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INFORMATION EXTRACTION OF +/-EFFECT EVENTS TO SUPPORT

OPINION INFERENCE

Yoonjung Choi, PhD

University of Pittsburgh, 2016

Recently, work in NLP was initiated on a type of opinion inference that arises when opin-

ions are expressed toward events which have positive or negative effects on entities, called

+/-effect events. The ultimate goal is to develop a fully automatic system capable of recog-

nizing inferred attitudes. To achieve its results, the inference system requires all instances

of +/-effect events. Therefore, this dissertation focuses on +/-effect events to support opin-

ion inference. To extract +/-effect events, we first need the list of +/-effect events. Due

to significant sense ambiguity, our goal is to develop a sense-level rather than word-level

lexicon. To handle sense-level information, WordNet is adopted. We adopt a graph-based

method which is seeded by entries culled from FrameNet and then expanded by exploiting

semantic relations in WordNet. We show that WordNet relations are useful for the polarity

propagation in the graph model. In addition, to maximize the effectiveness of different types

of information, we combine a graph-based method using WordNet relations and a standard

classifier using gloss information. Further, we provide evidence that the model is an effective

way to guide manual annotation to find +/-effect senses that are not in the seed set. To

exploit the sense-level lexicons, we have to carry out word sense disambiguation. We present

a knowledge-based +/-effect coarse-grained word sense disambiguation method based on se-

lectional preferences via topic models. For more information, we first group senses, and then

utilize topic models to model selectional preferences. Our experiments show that selectional

preferences are helpful in our work. To support opinion inferences, we need to identify not

only +/-effect events but also their affected entities automatically. Thus, we address both

iv



+/-effect event detection and affected entity identification. Since +/-effect events and their

affected entities are closely related, instead of a pipeline system, we present a joint model

to extract +/-effect events and their affected entities simultaneously. We demonstrate that

our joint model is promising to extract +/-effect events and their affected entities jointly.

Keywords: Sentiment Analysis, Implicit Opinion, Opinion Inference, Lexical Acquisition,

Word Sense Disambiguation.
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1.0 INTRODUCTION

Opinions are commonly expressed in many kinds of written and spoken text such as blogs,

reviews, new articles, discussions, and tweets. Sentiment Analysis is the computational

study to identify opinions, evaluations, attitues, affects, and emotions expressed in such

texts [Liu, 2010]. There are many names and tasks with somewhat different objectives

and models such as opinion mining, sentiment mining, subjectivity analysis, affect analysis,

emotion detection, and so on.

Here is the example of reviews presented by [Liu, 2010]:

(a) I bought an iPhone a few days ago. (b) It was such a nice phone. (c) The touch

screen was really cool. (d) The voice quality was clear too. (e) Although the battery life was

not long, that is ok for me. (f) However, my mother was mad with me as I did not tell her

before I bought the phone. (g) She also thought the phone was too expensive, and wanted me

to return it to the shop.

In this example, the sentence (a) has no sentiment while others have sentiment informa-

tion. We can say that the sentence (a) is the objective sentence because it presents some

factual information; others are subjective sentences because they express some personal feel-

ings, views, emotions, or beliefs. In addition, each sentence except the sentence (a) has

different sentiment information. In the sentence (b), the writer has a positive sentiment

toward an iPhone. Also, in the sentence (c) and (d), the writer has a positive sentiment

toward attributes (i.e., the touch screen and the voice quality) of the iPhone. On the other

hand, in the sentence (g), the writer’s mother has a negative sentiment toward the iPhone.

As such, we can see lots of sentiment information in a text.
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Recently, there have been a surge in research in sentiment analysis. It has been ex-

ploited in many application areas such as review mining, election analysis, and information

extraction. Especially, with growing interest in social media such as Facebook, Twitter,

and blogs, which contain various opinionated user contents, sentiment analysis has become

increasingly important because it can be applied for a variety of applications such as opinion

summarization, opinion spam detection, advertisement, and customized recommendation.

Sentiment analysis consists of three subtasks. The basic subtask is classifying the opinion

orientation (i.e., polarity) of a given text at the document/sentence/phrase/aspect-level.

That is, it determines whether the expressed opinion in the given text is positive, negative,

or neutral. For instance, the sentence (b), (c), and (d) in the previous example should

be classified into positive sentences while the sentence (f) and (g) should be classified into

negative sentences. In the sentence (e), even though the polarity of the sentence is neutral,

in the phrase-level classification, the battery life should be classified into a negative phrase.

Other subtasks are the opinion holder detection which extracts the person or organization

that expresses the opinion and the opinion target extraction which identifies objects or their

aspects on which opinions are expressed. For example, in the sentence (b), the opinion

holder is a writer and the opinion target is iPhone; in the sentence (c), (d), and (e), the

opinion holder is a writer and the opinion target is the touch screen, the voice quality, and

the battery life which are attributes of iPhone. On the other hand, in the sentence (f), the

opinion holder is a writer’s mother (i.e., my mother) and the opinion target is a writer (i.e.,

me); in the sentence (g), the opinion holder is a writer’s mother (i.e., She) and the opinion

target is the phone, which indicates iPhone.

Thus, in other words, sentiment analysis aims to determine the opinion orientation of

an opinion holder with respect to an opinion target. There are various studies for sentiment

analysis with different research topics (i.e., document/sentence/phrase/aspect-level polarity

classification [Pang et al., 2002, Pang and Lee, 2005, Riloff et al., 2005, Wilson et al.,

2004, Mei et al., 2007], opinion holder and target identification [Kim and Hovy, 2006], and

sentiment lexicon construction [Kim and Hovy, 2004, Baccianella et al., 2010]) and various

domains such as review texts [Turney, 2002], new articles [Wilson et al., 2005], blog data

[Godbole et al., 2007], and tweets [Barbosa and Feng, 2010].

2



There are two types of opinions: explicit opinion and implicit opinion. The explicit opin-

ion means that an opinion toward an opinion target is explicitly expressed by an opinion

holder in a given text. The example (1) is one of example of explicit opinions.

(1) The voice quality of this phone is fantastic.

In this example, the opinion toward the target, the voice quality of this phone, is explicitly

expressed with a word, fantastic, which is the key clue to determine an opinion orientation.

These words or expressions which are used to express peoples subjective feelings and senti-

ments/opinions are called as sentiment lexicon. (It is also known as polarity words, opinion

words, or opinion-bearing words.) Here are examples of positive and negative terms. Not just

individual words but also phrases and idioms can be the sentiment lexicon such as cost an

arm and a leg. That is, the explicit opinion is expressed with clues such as sentiment lexicon.

Positive terms: wonderful, elegant, amazing

Negative terms: horrible, bad

On the other hand, the implicit opinion means that an opinion toward an opinion target

is implicitly expressed by an opinion holder in a given text. In the example (2), although

it doesn’t express an opinion explicitly, we can know that a writer has a negative opinion

toward the entity, the headset.

(2) The headset broke in two days.

Still, research in sentiment analysis has plateaued at a somewhat superficial level, provid-

ing methods that exhibit a fairly shallow understanding of subjective language as a whole.

In particular, past research in NLP has mainly addressed explicit opinion expressions [Pang

et al., 2002, Turney, 2002, Hu and Liu, 2004, Kim and Hovy, 2004, Wilson et al., 2005, Mei

et al., 2007, Davidov et al., 2010, Barbosa and Feng, 2010], ignoring implicit opinions ex-

pressed via implicatures, i.e., default inferences.

3



Recently, to determine implicit opinions, Wiebe and Deng [Wiebe and Deng, 2014] ad-

dress a type of opinion inference that arises when opinions are expressed toward events which

have positive or negative effects on entities. They call such events benefactive and malefac-

tive, or, for ease of writing, goodFor and badFor events. While the term goodFor/badFor is

used in their paper, we have decided that +/-effect is a better term. Thus, in this research,

we call such events +/-effect events instead of goodFor/badFor.

[Deng and Wiebe, 2014] show how sentiments toward one entity may be propagated to

other entities via opinion inference rules. They give the following example:

(3) The bill would curb skyrocketing health care costs.

The writer expresses an explicit negative sentiment (by skyrocketing) toward the entity,

health care costs. The existing sentiment analysis system can determine it. However, the

existing explicit sentiment analysis system cannot determine the sentiment toward the bill.

With opinion inference rules, not only the sentiment toward health care costs but also the

sentiment toward the bill can be inferred. The event, curb, has a negative effect (i.e.,

-effect) on skyrocketing health care costs, since they are reduced. We can reason that the

writer is positive toward the event because it has a negative effect on costs, toward which

the writer is negative. From there, we can reason that the writer is positive toward the bill,

since it conducts the positive event.

Now, consider the another example:

(4) Oh no! The voters passed the bill.

Here, the writer expresses an explicit negative sentiment toward the passing event

because of Oh no!. Although we cannot know the sentiment toward the bill with the existing

sentiment analysis system, we can infer it with opinion inference rules. The passing event is

a positive effect (i.e., +effect) on the bill since it brings into existence. Since the writer is

negative toward an event that benefits the bill, we can infer that the writer is negative

toward the bill itself.

4



The ultimate goal is to develop a fully automatic system capable of recognizing such

inferred attitudes. The system will require a set of implicature rules and an inference mech-

anism. [Deng and Wiebe, 2014] present a graph-based model in which inference is achieved

via propagation. They show that such inferences may be exploited to significantly improve

explicit sentiment analysis systems.

To achieve its results, the inference system requires all instances of +/-effect events.

However, the system developed by [Deng and Wiebe, 2014] takes manual annotations as

input; that is, it is not fully automatic system. The ultimate system needs to recognize a

span of +/-effect events and their polarities (i.e., +effect, -effect, or Null) automatically.

For that, we first need the list of +/-effect events. Although there are similar lexicons

such as SentiWordNet [Esuli and Sebastiani, 2006] and connotation lexicons [Feng et al.,

2011, Kang et al., 2014], sentiment, connotation, and +/-effects are not the same.

Moreover, the information about which entities are affected is important since the senti-

ment toward an entity can be different. In the example (3), as we mentioned, the given event,

curb, is -effect on the theme (i.e., the affected entity is the theme), and the writer’s sentiment

toward the theme is negative. Thus, we know that the writer has a positive sentiment toward

the event, and the sentiment toward the agent is positive.

Consider the following example:

(5) Yay! John’s team lost the first game.

We know that the writer expresses an explicit positive sentiment toward the event

because of Yay!. The event, lost, has a negative effect (i.e., -effect) on the entity, John’s

team, since it fails to win. That is, the affected entity is the agent, not the theme. We can

infer that the writer has negative sentiment toward John’s team because the event, that

the writer is positive, has a negative effect on John’s team. Compared to the sentence (3),

even though both are -effect events and the writer has a positive sentiment toward these

events, the sentiment toward the agent (i.e., the bill in the example (3) and John’s team in

the example (5)) is different according to what the affected entity is. Such as these examples,

it is important to know which entities are affected by the event in opinion inferences.
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As we mentioned, for the opinion inference system to be fully automatic, +/-effect event

extraction also must be fully automated. At this time, we have to consider which entities are

affected by +/-effect events since the sentiment toward an entity can be different. Thus, the

goal of this research is to develop resources and methods for information extraction

of a general class of events, +/-effect events, which are critical for detecting im-

plicit sentiment and which are also important for other tasks such as narrative

understanding.

1.1 RESEARCH SUMMARY

As we mentioned, to recognize a span of +/-effect events and their polarities (i.e., +effect,

-effect, or Null) automatically, we first need the list of +/-effect events. Since +/-effect

lexicon is the new types of lexicons, there is not available resource for +/-effect events.

Thus, we first have to create a +/-effect lexicon.

One task of this dissertation is to build +/-effect lexicons. Since a word can have one or

more meanings, the +/-effect polarity of a word may not be consistent. We discover that

there is significant sense ambiguity, meaning that words often have mixtures of senses among

the classes +effect, -effect, and Null.

In the +/-effect1 corpus [Deng et al., 2013], +/-effect events and their agents and themes

are annotated at the word-level. In this corpus, 1,411 +/-effect instances are annotated; 196

different +effect words and 286 different -effect words appear in these instances. Among

them, 10 words appear in both +effect and -effect instances, accounting for 9.07% of all

annotated instances. They show that +/-effect events (and the inferences that motivate

this work) appear frequently in sentences with explicit sentiment. Further, all instances of

+/-effect words that are not identified as +/-effect events are false hits from the perspective

of a recognition system.

1Called the goodFor/badFor in this corpus.
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The following is an example of a word with senses of different classes:

carry:

S: (v) carry (win in an election) “The senator carried his home state”

⇒ +Effect toward the agent, the senator

S: (v) carry (keep up with financial support) “The Federal Government carried the

province for many years”

⇒ +Effect toward the theme, the province

S: (v) carry (capture after a fight) “The troops carried the town after a brief fight”

⇒ -Effect toward the theme, the town

In the first sense, carry has positive polarity toward the agent, the senator, and in the

second case, it has positive polarity toward the theme, the province. Even though the po-

larity is the same, the affected entity is different. That is, in the first sense, the affected

entity is the agent while the affected entity is the theme in the second sense. In the third

sense, carry has negative polarity toward the theme, the town, since it is captured by the

troops. Moreover, although a word may not have both +effect and -effect senses, it may

have mixtures of (+effect or -effect) and Null. Consider pass.

pass:

S: (v) legislate, pass (make laws, bills, etc. or bring into effect by legislation)

⇒ +Effect toward the theme

S: (v) travel by, pass by, surpass, go past, go by, pass (move past)

⇒ Null

The meaning of pass in the example (4) is the first sense, in fact, +effect toward its

theme. But consider the following example:

(6) Oh no! They passed the bridge.
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In this case, the meaning of pass is the second sense. This type of passing event does not

(in itself) positively or negatively affect the thing passed. This use of pass does not warrant

the inference that the writer is negative toward the bridge.

A purely word-based approach is blind to these cases. Thus, to handle these ambiguities,

we firstly develop a sense-level +/-effect lexicon. There are several resources with sense

information such as WordNet and FrameNet. WordNet [Miller et al., 1990] is a computational

lexicon of English based on psycholinguistic principles. Nouns, verbs, adjectives, and adverbs

are organized by semantic relations between senses (synsets). There are several types of

semantic relations such as hyponym, hypernym, troponym, and so on. Also, each sense has

gloss information which consists of a definition and optional examples. FrameNet [Baker

et al., 1998] is a lexical database of English based on a theory of meaning called Frame

Semantics. In general, WordNet can cover more senses since it is a large database that

groups words together based on their meanings. Moreover, senses in WordNet are interlinked

by semantic relations which may be useful information to acquire +/-effect events. Thus,

for +/-effect lexicon acquisition, we adopt WordNet which is a widely-used lexical resource.

We first explore how +/-effect events are organized in WordNet via semantic relations and

expand the seed set based on those semantic relations using a bootstrapping method.

One of our goals is to investigate whether the +/-effect property tends to be shared

among semantically-related senses, and another is to use a method that applies to all word

senses, not just to the senses of words in a given word-level lexicon. Thus, we build a

graph-based model in which each node is a WordNet synset, and edges represent semantic

WordNet relations between synsets. In addition, we hypothesize that glosses also contain

useful information. Thus, we develop a supervised gloss classifier and define a hybrid model

which gives the best overall performance. Moreover, we provide evidence that the graph-

based model is an effective way to guide manual annotation to find new +/-effect senses.

Based on the constructed +/-effect lexicon, we can extract +/-effect events from a given

text. If the constructed lexicon is a word-level lexicon, events can be determined directly;

however, the constructed lexicon is a sense-level lexicon. Thus, to extract +/-effect events

with a sense-level lexicon, we have to carry out Word Sense Disambiguation (WSD) to find

specific senses.
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In this dissertation, we develop a WSD system which is customized for +/-effect events.

We address the following WSD task: given +/-effect labels of senses, determine whether an

instance of a word in the corpus is being used with a +effect, -effect, or Null sense. Consider

a word W, where senses {S1, S3, S7} are -effect; {S2} is +effect; and {S4, S5, S6} are Null.

For our purposes, we do not need to perform fine-grained WSD to pinpoint the exact sense;

to recognize that an instance of W is -effect, for example, the system only needs to recognize

that W is being used with one of senses {S1, S3, S7}. Thus, we can perform coarse-grained

WSD, which is often more tractable than fine-grained WSD.

Though supervised WSD is generally the most accurate method, we do not pursue a

supervised approach, because the amount of available sense-tagged data is limited. Instead,

we conduct a knowledge-based WSD method which exploits WordNet relations and glosses.

We use sense-tagged data (i.e., SensEval) only as gold-standard data for evaluation.

Our WSD method is based on selectional preferences, which are preferences of verbs to

co-occur with certain types of arguments [Resnik, 1996, Rooth et al., 1999, Van de Cruys,

2014]. We hypothesize that preferences would be fruitful for our task, because +/-effect is a

semantic property that involves affected entities. Consider the following WordNet informa-

tion for climb:

climb:

S1: (v) climb, climb up, mount, go up (go upward with gradual or continuous progress)

“Did you ever climb up the hill behind your house?”

⇒ Null

S2: (v) wax, mount, climb, rise (go up or advance) “Sales were climbing after prices were

lowered”

⇒ +Effect toward the theme

S3: (v) climb (slope upward) “The path climbed all the way to the top of the hill”

⇒ Null

S4: (v) rise, go up, climb (increase in value or to a higher point) “prices climbed steeply”;

“the value of our house rose sharply last year”

⇒ +Effect toward the theme
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Senses S1 & S3 are both Null. We expect them to co-occur with hill and similar words

such as ridge and mountain. And, we expect such words to be more likely to co-occur with

S1 & S3 than with S2 & S4. Senses S2 & S4 are both +effect, since the affected entities are

increased. We expect them to co-occur with sales, prices, and words similar to them. And,

we expect such words to be more likely to co-occur with S2 & S4 than with S1 & S3. This

example illustrates the motivation for using selectional preferences for +/-effect WSD.

We model sense-level selectional preferences using Topic Models, specifically Latent

Dirichlet Allocation (LDA) [Blei et al., 2003]. We utilize LDA for modeling relations be-

tween sense groups and their arguments, and then carry out coarse-grained +/-effect WSD

by comparing the topic distributions of a word instance and candidate sense groups and

choosing the sense group which has the highest similarity value.

To support inference, not only +/-effect event information but also the information about

which entity is affected is important since the sentiment toward an entity can be different. As

we mentioned, in the example (3) and (5), even though both are -effect events and the writer

has a positive sentiment toward these events, the sentiment toward the agent is different

according to what the affected entity of the given event is. In the example (3), because the

affected entity of the given event, curb, is a theme, the writer’s sentiment toward the agent

is positive by the inference. On the other hand, in the example (5), the writer has negative

sentiment toward the agent because the given event, lost, is -effect event on the agent. Such

as these examples, it is important to know which entity is affected by a given event in opinion

inferences.

In this dissertation, for opinion inferences, we also address the affected entity identifica-

tion. The +/-effect event detection and the affected entity identification might be regarded

as independent tasks, so they can be placed in a pipeline system such as firstly detecting

+/-effect events and then identifying their affected entities. [Deng et al., 2014] includes such

approach. They simply check the presence of +/-effect words in a word-level lexicon (not

a sense-level lexicon) for the +/-effect event detection, and they adopt the semantic role

labeler and generate simple rules to identify affected entities.
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However, we hypothesize that there are dependencies between +/-effect events and their

affected entities. As [Choi and Wiebe, 2014, Choi et al., 2014] mentioned, since words can

have a mixture of +effect, -effect and Null, it is important to grasp the meaning of the given

word. So, contexts, especially affected entities, are important information to detect +/-effect

events. For example, in the sentence (5), because the affected entity is John’s team, we can

know the meaning of lost is to fail to win which is a -effect event. On the other hand, to

identify the affected entity, +/-effect event information is also important. For instance, in

the sentence (3), the affected entity is health care costs, which is the theme of the event,

curb. However, in the sentence (5), since the event is lost, the affected entity is John’s team,

which is the agent of the event, not the first game (which is the theme of the event). Thus,

the +/-effect events and the affected entity can help each other.

Therefore, we propose a joint model to extract both +/-effect events and their affected

entities. There are several works to successfully adopt a joint model in NLP tasks such as

joint text and aspects ratings for sentiment summarization [Titov and McDonald, 2008],

joint parsing and named entity recognition [Finkel and Manning, 2009], joint word sense

disambiguation and semantic role labeling [Che and Liu, 2010], and joint event and entity

extraction [Li et al., 2013, Li and Ji, 2014]. [Deng and Wiebe, 2015] also presents the joint

prediction model using probabilistic soft logic models to recognize both explicit and implicit

sentiments toward entities and events in the text. For implicit sentiments, they extract

+/-effect events and their agents and themes. However, as we mentioned, depending on

+/-effect events and contexts, an affected entity can be different (e.g., while an affected

entity is a theme in the sentence (3), an agent is an affected entity in the sentence (5)).

Thus, the important information is which entity is affected by the given event. We focus on

the affected entity, not an agent and a theme. In addition, we suggest lexical or syntactic

relations between +/-effect events and their affected entities, which they don’t consider.

We adopt the structured perceptron suggested by [Collins, 2002] for a joint model. Struc-

tured perceptron is a machine learning algorithm for structured prediction problem. Since

our input (i.e., a sentence) has structures and our output (i.e., +/-effect events and their

affected entities) also has structures such as sequences and trees, we hypothesize that the

approach for the structured prediction is appropriate for our task.
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1.2 CONTRIBUTIONS OF THIS WORK

The research in this dissertation contributes to the opinion inference system which is to

extract implicit opinions. The main contribution is the study of +/-effect events, which is

critical for detecting implicit sentiment and which are also important for other tasks such as

narrative understanding.

Ours is the first NLP research into developing a lexicon for events that have positive

or negative effects on entities (i.e., +/-effect). We first present that +/-effect events have

substantial sense ambiguity; that is, some words have mixtures of +effect, -effect, and Null.

Due to significant sense ambiguity, we need a sense-level approach to acquire +/-effect lexicon

knowledge, leading us to employ lexical resources with fine-grained sense rather than word

representations. In this research, we adopt WordNet which is widely-used lexical resource

since WordNet can cover more words and senses than other resources and it also contains all

possible senses of given words. Moreover, WordNet provides a synonym set, called synsets,

and synsets are interlinked by semantic relations which are useful information to acquire

+/-effect events. We first present the feasibility of using WordNet for +/-effect lexicon

acquisition with a bootstrapping method. We explore how +/-effect events are organized in

WordNet via semantic relations and expand the seed set based on those semantic relations.

We present that WordNet is promising for expanding sense-level +/-effect lexicons.

Then, we investigate methods for creating a sense-level +/-effect lexicon, called Effect-

WordNet. We utilize WordNet resource with two assumptions: (1) each sense (or synset)

has only one +/-effect polarity and (2) +/-effect polarity tends to propagate by semantic

relations such as hierarchical information. One of our goals is to develop the method that

applied to many verb synsets. Also, another goal is to build a lexicon with a small number

of seed data. In addition, we want to investigate whether the +/-effect property tends to

be shared among semantically-related synsets. We adopt a graph-based learning method

for WordNet relations and show that WordNet relations can be used for the polarity prop-

agation with a small number of seed data. Moreover, we build a standard classifier with

bag-of-word features and sentiment features for gloss information. In addition, to maximize

the effectiveness of different types of information, we combine a graph-based method using
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WordNet relations and a classifier using gloss information. With the hybrid method, all

senses in WordNet can be labeled with a small number of seed data. We provide evidence

for our assumption that different models are needed for different information to maximize ef-

fectiveness. Further, we provide evidence that the model is an effective way to guide manual

annotation to find +/-effect senses that are not in the seed set.

Moreover, we construct the enhanced sense-level +/-effect lexicon. The information

about which entities are affected is important since the sentiment can be different in opinion

inferences. Thus, we refine EffectWordNet with consideration of affected entities, called

Enhanced EffectWordNet. We adopt a graph-based method such as the previous

work. We represent that considering the information about which entities are affected is

helpful to construct more refined sense-level +/-effect lexicon.

To extract +/-effect events with a constructed sense-level lexicon, we have to carry out

Word Sense Disambiguation (WSD). Thus, we investigate +/-effect WSD approach, which

identifies the +/-effect of a word sense based on its surrounding context. We develop a

knowledge-based coarse-grained WSD which has large coverage without any sense-tagged

training data. Our WSD method is based on selectional preferences, which are preferences

of verbs to co-occur with certain types of arguments. Selectional preferences are modeled

using a topic model. We show that selectional preferences are very helpful in our work

since +/-effect is a semantic property that by its nature involves affected entities. Moreover,

we present that a coarse-grained WSD approach is more appropriate for our work than a

fine-grained WSD approach.

In addition, we conduct a pilot study to extract +/-effect events and their affected en-

tities. We hypothesize that there are inter-dependencies between +/-effect events and their

affected entities. Thus, we suggest a joint model to extract both +/-effect events and their af-

fected entities. Since our input (i.e., a sentence) has structures and our output (i.e., +/-effect

events and their affected entities) also has structures such as sequences and trees, we hypoth-

esize that the approach for the structured prediction is appropriate for our task. Therefore,

we adopt the structured perceptron and present several features for the +/-effect event de-

tection and the affected entity identification. We show that our joint model is promising to

extract +/-effect events and their affected entities jointly.
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1.3 OUTLINE

In the remainder of this dissertation, Chapter 2 provides the background knowledge on NLP

resources such WordNet and FrameNet which are utilized in our research and some ma-

chine learning methods which are adopted in our research. Then, we present the general

information about sentiment analysis in Chapter 3. Chapter 4 introduces opinion inferences

briefly and explains +/-effect events which are the main part in our research. In Chap-

ter 5, we present the feasibility of using WordNet for +/-effect events. Chapter 6 presents

a method to acquire +/-effect lexicon (called EffectWordNet) and Chapter 7 describes

Enhanced EffectWordNet with consideration of affected entities. Then, Chapter 8

presents the word sense disambiguation method for sense-level +effect events. As we de-

scribed, the affected entity information is also important for +/-effect events. In Chapter 9,

we describes the joint extraction method to identify both +/-effect events and their affected

entity. Finally, we summarize our research and discuss future work in Chapter 10.
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2.0 BACKGROUND

In this chapter, we introduce two lexical resources used in this dissertation: WordNet and

FrameNet. Both are widely used in research related Natural Language Processing (NLP).

In Section 2.1, we first explain the concept of word senses and introduce WordNet resource.

In Section 2.2, we describe the concept of frames and FrameNet. Finally, in Section 2.3, we

explain machine learning methods utilized in this dissertation.

2.1 WORD SENSE AND WORDNET

In linguistics, a word sense is one of meanings of a word. Some words have only one meaning,

that is, one sense. We say these are monosemous. However, words can have more than one

meaning. Sometimes, these meanings of a word may be related to each other; we say these

are polysemous. For instance, a noun mouth has two meanings such as “an organ of the

body” and “the entrance of a cave” but they are related. On the other hand, a word may

have entirely different meanings; called homonymous. For instance, a noun skate has two

different meanings such as “sports equipment” and “the kind of fish”.

The following is an example of a word with multiple senses:

bank:

S: (n) bank (sloping land (especially the slope beside a body of water)) “they pulled the

canoe up on the bank”; “he sat on the bank of the river and watched the currents”
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S: (n) depository financial institution, bank, banking concern, banking company (a fi-

nancial institution that accepts deposits and channels the money into lending activities) “he

cashed a check at the bank”; “that bank holds the mortgage on my home”

S: (n) bank, bank building (a building in which the business of banking transacted) “the

bank is on the corner of Nassau and Witherspoon”

In this example, the first sense and the second sense are homonymous since they are

completely different meaning. On the other hand, the second sense and the third sense are

polysemous because they are related to each other. Since the meaning of a word is important

in NLP, we have to handle polysemous and homonymous cases such as the given example.

For that, we first need a sense inventory such as a dictionary.

WordNet [Miller et al., 1990] is one sense inventory which is widely used in NLP. It

is a computational lexicon of English based on psycholinguistic principles for English. It

considers nouns, verbs, adjectives, and adverbs (and ignores others such as prepositions).

Words are grouped into sets of cognitive synonyms, called synsets. Each synset expresses

a distinct concept, that is, words in the same synset are interchangeable. Synsets provide

not only words but also a short definition and one or more usage examples, called gloss

information. Moreover, synsets are interlinked by means of conceptual-semantic and lexical

relations. There are several relations for each lexical category (some are shared by lexical

categories, but some are not):

Nouns:

- Hypernym: The generic term used to designate a whole class of specific instances. Y

is a hypernym of X if X is a (kind of) Y.

- Hyponym: The specific term used to designate a member of a class. X is a hyponym

of Y if X is a (kind of) Y.

- Meronym: The name of a constituent part of, the substance of, or a member of some-

thing. X is a meronym of Y if X is a part of Y.

- Holonym: The name of the whole of which the meronym names a part. Y is a holonym

of X if X is a part of Y.
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Verbs:

- Hypernym

- Troponym: A verb expressing a specific manner elaboration of another verb. X is a

troponym of Y if to X is to Y in some manner.

- Entailment: A verb X entails Y if X cannot be done unless Y is, or has been, done.

- Groups: Verb senses that similar in meaning and have been manually grouped together.

Adjectives and Adverbs:

- Antonym: A pair of words between which there is an associative bond resulting from

their frequent co-occurrence.

- Pertainym: Adjectives that are pertainyms are usually defined by such phrases as ”of

or pertaining to” and do not have antonyms. A pertainym can point to a noun or another

pertainym.

Figure 1 shows the example like in WordNet. It presents several senses for each lexical

category: two senses as a noun, five senses as a verb, and four senses as an adjective. Each

sense of a word is in a different synset S. As we mentioned, each synset contains words, a

short definition, and usage examples. For instance, in the first synset of like as a verb, it

includes interchangeable words (i.e., wish, care, like), a short definition in parentheses (i.e.,

prefer or wish to do something), and one or more usage examples with quotation marks (i.e.,

“Do you care to try this dish?”; “Would you like to come along to the movies?”). Moreover,

it provides several relations such as troponym in a verb, hypernym in a verb, and antonym

in an adjective.

WordNet has been used for several NLP tasks such as word-sense disambiguation, ma-

chine translation, information retrieval, question answering, and information extraction be-

cause of its availability and coverage. WordNet contains more than 150,000 words organized

in more than 100,000 synsets. In this research, we utilize WordNet 3.01.

1Available at http://wordnet.princeton.edu/
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Figure 1: The example like in WordNet.
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2.2 FRAMENET

FrameNet [Baker et al., 1998] is a lexical database of English containing more than 10,000

word senses with annotated examples. FrameNet is based on a theory of meaning called

Frame Semantics which is developed by Charles J. Fillmore [Fillmore, 1977]. The basic idea

is that the meanings of words can be understood based on a semantic frame such as a

description of a type of event, relation, entity, and the participants in it. In FrameNet, a

lexical unit is a pairing of a word with a meaning, i.e., it corresponds to a synset in WordNet.

For instance, the concept of creating involves a person or an entity to create something

(i.e., Creator) and an entity that is created (i.e., Created entity). Also, additional elements

such as components to create an entity, a place where a creator creates an entity, and a

purpose for which a creator creates an entity can be involved depending on a context. In

FrameNet, The concept of creating is represented as a semantic frame called Creating and

related elements such as Creator and Created entity are called frame elements. For each

semantic frame, they provide a definition of each frame, possible frame elements, and the

list of lexical units. Figure 2 shows the semantic frame Creating. The definition of Creating

frame is that a Cause leads to the formation of a Created entity. It has two core frame

elements such as Created entity and Creator, and several additional frame elements such as

Beneficiary, Circumstances, and so on. In addition, this frame contains 10 lexical units such

as assemble, create, and so on.

The lexical entry of lexical unit is derived from annotations. Each lexical entry includes

an associated frame and its frame elements with annotated example sentences. Figure 3

shows the example create of the Creating frame. It consists of a short definition of the

lexical unit (i.e., bring into existence) and possible frame elements such as Created entity and

Creator. Then, there are several annotated example sentences such as She had CREATED

it from the chaos. In each sentence, frame elements (represented by a color in the figure) are

annotated; in the first sentence, She is the Creator, it is the Created entity, and from the

chaos is the Components.

The FrameNet database contains about 1,200 semantic frames, about 13,000 lexical units,

and more than 190,000 annotated example sentences.
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Figure 2: The example semantic frame Creating in FrameNet.
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Figure 3: The example lexical entry create of the Creating frame in FrameNet.
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2.3 MACHINE LEARNING METHODS

In this research, we adopt three kinds of machine learning methods with different purposes.

In Section 2.3.1, we first explain graph-based semi-supervised learning, which is used for

sense-level lexicon acquisition. We describe topic models, which is utilized for coarse-grained

word sense disambiguation, in Section 2.3.2. Then, structured prediction that is adopted for

the joint extraction is briefly explained in Section 2.3.3.

2.3.1 Graph-based Semi-Supervised Learning

Semi-supervised learning falls between supervised learning, which requires labeled training

data, and unsupervised learning, which do not need any labeled training data. Typically, a

small number of training data is labeled while a relatively large number of training data is

unlabeled. Since the training data contains unlabeled data, semi-supervised learning algo-

rithms make one or more of the following assumptions [Subramanya and Talukdar, 2014]:

• Smoothness Assumption: If two points are close to each other, their outputs (i.e., labels)

are also close.

• Cluster Assumption: If two points are in the same cluster, they are more likely to share

a label.

• Manifold Assumption: The data lie approximately on a manifold of much lower dimen-

sion than the input space.

Among various semi-supervised learning algorithms, graph-based learning algorithms

have received much attention recently due to their good performance and ease of implemen-

tation [Liu et al., 2012]. In graph-based semi-supervised learning, each labeled and unlabeled

data is represented by a node in a graph and edges between these nodes can be built based on

the similarity between the corresponding pairs. After constructing a graph, with seed data

which is a small number of labeled nodes, we can predict the labels of the unlabeled nodes via
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graph partition or information propagation. There are several graph-based semi-supervised

learning algorithms such as graph cuts [Blum and Chawla, 2001, Blum et al., 2004], graph-

based random walks [Azran, 2007], manifold regularization [Belkin et al., 2006], and graph

transduction [Zhou et al., 2004, Zhu et al., 2003].

There are several reasons why graph-based semi-supervised learning algorithms are very

attractive in our research. Firstly, synsets in WordNet which is the important resource in

our research can be represented by a graph via semantic and lexical relations. As we men-

tioned, it only needs a small number of labeled data as seed data, so it doesn’t require

lots of human power for annotation works. In addition, as [Subramanya and Talukdar,

2014] mentioned, graph-based semi-supervised learning algorithms are effective in practice.

[Subramanya and Bilmes, 2008] present that graph-based semi-supervised learning

algorithms outperform other semi-supervised learning algorithms and supervised learning

algorithms.

2.3.2 Topic Model

The topic model is based on the key idea that documents are mixtures of latent topics, where

a topic is a probability distribution over words [Steyvers and Griffiths, 2007]. Each document

may concern multiple topics in different proportions. For instance, there is a document that

is 80% about sports and 20% about foods. Then, the given document would probably be

four times more sport-related words than food-related words. A topic model captures this

intuition.

The early topic model, Probabilistic Latent Semantic Analysis (pLSA), is presented by

[Hofmann, 1999]. Each word is generated from a topic, and different words in the docu-

ment may be generated from different topics; and each document is represented as a list

of mixing proportion of different topics. Figure 4 presents the pLSA model. PLSA models

the probability of each co-occurrence as a mixture of conditionally independent multinomial

distributions such as:
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P (d, w) = P (d)
∑
z

P (w|z)P (z|d) (2.1)

where d is a document, z is a topic, and w is a word. That is, for each document d, a

topic z is chosen from a multinomial conditioned on d (i.e., from P (z|d)) and a word w is

chosen from a multinomial conditioned on z (i.e., from P (w|z)).

Even though this model allows multiple topics in each document, pLSA doesn’t make any

assumptions about how the mixture weights θ are generated. Moreover, number of latent

topics to learn grows linearly with the growth of the number of documents [Bao, 2012].

Thus, [Blei et al., 2003] extend pLSA model by adding Dirichlet priors to parameters for

more reasonable mixtures of topics in a document. This model is called as Latent Dirichlet

Allocation (LDA). Figure 5 shows the graphical LDA model where D is the number of

documents, Nd is the number of words in document d, K is the number of topics, α is the

parameter of the Dirichlet prior on the per-document topic distributions, β is the parameter

of the Dirichlet prior on the per-topic word distribution, θd is the topic distribution for

document d, φt is the word distribution for topic t, zd,n is the topic for n-th word in document

d, and wd,n is the n-th word in document d (i.e., the observed word).

The generative process is as follows:

1. Choose θd ∼ Dir(α), where d ∈ D and Dir(α) is the Dirichlet distribution for parameter

α.

2. Choose φt ∼ Dir(β), where t ∈ K.

3. For each of the word positions (d, n) where d ∈ D and n ∈ Nd

a. Draw a topic zd,n ∼ θd

b. Draw a word wd,n ∼ φt
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Figure 4: The graphical Probabilistic Latent Semantic Analysis (pLSA) Model.

Figure 5: The graphical Latent Dirichlet Allocation (LDA) Model.
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Thus, topic modeling can be used for discovery of hidden semantic structures (e.g., hid-

den topics) in a text. In our research, we assume that the selectional preference information

is useful for our +/-effect word sense disambiguation task. The selectional preference in-

formation is hidden information such as hidden topics. Thus, we adopt a topic model to

capture selectional preference.

2.3.3 Structured Prediction

Structured Prediction is machine learning techniques that involve predicting structured out-

puts. There are many tasks that output is represented by some structures such as sequences,

trees, or graphs, especially, in NLP. For example, the Part-Of-Speech (POS) tagging task

is to produce a sequence of POS tags for a given input sequence. The parsing task is an-

other example since it builds a tree to represent some grammar for a given input sequence.

In addition, there are many other NLP tasks related structured prediction such as entity

detection, machine translation, and question answering.

While these tasks can be solved by independent classification of each word, this approach

can not consider neighbors (i.e., contexts). The context is an important clue to resolve

ambiguity. For instance, as you see in Figure 1, like can be a noun, a verb, and an adjective.

Also, for each lexical category, there are several meanings. To disambiguate these words, the

context information is important. Thus, structured prediction is required.

The basic formula of structured prediction is as follows:

ŷ = arg max
y∈Y (x)

f(x, y) (2.2)

where x = (x1, x2, ..., xm) ∈ X is a input sequence of length m, y = (y1, y2, ..., ym) ∈ Y is

an output sequence of the same length (i.e., yi is a label for word xi), Y (x) is the set of all

possible labeled sequences for a given input x, and f is the scoring function. The prediction
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ŷ indicates the possible labeled sequence in Y that maximizes the compatibility. With linear

models, a score function f can be defined by weights w such as:

ŷ = arg max
y∈Y (x)

w · Φ(x, y) (2.3)

where Φ denotes a feature vector in Euclidean space.

In our research, we adopt a structured prediction to extract both +/-effect events and

their affected entity since inputs and outputs of our task are inter-related labels.
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3.0 GENERAL INFORMATION ABOUT

SENTIMENT ANALYSIS

With a growing interest in sentiment analysis, many researchers put some efforts for this

task. Most previous works are document-level or sentence-level sentiment analysis. That is,

the task is to identify whether a document/sentence expresses opinions or not and whether

the opinions are positive, negative, or neutral if a document/sentence is opinionated.

The early work by [Wiebe et al., 1999] develops the probabilistic classifier to automat-

ically discriminate the subjective and objective category. The subjective sentence refers to

aspects of language used to express opinions. They utilize the Naive Bayes classifier with

several features: the presence of a pronoun, an adjective, a cardinal number, a modal other

than will, and an adverb other than not, whether the sentence begins a new paragraph,

and the co-occurrence of words and punctuation marks. [Hatzivassiloglou and Wiebe, 2000]

study the benefit of dynamic adjectives (oriented adjectives) and gradable adjectives for the

sentence-level subjectivity classification. [Yu and Hatzivassiloglou, 2003] study separating

opinions from facts at the document-level and the sentence-level on TREC 8, 9, and 11

collections. They also apply the Naive Bayes and multiple Naive Bayes classifier; and the

presence of semantically oriented words, the average semantic orientation score of the words,

and the N-grams are used for features. [Riloff and Wiebe, 2003] suggest bootstrapping meth-

ods for the subjectivity classifier. From the labeled data, they generate patterns to represent

subjective expressions, and these patterns are utilized to identify more subjective sentences.

Then, based on these patterns, they classify subjective sentences. In [Wiebe and Riloff,

2005], they develop the learning method for the rule-based subjectivity classifier which looks

for subjective clues. [Stepinski and Mittal, 2007] also develop the new sentence classification

using a Passive-Aggressive algorithm trained on unigram, bigram, and trigram features.
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Although many previous sentiment analysis works are conducted in a document-level or a

sentence-level, a single sentence (or a document) may contain multiple opinions.

[Wilson et al., 2004, Wilson et al., 2005] suggest phrase-level sentiment analysis. They

classify clauses of each sentence by the strength of opinions being expressed in individual

clauses.

Recently, researchers have become increasingly interested in social media sentiment anal-

ysis. For example, one of the earlier studies is [Go et al., 2009]. They build classifiers with

unigram, bigrams, and POS information features. For training data, they consider tweets

ending in good emoticons as positive examples and tweets ending in bad emoticons as neg-

ative examples. They show the unigram is the most useful feature. [Barbosa and Feng,

2010] consider not only meta-features (e.g., sentiment lexicon, and POS) but also tweet

syntax features (such as retweet, hashtag, and emoticon) to detect sentiments in tweets.

[Paltoglou and Thelwall, 2012] propose an unsupervised lexicon-based classifier to estimate

the intensity of negative and positive emotion in informal text. Linguistic Inquiry and Word

Count (LIWC)1 is used as the emotional dictionary, and the emotional score is modified by

several functions such as negation detection, capitalization detection, emoticon detection,

and so on. Sentiment analysis on social media is helpful to monitor political sentiment

and to predict political elections. For example, [O’Connor et al., 2010] attempt to con-

nect measures of public opinion derived from polls with detected sentiment from Twitter.

They provide evidence that social media can be substituted for traditional polling with more

advanced NLP techniques.

One of important information for sentiment analysis and opinion extraction is sentiment

lexicons. Especially, lexicons are important in social media settings where texts are short and

informal. There are several studies to construct word-level sentiment lexicon. [Kim and Hovy,

2004] and [Peng and Park, 2011] expand manually selected seed words using WordNet’s syn-

onym and antonym relations for sentiment analysis.

[Strapparava and Valitutti, 2004] also utilize WordNet relations, such as antonymy, sim-

ilarity, derived-from, pertains-to, attribute, and also-see, to expand AFFECT, which is a

lexical database containing terms referring to emotional states.

1http://www.liwc.net/
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Many studies show that word-level sentiment lexicon is efficient. However, the recent

work [Wiebe and Mihalcea, 2006] consider relations between word sense disambiguation and

subjectivity. Thus, there is a limit with word-level sentiment lexicon. To handle sense-level

subjectivity classification, [Esuli and Sebastiani, 2006] construct SentiWordNet. They

first expand manually selected seed synsets in WordNet using WordNet lexical relations

such as also-see and direct antonymy and train a ternary classifier. This ternary classifier is

applied to all WordNet synsets to measure positive, negative, and objective score. [Gyamfi

et al., 2009] label the subjectivity of word senses using the hierarchical structure and domain

information in WordNet. [Akkaya et al., 2009, Akkaya et al., 2011, Akkaya et al., 2014]

present the subjectivity word sense disambiguation task which is to automatically determine

which word instances are being used with subjective senses and which are being used with

objective senses.

Such sentiment lexicons are helpful for detecting explicitly stated opinions, but are not

sufficient for recognizing implicit opinions. As we mentioned in Chapter 1, inferred opinions

often have opposite polarities from the explicit sentiment expressions in the sentence; explicit

sentiments must be combined with +/-effect event information to detect implicit sentiments.

Thus, in this research, we focus on +/-effect event information.
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4.0 OPINION INFERENCE AND +/-EFFECT EVENT

In this chapter, we explain opinion inference briefly and introduce the +/-effect corpus in

Section 4.1. Then, in Section 4.2, we describe +/-effect events in detail because it is the

main part in our research.

4.1 OPINION INFERENCE

As we mentioned in Chapter 1, [Deng et al., 2013, Deng and Wiebe, 2014] introduce opinion

inferences. Remind the following example:

(3) The bill would curb skyrocketing health care costs.

With an explicit sentiment analysis system, we can recognize only one explicit sentiment

expression, skyrocketing. Thus, we can know that the writer expresses an explicit negative

sentiment (by skyrocketing) toward the entity, health care costs while we cannot know the

writer’s sentiment toward the bill with an explicit sentiment analysis system. However, the

sentiment toward the bill can be inferred. The event, curb, has a negative effect (i.e.,

-effect) on skyrocketing health care costs, since they are reduced. We can reason that the

writer is positive toward the event because it has a negative effect on costs, toward which

the writer is negative. From there, we can reason that the writer is positive toward the bill,

since it conducts the positive event.
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For that, [Deng et al., 2013, Deng and Wiebe, 2014] have built a rule-based opinion

implicature system that includes default inference rules. There are ten rule schemes imple-

mented in the system. Among them, two opinion inference rules are utilized in the given

example, which are given below. In rules, sent(S, α) = β means that S’s sentiment toward

α is β where α is one of a +/-effect event, an object of an event, and a agent of an event

and β is either positive or negative. P → Q means to infer Q from P.

RS2: sent(S, object) → sent(S, +/-effect event)

2.1 sent(S, object) = positive → sent(S, +effect) = positive

2.2 sent(S, object) = negative → sent(S, +effect) = negative

2.3 sent(S, object) = positive → sent(S, -effect) = negative

2.4 sent(S, object) = negative → sent(S, -effect) = positive

RS3: sent(S, +/-effect event) → sent(S, agent)

3.1 sent(S, +effect) = positive → sent(S,agent) = positive

3.2 sent(S, +effect) = negative → sent(S,agent) = negative

3.3 sent(S, -effect) = positive → sent(S,agent) = positive

3.4 sent(S, -effect) = negative → sent(S,agent) = negative

In summary, we can know sent(writer, costs) = negative with an explicit sentiment

analysis system. Then, we can know that there is -effect event, lower. Thus, we can infer

sent(writer, -effect) = positive via Rule 2.4, and we can infer sent(writer, the bill) = positive

via Rule 3.3.

However, to achieve its results, their system requires an explicit sentiment and +/-effect

information. For the system to be fully automatic, it needs to be able to detect an explicit

sentiment and +/-effect events automatically. For an explicit sentiment analysis system,

there are several systems such as OpinionFinder [Wilson et al., 2005]1. However, there is

no resource related +/-effect events. Therefore, this research focuses on +/-effect events to

support opinion inference.

1OpinionFinder, http://mpqa.cs.pitt.edu/opinionfinder/
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4.1.1 +/-Effect Corpus

[Deng et al., 2013] introduce an annotation scheme for +/-effect events and for the sentiment

of the writer toward their agents and objects. Each event is representable as a triple of text

spans, 〈 agent, +/-effect event, object 〉. The agent should be a noun phrase or implicit

when the given text doesn’t have the agent information explicitly. The object also should a

noun phrase.

Another component is the influencer, a word whose effect is to either retain or reverse

the polarity of +/-effect event. Consider the below example:

(8) The reform prevented companies from hurting patients.

In this example, we know there is -effect event, hurt. However, prevented reverses the

polarity. That is, in hurting patients, it has a negative effect on patients, but in prevented

companies from hurting patients, it has positive effect on patients. We call such event (i.e.,

prevented) a reverser.

Now, consider:

(9) John helped Mary to save Bill.

In this sentence, helped is an influencer which retains the polarity. That is, in save Bill,

it has a positive effect on Bill, and in helped Mary to save Bill, it also has a positive effect

on Bill. Such event (i.e., helped) is a retainer.

Each influencer is also representable as a triple of text spans, 〈 agent, influencer (retainer

or reverser), object 〉. The agent of an influencer should be a noun phrase or implicit such

as the agent of +/-effect events. The object of an influencer should be another influencer or

a +/-effect event.
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Therefore, there are two types of annotations; triple information related +/-effect events

and triple information related influencers. For instance, in the example (9), there is one

triple for +/-effect and one triple for influencer such as:

John helped Mary to save Bill.

⇒ 〈 Mary, save (+effect), Bill 〉

⇒ 〈 John, helped (retainer), 〈 Mary, save (+effect), Bill 〉 〉

Based on this annotation scheme, +/-effect corpus2 is created. This corpus is based on

the arguing corpus [Conrad et al., 2012]3, which consists of 134 documents from blogs and

editorials about a controversial topic, the Affordable Care Act.

To validate the reliability of the annotation scheme, Lingjia Deng, who is involved in

developing this annotation scheme, and I conduct the agreement study. We firstly annotate

6 documents and discuss about disagreement parts. Then, for the agreement study, we

independently annotate 15 randomly selected documents.

For the agreement of text spans, we adopt two measures. The first one is that if two

spans a and b overlap, it is counted as 1, otherwise 0 such as:

match1(a, b) = 1 if |a ∩ b| > 0 (4.1)

where |a ∩ b| provides the number of tokens that two spans have in common.

Another measure is to measure the percentage of overlapping tokens as follows:

match2(a, b) =
|a ∩ b|
|b|

(4.2)

where |b| is the number of tokens in the given span b.

2+/-Effect corpus (also call goodFor/badFor corpus), http://mpqa.cs.pitt.edu/corpora/gfbf/
3Arguing Corpus, http://mpqa.cs.pitt.edu/corpora/arguing/
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+/-Effect & Influencer Agent Object

match1 0.70 0.92 1.00

match2 0.69 0.87 0.97

Table 1: The agreement score about a span of +effect events & influencers, agents, and

objects.

Table 1 shows the agreement score about a span of +effect events and influencers, agents,

and objects. It shows high agreement scores with two measures.

To measure agreement for polarities (i.e., +effect vs. -effect, and retainer vs. reverser),

we use κ [Artstein and Poesio, 2008]. κ is a statistic to measure inter-rater agreement for

qualitative labels. The equation for κ is:

κ =
p0 − pe
1− pe

= 1− 1− p0
1− pe

(4.3)

where p0 is the relative observed agreement among annotators and pe is the hypothetical

probability of chance agreement. The change agreement pe can be calculated with the

observed data by calculating the probabilities of each annotator randomly saying each label.

If annotators are in complete agreement, κ score is 1; if there is no agreement between

annotators, it is equal or less than 0. We get 0.97 κ agreement score about polarities of

+/-effect events and influencers.
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4.2 +/-EFFECT EVENT

+Effect events mean events that have positive or negative effect on entities. There are many

varieties of +effect events (e.g., save and create) and -effect events (e.g., lower and hurt).

[Anand and Reschke, 2010] present six verb classes as evaluability functor classes: cre-

ation, destruction, gain, loss, benefit, and injury. Creation/destruction events result in

states involving existence that means a participant has/lacks existence. Gain/loss events

result in states involving possession that means one participant has/lacks possession of an-

other. Benefit/Injury events result in states involving affectedness that means a participant

has a positive/negative property.

Among six verb classes, the creation, gain, and benefit classes are +effect events based on

the definition. As we said, in creation events, a participant has existence. It indicates these

events have a positive effect on the participant. For example, in the sentence baking a cake,

baking has a positive effect on the cake because it is created. The gain and benefit classes are

also +effect events. In the sentence increasing the tax rate, increasing has a positive effect

on the the tax rate; and in the sentence comforting the child, comforting has a positive effect

on the child.

The antonymous classes of each (i.e., destruction, loss, and injury) are -effect events. In

the sentence destroying the building, destroying has a negative effect on the building since

it is disappeared. In the sentence demand decreasing, decreasing has a negative effect on

demand ; and in the sentence killing Bill, killing has a negative effect on Bill.

4.2.1 +/-Effect Events, Sentiment Terms, vs. Connotation Terms

There are several lexicons related as lexicons of +/effect events. The first one is sentiment

lexicons [Wilson et al., 2005, Esuli and Sebastiani, 2006, Su and Markert, 2009]. As we

mentioned in Chapter 1, the sentiment lexicon consists of words or expressions which are used

to express subjective feelings and sentiments/opinions such as wonderful, elegant, horrible,

and bad.
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Another one is lexicons of connotation terms [Feng et al., 2011, Kang et al., 2014]. Con-

notation lexicon is a new type of lexicon that list words with connotative polarity. For

examples, award and promotion are positive connotation; cancer, war are negative con-

notation. Connotation lexicons differ from sentiment lexicons. Sentiment lexicons express

sentiments while connotation lexicons concern words that evoke or even simply associate

with a specific polarity of sentiment.

Even though these lexicons seem similar with +/-effect events, they are different. Con-

sider the following example:

perpetrate:

S: (v) perpetrate, commit, pull (perform an act, usually with a negative connotation)

“perpetrate a crime”; “pull a bank robbery”

In this example, perpetuate is an objective term according to SentiWordNet

[Esuli and Sebastiani, 2006, Baccianella et al., 2010] 4, that is, it is neutral. Then, as the

definition already mentioned, it has a negative connotation by [Kang et al., 2014]. However,

it has a positive effect on a crime since performing a crime brings it into existence. Like

this, a single event may have different polarities of sentiment, connotation, and +/-effect.

Therefore, we need to acquire a new type of lexicon of +/-effect events to make opinion

inference.

4.2.2 Sense-level +/-Effect Ambiguity

As we mentioned, a word may have one or more meanings. To handle these, we utilize

WordNet explained in Section 2.1. We assume that a synset is exactly one of +effect, -effect,

or Null. Since words often have more than one sense, the polarity of a word may or may

not be consistent, as the following WordNet examples show.

4SentiWordNet, http://sentiwordnet.isti.cnr.it/
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First consider the words encourage and assault. Each of them has 3 senses. All senses of

encourage have positive effects on the entity, and all senses of assault have negative effects on

the entity. The polarity is always same regardless of sense. In such cases, for our purposes,

which particular sense is being used does not need to be determined because any instance

of the word will be +effect or -effect; that is, word-level approaches can work well.

• A word with only +effect senses: encourage

S: (v) promote, advance, boost, further, encourage (contribute to the progress or growth

of) “I am promoting the use of computers in the classroom”

S: (v) encourage (inspire with confidence; give hope or courage to)

S: (v) encourage (spur on) “His financial success encouraged him to look for a wife”

• A word with only -effect senses: assault

S: (v) assail, assault, set on, attack (attack someone physically or emotionally) “The

mugger assaulted the woman”; “Nightmares assailed him regularly”

S: (v) rape, ravish, violate, assault, dishonor, dishonor, outrage (force (someone) to have

sex against their will) “The woman was raped on her way home at night”

S: (v) attack, round, assail, lash out, snipe, assault (attack in speech or writing) “The

editors of the left-leaning paper attacked the new House Speaker”

However, word-level approaches are not applicable for all the words. Consider the words

inspire and neutralize. They have 6 senses respectively. For inspire, while the third sense

and the fourth sense have positive effects on the entity, the sixth sense doesn’t have any

polarity, i.e., it is a Null (we don’t think of inhaling air as positive effects on the air). Also,

while the second sense of neutralize has negative effects on the entity, the sixth sense is Null

(neutralizing a solution just changes its pH). Therefore, if word-level approaches are applied

using these words, some Null instances may be incorrectly classified as +effect or -effect

events.
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• A word with +effect and Null senses: inspire

S: (v) inspire, animate, invigorate, enliven, exalt (heighten or intensify) “These paintings

exalt the imagination”

S: (v) inspire (supply the inspiration for) “The article about the artist inspired the ex-

hibition of his recent work”

S: (v) prompt, inspire, instigate (serve as the inciting cause of) “She prompted me to

call my relatives”

S: (v) cheer, root on, inspire, urge, barrack, urge on, exhort, pep up (spur on or encour-

age especially by cheers and shouts) “The crowd cheered the demonstrating strikers”

S: (v) revolutionize, revolutionise, inspire (fill with revolutionary ideas)

S: (v) inhale, inspire, breathe in (draw in (air)) “Inhale deeply”; “inhale the fresh moun-

tain air”; ”The patient has trouble inspiring”; “The lung cancer patient cannot inspire

air very well”

• A word with -effect and Null senses: neutralize

S: (v) neutralize (make politically neutral and thus inoffensive) “The treaty neutralized

the small republic”

S: (v) neutralize, neutralise, nullify, negate (make ineffective by counterbalancing the

effect of) “Her optimism neutralizes his gloom”; “This action will negate the effect of

my efforts”

S: (v) counteract, countervail, neutralize, counterbalance (oppose and mitigate the effects

of by contrary actions) “This will counteract the foolish actions of my colleagues”

S: (v) neutralize, neutralise, liquidate, waste, knock off, do in (get rid of (someone who

may be a threat) by killing) “The mafia liquidated the informer”; “the double agent was

neutralized”

S: (v) neutralize, neutralise (make incapable of military action) S: (v) neutralize, neu-

tralise (make chemically neutral) “She neutralized the solution”
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The following is another example of a word with senses of different classes:

• A word with +effect and -effect senses: purge

S: (v) purge (oust politically) “Deng Xiao Ping was purged several times throughout his

lifetime”

S: (v) purge (clear of a charge)

S: (v) purify, purge, sanctify (make pure or free from sin or guilt) “he left the monastery

purified”

S: (v) purge (rid of impurities) “purge the water”; “purge your mind”

The word purge has 4 senses. In the first sense, the polarity is -effect since it has a

negative effect on Deng Xizo Ping. However, the other cases have a positive effect on the

entity. A purely word-based approach is blind to these cases.

In fact, words often have mixtures of +effect, -effect, and Null (i.e., neither) senses. We

find that 45.6% verbs in WordNet contain two or more senses (i.e., homonymy). Among

them, 63.8% words have some kind of +/-effect ambiguity. 11.3% words have mixtures of

+effect, -effect, and Null senses; 3.9% words have mixtures of +effect and -effect; 25.9% and

22.7% words have +effect & Null or -effect & Null.

In the +/-effect corpus mentioned in Section 4.1.1, 1,411 +/-effect instances are anno-

tated; 196 different +effect words and 286 different -effect words appear in these instances.

Among them, 10 words appear in both +effect and -effect instances, accounting for 9.07%

of all annotated instances. Since only words (not senses) are annotated in this corpus, such

conflicts arise. One example is fight. In the corpus instance fight for a piece of legislation,

fight has a positive effect on a piece of legislation. This is the fourth sense of fight. However,

in the corpus instance we need to fight this repeal, the meaning of fight here is the second

sense, so fight has a negative effect on this repeal.
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• fight

S: (v) contend, fight, struggle (be engaged in a fight; carry on a fight) “the tribesmen

fought each other”; “Siblings are always fighting”; “Militant groups are contending for

control of the country”

S: (v) fight, oppose, fight back, fight down, defend (fight against or resist strongly) “The

senator said he would oppose the bill”; “Don’t fight it!”

S: (v) fight, struggle (make a strenuous or labored effort) “She struggled for years to

survive without welfare”; “He fought for breath”

S: (v) crusade, fight, press, campaign, push, agitate (exert oneself continuously, vigor-

ously, or obtrusively to gain an end or engage in a crusade for a certain cause or person;

be an advocate for) “The liberal party pushed for reforms”; “She is crusading for women’s

rights”; “The Dean is pushing for his favorite candidate”

Therefore, approaches for determining the +/-effect event of an instance that are sense-

level instead of word-level promise to have higher precision. In this research, we consider

sense-level +/-effect events.

4.2.3 Lexical Category of +/-Effect Events

In examples (3) and (4), +/-effect events are verbs such as curb and passed.

(3) The bill would curb skyrocketing health care costs.

(4) Oh no! The voters passed the bill.

In most case, +/-effect events are verbs. However, sometimes we have to consider phrasal

verb, not only verb word. Consider following two examples:

(10) He sides with U.S. President Barack Obama.

(11) I’m siding against the current candidate.
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In both sentences (10) and (11), a verb is side. However, the polarity of +/-effect of side

is different according to a preposition. In the sentence (10), because side is written with

with, it has a positive effect on the entity, U.S. President Barack Obama. On the other hand,

in the sentence (11), side has a negative effect on the current candidate since it is written

with against. The below show the WordNet information of side as a verb:

• side

S: (v) side (take sides for or against) “Who are you siding with?”; “I’m siding against

the current candidate”

As you can see, side has only one sense as a verb. From the short definition, we can

know that the polarity of +/-effect of the given sense is different depending on prepositions.

This case is a conflict with our assumption that a sense is exactly one of +effect, -effect, or

Null, mentioned in Section 4.2.2. In this research, we ignore these cases because the number

of these cases is a little. Moreover, WordNet can cover some phrasal verbs such as fight down

and root for. We only consider verbs and phrasal verbs in WordNet.

As [Deng et al., 2013] mentioned, +/-effect events need not be verbs and phrasal verbs.

Consider the following examples:

(12) Italys support for the Iraqi government will never waver.

(13) President Obama’s reelection has had a devastating impact on Fox News.

In the sentence (12), support is +effect on the Iraqi government ; and in the sentence (13),

reelection is +effect on President Obama. In these examples, +/effect events are nouns, not

verbs. However, these cases account for a small portion. Therefore, in this research, we only

focus verbs, not nouns.
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4.2.4 +/-Effect Event and Affected Entity

In most case, affected entities of +/-effect events are themes. In the previous example (3),

curb is a -effect event and its affected entity is a theme of curb (i.e., skyrocketing health care

costs). In the example (4), an affected entity of a +effect event, passed, is a theme of passed

(i.e., the bill).

However, sometimes an agent of +/-effect events can be an affected entity. Remind the

following example:

(5) Yay! Johns team lost the first game.

In this case, the event, lost, has a negative effect on the agent of lost (i.e., John’s team),

not the theme of lost (i.e., the first game). There is another example:

(14) The senator carried his home state.

In this example, the meaning of carry is winning in an election. Therefore, carried has

a positive effect on the agent of carried (i.e., the senator).

Moreover, in some cases, both the agent and the theme can be affected entities with the

same or different +/-effect polarity. Consider following examples:

(15) This car outperforms all others in its class.

(16) The army took the fort on the hill.

In the sentence (15), outperforms has a positive effect on the agent of outperforms (i.e.,

this car) while it has a negative effect on the theme of outperforms (i.e., all others in its

class). The event in the sentence (16), took, is used in the meaning take by force, so it also

has a different +/-effect polarity on the agent and the theme. That is, took has +effect on

the army since it possess the fort on the hill ; but it has -effect on the fort on the hill because

it is lost.
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In addition, affected entities may not be both the agent and the theme of +/-effect

events. In the below sentence, imparts has a positive effect on the students which is neither

the agent nor the theme of imparts.

(17) The teacher imparts a new skill to the students.

On rare occasion, the polarity of +/-effect events of the given synset can be different

depending on the type of affected entities. Consider the following synset:

S: (v) tie down, tie up, bind, truss (secure with or as if with ropes) “tie down the pris-

oners”; “tie up the old newspapers and bring them to the recycling shed”

In the first example, since the affected entity the prisoners is a person, tie down has a

negative effect on the affected entity. However, in the second example, the affected entity the

old newspapers is an object, so this synset should be Null since the given event doesn’t have

neither positive nor negative effect on the affected entity. This case is a conflict with our

assumption that a sense is exactly one of +effect, -effect, or Null, mentioned in Section 4.2.2.

Therefore, in this research, we ignore these cases.

44



5.0 +/-EFFECT EVENTS AND WORDNET

In this chapter, we present the feasibility of using WordNet for +/-effect lexicon acquisition

with the simple method.

As we mentioned in Section 4.2.2, we need a sense-level approach to acquire +/-effect

lexicon knowledge, leading us to employ lexical resources with fine-grained sense rather than

word representations. There are several resources with sense information such as Word-

Net (described in Section 2.1) and FrameNet (described in Section 2.2). As we mentioned

in Section 2.1, WordNet can cover more senses. The FrameNet database contains about

1,200 semantic frames and about 13,000 lexical units; however, WordNet contains more than

150,000 words organized in more than 100,000 synsets. Also, while FrameNet cannot cover

all possible senses of given words since it considers only lexical units corresponding to the

given semantic frames, WordNet contains all possible senses of given words. (That is, while

FrameNet cannot cover all meanings of words, WordNet can provide all meanings of given

words - 150,000 words.) Moreover, WordNet provides a synonym set, called synsets, that

are interchangeable in some context. The synset information is helpful because we can re-

duce the redundancy. In other words, since they are interchangeable in some context, they

should have the same polarity of +/-effect event; we can avoid duplication. In addition,

synsets in WordNet are interlinked by semantic relations which may be useful information

to acquire +/-effect events. Thus, we adopt WordNet which is a widely-used lexical resource

for +/-effect lexicon acquisition.

Our goal in this chapter is that starting from the seed set we explore how +/-effect

events are organized in WordNet via semantic relations and expand the seed set based on

those semantic relations. For that, we adopt an automatic bootstrapping method which

disambiguates +/-effect polarity at the sense-level utilizing WordNet.
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For the bootstrapping method, we first need seed data. To get the seed lexicon, we

utilize FrameNet because we believe that using FrameNet to find +/-effect words is easier

than finding +/-effect words without any information since words may be filtered by semantic

frames. First, an annotator who didn’t have access to our +/-effect corpus selects promising

semantic frames as +/-effect in FrameNet, and we pick out all lexical units from selected

semantic frames. From them, we extract +effect verb words and -effect verb words. For the

pure seed set, we ignore conflicting words between the +effect verb set and the -effect verb

set. Since we need a sense-level lexicon as a seed lexicon, not a word-level lexicon, we finally

extract all senses of these +/-effect words and -effect words from WordNet and randomly

select 200 +effect synsets and 200 -effect synsets as the seed lexicon. Section 5.1 explains

the seed lexicon in detail. Then, we describe our evaluation metrics in Section 5.2.

As we mentioned, to expand the given seed set based on WordNet semantic relations, we

adopt the bootstrapping method. Our detail method is explained in Section 5.3.

The expanded lexicon is evaluated in two ways. First, the lexicon is evaluated against

a corpus that has been annotated with +/-effect information at the word level. Section 5.4

presents this corpus evaluation. Second, samples from the expanded lexicon are manually

annotated at the sense level, which gives some idea of the prevalence of +/-effect lexical

ambiguity and provides a basis for sense-level evaluation. Section 5.5 presents the evaluation

based on sense annotation. Also, we conduct the agreement study in this section.

Finally, related work is described in Section 5.6 and summary is given in Section 5.7.

This work is presented in 5th Workshop on Computational Approaches to Subjectivity,

Sentiment, & Social Media Analysis (WASSA) which is ACL workshop [Choi et al., 2014].

5.1 SEED LEXICON

To preserve the +/-effect corpus (described in Section 4.1.1) for evaluation, we create a

seed set that is independent from the corpus. An annotator who didn’t have access to the

+/-effect corpus manually selects +/-effect events from FrameNet.
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As we mentioned in Section 2.2, FrameNet is based on a theory of meaning called Frame

Semantics. In FrameNet, a lexical unit is a pairing of a word with a meaning, that is, it

corresponds to a sense in WordNet. Each lexical unit of a polysemous/homonymous word

belongs to a different semantic frame, which is a description of a type of event, relation, or

entity and, where appropriate, its participants. For instance, in the Creating frame, the

definition is that a Cause leads to the formation of a Created entity. It has a positive

effect on the theme, Created entity. This frame contains about 10 lexical units such as

assemble, create, yield, and so on. FrameNet consists of about 1,000 semantic frames and

about 10,000 lexical units.

FrameNet is a useful resource to select +/-effect verb words since each semantic frame

covers multiple lexical units. We believe that using FrameNet to find +/-effect words is

easier than finding +/-effect words without any information since words may be filtered by

semantic frames. To select +/-effect words, an annotator first identifies promising semantic

frames as +/-effect events and extracts all lexical units from them. Then, the annotator

goes through them and picks out the lexical units which s/he judges to be +effect or -effect.

In total, 736 +effect lexical units and 601 -effect lexical units are selected from 463 semantic

frames.

As we mentioned in Section 4.2.4, events may have positive or negative effects on themes

of a given event, agents of a given event, or other entities. Thus, we consider a sense to be

+effect (-effect) if it has +effect (-effect) on an entity, which may be the agent, the theme,

or some other entity. In this work, we ignore the case that both the agent and the theme

are affected entities with the same or different +/-effect polarity.

For a seed set and an evaluation set in this work, we need annotated sense-level +/-effect

data. If we can convert selected lexical units from FrameNet into WordNet automatically,

it will be easy to create sense-level +/-effect data. However, mappings between FrameNet

and WordNet are not perfect. Thus, we opt to manually annotate the senses of the words

in the word-level lexicon. We first extract all words from 736 +effect lexical units and 601

-effect lexical units; this extracts 606 +effect words and 537 -effect words (the number of

words is smaller than the number of lexical units because one word can have more than one

lexical unit). Among them, 14 words (e.g., crush, order, etc.) are in both the +effect word
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set and the -effect word set. That is, these words have both +effect and -effect meanings.

Recall that this annotator is focusing on semantic frames, not on words - s/he does not look

at all the senses of all the words. For the pure seed set, we ignore these 14 words; thus, we

consider only 592 +effect words and 523 -effect words.

Decomposing each word into its senses in WordNet, there are 1,525 +effect senses and

1,154 -effect senses. 83 words extracted from FrameNet overlap with +/-effect instances in

the +/-effect corpus. For independence, those words were discarded. Among the senses of

the remaining words, we randomly choose 200 +effect senses and 200 -effect senses as the

seed lexicon.

5.2 EVALUATION METRICS

As we mentioned, we evaluate our expanded lexicon in two ways; the evaluation based on

corpus and the evaluation based on sense annotation.

In corpus evaluation, we use the +/-effect annotations in the +/-effect corpus as a gold

standard. The annotations in the corpus are at the word level. To use the annotations as a

sense-level gold standard, all the senses of a word marked +effect (or -effect) in the corpus

are considered to be +effect (or -effect). While this is not ideal, this allows us to evaluate

the lexicon against the only corpus evidence available.

To evaluate our system with this data, we calculate the accuracy that is how many

+effect (or -effect) synsets (i.e., senses) are correctly detected by our system. The accuracy

is calculated as follows:

Accuracy =
Number of correctly detected synsets based on the gold standard

Number of all synsets which are in the gold standard
and are detected by the system

(5.1)
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For that, we first define +effectOverlap and -effectOverlap because we can only consider

synsets which are in the gold standard. While +effectOverlap means the overlap between

the synsets in the expanded +effect (or -effect) lexicon and the gold-standard +effect set,

-effectOverlap is the overlap between the synsets in the expanded +effect (or -effect) lexicon

and the gold-standard -effect set.

That is, the accuracy for +effect is calculated based on +effectOverlap and -effectOverlap

within the expanded +effect lexicon such as:

Accuracy+effect =
The number of +effectOverlap

The number of +effectOverlap + the number of -effectOverlap
(5.2)

In this equation, +effectOverlap indicates the overlap between the synsets in the ex-

panded +effect lexicon and the gold-standard +effect set, and -effectOverlap is the overlap

between the synsets in the expanded +effect lexicon and the gold-standard -effect set.

Similarly, the accuracy for -effect is calculated based on +effectOverlap and -effectOverlap

within the expanded -effect lexicon such as:

Accuracy−effect =
The number of -effectOverlap

The number of +effectOverlap + the number of -effectOverlap
(5.3)

In this case, +effectOverlap means the overlap between the synsets in the expanded

-effect lexicon and the gold-standard +effect set, and -effectOverlap is the overlap between

the synsets in the expanded -effect lexicon and the gold-standard -effect set.
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For sense annotation evaluation, we first select 60 words and two annotators annotate

+/-effect polarity of all synsets of these words. We consider this data as the gold standard.

Based on this annotation, we also calculate the accuracy such as:

Accuracy =
Number of correctly detected synsets

Number of all synsets which are in the gold standard
and are detected by the system

(5.4)

Moreover, since we conduct the annotation study, we need to evaluate the annotation

work. To measure agreement between the annotators, we calculate two measures: percent

agreement and κ. Percent agreement is calculate such as:

PercentAgreement =

Number of synsets annotated as the same polarity
by annotators

Number of all synsets annotated by annotators
(5.5)

As we mentioned in Section 4.1.1, κ is a statistic to measure inter-rater agreement for

qualitative labels. The equation for κ is:

κ =
p0 − pe
1− pe

= 1− 1− p0
1− pe

(5.6)

where p0 is the relative observed agreement among annotators and pe is the hypothetical

probability of chance agreement. The change agreement pe can be calculated with the ob-

served data by calculating the probabilities of each annotator randomly saying each label.

If annotators are in complete agreement, κ score is 1; if there is no agreement between an-

notators, it is equal or less than 0.
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5.3 BOOTSTRAPPING METHOD

In WordNet, verb synsets are arranged into hierarchies, that is, verb synsets towards the

bottom of the trees express increasingly specific manners. Thus, we can follow hypernym

relations to more general synsets and troponym relations to more specific verb synsets. Since

the troponym relation refers to a specific elaboration of a verb synsets, we hypothesize that

troponyms of a synset tends to have its same polarity (i.e., +effect, -effect, or Null). We

only consider the direct troponyms in a single iteration. Although the hypernym is a more

general term, we hypothesize that direct hypernyms tend to have the the same or neutral

polarity, but not the opposite polarity. Also, the verb groups are promising; even though the

coverage is incomplete, we expect the verb groups to be the most helpful.

WordNet Similarity1, is a facility that provides a variety of semantic similarity and

relatedness measures based on information found in the WordNet lexical database. We

choose Jiang&Conrath [Jiang and Conrath, 1997] (jcn) method which has been found to

be effective for such tasks by NLP researchers. When two concepts aren’t related at all, it

returns 0. The more they are related, the higher the value is retuned. We regard synsets

with similarity values greater than 1.0 to be similar synsets. That is, we consider there is a

relation between synsets which have a higher similarity value.

Beginning with its seed set, each lexicon (+effect and -effect) is expanded iteratively.

On each iteration, for each synset in the current lexicon, all of its direct troponyms, direct

hypernyms, and members of the same verb group are extracted and added to the lexicon for

the next iteration. Similarity, for each synset, all words with above-threshold jcn values are

added. For new senses that are extracted for both the +effect and -effect lexicons, we ignore

such senses, since there is conflicting evidence (recall that we assume a synset has only one

polarity, even if a word may have synsets of different polarities).

1WN Similarity, http://wn-similarity.sourceforge.net/
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5.4 CORPUS EVALUATION

In this section, we use the +/-effect annotations in the +/-effect corpus as a gold standard.

The annotations in the corpus are at the word level. To use the annotations as a sense-level

gold standard, all the senses of a word marked +effect (-effect) in the corpus are considered

to be +effect (-effect). While this is not ideal, this allows us to evaluate the lexicon against

the only corpus evidence available.

The 196 words that appear in +effect instances in the corpus have a total of 897 synsets,

and the 286 words that appear in -effect instances have a total of 1,154 synsets. Among

them, 125 synsets are conflicted: a sense of a word marked +effect in the corpus could be a

member of the same synset as a sense of a word marked -effect in the corpus. For a more

reliable gold-standard set, we ignore these conflicted synsets. Thus, the gold-standard set

contains 772 +effect synsets and 1,029 -effect synsets.

Table 2 shows the results after five iterations of lexicon expansion. In total, the +effect

lexicon contains 4,157 synsets and the -effect lexicon contains 5,071 synsets. The top half

gives the results for the +effect lexicon and the bottom half gives the results for the -effect

lexicon. As we mentioned in Section 5.2, +effectOverlap means the overlap between the

senses in the lexicon in that row and the gold-standard +effect set, while -effectOverlap

is the overlap between the senses in the lexicon in that row and the gold-standard -effect

set. That is, of the 772 synsets in the +effect gold standard, 449 (58%) are in the +effect

expanded lexicon while 105 (14%) are in the -effect expanded lexicon. With this information,

we calculate the accuracy described in Section 5.2.

Overall, accuracy is higher for the -effect than the +effect lexicon. The results in the

table are broken down by semantic relations. Note that the individual counts do not sum

to the totals because senses of different words may actually be the same synset in WordNet.

The results for the -effect lexicon are consistently high over all semantic relations. The

results for the +effect lexicon are more mixed, but all relations are valuable. This evaluation

shows that WordNet is promising for expanding such sense-level lexicons. Even though the

seed set is completely independent from the corpus, the expanded lexicons coverage of the

corpus is not small.
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+Effect

#senses #+effecOverlap #-effecOverlap Accuracy

Total 4,157 449 176 0.72

WordNet Similarity 1,073 134 75 0.64

Verb Groups 242 69 24 0.74

Troponym 4,084 226 184 0.55

Hypernym 223 75 33 0.69

-Effect

#senses #+effecOverlap #-effecOverlap Accuracy

Total 5,071 105 562 0.84

WordNet Similarity 1,008 34 190 0.85

Verb Groups 255 11 86 0.89

Troponym 4,258 66 375 0.85

Hypernym 286 16 77 0.83

Table 2: Results after the simple lexicon expansion
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Overall, the verb group is the most informative relation, as we suspected. It shows the

highest accuracy in both +/-effect.

WordNet Similarity is advantageous because WordNet Similarity detects similar synsets

automatically and provides coverage beyond the semantic relations coded in WordNet.

Although the +effect lexicon accuracy for the troponym relation is not high, it has the

advantage is that it yields the most number of synsets. Its lower accuracy doesn’t support

our original hypothesis. We first hypothesized that verbs lower down in the hierarchy would

tend to have the same polarity since they express specific manners characterizing an event.

However, this hypothesis is wrong sometimes. Even though most troponyms have the same

polarity, there are many exceptions. For example, protect#v#1, which means the first sense

of the verb protect, has 18 direct troponyms such as cover for#v#1, overprotect#v#2, and so

on. protect#v#1 is a +effect event because the meaning is “shielding from danger” and most

troponyms are also +effect events. However, overprotect#v#2, which is one of troponyms

of protect#v#1, is a -effect event, not a +effect event.

For the hypernym relation, the number of detected synsets is not large because many

were already detected in previous iterations (in general, there are fewer nodes on each level

as hypernym links are traversed).

5.5 SENSE ANNOTATION EVALUATION

For a more direct evaluation, two annotators (one is Lingjia Deng who created the annotation

scheme for +effect corpus and another is me) independently annotate a sample of synsets.

We randomly select 60 words among the following classes: 10 pure +effect words (i.e., all

senses of the words are classified by the expansion method, and all senses are put into the

+effect lexicon), 10 pure -effect words, 20 mixed words (i.e., all senses of the words are

classified by the expansion method, and some senses are put into the +effect lexicon while

others are put into the -effect lexicon), and 20 incomplete words (i.e., some senses of the

words are not classified by the expansion method).
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The total number of synsets is 151; 64 synsets are classified as +effect, 56 synsets are

classified as -effect, and 31 synsets are not classified. We include more mixed than pure

words to make the results of the study more informative. Further, we want to include non-

classified synsets as decoys for the annotators. The annotators only see the synset entries

from WordNet. They doesn’t know whether the system classifies a synset as +effect or -effect

or whether it doesn’t classify it at all.

Table 3 evaluates the lexicons against the manual annotations, and in comparison to

the majority class baseline. The top half of the table shows results when treating the first

annotator’s annotations as the gold standard, and the bottom half shows the results when

treating the second annotator’s as the gold standard. Among 151 synsets, the first annota-

tor (Annotator1) annotated 56 synsets (37%) as +effect, 51 synsets (34%) as -effect, and 44

synsets (29%) as Null. The second annotator (Annotator2) annotated 66 synsets (44%) as

+effect, 55 synsets (36%) as -effect, and 30 (20%) synsets as Null. The incorrect cases are

divided into two sets: incorrect opposite consists of synsets that are classified as the opposite

polarity by the expansion method (e.g., the sense is classified into +effect, but annotator

annotates it as -effect), and incorrect Null consists of synsets that the expansion method

classifies as +effect or -effect, but the annotator marked it as Null. We report the accuracy

described in Section 5.2 and the percentage of cases for each incorrect case. The accuracies

substantially improve over baseline for both annotators and for both classes.

accuracy % incorrect % incorrect baseline

opposite Null

Annotator1 0.53 0.16 0.32 0.37

Annotator2 0.57 0.24 0.19 0.44

Table 3: Results against sense-annotated data
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+effect accuracy -effect accuracy baseline

Annotator1 0.74 0.83 0.37

Annotator2 0.68 0.74 0.44

Table 4: Accuracy broken down for +/-effect

In Table 4, we break down the results into +/-effect classes. The +effect accuracy

measures the percentage of correct +effect senses out of all senses annotated as +effect

according to the annotations (same as -effect accuracy). As we can see, the accuracy is

higher for the -effect than the +effect. The conclusion is consistent with what we have

discovered in Section 5.4.

By the first annotator, 8 words are detected as mixed words, that is, they contain both

+effect and -effect senses. By the second annotator, 9 words are mixed words (this set

includes the 8 mixed words of the first annotator). Among the randomly selected 60 words,

the proportion of mixed words range from 13.3% to 15%, according to the two annotators.

This shows that +/-effect lexical ambiguity does exist.

To measure agreement between the annotators, we calculate two measures: percent agree-

ment and κ, as we described in Section 5.2. κ measures the amount of agreement over what

is expected by chance, so it is a stricter measure. Percent agreement is 0.84 and κ is 0.75.

It is positive, providing evidence that the annotation task is feasible and that the concept

of +/-effect gives us a natural coarse-grained grouping of senses.

5.6 RELATED WORK

As we mentioned in Section 2.1, WordNet is one sense inventory which is widely used in NLP.

There are several works to successfully adopt WordNet to construct subjectivity, sentiment,

and connotation lexicons which are similar (but different) lexicons with +/-effect lexicon.
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[Esuli and Sebastiani, 2006] construct SentiWordNet for sentiment lexicons. They

assume that terms with the same polarity tend to have similar glosses. So, they first expand

a manually selected seed set of senses using WordNet lexical relations such as also-see and

direct antonymy and train two classifiers, one for positive and another for negative. As

features, a vector representation of glosses is adopted. These classifiers are applied to all

WordNet senses to measure positive, negative, and objective scores. In extending their work

[Esuli and Sebastiani, 2007], the PageRank algorithm is applied to rank senses in terms of

how strongly they are positive or negative. In the graph, each sense is one node, and two

nodes are connected when they contain the same words in their WordNet glosses. Moreover,

a random-walk step is adopted to refine the scores in their recent work [Baccianella et al.,

2010].

For subjectivity lexicons, [Gyamfi et al., 2009] construct a classifier to label the subjec-

tivity of word senses. The hierarchical structure and domain information in WordNet are

exploited to define features in terms of similarity (using the LCS metric in [Resnik, 1995]) of

target senses and a seed set of senses. Also, the similarity of glosses in WordNet is consid-

ered. Moreover, [Su and Markert, 2009] adopt a semi-supervised mincut method to recognize

the subjectivity of word senses. To construct a graph, each node corresponds to one Word-

Net sense and is connected to two classification nodes (one for subjectivity and another for

objectivity) via a weighted edge that is assigned by a classifier. For this classifier, WordNet

glosses, relations, and monosemous features are considered. Also, several WordNet relations

(e.g., antonymy, similar-to, direct hypernym, etc.) are used to connect two nodes.

[Kang et al., 2014] present a unified model that assigns connotation polarities to both

words and senses encoded in WordNet. They formulate the induction process as collective

inference over pairwise-Markov Random Fields and apply loopy belief propagation for infer-

ence. Their approach relies on selectional preferences of connotative predicates; the polarity

of a connotation predicate suggests the polarity of its arguments. We have not discovered

an analogous type of predicate for the problem we address.

As we mentioned in Section 4.2, +/-effect events are different as sentiments and conno-

tations. Our work is the first NLP work for the +effect lexicon.
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5.7 SUMMARY

In this chapter, we present the feasibility of using WordNet for sense-level +/-effect lexicon

acquisition with the bootstrapping method.

As we mentioned in Section 4.2.2, we need a sense-level approach to acquire +/-effect

lexicon knowledge, leading us to employ lexical resources with fine-grained sense rather than

word representations. In our work, we adopt WordNet which is widely-used lexical resource

since WordNet can cover more words and senses than other resources and it also contains all

possible senses of given words. Moreover, WordNet provides a synonym set, called synsets,

and synsets are interlinked by semantic relations which are useful information to acquire

+/-effect events.

Our goal in this chapter is that starting from the seed set we explore how +/-effect events

are organized in WordNet via semantic relations and expand the seed set based on those

semantic relations.

For our goal, we first need seed data. As we mentioned in Section 5.1, to get the seed

lexicon, we utilize FrameNet because we believe that using FrameNet to find +/-effect words

is easier than finding +/-effect words without any information since words may be filtered by

semantic frames. As the seed lexicon, we select 200 +effect synsets and 200 -effect synsets.

With this seed data, to explore how +/-effect events are organized in WordNet via seman-

tic relations, we adopt an automatic bootstrapping method which disambiguates +/-effect

polarity at the sense-level utilizing WordNet as described in Section 5.3. That is, we expand

the seed set based on WordNet semantic relations. In this chapter, we consider hierarchical

relations (i.e., hypernym and troponym) and verb groups. Moreover, we utilize WordNet

similarity to get more relations between synsets.

The expanded lexicon is evaluated in two ways. In Section 5.4, we first present the

corpus evaluation. That is, the lexicon is evaluated against the +/-effect corpus that has

been annotated with +/-effect information at the word level. Since we need a sense-level

gold standard, all the synsets of +/-effect words in the corpus are considered to be +/-effect

synsets. While this is not ideal, this allows us to evaluate the lexicon against the only corpus

evidence available.
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For a more direct evaluation, we also conduct the evaluation based on sense annotation

in Section 5.5. Samples from the expanded lexicon are manually annotated at the sense

level, which gives some idea of the prevalence of +/-effect lexical ambiguity and provides a

basis for sense-level evaluation.

Our evaluations show that WordNet is promising for expanding sense-level +/-effect

lexicons. Even though the seed set is completely independent from the corpus, the expanded

lexicon’s coverage of the corpus is not small. The accuracy of the expanded lexicon is

substantially higher. Also, the results of the agreement study are positive, providing evidence

that the annotation task is feasible and that the concept of +/-effect gives us a natural

coarse-grained grouping of senses.
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6.0 EFFECTWORDNET: SENSE-LEVEL +/-EFFECT LEXICON

In this chapter, we address methods for creating a lexicon of +/-effect events, to support

opinion inference rules. Due to significant sense ambiguity as we mentioned in Section 4.2.2,

we develop a sense-level lexicon rather than a word-level lexicon. As we mentioned in Sec-

tion 4.2.3, we focus only verbs as +/-effect events in this work. We call such sense-level

+/-effect lexicon EffectWordNet.

Our assumption in this chapter is that each sense (or synset in WordNet) has only one

+/-effect polarity. Moreover, we hypothesize that +/-effect polarity tends to propagate by

semantic-related relations such as hierarchical information.

One of our goals is to develop the method that applied to many verb senses, not just

to senses of given words such as [Akkaya et al., 2009, Akkaya et al., 2011] for subjec-

tive/objective classification. WordNet consists of about 13,000 verb synsets, which can

cover about 11,000 verbs. (As we mentioned in Section 2.1, since each sense of a word is in a

different synset and a synset indicates a synonym set, about 11,000 verbs can be represented

as about 13,000 verb synsets. For example, one of verb synsets is wish, care, like (prefer or

wish to do something). Even though it is a sense of each word (i.e., wish, care, and like), it is

considered as one synset.) Moreover, synsets are interlinked by means of semantic relations.

In addition, in Chapter 5, we presented the feasibility of using WordNet for +/-effect lexicon

acquisition. Thus, we utilize WordNet in this work. With WordNet, we can cover most verbs

and a small number of verb phrases.

Our another goals is to build sense-level +/-effect lexicon with a small number of seed

data. For that, we first need annotated sense-level +/-effect events as a seed lexicon. The

simple method to create a seed lexicon is to select synsets randomly from WordNet and

annotate them. However, it is an inefficient way since it is hard to get reliable +/-effect
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events. Because many cases are Null, we are not sure whether randomly selected synsets are

reliable +/-effect events. Also, we want to create seed data that is independent from the

corpus to preserve the corpus for evaluation. Therefore, we utilize a word-level seed lexicon

built in Section 5.1. In this lexicon, an annotator who didn’t have access to the corpus

manually selected +/-effect events from FrameNet. It consists of 736 +effect lexical units

and 601 -effect lexical units which are selected from 463 semantic frames in FrameNet. From

this lexicon, we can gather 606 +effect verb words and 537 -effect verb words. However, we

need a sense-level lexicon as a seed lexicon, not a word-level lexicon. Thus, we first extract

all senses of these +/-effect words and annotate them. Section 6.1 explains our sense-level

annotated data in detail. Then, before explaining our method, we describe our evaluation

metrics in Section 6.2.

Next, we describe the method to construct EffectWordNet. In this chapter, we con-

struct EffectWordNet, which is a sense-level +/-effect lexicon without the information

about which entities are affected. As we mentioned in Section 2.1, WordNet provides two

kinds of information: WordNet relations (e.g., hypernym, troponym, etc.) and gloss infor-

mation (i.e., a short definition and usage examples). WordNet relations represent semantic

relationship between synsets while gloss information provides information for each synset.

We first present a graph-based semi-supervised learning method to utilize WordNet relations

in Section 6.3. With a graph-based model, we investigate whether the +/-effect property

tends to be shared among semantically-related synsets. Then, we develop a classifier for a

gloss information in Section 6.4. To maximize the effectiveness of different types of informa-

tion, we combine a graph-based method using WordNet relations and a standard classifier

using gloss information in Section 6.5.

Further, we provide evidence that the model is an effective way to guide manual anno-

tation to find +/-effect events that are not in the seed lexicon in Section 6.6.

Finally, related work is described in Section 6.7, and summary is given in Section 6.8.

This work is presented in Empirical Methods in Natural Language Processing (EMNLP)

[Choi and Wiebe, 2014].
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6.1 DATA

In this section, we describe data which are used in this chapter. We extracted word-level

+/-effect events from FrameNet in Section 5.1. Since we need a sense-level lexicon in this

work, we create a sense-level +/-effect lexicon based on this word-level lexicon.

6.1.1 Word-level +/-Effect Lexicon

In Section 5.1, we utilized FrameNet to select +/-effect events because we believed that using

FrameNet to find +/-effect events is easier than finding +/-effect events without any infor-

mation. By semantic frames, words may be filtered. The annotator selected 463 semantic

frames for +/-effect events, and 736 +effect lexical units and 601 -effect lexical units were

extracted from these semantic frames.

We first extract all words from 736 +effect lexical units and 601 -effect lexical units. In

total, we gather 606 +effect words and 537 -effect words. Since one word can have more than

one lexical unit, the number of words is smaller than the number of lexical units. Among

them, 14 words (e.g., crush, order, etc.) are in both the +effect words and the -effect words.

That is, these words have both +effect and -effect meanings. Recall that this annotator was

focusing on frames, not on words - he did not look at all the senses of all the words. In

Section 5.1, we ignored these 14 words for a purer lexicon. However, in this work, since we

handle sense-level +/-effect events, not word-level +/-effect events, we do not ignore them.

6.1.2 Sense-level +/-Effect Seed Lexicon

As we mentioned, one of our goals is to build a sense-level +/-effect lexicon with a small

number of seed data. Therefore, we first need a small number of sense-level +/-effect data

as seed data. Moreover, we need sense-level +/-effect data for evaluations.

As we mentioned in the previous section, we created a word-level lexicon that consists

of 606 +effect words and 537 -effect words, which were extracted from FrameNet. If we can

convert them into WordNet automatically, it will be easy to create sense-level +/-effect data.

However, mappings between FrameNet and WordNet are not perfect.
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Thus, we opt to manually annotate the senses of the words in the word-level lexicon. We

go through all senses of all the words in this word-level lexicon and manually annotate each

sense as to whether it is +effect, -effect, or Null. Note that we conducted the agreement

study for the sense-level +/-effect annotation and got 0.75 as κ and 0.84 as percent agreement

which are positive results in Section 5.5.

In total, there are 258 +effect synsets, 487 -effect synsets, and 880 Null synsets. Since

+/-effect words are extracted from 463 semantic frames in FrameNet, many senses are in the

same synsets. Thus, the number of +/-effect synsets is smaller than the number of +/-effect

words.

For the experiments in this work, we divide this annotated data into two equal-sized sets.

One is a fixed test set that is used to evaluate both the graph model and the gloss classifier.

The other set is used as a seed set by the graph model and as a training set by the gloss

classifier. Table 5 shows the distribution of the data. Since the dataset is not big, we do not

conduct the cross-validation.

Our task is to identify unlabeled senses that are likely to be +/-effect senses, so we

want to focus on +effect and -effect classes rather the Null class. Since the Null class is

the majority class based on this annotated data, we need to resize the Null class to avoid it

becoming the majority class. To avoid too large a bias toward the Null class, we randomly

chose half (i.e., the Null set contains 440 synsets). Half of each set is used as seed data in

the graph model and training data in the classifier, and the other half is used for evaluation.

All experiments except the last table in Section 6.6 give results on the same fixed test set.

+effect -effect Null

# Annotated data 258 487 880

# Seed/TrainSet 129 243 220

# TestSet 129 244 220

Table 5: Distribution of annotated sense-level +/-effect seed data.
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6.1.3 Data for Guided Annotation

In Section 6.6, the initial seed set is the same as Seed/TraingSet in Table 5. In each itera-

tion, new data (i.e., verb synsets) that are not in Seed/TrainSet and TestSet are extracted

by the graph-based model. Then, we manually annotate them and add them to the seed set.

Table 6 shows the number of top 5% newly extracted +/-effect data for each iteration. In

this work, we perform four iterations.

1st 2nd 3rd 4th

+effect 128 122 116 117

-effect 155 146 153 145

total 283 268 269 262

Table 6: Frequency of the top 5% for each iteration.

6.2 EVALUATION METRICS

To evaluate our system, we calculate the accuracy that is the degree of closeness of detected

value to an actual or correct value. It is calculated as follows:

Accuracy =
Number of correctly detected synsets

Number of all synsets in test data
(6.1)

However, with the accuracy, we cannot evaluate the performance for each label. For

example, if there is a predominant class, the base rate is close to the accuracy of predicting

the predominant class. In this case, even though the performances for other labels that are
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not predominant labels are not good, the accuracy can be high. In our task, not only the

accuracy but also the performance for each label is important. Thus, to evaluate for each

label, we calculate precision, recall, and f-measure for all three labels.

The precision presents how many of detected instances are correct in each label. It is

also called as positive predictive value. The precision for a given label is calculated as:

Precisionlabel =
Number of correctly detected synsets as a given label

Number of all synsets detected as a given label
(6.2)

On the other hand, the recall indicates how many of relevant instances for each label is

detected by the system. The recall is measured as follows:

Recalllabel =
Number of correctly detected synsets as a given label

Number of all synsets of a given label in test data
(6.3)

These two measures can be used together in the f-measure to provide a single measure-

ment such as:

F-measurelabel = 2 · Precisionlabel ·Recalllabel
Precisionlabel +Recalllabel

(6.4)

We use these metrics for all experiments except the last table in Section 6.6.
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6.3 GRAPH-BASED SEMI-SUPERVISED LEARNING FOR WORDNET

RELATIONS

WordNet, described in Section 2.1, is organized by semantic relations such as hypernymy,

troponymy, verb grouping, and so on. These semantic relations can be used to build a network.

Since the most frequently encoded relation is the super-subordinate relation, most verb

synsets are arranged into hierarchies; verb synsets towards the bottom of the graph express

increasingly specific manner. Thus, by following this hierarchical information, we hypothesize

that +/-effect polarity tends to propagate. Thus, to carry out the label propagation, we

adopt a graph-based semi-supervised learning method described in Section 2.3.1.

6.3.1 Graph Formulation

We formulate a graph for semi-supervised learning as follows. Let G = {X,E,W} be the

undirected graph in which X is the set of nodes, E is the set of edges (i.e., Eij is the edge

between the node i and j), and W represents the edge weights (i.e., the weight of edge Eij

is Wij). The weight matrix is a non-negative matrix.

Each data point in X = {x1, ... ,xn} is one synset. The labeled data of X is represented

as XL = {x1, ... ,xl} and the unlabeled data is represented as XU = {xl+1, ... ,xn}. The

labeled data XL is associated with labels YL = {y1, ... ,yl}, where yi ∈ {1, ..., c} (c is the

number of classes). As is typical in such settings, l � n: n is 13,767, i.e., the number of

verb synsets in WordNet. Seed/TrainSet in Table 5 is the labeled data.

To connect two nodes, WordNet relations are utilized. We first connect nodes by the

hierarchical relations. Since hypernym relations represent more general synsets and troponym

relations represent more specific verb synsets, we hypothesize that hypernyms or troponyms

of a verb synset tends to have its same polarity. Verb groups relations that represent verb

synsets having a similar meaning are also promising. Even though verb group coverage is

not large, its relations are reliable since they are manually grouped. The entailment relation

is defined as the verb Y is entailed by X if you must be doing Y by doing X. Since pairs

connected by this relation are co-extensive, we can assume that both are the same type
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Figure 6: Part of constructed graph.

of event. The synonym relation is not used because it is already defined in synsets (i.e.,

each node in the graph is a synset), and the antonym relation is also not applied since

WordNet doesn’t provide any antonym relations for verbs. The weight value of all edges

is 1.0. (Actually, we tried to set different weights for each relation, but there is no big

difference. Thus, we finally give 1.0 as the weight value for all edges.) Figure 6 shows a part

of the constructed graph.

We can apply the graph model in two ways. One way is that all three classes (+effect,

-effect, and Null) are represented in one graph. That is, if a node is +effect, it has +1 value;

if a node is -effect, it has -1 value; and if a node is Null, it has 0 value. We call such graph

model UniGraph4Rel.

Another way is that two separate graphs are first constructed and then combined. One

graph is for classifying +effect and Other (i.e., -effect or Null). This graph is called +eGraph.

That is, if a node is +effect, it has +1 value; and if a node is -effect or Null, it has -1 value.

The other graph, called -eGraph, is for classifying -effect and Other (i.e., +effect or Null).
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That is, if a node is -effect, it has +1 value; and if a node is +effect or Null, it has -1

value. Since we are interested in +/-effect events, not Null, we build two separate graphs

for +/-effect.

We have two motivations for experimenting with the two separate graphs: (1) SVM, the

supervised learning method used for gloss classification (we describe this in the next section),

tends to have better performance on binary classification tasks, and (2) the two graphs of

the combined model can “negotiate” with each other via constraints.

There are two methods to combine two separate graphs into one model. One is Bi-

GraphSim4Rel that the label is simply determined by two separate graphs as follows.

• Nodes that are labeled as +effect by +eGraph and Other by -eGraph are regarded as

+effect, and nodes that are labeled as -effect by -eGraph and Other by +eGraph are

regarded as -effect.

• If nodes are labeled as +effect by +eGraph and -effect by -eGraph, they are deemed to

be Null.

• Nodes that are labeled Other by both graphs are also considered as Null.

Another method is to add constraints when determining the class. This is one of our

motivations to build two separate graphs. With constraints, we expect to improve the

results since two separate graphs can negotiate with each other. This approach is called

BiGraphConst4Rel. As we explained, the label of instance xi is determined by Fi in the

graph. When the label of xi is decided to be j, we can say that its confidence value is Fij.

There are two constraints as follows.

• If a sense is labeled as +effect (-effect), but the confidence value is less than a threshold,

we count it as Null.

• If a sense is labeled as both +effect and -effect by BiGraph4Rel, we choose the label

with the higher confidence value only if the higher one is larger than a threshold and the

lower one is less than a threshold.
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The thresholds are determined on Seed/TrainSet by running several times with different

thresholds, and choosing the one that gives the best performance on Seed/TrainSet. In this

work, the chosen value is 0.025 for +effect and 0.03 for -effect.

6.3.2 Label Propagation

Given a constructed graph, the label inference (or prediction) task is to propagate the seed

labels to the unlabeled nodes. One of the classic graph-based semi-supervised learning label

propagation methods is the local and global consistency (LGC) method suggested by [Zhou

et al., 2004]. The LGC method is a graph transduction algorithm which is sufficiently smooth

with respect to the intrinsic structure revealed by known labeled and unlabeled data. The

cost function typically involves a tradeoff between the smoothness of the predicted labels

over the entire graph and the accuracy of the predicted labels in fitting the given labeled

nodes XL. LGC fits in a univariate regularization framework, where the output matrix is

treated as the only variable in optimization, and the optimal solutions can be easily obtained

by solving a linear system. Thus, we adopt the LGC method in this work. Although there

are some robust graph-based semi-supervised learning methods for handling noisy labels, we

do not need to handle noisy labels because our input is the annotated data.

Let F be a n× c matrix to save the output values of label propagation. Thus, after the

label propagation, we can label each instance xi such as:

yi = argmaxj≤cFij (6.5)

The initial discrete label matrix Y , which is also n× c, is defined as:

Yij =

1 if xi is labeled as yi = j in YL

0 otherwise

(6.6)
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The vertex degree matrix D = diag([D11, ..., Dnn]) is defined by

Dii =
n∑

j=1

Wij (6.7)

LGC defines the cost function Q which integrates two penalty components, global

smoothness and local fitting (µ is the regularization parameter):

Q =
1

2

n∑
i=1

n∑
j=1

Wij‖
Fi√
Dii

− Fj√
Djj

‖
2

+ µ

n∑
i=1

‖Fi − Yi‖2 (6.8)

The first part of the cost function is the smoothness constraint : a good classifying func-

tion should not change too much between nearby points. That is, if xi and xj are connected

with an edge, the difference between them should be small. The second is the fitting con-

straint : a good classifying function should not change too much from the initial label assign-

ment. The final label prediction matrix F can be obtained by minimizing the cost function Q.

6.3.3 Experimental Results

Note that, we conduct our experiments on the fixed test set (TestSet in Table 5).

Since there is no task to create +/-effect lexicon previously, we adopt the majority class

classifier as a baseline system. That is, all synsets are classified into -effect events because

-effect is the majority class in our test set based on Table 5.

Table 7 shows precision, recall, and f-measure for all three classes and accuracy. The top

row shows the accuracy of the baseline (i.e., the majority class classifier). It shows the results

of UniGraph4Rel, BiGraphSim4Rel, and BiGraphConst4Rel when they are built using the

hypernym, troponym, and verb group relations. We will present why we choose these three

relations with ablation results later.
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UniGraph4Rel BiGraphSim4Rel BiGraphConst4Rel

Baseline-
0.411

Accuracy

Accuracy 0.630 0.623 0.658

Precision 0.621 0.610 0.642

+effect Recall 0.655 0.647 0.680

F-measure 0.637 0.628 0.660

Precision 0.644 0.662 0.779

-effect Recall 0.720 0.677 0.612

F-measure 0.680 0.670 0.686

Precision 0.615 0.583 0.583

Null Recall 0.516 0.550 0.695

F-measure 0.561 0.561 0.634

Table 7: Results of UniGraph4Rel, BiGraphSim4Rel, and BiGraphConst4Rel.
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Our suggested methods (i.e., UniGraph4Rel, BiGraphSim4Rel, and BiGraphConst4Rel)

outperform the baseline based on the accuracy measure. Since the baseline is the majority

baseline and the majority class is -effect in our data, the baseline has 0.411 as the precision,

1.000 as the recall, and 0.583 as the f-measure for the -effect label. However, it has 0.0 as the

recall for other labels (and we cannot calculate the precision and the f-measure since there

are no senses detected as +effect or Null). In comparison, even though the recall for the

-effect label in our systems is lower then the baseline, our systems show higher performance

on the others. Moreover, in the -effect label, although the recall in the baseline is higher, our

systems show better performance with the precision. Thus, when considering the f-measure

that reflects both the precision and the recall, our systems outperform the baseline system.

Interestingly, UniGraph4Rel shows better performance than BiGraphSim4Rel (i.e., con-

structing two separate graphs and combine them simply) on +effect and -effect labels al-

though the difference is relatively small. However, when adding constraints to combine two

separate graphs (i.e., BiGraphConst4Rel), it outperforms not only BiGraphSim4Rel but also

UniGraph. Especially, in BiGraphConst4Rel, the recall for the Null class is considerably in-

creased, showing that constraints not only help overall, but also are particularly important

for detecting Null cases.

Table 8 gives ablation results, showing the contribution of each WordNet relation in

BiGraphConst4Rel. With only hierarchical information (i.e., hypernym and troponym rela-

tions), it already shows good performance for all classes. However, they cannot cover some

synsets. Among the 13,767 verb synsets in WordNet, 1,707 (12.4%) cannot be labeled be-

cause there are not sufficient hierarchical links to propagate polarity information. When

adding the verb group relation, it shows improvement in both +effect and -effect. Especially,

the recall for +effect and -effect is significantly increased. In addition, the coverage of the

13,767 verb synsets increases to 95.1%. For entailment, whereas adding it shows a slight

improvement in +effect (and increases coverage by 1.1 percentage points), the performance

is decreased a little bit in the -effect and Null classes. Since the average f-measure for all

classes is the highest with hypernym, troponym, and verb group relations (not entailment),

we only consider these three relations when constructing the graph.
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Hypernym
+ Verb group + Entailment

+ Troponym

Precision 0.653 0.642 0.651

+effect Recall 0.660 0.680 0.683

F-measure 0.656 0.660 0.667

Precision 0.784 0.779 0.786

-effect Recall 0.547 0.612 0.604

F-measure 0.644 0.686 0.683

Precision 0.557 0.583 0.564

Null Recall 0.735 0.695 0.691

F-measure 0.634 0.634 0.621

Coverage 87.6% 95.1% 96.2%

Table 8: Effect of each relation in BiGraphConst4Rel.
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6.4 SUPERVISED LEARNING APPLIED TO WORDNET GLOSSES

In WordNet, each synset contains a gloss consisting of a definition and optional example

sentences. Since a gloss consists of several words and there are no direct links between glosses,

we believe that a word vector representation is appropriate to utilize gloss information as in

[Esuli and Sebastiani, 2006]. For that, we adopt an SVM classifier.

6.4.1 Features

Two different feature types are used.

• Word Features: The bag-of-words model is applied. We do not ignore stop words for

several reasons. Since most definitions and examples are not long, each gloss contains a

small number of words. Also, among them, the total vocabulary of WordNet glosses is

not large. Moreover, some prepositions such as against are sometimes useful to determine

the polarity of +/-effect.

• Sentiment Features: Some glosses of +effect (-effect) synsets contain positive (neg-

ative) words. For instance, the definition of {hurt#4, injure#4} is “cause damage or

affect negatively.” It contains a negative word, negatively. Since a given event may pos-

itively (negatively) affect entities, some definitions or examples already contain positive

(negative) words to express this. Thus, as features, we check how many positive (nega-

tive) words a given gloss contains. To detect sentiment words, the subjectivity lexicon

provided by [Wilson et al., 2005]1 is utilized.

6.4.2 Gloss Classifier

We have three classes, +effect, -effect, and Null. Since SVM shows better performance on

binary classification tasks, we generate two binary classifiers, one (+eClassifier) to determine

whether a given synset is +effect or Other (i.e., -effect or Null), and another (-eClassifier)

1Available at http://mpqa.cs.pitt.edu/
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to classify whether a given synset is -effect or Other (i.e., +effect or Null). Then, they are

combined as follows.

• Synsets that are labeled as +effect by +eClassifier and Other by -eClassifier are regarded

as +effect, and synsets that are labeled as -effect by -eClassifier and Other by +eClassifier

are regarded as -effect.

• If synsets are labeled as +effect by +eClassifier and -effect by -eClassifier, they are

deemed to be Null.

• Synsets that are labeled Other by both classifiers are also considered as Null.

We call such method Classifier4Gloss since it is a classifier considering only gloss in-

formation as features.

6.4.3 Experimental Results

Seed/TrainSet in Table 5 is used to train two classifiers, and TestSet is utilized for the

evaluation. That is, the training set for +eClassifier consists of 129 +effect instances and

463 Other instances (i.e., -effect and Null), and the training set for -eClassifier contains 243

-effect instances and 349 Other instances (i.e., +effect and Null). As a baseline, we adopt a

majority class classifier such as the previous one.

Table 9 shows the results of Classifier4Gloss with the ablation study. Recall that the

baseline has 0.411 as the precision, 1.000 as the recall, and 0.583 as the f-measure for the

-effect label. However, it has 0.0 as the recall for other labels. The second column in Table 9

is the result of Classifier4Gloss. As you can see, Classifier4Gloss shows better performance

than the baseline system except recall and f-measure of the -effect label.

Interestingly, performance is better for the -effect than for the +effect class, perhaps be-

cause the -effect class has more instances. Moreover, when sentiment features are added, all

metric values increase, providing evidence that sentiment features are helpful to determine

+/-effect classes.
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Word Features
Word Features +

Sentiment Features

Baseline accuracy 0.411

Accuracy 0.509 0.539

Precision 0.541 0.588

+effect Recall 0.354 0.393

F-measure 0.428 0.472

Precision 0.616 0.672

-effect Recall 0.500 0.511

F-measure 0.552 0.580

Precision 0.432 0.451

Null Recall 0.612 0.657

F-measure 0.507 0.535

Table 9: Results of Classifier4Gloss with the ablation study.
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6.5 HYBRID METHOD

To use more combined knowledge, BiGraphConst4Rel and Classifier4Gloss can be combined.

That is, the classifier is utilized for WordNet gloss information and the graph model is

adopted for WordNet relations. This method is called Hybrid4AllFea. With this method,

we can see not only the effect of propagation by WordNet relations but also the usefulness

of gloss information and sentiment features. Also, while BiGraphConst4Rel cannot cover

all verb synsets in WordNet because a few numbers of synsets do not have any relation

information, Hybrid4AllFea can cover all verb synsets because the classifier can handle all

synsets.

The outputs of BiGraphConst4Rel and Classifier4Gloss are combined as follows. The

label of Classifier4Gloss is one of +effect, -effect, Null, or Both (when a given synset is

classified as both +effect by +eClassifier and -effect by -eClassifier). Possible labels of Bi-

GraphConst4Rel are +effect, -effect, Null, Both, or None (when a given synset is not labeled

by BiGraphConst4Rel). There are five rules:

• If both labels are +effect (-effect), it is +effect (-effect).

• If one of them is Both and the other is +effect (-effect), it is +effect (-effect).

• If the label of BiGraphConst4Rel is None, believe the label of Classifier4Gloss

• If both labels are Both, it is Null

• Otherwise, it is Null

6.5.1 Experimental Results

Note that Seed/TrainSet in Table 5 is used for seed data in BiGraphConst4Rel and training

data in Classifier4Gloss, and TestSet is utilized for the evaluation.

The results for Hybrid4AllFea are given in Table 10; the results for BiGraphConst4Rel

and Classifier4Gloss are in the first and second columns for comparison. For the +effect

and -effect labels, Hybrid4AllFea shows better performance than BiGraphConst4Rel and
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BiGraphConst4Rel Classifier4Gloss Hybrid4AllFea

Precision 0.642 0.588 0.610

+effect Recall 0.680 0.393 0.735

F-measure 0.660 0.472 0.667

Precision 0.779 0.672 0.717

-effect Recall 0.612 0.511 0.669

F-measure 0.686 0.580 0.692

Precision 0.583 0.451 0.556

Null Recall 0.695 0.657 0.520

F-measure 0.634 0.535 0.538

Table 10: Results of BiGraphConst4Rel, Classifier4Gloss and Hybrid4AllFea.

Classifier4Gloss. In Hybrid4AllFea, since more +/-effect synsets are detected than by Bi-

GraphConst4Rel, while the precision is decreased, the recall is increased by more. However,

by the same token, the overall performance for the Null class is decreased. Actually, that

is expected since the Null class is determined by the Other class in BiGraphConst4Rel and

Classifier4Gloss. Through this experiment, we can see that the hybrid method is better for

classifying +/-effect synsets, but not for Null.

6.5.2 Model Comparison

To provide evidence for our assumption that different models are needed for different infor-

mation to maximize effectiveness, we compare Hybrid4AllFea with the supervised learning

and the graph-based learning methods, each utilizing both WordNet relations and gloss in-

formation.
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Supervised Learning (Classifier4AllFea): Classifier4Gloss is trained with word fea-

tures and sentiment features for WordNet gloss information. To exploit WordNet relations

(especially, the hierarchical information) in the supervised learning method, we use least

common subsumer (LCS) values as in [Gyamfi et al., 2009], which were utilized for the

supervised learning method of subjective/objective synsets. The values are calculated as

follows. For a target sense t and a seed set S, the maximum LCS value between a target

sense and a member of the seed set is found as:

Score(t, S) = maxs∈SLCS(t, s) (6.9)

With this LCS feature and the features utilized in Classifier4Gloss, we run SVM on the

same training and test data. That is, the difference between Classifier4Gloss and Classi-

fier4AllFea is features; while Classifier4Gloss considers features for only gloss information

(i.e., word features and sentiment features), Classifier4AllFea considers features for both

gloss information and WordNet relations (i.e., word features, sentiment features, and LCS

features) For LCS values, the similarity using the information content proposed by [Resnik,

1995] is measured. WordNet Similarity2 package provides pre-computed pairwise similarity

values for that.

Table 11 shows results of Classifier4AllFea in the last column. The results for Classi-

fier4Gloss and Hybrid4AllFea are in the first and second columns for comparison. Compared

to Classifier4Gloss, while the +effect and Null classes show a slight improvement, the per-

formance is degraded for the -effect class. It means that the added feature (i.e., LCS feature

for WordNet relation information) in the classifier is rather harmful to the -effect class. Even

though the hierarchical feature is very helpful to expand +/-effect in the graph model as we

presented in Section 6.3, it is not helpful in the classifier method since the classifier cannot

capture a propagation according to the hierarchy.

2WordNet Similarity, http://wn-similarity.sourceforge.net/
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Classifier4Gloss Hybrid4AllFea Classifier4AllFea

Precision 0.588 0.610 0.584

+effect Recall 0.393 0.735 0.400

F-measure 0.472 0.667 0.475

Precision 0.672 0.717 0.778

-effect Recall 0.511 0.669 0.316

F-measure 0.580 0.692 0.449

Precision 0.451 0.556 0.440

Null Recall 0.657 0.520 0.813

F-measure 0.535 0.538 0.571

Table 11: Comparison to Classifier4Gloss, Hybrid4AllFea, and Classifier4AllFea.

Moreover, Hybrid4AllFea outperforms Classifier4AllFea for the +effect and -effect la-

bels. Although Classifier4AllFea shows better performance in the Null class, it is a slight

improvement. Both Hybrid4AllFea and Classifier4AllFea utilize WordNet relations and gloss

information. The different thing is that the graph model is utilized for WordNet relations

in Hybrid4AllFea while the classifier is used for relation information in Classifier4AllFea.

As you can see, the results are totally different according to which method is utilized for

WordNet relation information. Through this experiment, we can know that the graph-based

model is appropriate for WordNet relation information.

Graph-based Learning (BiGraph4AllFea): In Section 6.3, the graph is constructed

by using WordNet relations. To apply WordNet gloss information in the graph model, we

calculate a cosine similarity between glosses. If the similarity value is higher than a thresh-

old, two nodes are connected with this similarity value. The threshold is determined by

training and testing on Seed/TrainSet (the chosen value is 0.3).
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BiGraphConst4Rel Hybrid4AllFea BiGraph4AllFea

Precision 0.642 0.610 0.701

+effect Recall 0.680 0.735 0.364

F-measure 0.660 0.667 0.480

Precision 0.779 0.717 0.651

-effect Recall 0.612 0.669 0.562

F-measure 0.686 0.692 0.603

Precision 0.583 0.556 0.473

Null Recall 0.695 0.520 0.679

F-measure 0.634 0.538 0.557

Table 12: Comparison to BiGraphConst4Rel, Hybrid4AllFea, and BiGraph4AllFea.

Table 12 shows results of BiGraph4AllFea in the last column. The results for BiGraph-

Const4Rel and Hybrid4AllFea are in the first and second columns for comparison. BiGraph-

Const4Rel outperforms BiGraph4AllFea (the exception is the precision of +effect). By gloss

similarity, many nodes are connected to each other. However, since uncertain connections

can cause incorrect propagation in the graph, this negatively affects the performance.

Compared to Hybrid4AllFea, generally Hybrid4AllFea shows better performance than

BiGraph4AllFea for the +effect and -effect labels (the exception is the precision of +effect).

Although BiGraph4AllFea shows better performance in the Null class, it is a slight improve-

ment. Both methods utilize all features (i.e., WordNet relations and gloss information).

The difference between them is that the classifier is adopted for gloss information in Hy-

brid4AllFea while the graph model is adopted for gloss information in BiGraph4AllFea. This

experiment shows that the classifier is proper for gloss information in our task.

Through these experiments, we see that since each type of information has a different

character, we need different models to maximize the effectiveness of each type. Thus, the

hybrid method with different models can have better performance.
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6.6 GUIDED ANNOTATION

Recall that Seed/TrainSet and TestSet in Table 5, the data used so far, are all the senses of

the words in a word-level +/-effect lexicon. This section presents evidence that our method

can guide annotation efforts to find other words that have +/-effect senses. A bonus is that

the method pinpoints particular +/-effect senses of those words.

All unlabeled data are senses of words that are not included in the original lexicon. Since

presumably the majority of verbs do not have any +/-effect senses, a sense randomly selected

from WordNet is very likely to be Null. However, we are more interested in the +effect and

-effect labels than the Null label. Thus, we don’t want the random selection since we want

to find more +/-effect events.

To handle this problem, we explore an iterative approach to guided annotation, using

BiGraphConst4Rel and Hybrid4AllFea as the method for assigning labels. (Since BiGraph-

Const4Rel and Hybrid4AllFea show good performance in our previous experiments, we adopt

these two models for guided annotation.) The system is initially created as described above

using Seed/TrainSet as the initial seed set. Each iteration has four steps:

1. Rank all unlabeled data (i.e., the data other than TestSet and the current seed set) based

on the Fij confidence values (see Section 6.3.3).

2. Choose the top 5% and manually annotate them (the same annotator as above did this).

3. Add them to the seed set.

4. Rerun the system using the expanded seed set. (We performed four iterations in this

work.)

Table 13 shows the initial results (i.e., the same result of BiGraphConst4Rel in Table 7)

and the results after each iteration with BiGraphConst4Rel; and Table 14 shows the initial

results (i.e., the same result of Hybrid4AllFea in Table 10) and the results after each iteration

with Hybrid4AllFea. We calculate precision, recall, and f-measure for each label. Recall that

these are results on the fixed test set, TestSet in Table 5.
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BiGraphConst4Rel

Initial 1st 2nd 3rd 4th

Precision 0.642 0.636 0.642 0.636 0.681

+effect Recall 0.680 0.684 0.701 0.708 0.674

F-measure 0.660 0.663 0.670 0.670 0.678

Precision 0.779 0.770 0.748 0.779 0.756

-effect Recall 0.612 0.632 0.656 0.652 0.674

F-measure 0.686 0.694 0.699 0.710 0.712

Precision 0.583 0.591 0.605 0.599 0.589

Null Recall 0.695 0.672 0.655 0.669 0.669

F-measure 0.634 0.629 0.629 0.632 0.626

Table 13: Results of an iterative approach for BiGraphConst4Rel.

Hybrid4AllFea

Initial 1st 2nd 3rd 4th

Precision 0.610 0.614 0.613 0.616 0.688

+effect Recall 0.735 0.713 0.743 0.739 0.681

F-measure 0.667 0.672 0.672 0.672 0.684

Precision 0.717 0.728 0.716 0.717 0.712

-effect Recall 0.669 0.681 0.697 0.706 0.764

F-measure 0.692 0.704 0.706 0.712 0.732

Precision 0.556 0.562 0.559 0.559 0.565

Null Recall 0.520 0.523 0.497 0.494 0.527

F-measure 0.538 0.542 0.526 0.525 0.545

Table 14: Results of an iterative approach for Hybrid4AllFea.
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Overall for both models, the f-measure increases for both the +effect and -effect classes as

more seeds are added, mainly due to improvements in recall. The evaluation on the fixed set

is also useful in the annotation process because it trades off +/-effect vs. Null annotations.

If the new manual annotations were biased, in that they incorrectly label Null senses as

+/-effect, then the f-measure results would instead degrade on the fixed TestSet, since the

system is created each time using the increased seed set.

We now consider the accuracy of the system on the newly labeled annotated data in Step

2. Note that our method is similar to Active Learning [Tong and Koller, 2001], in that both

automatically identify which unlabeled instances the human should annotate next. However,

in active learning, the goal is to find instances that are difficult for a supervised learning

system. In our case, the goal is to find needles in the haystack of WordNet senses. In Step 3,

we add the newly labeled senses to the seed set, enabling the model to find unlabeled senses

close to the new seeds when the system is rerun for the next iteration.

We assess the system’s accuracy on the newly labeled data by comparing the system’s

labels with the annotator’s new labels. In this case, the evaluation matrix is different with

previous experiments since the purpose is different. While we evaluate suggested systems

with the same fixed test data (i.e., TestSet in Table 5) in previous experiments, we want

to estimate the performance of our proposed systems with the newly labeled data by the

system which is different each iteration. The accuracy for the +effect and -effect labels is

calculated such as:

Accuracy+effect =
# annotated +effect

# top 5% +effect data
(6.10)

Accuracy−effect =
# annotated -effect

# top 5% -effect data
(6.11)
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1st 2nd 3rd 4th

+effect 65.63% 62.50% 63.79% 59.83%

-effect 73.55% 73.97% 77.78% 70.30%

+effect 128 122 116 117

-effect 155 146 153 145

total 283 268 269 262

Table 15: Accuracy and frequency of the top 5% for each iteration.

That is, the accuracy means that out of the top 5% of the +effect (-effect) data as scored

by the system, what percentage are correct as judged by a human annotator. Table 15

shows the accuracy for each iteration in the top part and the number of senses labeled in

the bottom part. As can be seen, the accuracies range between 60% and 78%; these values

are much higher than what would be expected if labeling senses of words randomly chosen

from WordNet and are not in the original seed lexicon.

The annotator spent, on average, approximately an hour to label 100 synsets. For find-

ing new words with +/-effect usages, it would be much more cost-effective if a significant

percentage of the data chosen for annotation are senses of words that in fact have +/-effect

senses. Based on this method, we will continue to annotate +/-effect events for creating

evaluation data.

6.7 RELATED WORK

Lexicons are widely used in sentiment analysis and opinion mining. Several works such as

[Hatzivassiloglou and McKeown, 1997], [Turney and Littman, 2003], [Kim and Hovy, 2004],

[Strapparava and Valitutti, 2004], and [Peng and Park, 2011] have tackled automatic lexicon
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expansion or acquisition. However, in most such work, the lexicons are word-level rather

than sense-level.

For the related (but different) tasks of developing subjectivity, sentiment and connota-

tion lexicons, some do take a sense-level approach. [Esuli and Sebastiani, 2006] construct

SentiWordNet. They assume that terms with the same polarity tend to have similar

glosses. So, they first expand a manually selected seed set of senses using WordNet lexical

relations such as also-see and direct antonymy and train two classifiers, one for positive and

another for negative. As features, a vector representation of glosses is adopted. These clas-

sifiers are applied to all WordNet senses to measure positive, negative, and objective scores.

In extending their work [Esuli and Sebastiani, 2007], the PageRank algorithm is applied to

rank senses in terms of how strongly they are positive or negative. In the graph, each sense

is one node, and two nodes are connected when they contain the same words in their Word-

Net glosses. Moreover, a random-walk step is adopted to refine the scores in their recent

work [Baccianella et al., 2010]. In contrast, our approach uses WordNet relations and graph

propagation in addition to gloss classification.

[Gyamfi et al., 2009] construct a classifier to label the subjectivity of word senses. The

hierarchical structure and domain information in WordNet are exploited to define features

in terms of similarity (using the LCS metric in [Resnik, 1995]) of target senses and a seed

set of senses. Also, the similarity of glosses in WordNet is considered. Even though they

investigated the hierarchical structure by LCS values, WordNet relations are not exploited

directly.

[Su and Markert, 2009] adopt a semi-supervised mincut method to recognize the subjec-

tivity of word senses. To construct a graph, each node corresponds to one WordNet sense and

is connected to two classification nodes (one for subjectivity and another for objectivity) via

a weighted edge that is assigned by a classifier. For this classifier, WordNet glosses, relations,

and monosemous features are considered. Also, several WordNet relations (e.g., antonymy,

similar-to, direct hypernym, etc.) are used to connect two nodes. Although they make use

of both WordNet glosses and relations, and gloss information is utilized for a classifier, this

classifier is generated only for weighting edges between sense nodes and classification nodes,

not for classifying all senses.
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[Goyal et al., 2010] generate a lexicon of patient polarity verbs (PPVs) that impart

positive or negative states on their patients. They harvest PPVs from a Web corpus by

co-occurrence with Kind and Evil agents and by bootstrapping over conjunctions of verbs.

[Riloff et al., 2013] learn positive sentiment phrases and negative situation phrases from a

corpus of tweets with hashtag “sarcasm”. However, both of these methods are word-level

rather than sense-level.

[Feng et al., 2011] build connotation lexicons that list words with connotative polarity

and connotative predicates that exhibit selectional preference on the connotative polarity of

some of their semantic argument. To learn connotation lexicon and connotative predicates,

they adopted a graph-based algorithm and an induction algorithm based on Integer Linear

Programming. [Kang et al., 2014] present a unified model that assigns connotation polarities

to both words and senses. They formulate the induction process as collective inference over

pairwise-Markov Random Fields and apply loopy belief propagation for inference. Their

approach relies on selectional preferences of connotative predicates; the polarity of a conno-

tation predicate suggests the polarity of its arguments. We have not discovered an analogous

type of predicate for the problem we address.

Ours is the first NLP research into developing a sense-level lexicon for events that have

negative or positive effects on entities.

6.8 SUMMARY

In this chapter, we investigate methods for creating a sense-level +/-effect lexicon, called

EffectWordNet. Due to significant sense ambiguity as we mentioned in Section 4.2.2,

we develop a sense-level lexicon rather than a word-level lexicon. Also, as we mentioned in

Section 4.2.3, we focus only verbs as +/-effect events in this work.

One of our goals is to develop the method that applied to many verb synsets. Also,

another goal is to build a lexicon with a small number of seed data. In addition, we want

to investigate whether the +/-effect property tends to be shared among semantically-related

synsets.
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As we mentioned in Section 6.1, we have a small number of annotated data. We have

258 +effect annotated verb synsets, 487 -effect synsets, and 440 Null synsets. Among them,

half of each set is used as seed data in the graph-based model and training data in the

classifier, and the other half is used for evaluation. In this work, we present that our method

is promising even though the size of data is small.

We utilize WordNet resource with two assumptions: (1) each sense (or synset) has only

one +/-effect polarity and (2) +/-effect polarity tends to propagate by semantic relations

such as hierarchical information.

To utilize WordNet relations, we adopt a graph-based learning method in Section 6.3.

Since we have three labels (e.g., +effect, -effect, and Null), there are two ways to build

graphs; one way is to build one graph to represent all three labels (called UniGraph4Rel),

and another way is to build two separate graphs (i.e., one for +effect and one for -effect) and

combine them (called BiGraphSim4Rel). Also, when combining them, we can add constraints

(called BiGraphConst4Rel). As the baseline system, we adopt the majority classifier (in this

work, the majority class is -effect). As we presented in Table 7, our systems (UniGraph4Rel,

BiGraphSim4Rel, and BiGraphConst4Rel) outperforms the baseline. While the baseline

shows 0.411 as the accuracy, all our systems show over 0.6 as the accuracy. Moreover, even

though UniGraph4Rel shows better performance than BiGraphSim4Rel (i.e., combining two

separate graphs without any constraints), BiGraphConst4Rel (i.e., combining two separate

graphs with constraints) shows the best performance. Through these experiments, we know

that WordNet relations can be used for the polarity propagation. Moreover, constructing two

separate graphs and combining them with constraints is better than building only one graph

in our work. In addition, in BiGraphConst4Rel, the recall for the Null class is considerably

increased, showing that constraints not only help overall, but also are particularly important

for detecting Null cases.

For WordNet gloss information, we build a classifier with bag-of-word features and senti-

ment features called Classifier4Gloss in Section 6.4. Since +/-effect means events that have

positive or negative effect on entities, some definitions or examples already contain positive

or negative words to express a given event. In Table 9, we present that Classifier4Gloss

outperform the baseline system. Also, in our experiment, it shows better performance in all
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labels when considering sentiment words as features. It is evidence that sentiment features

are helpful to determine +/-effect classes.

To maximize the effectiveness of each type of information, we combine a graph-based

method using WordNet relations and a standard classifier using gloss information in Sec-

tion 6.5. We call such method Hybrid4AllFea. As we presented in Table 10, Hybrid4AllFea

gives the best results in +effect and -effect labels although the performance for the Null la-

bel is dropped. Moreover, we provide evidence for our assumption that different models are

needed for different information to maximize effectiveness. In Table 11, we experiment with

the supervised learning method that utilizes both WordNet relations and gloss information

and present that the graph-based model is appropriate for WordNet relation information. In

Table 12, we experiment with the graph-based learning method with not only WordNet rela-

tions but also gloss information and shows that the classifier is proper for gloss information

in our task.

Overall, BiGraphConst4Rel shows good performance for all three classes. However, as

we mentioned, we are more interested in the +effect and -effect labels than the Null label.

Thus, when considering only the +effect and -effect labels, Hybrid4AllFea shows better

performance.

Further, in Section 6.6, we provide evidence that the model is an effective way to guide

manual annotation to find +/-effect words that are not in the seed word-level lexicon. This

is important, as the likelihood that a random WordNet synset (and thus word) is +effect or

-effect is not large.
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7.0 ENHANCED EFFECTWORDNET

As we mentioned in Section 4.2.4, the information about which entities are affected is im-

portant since the sentiment can be different in opinion inferences. For instance, let’s assume

that the given event is -effect on the theme; then, if the writer’s sentiment toward the event

is positive, the sentiment toward the theme is negative and the sentiment toward the agent

is positive by opinion inference rules in Section 4. On the other hand, if the given event is

-effect on the agent, the sentiment toward the agent is negative on the assumption that

the writer’s sentiment toward the event is positive. Thus, depending on what the affected

entities are, the sentiment toward the agent is different.

Consider the following:

carry:

S1: (v) carry (win in an election) “The senator carried his home state”

⇒ +Effect toward the agent

S2: (v) carry (keep up with financial support) “The Federal Government carried the

province for many years”

⇒ +Effect toward the theme

S3: (v) carry (capture after a fight) “The troops carried the town after a brief fight”

⇒ -Effect toward the theme

In the first sense, carry has a positive effect on the agent, the senator, and in the second

sense, it has a positive effect on the theme, the province. Even though the polarity of

+/-effect is the same as +effect, the affected entity is different. In the third sense, carry has

a negative effect on the theme, the town, since it is captured by the troops.
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Like carry, a word can have a mixture of +/-effect polarities with different affected

entities. However, in Chapter 6, we didn’t consider the information about which entities are

affected. In EffectWordNet built in Chapter 6, the first and second senses of carry are

considered as the same label (i.e., +effect), and the third one is regarded as the different

label (i.e., -effect). However, as we mentioned, the sentiment can be different according to

the information about which entities are affected. Thus, the first two senses of carry should

have different labels. Of course, the third sense also should have a different label.

Moreover, events can have positive or negative effects on both the theme and the agent

with same or different polarities as we mentioned in Section 4.2.4. Consider one sense (or

synset) of take:

S: (v) take (take by force) “Hitler took the Baltic Republics”; “The army took the fort

on the hill”

In this case, took has a positive effect on the agent, Hitler or the army, but it has a

negative effect on the theme, the Baltic Republics or the fort on the hill. It should have a

different label from three senses of carry ; or it should have two labels such as one for the

agent and another for the theme.

In this chapter, to handle these problems, we construct the enhanced sense-level +/-effect

lexicon that considers the affected entities for opinion inferences. That is, we refine Ef-

fectWordNet with consideration of affected entities. We call such lexicon Enhanced

EffectWordNet. As we mentioned in Section 4.2.4, other entities which are neither the

agent nor the theme can also be affected entities. However, It is very rare. Thus, we only

consider the theme and the agent as the affected entity in this chapter.

In Chapter 6, we created the sense-level +/-effect lexicon by combining a graph-based

method for WordNet relations and a standard classifier for gloss information. Even though

the hybrid method (Hybrid4AllFea) shows the best performance on +effect and -effect labels,

generally the graph-based model (BiGraphConst4Rel) shows better performance for all three

labels (i.e., +effect, -effect, and Null). Thus, we adopt this graph model, but in this chapter,

we build four separate graphs for considering different types of affected entities.
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First, we need seed data for the graph-based model. Even though we created sense-level

+/-effect seed data in Chapter 6, this data didn’t consider the information about which

entities are affected. Thus, we conduct the additional annotation study to recognize what

the affected entities are in Section 7.1. Then, we describe our evaluation metrics in Sec-

tion 7.2. Next, we provide the framework in Section 7.3. As we mentioned, we build four

separate graphs and combine them for considering different types of affected entities. The

experiments and results are presented in Section 7.4. Finally, related work is described in

Section 7.5 and summary is given in Section 7.6.

7.1 NEW ANNOTATION STUDY

In Chapter 6, we provided manually annotated +/-effect data. It consists of 258 +effect

synsets, 487 -effect synsets, and 880 Null synsets. However, it only provided the label of

+/-effect, not the information about which entities are affected. Thus, we conduct an addi-

tional annotation study to recognize what the affected entities are. Note that we conducted

the agreement study for the annotation of agents and themes and got positive results in

Section 4.1.1. (As we presented in Table 1, for the agent annotation, we got 0.92 and 0.87

with two different measures; and for the theme annotation, we got 1.00 and 0.97.)

Since these is no affected entity information for the Null label, we only conduct the

additional annotation study for only synsets which are already annotated as +effect or

-effect labels. Figure 7 presents diagrams of the distribution of which entities are affected

for each label (i.e., +effect and -effect).

Based on this study, among +effect synsets, about 76.43% of events are +effect on the

theme and about 20.15% of events are +effect on the agent; there is one case in which there

is +effect on both the agent and the theme. About 3% of events are +effect on the other

entity, not the agent nor the theme.

Also, among -effect synsets, about 88.89% of events are -effect on the theme and about

7.4% of events are -effect on the agent; about 1.85% of events are -effect on both the agent

92



Figure 7: The distribution of which entities are affected for the +effect and -effect labels.

and the theme. About 2% of events are -effect on the other entity.

There are 16 instances which have positive or negative effects on both the agent and the

theme with different polarities. Most instances are -effect on the theme and +effect on the

agent such as defeat, win, and so on.

Even though affected entities can be neither the agent nor the theme, these are rare (i.e.

about 3% for +effect events and about 2% for -effect events). Thus, this work focuses on

+/-effect on the agent and +/-effect on the theme.

7.2 EVALUATION METRICS

As we mentioned in Chapter 6, the performance for each label is important in our task.

Thus, to evaluate for each label, we calculate precision, recall, and f-measure for all three

labels such as Section 6.2.
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The precision presents how many of detected instances are correct in each label. It is

also called as positive predictive value. The precision for a given label is calculated as:

Precisionlabel =
Number of correctly detected synsets as a given label

Number of all synsets detected as a given label
(7.1)

On the other hand, the recall indicates how many of relevant instances for each label is

detected by the system. The recall is measured as follows:

Recalllabel =
Number of correctly detected synsets as a given label

Number of all synsets of a given label in test data
(7.2)

These two measures can be used together in the f-measure to provide a single measure-

ment such as:

F-measurelabel = 2 · Precisionlabel ·Recalllabel
Precisionlabel +Recalllabel

(7.3)

We use these metrics for all experiments in this chapter.

7.3 FRAMEWORK

For creating sense-level +/-effect lexicon considering the affected entity, We adopt the same

graph-based model described in Chapter 6. Even though the hybrid method (Hybrid4AllFea)
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shows the best performance on +effect and -effect labels, generally the graph-based model

(BiGraphConst4Rel) shows better performance for all three classes (i.e., +effect, -effect, and

Null). Thus, in this chapter, we focus on the graph-based model.

Our task is slightly different from the previous task in Chapter 6. While the previous

task has three labels (i.e., +effect, -effect, Null), we have more labels because we have to

consider the information about which entities are affected.

The simply method is to build one graph to handle all cases. In this case, we have nine

labels such as +/-effect on the theme, +/-effect on the agent, +/-effect on both the agent

and the theme, +effect on the theme but -effect on the agent, -effect on the theme but

+effect on the agent, and Null.

However, since it has lots of labels, it is hard to consider all cases in one graph. Moreover,

in Chapter 6, we already presented that building two separate graphs (i.e., one for +effect

and another for -effect) and combining them with constraints is better than building one

graph for three labels (i.e., +effect, -effect, and Null). Thus, in this work, we build several

separate graphs and combine them.

First, we define five labels such as:

• +effectTheme: +effect on the theme

• -effectTheme: -effect on the theme

• +effectAgent: +effect on the agent

• -effectAgent: -effect on the agent

• Null

While we assumed that each synset can have only one label in the previous work, in this

work, each synset can have one or two labels according to rules; for example, take (take by

force) has two labels - +effectAgent and -effectTheme. (Of course, one synset cannot have

both +effectTheme and -effectTheme or both +effectAgent and -effectAgent because it is a

conflict. Also, the Null label cannot coexist with other labels; that is, if a given synset has

the Null label, it should have only one label, Null, and it cannot have another label.)

95



To handle these five labels and to allow one or two labels for each synset, we build four

separate graphs such as:

• +eTGraph: Classifying +effectTheme and Other (i.e., other four labels).

• -eTGraph: Classifying -effectTheme and Other.

• +eAGraph: Classifying +effectAgent and Other.

• -eAGraph: Classifying -effectAgent and Other.

With four separate graphs, not only can we consider all five labels (i.e., +effectTheme,

-effectTheme, +effectAgent, -effectAgent, and Null), but also we can handle a case in which

an event has positive or negative effects on both the agent and the theme with same or

different polarities. In addition, we can provide different features for each label although we

don’t present it in this work.

Then, we combine these four separate graphs as follows:

• If nodes are labeled as +effectTheme (or -effectTheme) by +eTGraph (or -eTGraph)

and Other by -eTGraph (or +eTGraph),

→ They are regarded as +effectTheme (or -effectTheme).

• If nodes are labeled as +effectAgent (or -effectAgent) by +eAGraph (or -eAGraph)

and Other by -eAGraph (or +eAGraph),

→ They are regarded as +effectAgent (or -effectAgent).

• If nodes are labeled as +effectTheme (or -effectTheme) by +eTGraph (or -eTGraph)

and -effectTheme (or +effectTheme) by -eTGraph (or +eTGraph),

→ They are deemed to be Null.

• If nodes are labeled as +effectAgent (or -effectAgent) by +eAGraph (or -eAGraph)

and -effectAgent (or +effectAgent) by -eAGraph (or +eAGraph),

→ They are deemed to be Null.

• If nodes are labeled as Other by all graphs,

→ They are considered as Null.
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7.4 EXPERIMENTAL RESULTS

For seed data of the graph model and data for evaluation, we use the annotated data in

Section 7.1. We divide this data into two equal-sized sets: one for seed data and another

for evaluation such as the previous work in Chapter 6. As we mentioned in Section 6.1, we

want to focus on +effect and -effect labels rather the Null label. Since the Null class is the

majority class based on annotated data, we need to resize the Null class to avoid it becoming

the majority class. To avoid too large a bias toward the Null class, we randomly chose half

(i.e., the Null set contains 440 synsets).

To evaluate our system, we calculate precision, recall, and f-measure for each label de-

scribed in Section 7.2. Table 16 presents the results of our suggested model (Enhanced

EffectWordNet). As a baseline system, we adopt the graph-based model (BiGraph-

Const4Rel) in Chapter 6. Table 17 shows the results of BiGraphConst4Rel. The

+effectTheme and +effectAgent labels should be compared with the +effect label since

+effectTheme and +effectAgent are the part of +effect; the -effectTheme and -effectAgent

labels should be compared with the -effect label.

Compared to BiGraphConst4Rel, Enhanced EffectWordNet shows better perfor-

mance except -effectAgent. Especially, while the precision of +effect in BiGraphConst4Rel

is 0.642, the precision of the +effectTheme and +effectAgent labels is higher (i.e., 0.739 for

+effectTheme and 0.667 for +effectAgent). Moreover, while the precision of the Null class

in BiGraphConst4Rel is 0.583, the precision of Null class in Enhanced EffectWord-

Net is 0.697, which represents a significant improvement. In addition, the -effectTheme

label presents higher recall value than the -effect label in BiGraphConst4Rel (recall of -effect

in BiGraphConst4Rel is 0.612). Even though the -effectAgent label presents lower perfor-

mance, the portion of the -effectAgent label is small as we mentioned in Figure 7 (i.e.,

7.4% of -effect events). Since we show better performance in the others (+effectTheme,

-effectTheme, +effectAgent, and Null) which account for a substantial portion, we can say

overall performance is better than BiGraphConst4Rel. Through this experiment, we can

know that considering the information about which entities are affected shows improvement.
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Enhanced EffectWordNet

Precision 0.739

+effectTheme Recall 0.667

F-measure 0.701

Precision 0.713

-effectTheme Recall 0.726

F-measure 0.719

Precision 0.667

+effectAgent Recall 0.828

F-measure 0.739

Precision 0.545

-effectAgent Recall 0.571

F-measure 0.558

Precision 0.697

Null Recall 0.690

F-measure 0.693

Table 16: Results of Enhanced EffectWordNet.
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BiGraphConst4Rel

Precision 0.642

+effect Recall 0.680

F-measure 0.660

Precision 0.779

-effect Recall 0.612

F-measure 0.686

Precision 0.583

Null Recall 0.695

F-measure 0.634

Table 17: Results of BiGraphConst4Rel in Chapter 6.

7.5 RELATED WORK

As we mentioned in Chapter 6, lexicons are widely used in sentiment analysis and opinion

extraction. There are several previous works to acquire or expand sentiment lexicons such

as [Kim and Hovy, 2004], [Strapparava and Valitutti, 2004], [Esuli and Sebastiani, 2006],

[Gyamfi et al., 2009], [Mohammad and Turney, 2010] and [Peng and Park, 2011]. Such

sentiment lexicons are helpful for detecting explicitly stated opinions, but are not sufficient

for recognizing implicit opinions. Inferred opinions often have opposite polarities from the

explicit sentiment expressions in the sentence; explicit sentiments must be combined with

+/-effect event information to detect implicit sentiments.

There are a few previous works closest to ours. [Feng et al., 2011] build connotation

lexicons that list words with connotative polarity and connotative predicates. [Goyal et al.,

2010] generate a lexicon of patient polarity verbs that imparts positive or negative states on

their patients. [Riloff et al., 2013] learn a lexicon of negative situation phrases from a corpus

of tweets with hashtag “sarcasm”.
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Our work is complementary to theirs in that their acquisition methods are corpus-based,

while we acquire knowledge from lexical resources. Further, all of their lexicons are word

level while ours are sense level. Finally, the types of entries among the lexicons are related

but not the same. Ours are specifically designed to support the automatic recognition of

implicit sentiments in text that are expressed via implicature.

7.6 SUMMARY

In this chapter, we present a graph-based method for constructing a sense-level +/-effect

lexicon with consideration of affected entities called Enhanced EffectWordNet. Ef-

fectWordNet built in Chapter 6 is a sense-level +/-effect lexicon without the information

about which entities are affected. However, as we mentioned, the information about which

entities are affected is important since the sentiment can be different in opinion inferences.

Thus, we refine EffectWordNet with consideration of affected entities. In this chapter,

we only consider the theme and the agent as the affected entity.

As we mentioned in Section 7.1, we had a small number of annotated data. Among 258

+effect synsets built in Chapter 6, 197 synsets (76.43%) are +effect on the theme and 52

synsets (20.15%) are +effect on the agent; there is one case in which there is +effect on both

the agent and the theme. Also, among 487 -effect synsets, 433 synsets (88.89%) are -effect

on the theme and 36 synsets (7.4%) are -effect on the agent; 9 synsets (1.85%) are -effect

on both the agent and the theme. There are 16 instances which have positive or negative

effects on both the agent and the theme with different polarities. Among them, half of each

set is used as seed data in the graph model, and the other half is used for evaluation. In this

work, we present that our method is promising even though the size of data is small.

We first define five labels such as +effectTheme, -effectTheme, +effectAgent,

-effectAgent, and Null. Then, we assume that each synset can have one or two labels under

no conflict (e.g., +effectTheme and -effectAgent). To handle these five labels and to allow

one or two labels for each synset, we build four different graphs for each label except the
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Null label using WordNet relations and then combine them according to rules in Section 7.3.

Note that we already presented that building separate graphs and combining them with

constraints is better than building one graph for three labels in Chapter 6.

In Section 7.4, we present that Enhanced EffectWordNet achieves good perfor-

mance, which is generally better than BiGraphConst4Rel in Chapter 6. It represents that

considering the information about which entities are affected is helpful to construct more

refined sense-level +/-effect lexicon.
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8.0 COARSE-GRAINED +/-EFFECT WORD SENSE DISAMBIGUATION

In Chapter 6 and Chapter 7, we developed a sense-level +/-effect lexicon due to significant

sense ambiguity as we mentioned in Section 4.2.2. The sense of the word in context affects

whether (or which) inference should be made. Consider the following example:

(4) Oh no! The voters passed the bill.

The meaning of pass in (4) is the following:

S3: (v) legislate, pass (make laws, bills, etc. or bring into effect by legislation)

Under this sense, pass is, in fact, +effect for its theme. But, consider (6):

(6) Oh no! They passed the bridge.

In this context, the sense of pass is:

S2: (v) travel by, pass by, surpass, go past, go by, pass (move past)

This type of passing event does not (in itself) positively or negatively affect the thing

passed (bridge). That is, it is Null, not +effect nor -effect. This use of pass does not

warrant the inference that the writer is negative toward the bridge. These examples illus-

trate that exploiting +/-effect event information for sentiment inference requires Word Sense

Disambiguation (WSD).
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In this chapter, we focus on +/-effect WSD, which is important for opinion inferences to

extract implicit opinions. Thus, the goal of this chapter is to show that we can effectively

identify the +/-effect events in a given text. Since our task is new, the architecture is

different from typical WSD systems.

We address the following task: given +/-effect labels of senses, determine whether an

instance of a word in the corpus is being used with a +effect, -effect, or Null sense. Consider

a word W, where senses {S1, S3, S7} are -effect; {S2} is +effect; and {S4, S5, S6} are Null.

For our purposes, we do not need to perform fine-grained WSD to pinpoint the exact sense;

to recognize that an instance of W is -effect, for example, the system only needs to recognize

that W is being used with one of senses {S1, S3, S7}. Thus, we can perform coarse-grained

WSD, which is often more tractable than fine-grained WSD.

Though supervised WSD is generally the most accurate method, we do not pursue a

supervised approach, because the amount of available sense-tagged data is limited. Instead,

we conduct a knowledge-based WSD method that exploits WordNet relations and glosses

(described in Section 2.1). We use sense-tagged data (SensEval-3) only as gold-standard

data for evaluation.

Our WSD method is based on selectional preferences, which are preferences of verbs to

co-occur with certain types of arguments [Resnik, 1996, Rooth et al., 1999, Van de Cruys,

2014]. We hypothesize that preferences would be fruitful for our task, because +/-effect is a

semantic property that involves affected entities. Consider the following WordNet informa-

tion for climb:

climb:

S1: (v) climb, climb up, mount, go up (go upward with gradual or continuous progress)

“Did you ever climb up the hill behind your house?” Null

S2: (v) wax, mount, climb, rise (go up or advance) “Sales were climbing after prices were

lowered” +effect

S3: (v) climb (slope upward) “The path climbed all the way to the top of the hill” Null

S4: (v) rise, go up, climb (increase in value or to a higher point) “prices climbed steeply”;

“the value of our house rose sharply last year” +effect
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Senses S1 & S3 are both Null. We expect them to co-occur with hill and similar words

such as ridge and mountain. And, we expect such words to be more likely to co-occur with

S1 & S3 than with S2 & S4. Senses S2 & S4 are both +effect, since the affected entities are

increased. We expect them to co-occur with sales, prices, and words similar to them. And,

we expect such words to be more likely to co-occur with S2 & S4 than with S1 & S3. This

example illustrates the motivation for using selectional preferences for +/-effect WSD.

We model sense-level selectional preferences using topic models, specifically Latent

Dirichlet Allocation (LDA) [Blei et al., 2003]. We utilize LDA for modeling relations between

sense groups and their arguments, and then carry out coarse-grained +/-effect WSD by com-

paring the topic distributions of a word instance and candidate sense groups and choosing

the sense group that has the highest similarity value. Because selectional preferences are

preferences toward arguments, the method must create a set of arguments to consider for

each sense group. We exploit information in WordNet for automatically defining sets of

arguments.

The system carries out WSD by matching word instances to sense groups. While the

obvious way to group senses is simply by +/-effect label, the system does not need to group

senses in this way. We experiment with a clustering process that allows more than one sense

group with the same label for a given word. The motivation for allowing this is that there

may be subsets of senses that have the same +/-effect label, but which are more similar

to each other than they are to the other senses with the same +/-effect label. We also

experiment with using mixtures of manually and automatically assigned sense labels in this

clustering process, exploiting the results presented in Chapter 6 for automatically assigning

+/-effect labels to verb synsets in WordNet.

In this chapter, we first explain the gold-standard data for evaluation in Section 8.1

and describe our evaluate metrics in Section 8.2. Then, our task is defined in Section 8.3.

The detail method of creating the WSD system is described in Section 8.4, and the experi-

ments and results are presented in Section 8.5. Finally, we discuss related work in Section 8.6

and describe our summary in Section 8.7. We are preparing to submit a journal for this work.
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8.1 DATA

For evaluation, the Senseval-31 English lexical sample task data is used. It provides

training and test data for 57 words out of which 32 are verbs. Since we consider only verbs

as +/-effect events in this work, we only utilize the verb data. We adopt the Senseval-3

test data as our test data, which has a total of 1,978 instances for the 32 verbs.

To complete the gold standard, +/-effect labels are required. Although we provide our

annotated data in Chapter 6, that data does not include the 32 verbs in the Senseval-3 data.

Thus, we manually annotate the senses of all 32 verbs as +effect, -effect, or Null. The total

number of synsets is 246. We follow the annotation scheme described in Section 4.1.1, which

was found to lead to good inter-annotator agreement (0.84 percent agreement and 0.75 κ

value reported in the previous study - Section 5.5). Our annotation rate was approximately

100 senses per hour. Note that sense labeling requires much less effort than creating sense-

tagged training data, and can be viewed as a manual augmentation of WordNet, which was

itself manually created. For future additional annotations, Section 6.6 give a method for

guided manual annotation, where the model identifies unlabeled words that are likely to

have +/-effect senses.

According to the manual annotations, among 246 synsets, 49 synsets (19.9%) are +effect,

36 synsets (14.6%) are -effect, and the rest (65.6%) are Null. Among 32 verbs, two verbs

have +effect, -effect, and Null synsets, and 20 verbs have Null and one of +/-effect synsets.

Thus, we see that 68.75% (22/32) of the verbs chosen for inclusion in Senseval-3 require

sense disambiguation to determine +/-effect labels for word instances.

Based on the sense labels, labels are assigned to the Senseval-3 data to create the

gold standard used as test data in all the experiments reported in this work. The test data

consists of 467 +effect, 108 -effect, and 825 Null instances.

1Senseval-3, http://www.senseval.org/

105



8.2 EVALUATION METRICS

In this chapter, we calculate the accuracy, precision, recall, and f-measure to evaluate our

system such as Chapter 6. The accuracy is the degree of closeness of detected value to an

actual or correct value. It is calculated as follows:

Accuracy =
Number of correctly detected synsets

Number of all synsets in test data
(8.1)

As we mentioned, with the accuracy, we cannot evaluate the performance for each label.

For example, if there is a predominant class, the base rate is close to the accuracy of predicting

the predominant class. In this case, even though the performances for other labels that are

not predominant labels are not good, the accuracy can be high. In our task, not only the

accuracy but also the performance for each label is important. Thus, to evaluate for each

label, we calculate precision, recall, and f-measure for all three labels.

The precision presents how many of detected instances are correct in each label. It is

also called as positive predictive value. The precision for a given label is calculated as:

Precisionlabel =
Number of correctly detected synsets as a given label

Number of all synsets detected as a given label
(8.2)

On the other hand, the recall indicates how many of relevant instances for each label is

detected by the system. The recall is measured as follows:
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Recalllabel =
Number of correctly detected synsets as a given label

Number of all synsets of a given label in test data
(8.3)

These two measures can be used together in the f-measure to provide a single measure-

ment such as:

F-measurelabel = 2 · Precisionlabel ·Recalllabel
Precisionlabel +Recalllabel

(8.4)

8.3 TASK DEFINITION

The task addressed in this chapter is to recognize whether word instances in a corpus are

used with +effect, -effect, or Null senses. Specifically, the gold standard consists of pairs

〈w, l〉, where w is an instance of word W in the corpus, and l is w’s label, meaning that w

is a use of W with a sense whose label is l. In this work, the gold standard is created by

combining sense-tagged (Senseval) data and +/-effect sense labels as follows: 〈w, l〉 in our

gold standard means that w has sense label Ws, and Ws has +/-effect label l.

For example, the label for the instance of pass in (4) is +effect, because the sense is S3,

and S3 has the label +effect.
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8.4 +/-EFFECT WORD SENSE DISAMBIGUATION SYSTEM

This section describes our method for building a selectional-preference +/-effect coarse-

grained WSD system, given a resource such as WordNet and +/-effect labels on word senses.

In the first step, a coarse-grained sense inventory is constructed, by grouping senses

(Section 8.4.1). The ultimate WSD system will assign each word instance in the corpus to

one of the sense groups. For final evaluation, a word instance w that the WSD system has

assigned to any sense group with label l is mapped to the pair 〈w, l〉, for comparison with the

gold standard. The obvious grouping is simply by +/-effect labels: one group for the +effect

senses, one for the -effect senses, and one for the Null senses. Alternatively, there may be

multiple groups for a single label, where the senses in a group are more closely related to each

other than they are to other senses with the same label. Our hypothesis for experimenting

with variable grouping (i.e., allow more than one sense group with the same label for a given

word) is that an effective method could be developed for creating a more fine-grained sense

inventory customized to our task that would result in more accurate WSD performance.

Once the sense inventory is created, a model of selectional preferences for the sense groups

is developed. Selectional preferences are preferences toward arguments. Thus, we have to

identify a set of arguments for each group (Section 8.4.2). For example, suppose that S2 and

S4 of climb are one sense group. The arguments for this group include nouns extracted from

their glosses (sales, prices, etc.) together with others found by WordNet relation expansion.

The final step in creating the WSD system is to model relations between sense groups and

arguments to capture selectional preferences using LDA modeling (Section 8.4.3). This step

defines argument class distributions, where the classes are hidden variables.

Finally, these distributions are exploited to perform WSD, as described in Section 8.4.4.

8.4.1 Sense Grouping

Performing coarse-grained WSD has the advantage that individual senses are aggregated,

providing more information about each coarse-level sense.
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For each word, senses can be simply grouped by label. However, a problem is that senses

with the same +/-effect label but with very different selectional preferences are forced into

the same group, making them indistinguishable to the WSD system. For instance, one sense

of carry is win in an election and another is keep up with financial support. Though both

are +effect, they have very different arguments. Nevertheless, they are forced into the same

group. Because such groups contain several types of arguments, they can confuse the LDA

models.

Thus, we adopt sense clustering to allow multiple groups with the same label, which can

benefit the LDA models because each sense group can have purer arguments. The process

is as follows:

1. Features are extracted from WordNet.

2. Senses are clustered based on the features.

3. Labels are assigned to clusters.

The features represent the absence or presence of the following words: words in the synset

and the gloss for synset Si; words in the synsets and the glosses for all Si’s hypernyms (i.e.,

more general word synsets); words in the synsets and the glosses of Si’s troponyms (i.e.,

more specific word synsets); words in the synsets and the glosses of Si’s verb groups (i.e.,

verb synsets with similar meanings).

For sense clustering, we adopt Expectation Maximization (EM) [Dempster et al., 1977] as

implemented in the Weka library2, which is modeled as a mixture of Gaussians. It follows an

iterative approach to find the parameters of the probability distribution. In each iteration,

the E-step (Expectation) estimates the probabilities of each data belong to each cluster, and

the M-step (Maximization) estimates the parameter of the probability distribution of each

cluster. In Weka, EM assigns a probability distribution to each instance, the probability of

it belonging to each cluster. Further, EM selects the number of clusters automatically by

maximizing the log-likelihood. It begins with one cluster and continues to add clusters until

the estimated log-likelihood is decreased such as:

2Weka3, http://www.cs.waikato.ac.nz/ml/weka/
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• Step1: The number of clusters is set to 1

• Step2: The data is split randomly into 10 folds, and EM is performed once for each fold.

• Step3: If the log likelihood, averaged over the 10 folds, increased, the number of clusters

is increased by 1 and go to step 2. Otherwise, terminate.

After clustering, labels are assigned to clusters as follows. If all or a majority of senses

in a cluster have the same label, then the cluster is assigned that label. If there is not a

majority, then the cluster is labeled Null.

8.4.2 Arguments for Selectional Preferences

After grouping senses, arguments for each sense group must be extracted to exploit selectional

preferences. Gloss information (definitions and examples) and semantic relations in WordNet

are utilized.

We first combine gloss information of all senses in each sense group SGk. Since glosses

are not long, we consider all nouns in the combined glosses as arguments of the given sense

group. We call this noun set N .

We also consider arguments gleaned from senses related to those in the sense group.

While such arguments are less tightly coupled to the senses they are being extracted for,

we hypothesize that, on balance, having a larger number of arguments may improve overall

performance.

Let commonSynset(word1, word2) be True if there is at least one synset that contains a

sense of word1 and a sense of word2. We add all words new for which

commonSynset(n, new) for some n ∈ N . The synset relation is the closest relationship

between senses in WordNet, so we anticipate that adding these new arguments would be a

conservative way to increase recall.
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Going one step further, we consider WordNet verb relations for sense Si in each sense

group SGk because we hypothesize that the super-subordinate relations can provide richer

information. All nouns in glosses of hypernyms and troponyms of Si are extracted and added

to the argument set. In addition, the argument set contains all nouns in glosses of the senses

that are in the same verb group with Si. Generally speaking, the coverage of WordNet verb

groups is not large, but the relations are reliable.

8.4.3 Topic Model

To model relations between sense groups and arguments for each +/-effect event, we adopt

LDA, which is a generative model that discovers similarities in data using latent variables. It

was introduced to model a set of documents in terms of topics, representing the underlying

semantic structure of a document collection. In this work, sense groups play the role of

documents, arguments play the role of terms, and argument classes play the role of topics in

traditional usage of LDA. That is, rather than modeling relations between documents and

terms, we model relations between sense groups and arguments. One advantage of LDA is

argument classes need not be pre-defined, since LDA discovers these classes automatically.

We adopt a variant of LDA suggested by [Griffiths and Steyvers, 2002, Griffiths and Steyvers,

2003, Griffiths and Steyvers, 2004].

Figure 8 shows the graphical model of our proposed topic model. Arrows represent

conditional dependencies between variables. SG is a set of sense groups, Nsg is a set of

arguments for each sense group sg, and C is a set of argument classes, which are hidden

variables being discovered by the model.

Each sense group sg has a corresponding multinomial distribution Θsg over latent argu-

ment classes c. Distribution Θsg is defined from a Dirichlet distribution with prior parameter

α. Each argument class c also has a corresponding multinomial distribution Φc over argu-

ments n. Distribution Φc is defined from a Dirichlet with prior parameter β. To generate

an argument n, a hidden argument class c is first chosen by Θsg, and then an argument n is

chosen from Φc. The formal process is as follows:
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Figure 8: Plate notation representing our topic model.

1. Choose Θsg ∼ Dir(α), where sg ∈ SG and Dir(α) is the Dirichlet distribution for

parameter α.

2. Choose Φc ∼ Dir(β), where c ∈ C.

3. To generate an argument,

a. Draw a specific argument class c ∼ Θsg

b. Draw an argument n ∼ Φc

In this model, the main variables are the argument distribution Φ for each argument class

and the argument class distribution Θ for each sense group. They can be estimated directly,

but this approach can get stuck in a local maximum of the likelihood function. Another

method is to directly estimate the posterior distribution over argument class c [Steyvers and

Griffiths, 2007]. For posterior inference, we use Gibbs sampling, which has been shown to be

a successful inference method for LDA [Griffiths and Steyvers, 2004]. It sequentially samples

variables from their distribution conditioned on the current values of all other variables.

With these samples, we can approximate the posterior distribution.
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For the implementation, we use the Mallet library3 and use its default setting that as-

sumes seven topics.

8.4.4 Word Sense Disambiguation

The topic model defines argument class distributions for each sense group. Let Dk be the

argument class distribution of SGk.

To disambiguate word instance W in the corpus, the nouns within a window size of five

are extracted to serve as its arguments. We create a test instance with these nouns and

obtain the argument class distribution of W by the topic model described above. Let this

distribution be DW .

We hypothesize that arguments can help determine the +/-effect polarity of senses for

the given word. Each word can have several meanings, and the polarity can be different

according to the meanings. We can distinguish these meanings based on their arguments.

That is, our assumption is that if senses of W have similar types of arguments, they have

the same +/-effect polarity. Thus, the system chooses the sense group that has the highest

similarity value to DW , since similar types of arguments can be expected to show similar

argument class distributions. In particular, similarity is assessed as the cosine value between

the distribution vectors DW and Dk, for all Dk, and the k for which similarity is highest is

selected. That is, if DW has higher similarity value with D3 than the others, SG3 is selected.

Finally, W is assigned the label of SGk as its +/-effect label.

8.5 EXPERIMENTS

In this section, we first describe baselines for comparison in Section 8.5.1. We provide our

experimental results in Section 8.5.2, and then we present the role of word sense clustering

3Mallet, http://mallet.cs.umass.edu/topics.php
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in Section 8.5.3. Finally, we show the role of manual (vs. automatic) +/-effect sense labels

in Section 8.5.4.

8.5.1 Baselines

As one baseline system, we adopt WordNet::SenseRelate::TargetWord,4 which is an unsuper-

vised WSD method that is freely available [Patwardhan et al., 2005]. In the table of results,

this system is referred to as BL1:SenseRelate. Because it performs unsupervised WSD, it

does not require sense-tagged training data. Since it is a WSD method, its output is a sense.

Thus, after running it, we assign +/-effect labels based on the manually annotated senses

described in Section 8.1. Among 1,978 instances in the test data, it does not provide any

sense information for 691 instances (34.93%).

Another system is GWSD (BL2:GWSD), which is an unsupervised graph-based WSD

system developed by [Sinha and Mihalcea, 2007]5. Since its output is also a sense, we assign

+/-effect labels based on the manually annotated senses similar to the strategy used for the

previous baseline. When we run GWSD, we select the verbs as the target part of speech,

Leacock & Chodorow (lch) as the similarity metric used to build the graph, six for the

window size, and indegree for the graph centrality measure (indegree was found to have a

performance comparable to other more sophisticated measures, and it is more efficient).

The other baseline system, called Majority Baseline simply chooses the majority class

(Null).

8.5.2 Experimental Results

We evaluate our system for two verb sets: All consists of all 32 verbs and Conf contains the

22 verbs with +/-effect ambiguity.

4WordNet::SenseRelate, http://senserelate.sourceforge.net/
5GWSD, https://web.eecs.umich.edu/˜mihalcea/downloads.html
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Table 18 shows results for the Majority baseline, BL1:SenseRelate, BL2:GWSD, and our

system. It gives accuracy, precision (P), recall (R), and f-measure (F) for all three labels.

While BL1:SenseRelate has the highest +effect precision and Majority baseline has the

highest Null recall (as it assigns everything to the Null class), our system is substantially

better on all other measures.

As we mentioned in Section 8.5.1, two baseline systems (except Majority) did not detect

any sense information for many instances, so their recall is low. Nevertheless, they show

high +effect and Null precision. In addition, in BL2:GWSD, Null precision is quite good.

However, our system outperforms them. It shows high recall scores for all three labels

and the best accuracy score. Moreover, our system is better at detecting -effect events than

all three baselines. In fact, the overall accuracy is 0.83 and all three f-measures are over 0.78,

representing a good performance for a WSD approach that is not supervised.

Table 19 and Table 20 shows the role of argument types. As we explained in Section 8.4.2,

we utilize gloss information and semantic relations in WordNet to extract arguments for se-

lectional preferences. All cases of arguments are as follows:

• ArgSet1: All nouns (Ns) in gloss information of senses S in each sense group.

• ArgSet2: Case1 + synsets of Ns.

• ArgSet3: Case2 + all nouns in gloss information of hypernyms of S.

• ArgSet4: Case2 + all nouns in gloss information of troponyms of S.

• ArgSet5: Case2 + all nouns in gloss information of verb groups of S.

Table 19 presents the performance of each argument type and all of them. Based on our

experiments, we get the best result with the combination of ArgSet1, ArgSet2, and ArgSet5.

Table 20 shows the results of backward-ablation. We can know that each argument type is

helpful to our task even though the difference is not big.
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Majority BL1:SenseRelate BL2:GWSD Our Method

All Conf All Conf All Conf All Conf

Accuracy 0.701 0.625 0.535 0.519 0.499 0.425 0.880 0.833

+effect

P 0.807 0.814 0.568 0.534 0.791 0.776

R 0.000 0.000 0.449 0.469 0.368 0.344 0.808 0.794

F 0.577 0.595 0.447 0.418 0.799 0.785

-effect

P 0.620 0.438 0.556 0.410 0.943 0.921

R 0.000 0.000 0.220 0.130 0.425 0.313 0.817 0.759

F 0.325 0.200 0.482 0.355 0.875 0.832

Null

P 0.701 0.625 0.804 0.773 0.834 0.736 0.909 0.856

R 1.000 1.000 0.606 0.650 0.550 0.477 0.914 0.864

F 0.824 0.769 0.691 0.706 0.663 0.579 0.911 0.860

Table 18: Experimental results for All and Conf set.
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+effect -effect

P R F P R F

ArgSet1 0.775 0.794 0.784 0.921 0.759 0.832

ArgSet2 0.773 0.791 0.782 0.921 0.759 0.832

ArgSet3 0.767 0.791 0.779 0.921 0.759 0.832

ArgSet4 0.726 0.804 0.763 0.921 0.759 0.832

ArgSet5 0.772 0.836 0.803 0.921 0.759 0.832

ArgAll(ArgSet1-5) 0.776 0.794 0.785 0.921 0.759 0.832

Best(ArgSet1,2,5) 0.778 0.838 0.807 0.921 0.759 0.832

Null Accuracy

P R F

ArgSet1 0.856 0.863 0.860 0.832

ArgSet2 0.855 0.862 0.858 0.831

ArgSet3 0.854 0.857 0.856 0.828

ArgSet4 0.855 0.822 0.838 0.811

ArgSet5 0.876 0.854 0.865 0.841

ArgAll(ArgSet1-5) 0.856 0.864 0.860 0.833

Best(ArgSet1,2,5) 0.877 0.858 0.868 0.844

Table 19: Performance of argument types on the Conf set.
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+effect -effect

P R F P R F

ArgAll(ArgSet1-5) 0.776 0.794 0.785 0.921 0.759 0.832

ArgAll - ArgSet1 0.766 0.796 0.781 0.921 0.759 0.832

ArgAll - ArgSet2 0.755 0.800 0.777 0.921 0.759 0.832

ArgAll - ArgSet3 0.770 0.814 0.791 0.921 0.759 0.832

ArgAll - ArgSet4 0.773 0.812 0.792 0.921 0.759 0.832

ArgAll - ArgSet5 0.768 0.810 0.788 0.921 0.759 0.832

Null Accuracy

P R F

ArgAll(ArgSet1-5) 0.856 0.864 0.860 0.833

ArgAll - ArgSet1 0.856 0.856 0.856 0.829

ArgAll - ArgSet2 0.857 0.847 0.852 0.825

ArgAll - ArgSet3 0.865 0.856 0.861 0.835

ArgAll - ArgSet4 0.864 0.858 0.861 0.836

ArgAll - ArgSet5 0.863 0.855 0.859 0.833

Table 20: The results of backward-ablation.
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8.5.3 The Role of Word Sense Clustering

As described above, sense groups can be simply grouped by a label. That is, each word

has one sense group for each label. In this case, each word can have at most 3 groups:

+effect, -effect, and Null. We call such method the fixed sense grouping. Table 21 shows the

result of the fixed sense grouping (Fixed) based on manually annotated senses described in

Section 8.1. It also includes results for full fine-grained WSD (No Group). The same gold

standard test set continues to be used for all experiments and only the Conf set is evaluated.

As expected, accuracy and all f-measures are the worst for fine-grained WSD, where no

sense grouping is performed. Also, accuracy and all f-measures are substantially better than

Fixed after automatically refining the system’s sense inventory via clustering.

Following is an example illustrating how clustering can improve performance. Consider

suspend, which has 5 -effect senses and 1 Null sense. Following are examples from Senseval-

3. The sense in Ex1-Ex2 is S3, bar temporarily. The sense in Ex3-Ex4 is S5, make inoperative

or stop.

(Ex1) S3 He was later suspended for two European games for unsporting behaviour.

(Ex2) S3 He was suspended for two years after he tested positive for drugs when finishing

second in the 1988 New York race.

(Ex3) S5 France is to suspend nuclear tests at its South Pacific atoll site, Mururoa,

this year, M Pierre Beregovoy, Prime Minister, said in his inaugural speech to parliament

yesterday.

(Ex4) S5 That was good enough to prompt Gordon Taylor, the PFA chief executive, to

suspend the threat of industrial action.

S3 and S5 are both -effect, so fixed sense grouping forces them into the same group. But

the contexts in which S3 and S5 are used are different, and the topic model must contend

with one -effect group which includes quite varied contexts (sports related, politics related,

etc.). In fact, the system incorrectly labels Ex3 as Null when the fixed sense groupings are

used. With clustering, the system gets all of Ex1-Ex4 correct. A singleton cluster is correctly
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No Group Fixed Our Method

Accuracy 0.585 0.758 0.833

+effect

Precision 0.502 0.689 0.776

Recall 0.699 0.743 0.794

F-measure 0.584 0.715 0.785

-effect

Precision 0.500 0.638 0.921

Recall 0.798 0.815 0.759

F-measure 0.615 0.716 0.832

Null

Precision 0.713 0.824 0.856

Recall 0.490 0.760 0.864

F-measure 0.581 0.791 0.860

Table 21: Comparison among fine-grained WSD (No Groups), a fixed number of sense

groups (Fixed), and a variable number of sense groups (Our Method) on Conf set.
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Precision Recall F-measure

+effect 0.776 0.794 0.785

-effect 0.921 0.759 0.832

Null 0.856 0.864 0.860

Overall 0.833 0.833 0.833

Table 22: Precision, Recall, and F-measure figures broken down per +/- effect.

created for the Null sense (suspension in a fluid). S3 and S5 are placed into separate groups

with other senses. With these purer sense groups, the topic model is able to better model

the selectional preferences and provide more accurate results.

8.5.4 The Role of Manual +/-Effect Sense Labels

Recall that the WSD system assigns the same label to all the senses in a cluster (the majority

label, or Null if there isn’t one). In Section 8.5.2 and Section 8.5.3, we used manually labeled

sense data explained in Section 8.1. While sense labeling requires much less labor than sense

tagging corpora, it is still desirable not to require full manual sense tagging. In this section,

we also utilize EffectWordNet described in Chapter 6, which automatically labels all

verb senses with +/-effect labels.

Figure 9 presents a learning curve with increasing percentages of (randomly selected)

manual sense labels to determine cluster labels. We only show results for variable sense

grouping because we carried out experiments on Conf set using 100% automatic labels

comparing fixed versus variable sense grouping, and found that performance is much better

with variable sense grouping.

On the left, 100% of the labels are automatic. Accuracy is 57.7% which is lower than

the 84.4% accuracy reported in Table 18, when 100% of the manual labels are used. The

f-measures are lower as well (51 < 78.5 for +effect; 80 < 83.2 for -effect; and 62 < 86.0 for
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Figure 9: Learning curve on Conf with increasing percentages of manual sense annotations.

Null). Fortunately, with only 65% of manually annotated senses, we are close to maximum

performance; with 80%, we reach the maximum performance. This suggests that, until all

verbs have been manually labeled, good performance can still be obtained using some auto-

matic labels to fill out coverage.

8.6 RELATED WORK

Several methods for WSD have been developed. We can distinguish WSD approaches into

three parts: supervised WSD, unsupervised WSD, and knowledge-based WSD. The super-

vised WSD approaches use machine learning techniques, and in most tasks, they treat it as

a classification problem [Mooney, 1996, Ng, 1997, Agirre and Mart́ınez, 2000, Lee and Ng,

2002, Klein et al., 2002, Tsatsaronis et al., 2007]. The classifier is trained with training data

in order to assign the appropriate sense to a given word. Generally, supervised WSD ap-

proaches show better performance than other methods as in [Navigli, 2009]. However, since

they need labeled data as training data, it requires lots of human efforts for large coverage.
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The unsupervised WSD approaches can overcome the lack of large-scale annotated data.

This method is based on the idea that the same sense will have similar context. So, they auto-

matically group words which have similar context and assign labels to each cluster. [Patward-

han et al., 2005] and [Pedersen and Kolhatkar, 2009] found the sense based on the semantic

relatedness between a target word and its neighbors. [Agirre et al., 2006] built a co-occurrence

graph and performed HyperLex [Véronis, 2004] and PageRank

[Brin and Page, 1998] algorithm for WSD. [Klapafits and Manandhar, 2010] used a hi-

erarchical structure in which vertices are the contexts of a word and edges represent the

similarity between contexts and applied the Hierarchical Random Graphs for inferring it.

The knowledge-based approaches rely on the use of external lexical resources such as

dictionaries and ontologies. These methods usually have lower performance than supervised

methods, but they have a wider coverage. [Lesk, 1986] presented the gloss overlap approach.

[Banerjee and Pedersen, 2003] introduced the extended gloss overlap, which expands the

gloss information using WordNet relations. [Basile et al., 2014] proposed an enhanced Lesk

method; the sense is selected by the distribution similarity between the gloss and context

using BabelNet [Navigli and Ponzetto, 2012], which is large semantic network exploiting both

WordNet and Wikipedia. Carroll and McCarthy [Carroll and McCarthy, 2000, McCarthy

and Carroll, 2003] utilized selectional preference information. They showed that although

the effect of selectional preferences is not huge, it can improve coverage and recall. [Mihalcea,

2004] built a graph that consists of all possible senses of words and connects two nodes when

they have the same hypernym. They applied PageRank to this graph and selected the highest

ranking sense. [Navigli and Lapata, 2010] also presented a study of graph-based WSD; nodes

in a graph are senses, and edges are WordNet relations. [Chen et al., 2014] presented the

unified model for joint word sense representation and disambiguation.

Recently, topic models are utilized for WSD. [Cai et al., 2007] used topic models for

exploiting the global context. After developing topic models from a unlabeled large corpus,

they combined it and other features and applied a supervised method. [Boyd-Graber et al.,

2007] developed LDA with WordNet (LDAWN) where the sense of the word is a hidden

variable. The multinomial topic distribution is replaced with a WordNet-Walk, which is a

probabilistic process of word generation based on the hyponymy relationships. [Li et al.,
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2010] presented a probabilistic model for WSD. They compared the topic distribution of a

target with the sense candidates and chose the best one. We also use an LDA model, but to

exploit knowledge-based selectional preferences for coarse-grained WSD.

8.7 SUMMARY

In this chapter, we investigate +/-effect WSD approach, which identifies the +/-effect of a

word sense based on its surrounding context. Our goal is to show that we can effectively

identify the +/-effect events in a given text, which is different from typical WSD systems.

Since our purpose is to determine whether an instance of a word in the corpus is being

used with a +effect, -effect, or Null sense, we do not need to perform fine-grained WSD

to pinpoint the exact sense. Thus, we perform coarse-grained WSD, which is often more

tractable than fine-grained WSD. Moreover, because the amount of available sense-tagged

data is limited, we conduct a knowledge-based WSD method, that exploits WordNet relations

and glosses, rather than supervised WSD. That is, our method does not require any sense-

tagged training data. We use SensEval-3 as gold-standard data for evaluation, as we

mentioned in Section 8.1.

As we described in Section 8.4, the method we propose relies on selectional preferences.

Selectional preferences are modeled using LDA. We use automatic clustering based on the

preference arguments, which is extracted from WordNet information, to create a sense in-

ventory customized to our task.

Through several experiments in Section 8.5, we show that our method achieves very good

performance, with an overall accuracy of 0.83, which represents a significant improvement

over three competitive baselines. In +effect label, even though the precision in one baseline

(BL1:SenseRelate) is higher than our method, we show a significant improvement in the

recall. In -effect label, our method outperforms all baseline systems with all measures. With

a majority baseline, since the majority is Null, the recall of Null is 1.0. Although our system

has lower recall, we show better precision and f-measure. Also, we show that each argument
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type as selectional preferences is helpful to our task.

Moreover, we present the role of word sense clustering in Section 8.5.3. In our experi-

ments, the variable sense grouping (i.e., allow more than one sense group with the same label)

outperforms the fixed sense grouping (i.e., one sense group for each label) and fine-grained

WSD (i.e., no grouping). Since it can have purer sense groups with the variable sense group-

ing, the topic model is able to better model the selectional preferences and provide more

accurate results.

In addition, in Section 8.5.4, we show that good performance can still be obtained using

some automatic labels to fill out coverage.
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9.0 JOINT EXTRACTION OF +/-EFFECT EVENTS AND

AFFECTED ENTITY

The ultimate goal of the opinion inference system is to develop a fully automatic system

capable of recognizing inferred attitudes such as +/-effect events and affected entities. This

information is necessary for not only opinion inferences but also connotation frames intro-

duced by [Rashkin et al., 2016].

Consider the sentence (3):

(3) The bill would curb skyrocketing health care costs.

We know that the writer expresses an explicit negative sentiment toward health care

costs because of skyrocketing. Since the event, curb, is a -effect on the theme, skyrocketing

health care costs, we can infer that the writer has positive sentiment toward the event

because it has a negative effect on the theme toward which the writer is negative. We can

also infer that the writer has positive sentiment toward the bill which is the agent of the

event. In this example, for opinion inferences, we have to know that curb is a -effect event

and the affected entity is skyrocketing health care costs. (Of course, we have to know that

skyrocketing is a negative term. Since there are several explicit sentiment analysis system

such as OpinionFinder [Akkaya et al., 2011] and Sentiment Treebank [Socher et al., 2013],

we can easily get this information.)

Thus, in this chapter, we present a pilot study to extract both +/-effect events and their

affected entities. That is, there are two tasks such as the +/-effect event detection, which

consists of two sub-tasks such as recognizing the span of +/-effect events and detecting the

polarity of these events, and the affected entity identification.
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For the +/-effect event detection, we already present that +/-effect events have sub-

stantial sense ambiguity (i.e. some words have mixtures of +effect, -effect, and Null) in

Section 4.2.2 and created the sense-level +/-effect event lexicon, called EffectWordNet,

in Chapter 6 and Chapter 7. Also, we investigated WSD for +/-effect events to utilize such

sense-level +/-effect lexicons in Chapter 8. Based on this information, we have to extract

+/-effect events in a given sentence, that is, first recognize a span of +/-effect events and

then detect the polarity of +/-effect events.

For the affected entity identification, as we mentioned in Section 4.2.4, the information

about which entities are affected is important since the sentiment toward an entity can be

different. While the affected entity is the theme in many cases, it is the agent or other entity

sometimes.

In the sentence (3), the given event, curb, is -effect on the theme (i.e., the affected entity

is the theme), and the writer’s sentiment toward the theme is negative. Thus, we know that

the writer has a positive sentiment toward the event, and the sentiment toward the agent is

positive.

However, consider the following example:

(7) Yay! John’s team lost the first game.

We know that the writer expresses an explicit positive sentiment toward the event because

of Yay!. The event, lost, has a negative effect on the agent, John’s team, since he fails to

win. That is, in this example, the affected entity is the agent, not the theme. We can infer

that the writer has negative sentiment toward the agent because the event, toward which

the writer is positive, has a negative effect on the agent.

Compared to the sentence (3), even though both are -effect events and the writer has a

positive sentiment toward these events, the sentiment toward the agent is different according

to what the affected entity is. As illustrated by these examples, it is important to know

which entities are affected by the event in opinion inferences. Thus, we have to identify

which entities are affected by the given events. At that time, we have to cover all cases of

affected entities, not only themes but also agents or other entities.
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These two tasks (i.e. the +/-effect event detection and the affected entity identification)

might be regarded as independent tasks, so they can be placed in a pipeline system such as

firstly extracting +/-effect events and then identifying their affected entities. [Deng et al.,

2014, Deng and Wiebe, 2015] include such approach. In [Deng et al., 2014], they simply

check the presence of +/-effect words in a word-level lexicon (not a sense-level lexicon) for

the +/-effect event detection, and they adopt the semantic role labeler and generate simple

rules to identify affected entities. In [Deng and Wiebe, 2015], they utilize EffectWordNet

to recognize the polarity of +/-effect events, and they also adopt the semantic role labeler

to identify affected entities. However, in these works, the span of +/-effect events is given.

As we mentioned, for the ultimate goal, we have to recognize the span of +/-effect events

automatically. In this dissertation, we present not only detecting the polarity of +/-effect

events but also recognizing the span of +/-effect events. That is, while the inputs of their

system are a sentence and a span of +/-effect events, the input of our system is only a

sentence. In addition, while they consider only theme as an affected entity, we cover all

cases of affected entities (i.e., not only a theme but also an agent or other entities). As we

mentioned, depending on +/-effect events and contexts, an affected entity can be different

(e.g., while the affected entity is the theme in the sentence (3), it is the agent in the sentence

(7)). Recall that the information about which entities are affected is important because the

sentiment toward an entity can differ.

We hypothesize that there are inter-dependencies between +/-effect events and their

affected entities. As we mentioned in Section 4.2.2, since words can have a mixture of

+effect, -effect and Null, it is important to grasp the meaning of the given word. So,

contexts, especially affected entities, are important information to detect +/-effect events.

For example, in the sentence (7), because the affected entity is John’s team, we can know the

meaning of lost is to fail to win which is a -effect event. On the other hand, to identify the

affected entity, +/-effect event information is also important. For instance, in the sentence

(3), the affected entity is health care costs, which is the theme of the event, curb. However, in

the sentence (7), since the event is lost, the affected entity is John’s team, which is the agent,

not the first game, which is the theme. Thus, detecting +/effect events and the affected

entities can be mutually beneficial.
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Therefore, we propose a joint model to extract both +/-effect events and their affected

entities. We adopt the structured perceptron suggested by [Collins, 2002] for a joint model.

Structured perceptron is a machine learning algorithm for structured prediction problems.

Since our input (i.e., a sentence) has structures and our output (i.e., +/-effect events and

their affected entities) also has structures such as sequences and trees, we hypothesize that

the approach for the structured prediction is appropriate for our task.

First, we explain our data for training and test in Section 9.1 and describe our evaluate

metrics in Section 9.2. Then, our task is defined in Section 9.3. Our joint model is explained

in Section 9.4 and features are described in Section 9.5. The experimental results are pre-

sented in Section 9.6, and related work is discussed in Section 9.7. Finally, our summary is

given in Section 9.8.

9.1 DATA

As we mentioned in Section 4.1.1, Deng et al. [Deng et al., 2013] presented an annotation

scheme for +/-effect events and for the sentiment of the writer toward their agents and

objects. Each event is representable as a triple of text spans, 〈agent, +/-effect event, object〉.

The agent should be a noun phrase or implicit when the given text doesn’t have the agent

information explicitly. The object also should a noun phrase. Another component is the

influencer, a word whose effect is to either retain or reverse the polarity of +/-effect event.

However, since our task is to extract +/-effect events and their affected entities, we ignore

the annotations related to influencers.

Based on this annotation scheme, +/-effect corpus is created. This corpus is based

on the arguing corpus [Conrad et al., 2012], which consists of 134 documents from blogs

and editorials about a controversial topic, the Affordable Care Act. We already present the

reliability of the annotation scheme through the agreement study in Section 4.1.1.
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We adopt +/-effect corpus as the training and test data. Based on the annotation scheme,

objects are affected entities of +/-effect events. In this corpus, 1,372 +/-effect events and

their arguments are annotated. Among them, 592 events are +effect and 780 events are

-effect.

9.2 EVALUATION METRICS

In this chapter, we calculate the accuracy, precision, recall, and f-measure to evaluate our

system such as Chapter 6. The accuracy is the degree of closeness of detected value to an

actual or correct value. It is calculated as follows:

Accuracy =
Number of correctly detected synsets

Number of all synsets in test data
(9.1)

However, with the accuracy, we cannot evaluate the performance for each label. For

example, if there is a predominant class, the base rate is close to the accuracy of predicting

the predominant class. In this case, even though the performances for other labels that are

not predominant labels are not good, the accuracy can be high. In our task, not only the

accuracy but also the performance for each label is important. Thus, to evaluate for each

label, we calculate precision, recall, and f-measure for all three labels.

The precision presents how many of detected instances are correct in each label. It is

also called as positive predictive value. The precision for a given label is calculated as:

Precisionlabel =
Number of correctly detected synsets as a given label

Number of all synsets detected as a given label
(9.2)
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On the other hand, the recall indicates how many of relevant instances for each label is

detected by the system. The recall is measured as follows:

Recalllabel =
Number of correctly detected synsets as a given label

Number of all synsets of a given label in test data
(9.3)

These two measures can be used together in the f-measure to provide a single measure-

ment such as:

F-measurelabel = 2 · Precisionlabel ·Recalllabel
Precisionlabel +Recalllabel

(9.4)

9.3 TASK DEFINITION

The task in this work is to recognize +/-effect events and their affected entities. For that,

there are two tasks such as:

• +/-Effect Event Detection: To recognize the span of +/-effect event instances and to

detect whether the detected event instances are used with +effect, -effect, or Null (i.e.,

neither).

• Affected Entity Identification: To identify affected entities of detected +/-effect

events.

Thus, given a sentence, our system should detect the span of +/-effect events with a

polarity (i.e., +/-effect) and identify their affected entities. That it, if the input is the

sentence (3), our system extracts curb as a -effect event and skyrocketing health care costs as

its affected entity.
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Specifically, the gold standard consists of triples of the form 〈e, p, a〉, where e is a +/-effect

event term, p is a polarity of the given event term, and a is an affected entity of the given

event. For instance, in the case of the sentence (3), The bill would curb skyrocketing health

care costs., the gold standard contains 〈curb, -effect, skyrocketing health care costs〉. As we

mentioned in Section 9.1, we adopt +/-effect corpus as the training and test data.

9.4 JOINT EXTRACTION USING STRUCTURED PERCEPTRON

We hypothesize that there are inter-dependencies between +/-effect events and their affected

entities. Thus, we suggest a joint extraction of +/-effect events and their affected entities

that co-occur in the same sentence.

In this work, we handle this problem as a structured prediction problem. Structured

prediction is similar with multiple classifications. While the output of the classification is a

single label, the output of structured prediction is a set of inter-related labels or structures.

Since outputs of our task (i.e., +/-effect events and their affected entities) are inter-related

labels, we assume that the structured prediction problem is appropriate for our task. Thus,

we adopt structured perceptron to jointly extract +/-effect events and their affected entities.

9.4.1 Representation

Let x = 〈E,A〉 denote the sentence instance, where E = {v1, v2, ..., vm} is the set of +/-effect

event candidates in the sentence and A = {a1, a2, ..., an} is the set of affected entity candi-

dates. In this work, we assume that +/-effect events are verbs and affected entities are noun

phrases (NPs). Thus, all verbs are regarded as candidates of +/-effect events, and all NPs

in a sentence are candidates of affected entities. To denote the output structure, we define

such as:
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+/-Effect Label
Entity Candidates

a1 ... an

v1 e1 r1,1 ... r1,n

... ... ... ... ...

vm em rm,1 ... rm,n

Table 23: The structure of inputs and outputs in our system. vi and aj are inputs and ei

and ri,j are outputs.

y = (e1, r1,1, .., r1,n, ..., em, rm,1, ..., rm,n) (9.5)

where ei represents the +/-effect polarity (i.e., +effect, -effect, or Null) for the event

candidate vi, and ri,j represents the affected entity label of the affected entity candidate aj

when the given event is vi. There are two possible affected entity labels: AffectedEntity and

None which means that the given candidate is not an affected entity. To better understand,

Table 23 shows the structure of inputs and outputs in our system.

For example, in the sentence, Improving care for seniors after they leave the hospital,

there are two verbs (i.e., improving and leave) and three NPs (i.e., care for seniors, they, and

the hospital). According to our assumption, all verbs are event candidates, and all NPs are

affected entity candidates. Among them, improving is a +effect event and its affected entity

is care for seniors. In this case, leave is Null since the meaning of leave in this sentence is

going away from a place. This type of event does not positively or negatively affects the

entity. Table 24 shows the representation of this example.
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+/-Effect Label
Entity Candidates

care for seniors they the hospital

improving +Effect AffectedEntity None None

leave Null None None None

Table 24: The representation of the sentence, Improving care for seniors after they leave

the hospital.

9.4.2 Structured Perceptron with Beam Search

Structured perceptron is an extension of linear perceptron to handle structured predictions

problems [Collins, 2002]. Given input x ∈ X, the prediction function of structured percep-

tron is such as:

ŷ = arg max
y∈Y (x)

w · Φ(x, y) (9.6)

where Y (x) denotes the label set, w is a parameter vector (weight vector), and Φ(x, y)

represents the feature vector for an instance x along with y. w · Φ(x, y) is the inner product

as follows:

ŷ = arg max
y∈Y (x)

∑
s

wsΦs(x, y) (9.7)

The learning task is to set the parameter vector w using the training data. The decoding

algorithm is a method for searching for the arg max in Equation 9.6.
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The perceptron learns the parameter vector w by online learning. The structured per-

ceptron iterates over training instances {x, y}. In each iteration, with the current parameter

vector w, the algorithm finds a prediction ŷ given the input x. If ŷ is incorrect, the parameter

vector is updated as follows:

w = w + Φ(x, y)− Φ(x, ŷ) (9.8)

In the standard perceptron, since it returns the most recent parameter vector, it might be

overfitting to the last few instances. To reduce this overfitting, we adopt averaged perceptron

that returns the average of all parameter vectors [Collins, 2002].

The important part in the structured perceptron is the decoding procedure, which

searches for the structure with the maximal score in structured inference. There are two

different categories for the decoding: exact search and inexact search. With the simple task,

exact search can be performed well. However, since we have to joint model for +/-effect

events and their affected entities, exact search is intractable. Thus, we adopt inexact search

suggested by [Collins and Roark, 2004]. They proposed the incremental perceptron, which

is a variant on the structured perceptron. Their idea is to replace the arg max with a beam

search algorithm to find the maximal score under the parameter model.

During beam search, if the partial output y′ ranks too low and falls out from the beam,

there is no possibility of output y being in the final set. To handle it,

[Collins and Roark, 2004] proposed an early update strategy, and [Huang et al., 2012] proved

its convergence. In each step of the beam search, when the prefix of an output falls out of

the beam, the top result in the beam is returned for an early update.

Algorithm 1 describes the learning algorithm for averaged structured perceptron with

beam search and early update. y[1:i] denotes the prefix of y with length i.
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Algorithm 1 Learning algorithm for averaged structured perceptron with beam search and

early update.

Input: Training data D, Number of iterations T

Output: Parameter vector w

Initialization: Set w = 0, wc = 0, c = 1

for t ∈ 1...T do

for (x, y) ∈ D do

ŷ ← beamSearch(x,y,w)

if ŷ 6= y then

w ← w + Φ(x, y[1:i])− Φ(x, ŷ)

wc ← wc + cΦ(x, y[1:i])− cΦ(x, ŷ)

end if

c← c+ 1

end for

end for

return w − wc/c
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9.4.3 Beam Search Decoder

As we mentioned, we have two sub-tasks: +/-effect event detection and affected entity

identification. Thus, to jointly detect +/-effect events and their affected entities, we adopt

the decoding algorithm with multiple beam search suggested by [Li et al., 2013].

They suggested the beam search decoding algorithm for joint event extraction that pre-

dicts the event triggers and arguments simultaneously. Their method is for ACE event

extraction task, so there are 33 event subtypes. However, in our case, we only have three

labels, +effect, -effect, and Null. Even though each event subtype may have distinguishing

features, our event labels are more broad concepts. Also, since the task is different, we need

the different features for +/-effect events. Features are explained in Section 9.5. Moreover,

their system has constraints about arguments according to the ACE annotation guideline.

For instance, the Attacker argument can only be one of PER, ORG, and GPE. However, we

don’t have any constraints for affected entities. We consider all noun phrases as candidates.

Algorithm 2 shows the decoding algorithm with multiple beam search for the joint

+/-effect event and affected entity extraction. There are two sub-steps:

• +/-Effect Event Labeling: We consider all possible +/-effect labels for the given

event candidate vi. In the algorithm, Append(b, l) means that label l is appended to the

end of b. That is, each label is appended to existing partial assignments in one of the

previous beams, and new assignment is generated. These assignments are saved in bufv.

Then, the top k results are selected to the beam B. To calculate a score, we use the

linear model defined in Equation 9.6.

• Affected Entity Labeling: In this step, we traverse all results in the beam B. If we

find the instance that +/-effect label is not Null (i.e., the label is +effect or -effect), the

algorithm labels each argument candidate and creates new assignments. These are saved

in bufa. After scoring, we select the k best results to the beam B.
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Algorithm 2 Beam search decoding algorithm for a joint +/-effect event and affected entity

extraction.
Input: Instance x = 〈E,A〉, Beam size K,

+/-Effect label set Le, Affected entity label set La

Output: Best ŷ for x

Initialization: Set empty beam B

for vi ∈ E do

bufv ← {Append(b, l)|b ∈ B, l ∈ Le}

B ← Bestk(bufv)

for aj ∈ A do

bufa ← ∅

for b ∈ B do

if bvi 6= Null then

bufa ← bufa ∪ {Append(b, l)|l ∈ La}

end if

end for

B ← Bestk(bufa)

end for

end for

return B[0]
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9.5 FEATURES

In this section, we describe several features used in our system. There are three feature types:

basic features, features for EffectWordNet, and features for relations between +/-effect

events and affected entities. The basic features in Section 9.5.1 indicate lexical and syntactic

features for both +/-effect events and affected entities. The features for EffectWord-

Net described in Section 9.5.2 are for only +/-effect event detection. Since the concept of

+/-effect events are too broad, it is difficult to detect +/-effect events with the small set of

training data. Thus, we utilize EffectWordNet. Section 9.5.3 is to represent lexical and

syntactic relations between +/-effect events and their affected entities. As we mentioned,

we hypothesize there are dependencies between them, so they can help each other. Thus, we

present several features for relations between them.

9.5.1 Basic Features

The basic features are related on both +/-effect events and affected entities. There are seven

basic features:

• Unigram of the current word.

• Lemma of the current word.

• Part-Of-Speech (POS) of the current word.

• Synonyms of the current word.

• Context words of the current word within 3 windows size.

• Dependent and governor words of the current word.

• Dependency types of the current word.
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The following is one example of unigram feature function for +/-effect event:

fb1(vi, yei) =

1 if vi = pass and yei = +Effect

0 otherwise

In this feature, if the text of vi is pass and the label of yei is +Effect, it is triggered.

To create the dependency parse and to get lemma and POS, we use the Stanford coreNLP

[Manning et al., 2014]. For synonyms, we utilize WordNet.

9.5.2 Features for EffectWordNet

For this work, we utilize EffectWordNet described in Chapter 6, not Enhanced Ef-

fectWordNet described in Chapter 7 since the joint extraction system automatically

extracts the affected entity. While Enhanced EffectWordNet considers only the case

that the affected entity is a theme or an agent, EffectWordNet can cover all cases (in-

cluding the case that the affected entity is an entity which is neither a theme nor an agent).

We utilize EffectWordNet in various ways. Let S be the set of all senses of the

current word. The score for each +/-effect label l is calculated such as:

Scorel(S) =
∑
sk∈S

EffectWN(sk, l) (9.9)

where

EffectWN(sk, l) =

1 if the lable ofsk is l

0 otherwise
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There are seven types of features for +/-effect events.

• Scorel(S) for each +/-effect label.

• Label that has the maximum score in Equation (9.5).

• Label of the detected sense by the word sense disambiguation system.

• Synsets of S.

• Whether the current word is monosemous (i.e., the current word has only one sense).

• Whether the current word has mixed +/-effect polarity.

• Whether the current word has Null sense.

9.5.3 Features for Relations between +/-Effect Events and Affected Entities

There are nine types of lexical or syntactic features for relations between +/-effect events

and affected entity.

• Lexical distance between +/-effect event and affected entity.

• Dependency path between +/-effect event and affected entity.

• Length of the path between +/-effect event and affected entity in dependency tree.

• Common root node of +/-effect event and affected entity.

• Whether it is the nearest affected entity from +/-effect event among candidates.

• Whether +/-effect event and affected entity are in the same clause.

• Whether affected entity is the subject of the +/-effect event.

• Whether affected entity is the object of the +/-effect event.

• Semantic role label of the affected entity of the +/-effect event.
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The following is one simple example feature for relations between a +/-effect event and

an affected entity:

fr1(vi, aj, yei , yri,j) =



1 if SRole(vi, aj) = A1,

yei = +Effect, and

yri,j = AffectedEntity

0 otherwise

In this feature, if the label of yei is +Effect, the label of yri,j is AffectedEntity, and

SRole(vi, aj), which indicates the semantic role of aj when the predicate is vi, is A1, it is

triggered.

For the semantic role labeler, we adopt SENNA1 semantic role labeling system

[Collobert et al., 2011].

9.6 EXPERIMENTS

In this section, we first describe baselines for comparison (Section 9.6.1). Then, we provide

our experimental results (Section 9.6.2).

9.6.1 Baseline System

Since our task is the first work for jointly recognizing the span of +/-effect events, detecting

the polarity of them, and identifying their affected entities, there is no existing system for a

comparison. Since our task is different from the one addressed by [Deng et al., 2014] (recall

1SENNA, http://ronan.collobert.com/senna/
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the span of +/-effect events is given in their system), we cannot compare our system with

their system. Also, since [Deng and Wiebe, 2015] performed entity-level sentiment analy-

sis and utilized +/-effect information to recognize implicit sentiments, they didn’t provide

any results related our task. Thus, as the baseline system, we adopt a pipeline method

with two different systems for each sub-task: +/-effect event detection and affected entity

identification.

As we mentioned, we created EffectWordNet, which is the sense-level +/-effect

lexicon. For +/-effect event detection, we utilize EffectWordNet. However, since it

is sense-level, we need Word Sense Disambiguation (WSD) to pinpoint the sense. Thus,

for +/-effect event detection, we first conduct WSD and assign +/-effect labels based on

EffectWordNet. For WSD system, we utilize WordNet::SenseRelate [Patwardhan et al.,

2005] which is an unsupervised approach. Since word senses are not annotated in the data

we use, we don’t have the training data for WSD. Thus, we adopt an unsupervised model.

For affected entity identification, we adopt SENNA semantic role labeling system

[Collobert et al., 2011]. Deng et al. [Deng et al., 2014] used the output of SENNA to

extract agent and theme candidates. We utilize their rules to detect the affected entity.

SENNA has two different labels related to the affected entity: A1 (object), and A2 (indirect

object). We consider A1 of the +/-effect event as the affected entity. If A1 is not labeled

but A2 is labeled, we consider A2 of the +/-effect event as the affected entity.

9.6.2 Experimental Results

For experiments, we set the number of iteration T to 50 and the beam size K to 5. We

conduct 10-fold cross validation with the given data.

Table 25 shows the results of +/-effect event detection of the baseline system and our

system. It gives accuracy, precision, recall, and f-measure for all three labels.

Our system shows higher accuracy and f-score than the baseline system. In general, the

performance is low. One of reasons is that because EffectWordNet is created automat-

ically, it can provide wrong information. Moreover, although our system assumes +/-effect
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events are verbs, a few annotated +/-effect events in the corpus are not verbs. For instance,

in a sentence, It is a moral obligation to end this indefensible neglect of hard-working Amer-

icans, neglect is annotated as a -effect event, but it is not a verb. Since our system considers

only verbs as +/-effect events, these cases cannot be detected by our system.

In addition, as we mentioned, we consider that all verbs are candidates of +/-effect

events, so we regard verbs that are not annotated in the corpus as Null. However, among

verbs that are not annotated in the corpus, some +/-effect events are missed by human

annotators. Thus, in our experiments, the recall of Null is too low and the precision of

+/-effect is also low (i.e., we consider verbs as Null since they are not annotated, but they

are detected as +effect or -effect in the system). If we consider only +/-effect (i.e., ignoring

Null cases), our system achieves the accuracy of 0.563 while the baseline system shows 0.480

accuracy value.

Baseline Our System

Accuracy 0.109 0.391

+Effect

Precision 0.130 0.354

Recall 0.334 0.250

F-measure 0.187 0.293

-Effect

Precision 0.373 0.439

Recall 0.403 0.671

F-measure 0.387 0.531

Null

Precision 1.000 0.207

Recall 0.007 0.102

F-measure 0.013 0.137

Table 25: Results of +/-Effect Event Detection.
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Table 26 shows the results of affected entity identification. It also gives accuracy, preci-

sion, recall and f-measure for all two labels. Since the baseline system provides one affected

entity according to rules, we only calculate accuracy. Our system outperforms the baseline

system. Since all candidates that are not annotated as affected entities are considered as

None, the number of None labels is larger than the number of AffectedEntity labels. Thus,

the precision of None is high while the precision of AffectedEntity is low. Because our task is

not a easy task, the overall performance is low. However, our evaluations show that a joint

model is promising for extracting +/-effect events and their affected entities.

Baseline Our System

Accuracy 0.242 0.427

AffectedEntity

Precision 0.198

Recall 0.684

F-measure 0.307

None

Precision 0.836

Recall 0.369

F-measure 0.511

Table 26: Results of Affected Entity Identification.

9.7 RELATED WORK

While our dissertation is the first research for +/-effect event detection and affected entity

identification, there are several works for event extraction.

The event extraction task is to extract events and their arguments. In NLP, the event

extraction task has received significant attention. Most research about event extraction has

been conducted with the Automatic Content Extraction (ACE) data [Doddington et al.,

145



2004]. In early work, researchers present a pipeline system that first extracts event triggers

and then identifies their arguments [Grishman et al., 2005, Ahn, 2006, Ji and Grishman,

2008, Liao and Grishman, 2010, Li et al., 2012].

Many researchers also focus on biomedical event extraction that extracts information of

molecular events from text. BioNLP shared tasks [Kim et al., 2009] is one of evaluation

tasks for biomedical event extraction. Such as ACE data, most works are adopted a pipeline

approach [Bui and Sloot, 2011, Le Minh et al., 2011].

There are several works for a joint model to extract event triggers and their arguments

simultaneously. [Poon and Vanderwende, 2010] uses Markov Logic for a joint inference

from biomedical data, and McClosky et al. [McClosky et al., 2011] utilizes the dependency

parsing for relations between a biomedical event and an argument. [Li et al., 2013] adopts a

structured perceptron to extract ACE event triggers and their argument jointly. [Araki and

Mitamura, 2015] also presents a structured perceptron for a joint event trigger identification

and event coreference resolution.

As we mentioned, our task is new. Even though there are several event detection systems

for ACE data and BioNLP shared tasks, these are incompatible with our task. In ACE data

and BioNLP shared tasks, each event has a specific definition, but the concept of +/-effect is

broader. In addition, we consider all noun phrases as affected entity candidates, not specific

types.

9.8 SUMMARY

In this chapter, we present a pilot study to jointly extract +/-effect events and their affected

entities.

The ultimate goal of the opinion inference system is to develop a fully automatic system

capable of recognizing inferred attitudes such as +/-effect events and affected entities. Also,

this information is necessary for not only opinion inferences but also connotation frames

introduced by [Rashkin et al., 2016].
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As we mentioned in Section 9.3, there are two tasks such as the +/-effect event detection,

which consists of two sub-tasks such as recognizing the span of +/-effect events and detecting

the polarity of these events, and the affected entity identification.

These two tasks might be regarded as independent tasks, so they can be placed in a

pipeline system such as firstly extracting +/-effect events and then identifying their affected

entities. However, in this dissertation, we hypothesize that there are inter-dependencies

between +/-effect events and their affected entities.

Therefore, we suggest a joint model to extract both +/-effect events and their affected

entities. Since our input (i.e., a sentence) has structures and our output (i.e., +/-effect events

and their affected entities) also has structures such as sequences and trees, we hypothesize

that the approach for the structured prediction is appropriate for our task. Thus, we adopt

the structured perceptron suggested by [Collins, 2002] for a joint model, as we mentioned

in Section 9.4. In Section 9.5, we describe several features used in our system such as basic

features, features for EffectWordNet, and features for relations between +/-effect events

and affected entities.

To our knowledge, this work is the first work to extract +/-effect events and their affected

entities jointly. In Section 9.6, the experiments show that our joint model is promising to

extract +/-effect events and their affected entities jointly.
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10.0 CONCLUSION AND FUTURE WORK

Past research in sentiment analysis has mainly addressed explicit sentiment expressions,

ignoring implicit opinions expressed via implicatures. Recently, Deng et al., [Deng et al.,

2013, Deng et al., 2014] introduce the opinion implicatures framework for inferring such im-

plicit expressions. A fully automatic implementation of the framework requires that +/-effect

event information should be recognized in a text. Thus, in this dissertation, we focus on

+/-effect event information for opinion inferences. As we mentioned, ours is the first NLP

research into developing a lexicon for events that have positive or negative effected on entities.

Due to significant sense ambiguity as we mentioned in Section 4.2.2, we need a sense-

level approach to acquire +/-effect lexicon knowledge. We first present the feasibility of

using WordNet for sense-level +/-effect lexicon acquisition with the bootstrapping method

in Chapter 5. Our goal of this work is that starting from the seed set we explore how +/-effect

events are organized in WordNet via semantic relations and expand the seed set based on

those semantic relations. Our evaluations show the WordNet is promising for expanding

sense-level +/-effect lexicons. Even though the seed set is completely independent from

the corpus, the expanded lexicons coverage of the corpus is not small. The accuracy of

the expanded lexicon is substantially higher. Also, the results of the agreement study are

positive, providing evidence that the annotation task is feasible and that the concept of

+/-effect gives us a natural coarse-grained grouping of senses.

Then, we address methods for creating a lexicon of +/-effect events with WordNet,

called EffectWordNet in Chapter 6. One of our goals is to develop the method that

applied to many verb synsets; and another goal is to build a lexicon with a small number of

seed data. Also, we want to investigate whether the +/-effect property tends to be shared

among semantically-related synsets. For that, we adopt a graph-based learning method

148



which is seeded by entries culled from FrameNet and then expanded by exploiting semantic

relations in WordNet. Through experiments, we show that WordNet relations are useful for

the polarity propagation in the graph model. Moreover, to maximize the effectiveness of

each type of information, we combine a graph-based method using WordNet relations and a

standard classifier using gloss information. A hybrid method gives the best results in +effect

and -effect labels although the performance for the Null label is dropped. In addition, we

present that the graph-based model is appropriate for WordNet relation information and the

classifier is proper for gloss information in our task. Further, we provide evidence that the

model is an effective way to guide manual annotation to find +/-effect words that are not

in the seed word-level lexicon. This is important, as the likelihood that a random WordNet

sense (and thus word) is +effect or -effect is not large.

Moreover, we present a graph-based method for constructing a sense-level +/-effect lex-

icon with consideration of affected entities called Enhanced EffectWordNet in Chap-

ter 7. As we mentioned, the information about which entities are affected is important since

the sentiment can be different in opinion inferences. Thus, we refine EffectWordNet

with consideration of affected entities. Our experiments show that considering the informa-

tion about which entities are affeced is helpful to construct more refined sense-level +/-effect

lexicon.

To extract +/-effect events with a constructed sense-level lexicon, we have to carry out

WSD. In this dissertation, we investigate a knowledge-based coarse-grained +/-effect WSD

approach, which identifies the +/-effect of a word sense based on its surrounding context. The

method we proposed relies on selectional preferences, and does not require any sense-tagged

training data. Selectional preferences are modeled using LDA. We use automatic clustering

based on the preference arguments, which is extracted from WordNet information, to create

a sense inventory customized to our task. Through several experiments on a test dataset

consisting of sense tagged data drawn from Senseval-3, we show that our method achieves

very good performance, with an overall accuracy of 0.83, which represents a significant

improvement over three competitive baselines. Moreover, we present the role of word sense

clustering. In our experiments, the variable sense grouping (i.e., allow more than one sense

group with the same label) outperforms the fixed sense grouping (i.e., one sense group for
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each label) and fine-grained WSD (i.e., no grouping). Since it can have purer sense groups

with the variable sense grouping, the topic model is able to better model the selectional

preferences and provide more accurate results. In addition, we show that good performance

can still be obtained using some automatic labels to fill out coverage.

Finally, we conduct a pilot study to jointly extract +/-effect events and their affected

entities. These two tasks might be regarded as independent tasks, so they can be placed in a

pipeline system such as firstly extracting +/-effect events and then identifying their affected

entities. However, in this dissertation, we hypothesize that there are inter-dependencies

between +/-effect events and their affected entities. Therefore, we propose a joint model

to extract +/-effect events and their affected entities. For a joint model, we adopt the

structured perceptron. The experiments show that our joint model is promising to extract

+/-effect evetns and their affected entities simultaneously. To our knowledge, this research

is the first work to extract +/-effect events and their affected entities jointly.

In all the evaluations, the accuracy of the lexicon construction is substantially high, but

there is still room for improvement, especially for the +/-effect events of the lexicon. We

believe that +/-effect judgments of word senses could be effectively crowd-sourced using a

service such as Amazon Mechanical Turk (AMT); [Akkaya et al., 2010], for example, effec-

tively used AMT for similar coarse-grained judgments. The idea would be to use automatic

expansion methods to create a sense-level lexicon, and then have AMT workers judge the

entries in which we have least confidence (e.g., +effect entries identified using the troponym

relation). This would be much more time- and cost-effective than having workers judge

senses randomly chosen from WordNet as a whole.

Moreover, since WordNet cannot cover all cases, corpus-based methods that have been

applied to develop sentiment and connotation lexicons can be used to identify candidate

words; annotating their senses could be crowd-sourced.

In addition, since this is the first work to extract +/-effect events and their affected

entities jointly, there are several avenues for future work. Since the corpus for +/-effect

events is not as large as other event corpora such as Automatic Content Extraction (ACE)

[Doddington et al., 2004], it is hard to get a good result in the supervised learning methods.

Thus, we need more annotated data containing implicit opinions based on the guideline

150



provided by Deng et al. [Deng et al., 2013]. Otherwise, we are interesting in adopting

semi-supervised or unsupervised learning methods.

Another future work is to figure out more prominent features for +/-effect events. Since

+/-effect events are broader concepts as we mentioned, it is difficult to detect them. As

in Choi et al. [Choi and Wiebe, 2014, Choi et al., 2014], WordNet hierarchy information

might be helpful. Also, it would be promising to utilize other resources such as FrameNet.

In addition, although we consider only verbs as +/-effect events, we need to include other

types of +/-effect events.
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