodimers [261]. A 

second consequence of increased APOE lipidation is that properly lipidated APOE can deliver 

cholesterol and phospholipids to neurons more efficiently.  Those lipid molecules are needed for 

repair of axonal/neuronal damage resulting from amyloid deposition and thus for improved 

synaptic transmission. As extensively discussed in our previous study [239] mice lacking Apoe 

have impairments in cognition and dendritic arborization. Synaptic dysfunction in AD 

pathogenesis is recognized as an important mechanism and the role of APOE in affecting 

synaptic plasticity in an isoform-dependent manner has been repeatedly confirmed (reviewed in 

[262-264]). 

Our results also show that there is a significant APOE isoform-specific effect on  

expression of genes with a role in Aβ clearance. As shown on Fig. 5, several genes associated 

with immune response such as Cxcl10, Fyn, Oscar and isoforms of Serpina, compared to 

APP/E3/Abca1-/+ mice were up-regulated in APP/E4/Abca1-/+ mice, even without a treatment. 

The analysis of differentially expressed genes also identified genes downregulated in 
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APP/E4/Abca1+/- mice regardless of the treatment; those gene were related to lipid metabolism 

(Pip5kl1) and vesicular transport – Stx17, Stx2 and Stx3 (shown in blue on the volcano plots on 

Fig. 5A and B). While specific experiments have been outside of the scope of this study, 

considering the growing knowledge of the role of immune receptors in Aβ clearance the 

transcriptional changes of the above genes and possible control of neuroinflammatory responses 

in AD brain are worth pursuing in the future. 

When we compared only agonist treated APP/E3/Abca1+/- and APP/E4/Abca1+/-mice, we 

identified “Microtubule Based Process” and “Synapse Organization and Biosynthesis” as GO 

categories uniquely enriched in APP/E4/Abca1+/- mice. Members of the beta-protocadherin 

(Pcdh-β) family were up-regulated in T0 treated APP/E4/Abca1+/- mice. Pcdh genes, a subfamily 

of cadherin adhesion molecules, are expressed in the brain (reviewed in [265]) and have been 

demonstrated essential in establishing synapses and synapse function [266]. Pcdh gene family 

expression has been identified in various neuronal populations and the protein localizes 

predominantly in synapses. An isoform of Pcdhg-β, Pcdhβ-16 is expressed in the hippocampus 

and cortical layers [266] and we found isoforms of Pcdhβ-16 up-regulated following T0. 

Although currently the research focuses primarily on PCDH-α and PCDH-γ and their ability to 

mediate cell adhesion through combinatorial expression on the surface of neurons [267, 268], it 

is reasonable to assume that PCDH-β could be involved in those processes, as well. PCDH-β can 

localize to synapses, suggesting the protein might have the potential to contribute to the 

formation of synaptic plasticity in the mammalian CNS. No research, however, has been 

conducted so far, to reveal if their function is interconnected to APOE secretion and deposition 

of Aβ, or cholesterol transport and its internalization at the synaptic level, or the way they 
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influence the cholesterol/phospholipid composition of the cell membrane, necessary and required 

for normal neuronal function.  

In conclusion, the present findings show that LXR agonist treatment of Abca1 haplo-

deficient APP/E4 mice, ameliorates APOE4 driven brain pathology and cognitive deficits. The 

results are attributed to the ability of T0, through LXR/RXR activation, to reverse lipid 

deficiency of APOE4 particles in brain. The results of our study also suggest that an increased 

ABCA1 and ABCG1 expression through LXR/RXR activation, resulting in improved APOE 

lipidation may be an useful target for future prophylactic as well as therapeutic approaches in 

APOE4 carriers. 

5.3 INTEGRATED APPROACH REVEALS DIET AND APOE ISOFORMS 

DIFFERENTIALLY AFFECT IMMUNE RESPONSE IN ALZHEIMER’S MODEL 

MICE 

Submitted on October 18, 2016 to the journal, Science Translational Medicine 

5.3.1 High fat diet aggravates AD-like phenotype of middle-aged APP23 mice 

Effect on memory: To examine the effect of high fat diet (HFD) on AD-like phenotype we used 

one-year old APP23 mice fed with HFD for three months and compared their learning and 

memory performance to those of mice fed normal diet (ND). As shown on Fig.16A, weight gain 

resulting from HFD was similar in male and female mice. To examine cognitive performance, 

we used Morris Water Maze (MWM). As seen from Fig. 16B, HFD significantly affected the 
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acquisition of spatial memory exemplified by the increased escape latency. Memory retention 

was also significantly reduced as indicated by the latency to enter the target quadrant in the probe 

trial of MWM (Fig. 16C). There was no significant difference in cognitive performance between 

male and female mice on either of the diet (Fig. 17A and B).  

High fat diet increases amyloid deposition: Our previous data demonstrated that HFD 

increases amyloid deposition in APP23 mice [183]. To confirm this, total Aβ plaques (including 

diffuse and fibrillar) were visualized using 6E10 anti-Aβ antibody (Fig. 16D) and compact 

amyloid plaques assessed by X-34 staining (Fig. 16F). As visible on Fig. 16E and G, there was a 

significant diet and gender effect on 6E10-positive Aβ plaques as well as on X-34 labeling 

compact amyloid plaques, respectively. While HFD affected males and females similarly the 

females had significantly more amyloid irrespective of diet. The effect of diet on plaques was not 

a result of an increase in full length Aβ precursor protein (APP), as it was unaffected by HFD 

(Fig. 17C and D). We also observed a significant decrease in ABCA1 protein level following 

HFD (Fig. 17C) whereas APOE protein level was unchanged (Fig. 17D). Collectively these 

results confirm our previous study [183] and we conclude that in this model HFD aggravates 

AD-like phenotype. 
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Figure 16: High fat diet worsens cognitive performance and increases amyloid deposition in 
APP23 mice 
APP23 mice were fed with HFD for 3 months. (A) Weight gain in male and female mice. 
Student’s t-test. N = 9 – 11 male, 13 – 14 female per group. **, p<0.01; ***, p<0.001. (B) 
Acquisition trial of MWM (Escape latency). Statistic by two-way ANOVA. No interaction 
between trial day and diet; significant main effect of diet (F(1,110) = 11.24, p = 0.0011) and trial 
day (F(4,110)=12.38, p < 0.0001). (C) Probe trial of MWM (latency to the target). Student’s t-test. 
B-C, N = 5 – 7 mice gender/group. (D-G) Amyloid plaques in cortex and hippocampus of 
APP23 mice on ND and HFD were analyzed by two-way ANOVA followed by Sidak’s multiple 
comparison test. Representative images (D) and quantification (E) of Aβ deposits (6E10 
staining). No interaction between diet and gender and significant effect of both diet 
(F(1,12)=29.92, p=0.0001) and gender (F(1,12)=40.58, p=0.0001). Representative images (F) and 
quantitation (G) of X-34 fibrillary amyloid plaques. No interaction and significant main effect of 
diet (F(1,12)=5.32, p=0.004) and gender (F(1,12)=12.11, p=0.003). For D-G N=4-5 male, 5 female 
mice per group. *, p < 0.05 and **, p < 0.01. 
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5.3.2 Microglia morphology is altered in female APP/E4 mice 

Next, we determined if the microglia morphology is similar in both genotypes. For this purpose, 

we analyzed the morphology of the microglia processes on randomly chosen IBA-1 positive cells 

Figure 17: MWM Behavior by gender in APP23 mice 
(A). Acquisition phase of MWM-females, N=5-7; B. Acquisition phase of MWM-males, 
N=5-6. C and D, HFD induces a decrease of ABCA1 protein level but does not affect 
APP and APOE. Representative images (C) and quantitation (D) of WB for ABCA1, 
APP, APOE. GAPDH is used as a loading control. Data are presented as fold of ND. 
N=4-5 mice/gender/group. Student’s t-test *p < 0.05 
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in the cortex using IMARIS software automated filament tracer. Upon activation by reactive 

stimuli, microglia typically become more amoeboid with shorter and less complex processes that 

can be accurately quantified via unbiased IMARIS tracing [269, 270]. Confocal Z stacks were 

captured (Fig. 18A) from the cortex and then process length, and branching were assessed. As 

shown on Fig. 18B, the total process length of cortical microglia was significantly higher in 

APP/E3 mice and the number of branches in APP/E3 showed a strong trend toward increase 

when compared to APP/E4 mice (Fig. 18C). These results suggest that HFD significantly and 

differentially affected the activation state and microglia morphology in APP/E4 and APP/E3 

mice.  

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Microglia morphology is altered in female APP/E4 compared to 
APP/E3 mice  
Compared are female APP/E4 to APP/E3 mice fed HFD. (A) Representative confocal 
images and IMARIS tracings of microglia (IBA-1 positive, red) and nuclei (blue) in 
the cortex of APP/E3 and APP/E4 mice fed HFD. Automated analysis using IMARIS 
software illustrated for each group (yellow). (B) Microglia process length is 
significantly decreased and (C) the number of branches shows a trend towards 
decrease in APP/E4 females fed HFD. Analysis was performed by Mann-Whitney test.  
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6.0  CONCLUSION 

Our original hypothesis states that transcriptional control of LXR target genes such as APOE and 

ABCA1 in combination with environmental factors influences amyloid deposition and cognitive 

decline in mouse models representative of AD phenotype. Three separate aims addressed the 

hypothesis. To examine the first aim, we stereotaxically infused AβOs into the hippocampi of 

Abca1ko mice and assessed neurite morphology. To examine the second aim, we fed APP23, 

APP/E3, and APP/E4 transgenic mice a HFD and assessed the effect on the protein level of LXR 

targets ABCA1 and APOE, Aβ pathology, and microglial morphology. Lastly, to examine the 

third aim, we chronically treated APP/E3/Abca1+/- and APP/E4/Abca1+/- mice with the LXR 

agonist T0 and assessed Aβ pathology, mRNA expression and protein levels of ABCA1 and 

APOE, as well as APOE lipidation levels, and the effect on the transcriptome. The results from 

these studies have two far-reaching clinical implications: 1). Lifestyle or dietary and 2). 

Pharmacological interventions.  

Cholesterol is critical for metabolic and homeostatic processes throughout the body. The 

brain is the most cholesterol-rich organ in the body. Cholesterol is essential for neuronal 

development, maintenance of synaptic plasticity, neurite outgrowth, synaptic vesicle transport, 

and neurotransmitter release. Cholesterol is one of the most important components of lipid rafts. 

Lipid rafts identified in neurons and glia further implicate cholesterol for neuronal function. 

Caveolin-1 is a protein present in a subset of lipid rafts involved in compartmentalization and 
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internalization of signaling complexes, neuronal differentiation, arborization, and 

neuroprotection. Although caveolin expression is low in neurons, caveolin-1 knockout mice 

present with features found in aged hippocampi like decreased levels of synaptic markers and 

reduced number of hippocampal synapses. In elderly human cortical samples, caveolin-1 

colocalizes with APP. In aged human cortices and hippocampi, caveolin-1 is up-regulated. 

Enhanced BACE1 activity is a consequence of enzymatic targeting to lipid rafts. Therefore, lipid 

raft dysfunction may impair synapses leading to cognitive decline and AD [271-273]. 

The majority of cholesterol in the brain is in the active “free” unesterified form, which is 

primarily present in myelin and necessary to execute the functions aforementioned. An 

imbalance in membrane lipids, altering cholesterol biosynthesis, or any minor perturbation to 

brain cholesterol homeostasis can negatively affect brain function. These disruptions occur in 

several neurodegenerative diseases including Huntington’s and Pick’s disease. Neurons 

synthesize the majority of cholesterol for growth and synaptogenesis, however, once they are 

mature, neurons rely on an exogenous cholesterol supply primarily from astrocytes. Cholesterol 

efflux and APOE lipidation from astrocytes requires ABC transporters ABCA1 and ABCG1 to 

create HDL-like lipoprotein particles that neurons can then internalize. Internalized cholesterol 

becomes esterified and stored as lipid droplets or a source for synaptic and dendritic formation 

and remodeling [128, 274]. 

We and others previously demonstrated the role of ABCA1 in the pathogenesis of AD. 

APP transgenic mice lacking Abca1 present a significant increase in amyloid plaques and 

decrease in APOE protein brain levels. Mice expressing human APOE4 are more susceptible to 

Abca1 haplo-deficiency compared to APOE3 counterparts. Also, we previously demonstrated 

increased AβO levels and impairment in the CA1 region of the hippocampus in APP transgenic 
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mice crossed with Abca1ko mice [176-180, 219, 239]. However, in the current study presented 

here, we further supported that APP/Abca1ko mice have cognitive deficits in MWM and NOR 

behavior paradigms. However, focusing specifically on the role of ABCA1 in cognitive deficits, 

we infused Abca1ko mice with scrambled (control) Aβ into the hippocampus. Compared to wild-

type counterparts, only ABCA1 not Aβ infusion affected cognitive deficits. Abca1ko mice 

presented impaired neurite morphology. Therefore Abca1ko mice have basal cognitive deficits 

that prevent coping with additional factors like Aβ. This data further implicates ABCA1 and 

APOE in cholesterol and lipid metabolism. Our data suggests that deleting ABCA1 may prevent 

cholesterol efflux and APOE lipidation from astrocytes. Therefore, lipid-poor APOE cannot 

contribute to HDL-like particles in the brain and shuttle lipoproteins to neurons to support 

neuronal physiological functions.  

High saturated fats in part characterize high-fat diet (HFD) and are problematic when 

eaten excessively because the brain becomes deprived of nutrients. Consumption of HFD 

increases AD risk, especially mid-life. We demonstrated that APP23 transgenic mice consuming 

HFD expressing mouse Apoe displayed worse cognitive performance. We examined microglia 

morphology in APP transgenic mice with human APOE3 and APOE4 (APP/E3 and APP/E4 

respectively) fed HFD. Microglia are the brain’s resident monocyte-derived cell, contributing to 

immune response. Activated microglia become ‘ameboid’ while undergoing morphological 

changes. These changes include increased soma size and thickened processes, suggesting that 

microglia may be contributing to an immune response. We demonstrated that HFD affects 

microglia morphology in both APOE isoforms as seen in female APP/E3 and APP/E4 mice. 

Importantly, we observed a decrease in number of branches and length in APP/E4 mice fed HFD 

when compared to APP/E3 mice fed HFD. The conversion to an activated phenotype suggests 
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that microglia are facilitating an overall immune response that may induce phagocytosis or 

inflammation, which is detrimental in AD [275]. 

It is important to reiterate that there is no single genetic or environmental factor that 

drives AD risk. Age is the greatest risk factor for AD. Chronic inflammation associated with 

normal aging suggests an age-related change that increases AD risk [276]. Genome-wide 

association studies identified immune-related genes like triggering receptor expressed on 

myeloid cells 2 protein (TREM2). TREM2 has functions associated with phagocytosis of Aβ 

deposits. Individuals haroboring heterozygous loss-of-function mutation in TREM2 have a 

predisposition to AD [276, 277]. Sex differences regulate the susceptibility to inflammation. 

Importantly, during adulthood, female sex steroid hormones protect against inflammation-related 

diseases. However, during aging, females become susceptible to inflammation-related diseases 

due to the decline in sex steroid horomone levels [276, 278].  

AD is a mutlifactorial disease that can differentially affected men and women. Sex 

difference exist in AD, with women being predisposed to AD even after controlling for the fact 

that women live longer than men [276, 279]. APOE4, the strongest genetic risk factor for AD, is 

a risk factor modified by sex, with women harboring a single copy of APOE4 at an increased risk 

of AD by approximately four-fold [276, 280, 281]. Similar to humans, sex bias associated with 

APOE4-TR mice occurs compared to APOE3-TR and increases AD-like pathology in females 

than male AD-transgenic mice [276, 282]. This data demonstrates the importance of factoring 

sex steroid hormones in modulating AD risk. 

Cholesterol and lipid metabolism became the focus of AD research with indication of 

APOE4 as a risk factor for LOAD. As previously stated, it is debatable whether APOE4 confers 

insufficient protection or deleterious effects in AD pathology; therefore, it is also debatable if 
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drugs should inhibit or increase APOE4 activity. Loss-of-physiological function of APOE4 

associates with decrease synaptic function, neurogenesis, lipid and cholesterol metabolism, Aβ 

clearance [283], suggesting that APOE4 is not as efficient as its APOE3 and APOE2 

counterparts. For cholesterol and lipid metabolism, this would indicate that APOE4 has impaired 

ability to transport fat and cholesterol via astrocytes to neurons. High serum cholesterol 

measured in APOE4 occurs possibly in attempts to adjust for the poor rate of cholesterol uptake. 

Therefore, therapeutic interventions to increase APOE4 lipidation may be useful in AD patients. 

We demonstrate that LXR agonist T0901317 improves cognition in multiple behavior 

paradigms, decreases AD-associated pathology, and affects the transcriptome in 

APP/E4/Abca1+/-
 mice that underlies cholesterol and lipid metabolism [183, 186, 191]. 

Importantly, T0901317 increased Abca1 expression and protein levels as restored APOE 

lipidation in both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, suggesting that the benefits of 

T0901317 may positively affect both APOE genotypes. This finding is of importance because 

individuals who are APOE3 carriers also suffer from AD. Also of importance is the use of Abca1 

heterozygous mice instead of Abca1 knockout mice. Abca1 heterozygotes are relevant to clinical 

phenotypes seen in the human population because of reduced ABCA1 transport function due to 

genetic variants. Two non-functional copies of ABCA1 as in Tangier disease or global deletion of 

Abca1 in Abca1 knockout mice represent extreme examples. Therefore, administering LXR 

agonist to individuals with Abca1 heterozygosity may prove beneficial in treating AD [171, 178]. 

T0901317 did not affect insoluble Aβ plaques, but reduced soluble Aβ levels. While 

endogenous and synthetic LXRs like oxysterols increase Abca1, Abcg1, and Apoe gene 

expression, we also saw that T0 increased gene expression of enzymes involved in fatty-acid 

remodeling, such as Scd1 and Scd2, and Srebp that positively regulates genes involved in fatty-
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acid biosynthesis. Therefore, this raises doubts about the use of LXR and RXR agonists as a 

pharmacological agent. This effect may lead to chronic activation of these pathways, a 

compensatory effect, and further induce AD-related deficits. Bexarotene or Targretin®, a FDA-

approved retinoid medication for the use of cutaneous T-cell lymphoma (CTCL), selectively 

upregulates RXRs Bexarotene proved beneficial in mouse models representative of AD [193, 

194]. However, Bexarotene is associated with hypertriglyceridemia. This suggests that use of 

RXR and LXR agonists can be beneficial, but should not be used long-term. Although we 

demonstrated the perceived benefits of LXR agonist, it is still necessary to further explore LXR 

and RXR pathways in reducing AD-associated pathologies.  

In addition to LXRs and RXRs, PPARs highly expressed in the brain are critical for lipid 

homeostasis by interacting with fatty acids and lipid metabolites. Activation of PPARγs induces 

lipid uptake and storage genes. FDA approved drugs pioglitazone (Actos™) and rosiglitazone 

(Avandia™) for the treatment of type II diabetes are therapeutically relevant to AD, with a phase 

III trial underway for pioglitazone. Although the mechanisms by which PPARγ agonist improves 

behavior in AD model mice is unknown, anti-inflammatory effects may in part be responsible by 

suppressing proinflammatory cytokine levels [214]. Chronic administration of PPARγ agonist 

treatment leads to reduced amyloid plaque burden due to microglial phagocytosis of Aβ deposits, 

which in turn may improve behavior in AD model mice [214, 284, 285]. 
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