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A HYBRID DISCONTINUOUS GALERKIN-MONTE CARLO SIMULATOR

FOR FILTERED DENSITY FUNCTION

Shervin Sammak, PhD

University of Pittsburgh, 2016

A new computational scheme is developed for large eddy simulation (LES) of compressible

turbulent reacting flows via the filtered density function (FDF) subgrid scale closure. This

is a hybrid scheme, combining the discontinuous Galerkin (DG) Eulerian solver with a La-

grangian Monte Carlo FDF simulator. The methodology is shown to be suitable for LES,

as a larger portion of the resolved energy is captured as the order of spectral approximation

increases. Simulations are conducted of both incompressible and compressible flows. The

consistency and the overall performance of the DG-MC solver, and the realizability of the

simulated results are demonstrated via LES of a temporally developing mixing layer under

both non-reacting and reacting conditions. It is also shown that the scheme is capable of

accurate simulation of shock dominated flows.

Keywords: Large eddy simulation; filtered density function; Monte Carlo methods; reacting

flows; compressible turbulent flows.
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1.0 INTRODUCTION

The filtered density function (FDF) is now widely recognized as a viable tool for large eddy

simulation (LES) of turbulent flows [1–8]. It is also commonly believed that the Lagrangian

Monte Carlo (MC) methods provide the most convenient means of solving the transported

FDF equation [9, 10]. In MC, the physical domain is discretized in standard formats e.g.

finite difference (FD), finite volume (FV), finite element (FE) or others; and the FDF is

represented by an ensemble of particles. Each of these particles carry information pertaining

to the physical field. For stable simulations, the MC solver must be coupled with an Eulerian

base flow solver for the transport variables [11, 12]. The coupling must be done in such a

way that the overall accuracy of the solver is maintained. It is also desired that the influence

of the subgrid scale (SGS) quantities decrease with the increase of the resolution and/or the

order of accuracy of the discretization procedure.

FDF in its initial form, the marginal “scalar” FDF (S-FDF); provided the first demon-

stration of a “transported” FDF in reacting flows. The primary advantage of S-FDF over

conventional methods is that it accounts for the effects SGS chemical reactions in a closed

form [13–15]. This is the most elementary form of FDF when it was first introduced, and

has experienced widespread usage especially in combustion [16–25]. The most sophisticated

FDF closure available to-date is pressure-velocity-scalar filtered mass density function and

is due to Nouri et al. [26]. Some of the most noticeable contributions in FDF closure are in

its basic implementation [27–33], and fine-tuning of numerical scheme [12, 34–36]. Despite

its popularity, a major challenge associated with FDF is its implementation on higher order

schemes. In all previous contributions, FDF is implemented on FD and FV. One of the ad-

vantages of higher order schemes over FD and FV is that, they result in very low numerical

dissipation which is very desired (in fact essential) in LES.
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In this work, we develop a hybrid algorithm that is suitable for simulating unsteady

turbulent flows. For that, we use the discontinuous Galerkin (DG) method as the base flow

solver. This method combines the versatility of FV discretization with the accuracy of spec-

tral approximations and is shown here to be particularity suitable for coupling with the MC

simulator. DG uses a basis that is continuous within an element but discontinuous between

elements, and each element can have a different polynomial degree p for the solution and the

geometrical mapping. The novelty of the new LES solver is that it supports curved mixed-

element meshes, variable discretization order, and non-conforming mesh element refinement.

These features enable the flow solver to support combined h− p refinement which can result

in optimal solution accuracy for a given computational cost [37, 38]. Based on the close

to exponential convergence of p refinement, the procedure is much more efficient than the

conventional approach of refining the grid (reducing h) as is the typical practice in typical

Eulerian LES. These superior numerical efficiency of the DG method can be leveraged by

using higher order polynomials.

1.1 OBJECTIVE AND SCOPE

The first object of the present work is to assess the capability of the DG-MC solver for

LES of low Mach number flows. For that a three-dimensional temporally developing mixing

layer under both non-reacting and reacting conditions is considered. The consistency of

this solver is assessed by comparing the first two moments of the FDF with those obtained

by the DG solutions of the same moments’ transport equations. The overall predictive

capability of the simulator is established via comparisons with previous direct numerical

simulation (DNS) data [29, 30]. This is further demonstrated with comparing the profiles

of the subgrid, resolved and total variance for different polynomial degrees. In the reacting

case, the consistency of the FDF calculations and realizability of the simulated results are

investigated by considering the compositional structure of the flame in the mixture fraction

domain with relatively slow, moderate and relatively fast reaction rate.

The second objective of this work is to extend DG-MC to compressible flow simulations,

and to conduct accurate LES of shock dominated flows. This is accomplished by considera-
2



tion of the energy equation and modeling the unclosed terms in a fashion similar to that in

other scalars’ equations. The consistency and the accuracy of this procedure are established

by conducting LES of a compressible shear flow at different compressibility levels.

This dissertation is organized as follows. In Chapter 2, the hybrid DG-MC is developed

for LES of incompressible flow. The work described in this chapter has been presented at

APS-DFD and ICMIDS [39, 40]; and is published in Computer and Fluids [41]. In Chapter 3,

the hybrid methodology is extended for LES of for variable density and compressible flows.

This part of the work will be presented at AIAA-SciTech and APS-DFD [42, 43]. In Chapter

4, some final remarks are provided, along with some suggestions for future work. A part of

this dissertation was the subject of an invited talk at the CITech 2015 Conference, and was

subsequently published in an invited tutorial book chapter [44].
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2.0 DG-MC FOR LES OF INCOMPRESSIBLE FLOW

In the work described in this chapter, a new computational methodology, termed “discon-

tinuous Galerkin-Monte Carlo” (DG-MC), is developed for large eddy simulation (LES) of

turbulent combustion via the filtered density function (FDF). This is a hybrid methodology

which couples a Monte Carlo FDF simulator with a unstructured Eulerian LES solver. The

consistency of the hybrid solver, and the realizability of the generated results are demon-

strated via LES of a temporally developing mixing layer under both non-reacting and reacting

condition.

2.1 FORMULATION

We start with the basic transport equations of a chemically reactive flow, involving Ns

species. In this flow, the primary transport variables are the density ρ(x, t), the velocity

vector ui(x, t) (i = 1, 2, 3), the pressure p(x, t), the total specific enthalpy hs(x, t), and the

species mass fractions Yα(x, t) (α = 1, 2, . . . , Ns). The equations which govern the transport

of these variables in space (xi) (i = 1, 2, 3) and time (t) are the continuity, momentum,

conservation of enthalpy (energy) and species mass fraction equations, coupled with an

equation of state. Large eddy simulation involves the spatial filtering operation [45, 46]:

〈Q(x, t)〉` =

∫ +∞

−∞
Q(x′, t)G(x′,x)dx′, (2.1)

where G(x′,x) ≡ G (x′ − x) denotes a filter function, and 〈Q(x, t)〉` is the filtered value of

the transport variable Q(x, t). In variable-density flows it is convenient to use the Favré-
4



filtered quantity 〈Q(x, t)〉L = 〈ρQ〉` / 〈ρ〉`. We consider a positive, physically varying filter

function. We apply this function to the basic conservation transport equations:

∂ 〈ρ〉`
∂t

+
∂ 〈ρ〉` 〈uj〉L

∂xj
= 0, (2.2)

∂ 〈ρ〉` 〈ui〉L
∂t

+
∂ 〈ρ〉` 〈uj〉L 〈ui〉L

∂xj
= −∂ 〈p〉`

∂xi
+
∂ 〈τij〉`
∂xj

− ∂Σij

∂xj
, (2.3)

∂ 〈ρ〉` 〈φα〉L
∂t

+
∂ 〈ρ〉` 〈uj〉L 〈φα〉L

∂xj
= −

∂
〈
Jαj
〉
`

∂xj
−
∂Mα

j

∂xj
+ 〈ρSα〉` . (2.4)

Here, the viscous stress tensor and the scalar fluxes are represented by τij and Jαj , respec-

tively. The chemical reaction source terms Sα ≡ Sα (φ(x, t)) are functions of compositional

scalars (φ ≡ [φ1, φ2, . . . , φNs+1]) where φα ≡ Yα, α = 1, 2, ..., Ns, and φNs+1 denotes the en-

thalpy. Σij = 〈ρ〉`
(
〈uiuj〉L − 〈ui〉L 〈uj〉L

)
and Mα

j = 〈ρ〉`
(
〈ujφα〉L − 〈uj〉L 〈φα〉L

)
denote the

SGS stresses and the mass fluxes, respectively. For a Newtonian fluids obeying the Fick’s

law of diffusion and the Fourier’s law of heat conduction, we have:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, Jαj = −γ ∂φα

∂xj
, (2.5)

where µ is the fluid dynamic viscosity, γ = µ/Sc denotes the thermal and mass molecular

diffusivity coefficients for all the scalars, with Sc denoting the Schmidt/Lewis number. The

FDF is considered for transport of all of the scalar quantities, and is denoted by FL [8, 47]:

FL (ψ,x, t) =

∫ +∞

−∞
ρ(x′, t)ζ (ψ,φ(x′, t))G(x′ − x)dx′, (2.6)

where

ζ (ψ,φ(x, t)) =
σ∏

α=1

δ (ψα − φα(x, t)) . (2.7)

Here, δ denotes the Dirac delta function, and ψ represents the scalar array in the sample

space. The term ζ is the “fine-grained” density [48, 49], and Eq. (3.7) defines FDF as

the spatially filtered value of the fine-grained density. With the condition of a positive filter

5



kernel [50], FL has all the properties of a mass density function [49]. Defining the “conditional

filtered value” of Q(x, t) as

〈
Q
ψ〉

`
≡
∫ +∞
−∞ Q (x′, t) ρ(x′, t)ζ (ψ,φ(x′, t))G (x′ − x) dx′

FL (ψ,x, t)
, (2.8)

the FDF is governed by the exact transport equation [7]:

∂FL
∂t

+
∂[〈uj(x, t)|ψ〉` FL]

∂xj
= − ∂

∂ψα
[Sα(ψ)FL]

+
∂

∂ψα

[〈
1

ρ(φ)

∂Jαj
∂xj

∣∣∣∣ψ〉
`

FL

]
. (2.9)

This equation indicates that the effect of chemical reaction (the first term on RHS) appears

in a closed form. The unclosed nature of SGS convection and mixing is shown via the

conditional filtered values in the other two terms. For closure of these terms, we use a gradient

diffusion model for convection, and the linear mean square estimation (LMSE) model [13, 14]

for the molecular mixing. These are given in terms of the stochastic differential equations

(SDE’s) [45, 48]:

dX+
i (t) =

[
〈ui〉L +

1

〈ρ〉`
∂(γ + γt)

∂xi

]
dt+

√
2(γ + γt)/〈ρ〉` dWi(t), (2.10)

dφ+
α = −Ωm

(
φ+
α − 〈φα〉L

)
dt+ Sα(φ+)dt, (2.11)

where dWi is the Wiener-Levy process [51] and, X+
i and φ+

α are probabilistic representations

of the position and the scalar variables, respectively. In the model, Ωm = Cφ (γ + γt) / (〈ρ〉` ∆2)

is the SGS mixing frequency and Cφ = 4 is a model constant. The Fokker-Planck equation

corresponding to this model is [52]:

∂FL
∂t

+
∂[〈uj〉LFL]

∂xj
=

∂

∂xj

[
(γ + γt)

∂(FL/〈ρ〉`)
∂xj

]
+

∂

∂ψα
[Ωm(ψα − 〈φα〉L)FL]− ∂[SαFL]

∂ψα
.

(2.12)

Equation (3.13) represents the modeled FDF transport equation. This equation may be

integrated to obtain transport equations for the SGS moments. Since the FDF is involved

6



only for the scalar variable, all of the hydrodynamic SGS terms need to be modeled by other

means. For those, we employ the standard Smagorinsky model [53, 54]:

Σij −
2

3
〈ρ〉`Cν2∆

2S2δij = −2µt

(
〈Sij〉L −

1

3
〈Skk〉L δij

)
, Mα

j = −γt
∂ 〈φα〉L
∂xj

. (2.13)

The filtered strain rate tensor is 〈Sij〉L = 1
2

[
∂〈ui〉L
∂xj

+
∂〈uj〉L
∂xi

]
. With that, the SGS viscosity

is modeled by µt = 〈ρ〉` [Cν1∆]2S, where Cν1 = 0.2, Cν2 = 0.18, γt = µt/Sct, Sct = 1, S =√
2 〈Sij〉L 〈Sij〉L. The parameter ∆ denotes the characteristic filter size and is taken as

∆ = Kp × (∆x∆y∆z)
1
3 , where Kp estimated to be 1

2(p+1)
with p denoting the polynomial

order of approximation of the DG elements.

2.2 COUPLED DG-MC FDF SIMULATOR

The DG flow solver provides high-order approximations of the filtered transport equations

with the flexibility to deal with complex geometries. To implement this solver, the domain

is discretized into a number of structured or unstructured elements. Each of these elements

are mapped from the physical space to the computational space (x→ η). Within this space,

the transport variable are represented via spectral approximations. The eigenfunctions of

the appropriate Sturm-Liouville problem are used for this approximation. Here the Legendre

polynomials are employed in conjunction with Gauss quadrature points [55]. The number of

Gauss quadrature points is given by ngp = p+ 1.

Unlike FE schemes, DG methods are discontinuous at the element interfaces, which makes

them suitable for advection dominated problems. This property allows for flux calculation

via approximate Riemann solvers as done here.

The FDF is represented by an ensemble of MC particles, each with a set of scalars

φα
n(t) = φα

n(X(n)(t), t) and Lagrangian position vector X(n). This information is updated

via temporal integration of the SDEs. By doing so, the position of the MC particles are

updated due to convection and (random walk) diffusion; and their compositions are modified

due to mixing and chemical reaction.

7



(a) (b)

Figure 1: (a) Ensemble averaging on unstructured mesh. (1): hexahedral with ∆E = ∆. (2):

hexahedral with ∆E = ∆/2. (b) Schematic distribution of MC particles within a tetrahedral

cell. The solid circles denote the MC particles and the solid squares denote the quadrature

points.

The DG-MC simulator as developed in this way has several advantages over more conven-

tional methods (like FV, FD and FE). A significant advantage is that DG allows convergence

to the DNS limit via p-refinement. Based on the close to exponential convergence of this

refinement, the procedure is much more efficient than the conventional approaches of refining

the grid (reducing h) as is the typical practice. Another advantage is that the DG variables

can easily be evaluated at the MC particle’s locations since these variables are represented by

simple polynomials within each element. Hence, there is no loss of accuracy due to the use

of a lower order interpolation method as is typically used in conventional approximations.

Moreover, due to the high order polynomial approximation, the DG mesh elements are typ-

ically much larger than the cells in conventional discretizations. This implies that the FDF

particles will remain much longer within one element as compared to those in conventional

schemes, and thus the computational effort for the particle tracking algorithm is reduced

significantly.

The MC statistics are constructed by consideration of an ensemble of Np particles within

a hexahedral domain of size ∆E. This is illustrated in Fig. 2.2(a) for a domain discretized by
8



unstructured tetrahedral elements. For reliable statistics with minimal numerical dispersion,

it is desired to minimize the size of the ensemble domain and maximize the number of the

MC particles Np. To maximize the statistical accuracy with finite number of particles, a

variant of the basis function method is implemented [56].

Numerical solution of the SDEs (Eq. (3.11)) requires the input of the filtered velocity,

the diffusion coefficient and gradients of the scalars field at the particle locations. These

are provided by the DG solution, and subsequent evaluation at the particle locations. This

procedure is called projection. Figure 2.2(b) provides a schematic of a tetrahedral cell

showing its quadrature points with inclusion of the MC particle. Let 1, 2, 3, 4 denote the

quadrature points. An estimate of the scalar values at the particle location (φp) is obtained

by summing over all polynomial degrees in the linked element and taking into account the

Legendre basis functions:

φp =

ngp∑
j=1

φjLj(p), (2.14)

Similar to that observed in other hybrid approaches, with this coupled DG-MC algorithm,

several of the transport variables are calculated repeatedly [4]. This “redundancy” is very

important to establish consistency as will be demonstrated below.

2.3 RESULTS

Simulations are conducted on a three-dimensional, temporally developing mixing layer, sim-

ilar to those in previous DNS [29, 50]. The layer consists of two parallel streams traveling in

opposite directions with the same speed. In the representation below, x, y and z denote the

stream-wise, the cross-stream and the span-wise flow directions respectively (Fig. 12). The

velocity components in these directions are denoted by u, v and w. The filtered stream-wise

velocity is initialized with a hyperbolic tangent profile with 〈u〉L = 1 on the top stream and

〈u〉L = −1 on the bottom stream. All of the Reynolds-averaged values are time-dependent

and are determined by ensemble averaging over the homogeneous x − z planes. These are

denoted by an overbar.

9



Figure 2: Structured hexahedral mesh for the temporal mixing layer, and the distribution

of Monte-Carlo particles within the domain at an initial time. The particles are colored by

their scalar values.

The simulations are conducted on a cube box, 0 ≤ x ≤ L,−L/2 ≤ y ≤ L/2 and

0 ≤ z ≤ L. The box length L is specified such that L = 2npλu, where np is the de-

sired number of successive vortex pairings and λu is the wavelength of the most unsta-

ble mode corresponding to the mean stream-wise velocity profile imposed at the initial

time. The flow variables are normalized with respect to the half initial vorticity thick-

ness, Lr = [δv (t = 0) /2] ; δv = ∆U/|∂〈u〉/∂y|max, where 〈u〉 is the Reynolds averaged value

of the filtered stream-wise velocity and ∆U is the velocity difference across the layer. The

reference velocity is Ur = ∆U/2. The Reynolds number based on the reference velocity and

length scales is Re = 50. The formation of the large scale vortical structures are expedited

by harmonic forcing of the layer. This includes 2D and 3D perturbations with a random

phase shift between the 3D modes [50]. This results in the formation of two successive vortex

pairings and strong three dimensionality caused by growth of secondary instabilities.

Both non-reacting and reacting layers are considered. In the former, the trace of a passive

scalar φ is considered. This is again initialized as a hyperbolic tangent profile with 〈φ〉L = 1

and 0 on the top and bottom streams, respectively. In the reacting case, an irreversible,
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second-order reaction scheme of type A + νB → (ν + 1)P is considered. The reactant

conversion is governed by SA = −krAB, where kr is the reaction rate constant; and A, B

denote the mass fractions of the two reactants. In this case, the reactants are initialized such

that A ≡ φ (as described above), and B = 1−A. The stoichiometric coefficient is unity. The

temperature in both streams is kept constant at T = T∞, and the combustion exothermicity

(−∆H) is parameterized via the heat release parameter Q = −∆H
CpT∞

= 0.1, where Cp denotes

the specific heat value at constant pressure. The rate of reactant conversion is parameterized

by the Damköhler number, Da = krLr/Ur. Simulations are conducted with relatively slow

(Da = 10−2), moderate (Da = 1) and relatively fast (Da = 102) reactions.

To establish the consistency and convergence of the MC solver, the generalized first SGS

moment 〈φα〉L and the SGS variance τα ≡ τ(φα, φα) are considered. These moments are

obtained via integration of the modeled FDF transport equation (Eq. (3.13)), as given by:

∂(〈ρ〉` 〈φα〉L)

∂t
+
∂[〈ρ〉` 〈uj〉L〈φα〉L]

∂xj
=

∂

∂xj

[
(γ + γt)

∂(〈φα〉L)

∂xj

]
+ 〈ρ〉` 〈Sα〉L, (2.15)

∂(〈ρ〉` τα)

∂t
+
∂[〈ρ〉` 〈uj〉Lτα]

∂xj
=

∂

∂xj

[
(γ + γt)

∂τα
∂xj

]
+ 2(γ + γt)

[
∂(〈φα〉L)

∂xj

∂(〈φα〉L)

∂xj

]
− 2Ωm 〈ρ〉` τα + 2 〈ρ〉` (〈φαSα〉L − 〈φα〉L〈Sα〉L). (2.16)

These equations are identical to those which would be obtained by employing consistent

closures for the SGS fluxes and the dissipation from Eq. (3.4). In such a direct moment

formulation, however, the terms involving 〈Sα〉L require modeling.

The DG-MC FDF simulator is invoked in conjunction with Lax-Friedrichs [57], Roe [58]

and artificially upstream flux vector splitting scheme [59] for the advective fluxes, and a

symmetric interior penalty method [60, 61] for the diffusive fluxes. Temporal integration in

the DG calculations is via a 4th order Runge Kutta method [62]. The SDEs in the MC solver

are integrated via the Euler-Marruyamma approximation [9]. The computational domain is

discretized on equally spaced cells. These points are used for two purposes: (1) to identify the

regions where the statistical information from the MC simulations is obtained; (2) to assess

consistency of the coupled DG-MC solver (as described below). Simulations are conducted

on a structured hexahedral mesh with a total number of cells equal to 35, 937. The MC

11



(a) (b)

Figure 3: Contour plots of the filtered scalar field for p = 4 at t = 60. (a) FDF, (b) DG.
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Figure 4: Scatter plot of the filtered values as obtained by FDF vs. those obtained by DG

for p = 4 at t = 60. (a) filtered scalar, the correlation coefficient is 0.9991. (b) SGS variance,

the correlation coefficient is 0.9984.

particles are initially distributed somewhat uniformly throughout the domain. The initial

number of particles per cell is 40. Figure 12 shows the distribution of MC particles inside the

cube with the structured mesh at an initial time. The simulated results are analyzed both

instantaneously and statistically. In the former, the snap-shot contours and scatter plots of

the scalar variable are displayed. In the latter, the Reynolds averaged values are considered.

In the presentation below, τ(a, b) = 〈ab〉L−〈a〉L 〈b〉L denotes the SGS stresses. The resolved
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Figure 5: Cross-stream variation of the Reynolds averaged values for p = 2 and various

ensemble domain size. (a) filtered scalar field, (b) SGS scalar variance.

stresses are expressed by R(a, b) = 〈a〉L 〈b〉L−
(
〈a〉L

)(
〈b〉L

)
and the total stresses are given

by r(a, b) = (ab)− ab. Note that for a generic filter, r(a, b) = R(a, b) + τ(a, b).

The overall consistency of the simulator is best achieved by comparing the lower moments

as obtained from FDF with those simulated directly via DG on the same mesh. The chemical

source terms are evaluated solely via the MC and are then used in the DG solution of the

filtered scalar equations. In this way, the filtered scalar values are obtained via both DG

and MC. Figure 13 shows the instantaneous contour plots of filtered scalar (〈φα〉L) field

as computed via both DG and MC. This figure provides a visual demonstration of the

consistency of the FDF simulation as the MC results are in agreement with those via DG.

This is corroborated quantitatively by the scatter plots of the instantaneous filtered values

in Fig. 14.

Figure 15 shows the influence of ∆E in both filtered scalar (〈φα〉L) field and the SGS

variance τ(φ, φ). It is indicated that, the size of the ensemble domain does not have a signif-

icant influence on the Reynolds statistics of the first filtered moments. However, for the SGS

variance, the FDF and the DG solutions merge as the size of the ensemble domain decreases.

The best agreement is observed with a ensemble domain size ∆E = ∆/2. Hereinafter, unless

otherwise noted, statistics are generated with consideration of ∆E = ∆/2.
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Figure 6: Cross-stream variation of the Reynolds-averaged values of the filtered scalar field

for various degree of polynomial. (a) p = 2, (b) p = 3, (c) p = 4.

In Fig. 6 the first order moment from MC solver compared to those obtained by the DG

for various polynomial degrees. Since the accuracy of the DG procedure is well-established

(at least for the first-order filtered quantities), such a consistency assessment provides a

good means of assessing the performance of the MC solution. As shown (and somewhat

expected), the first filtered values are not significantly influenced by the larger values of

p. However, this is not the case for the variances as shown in Fig. 19. It is clear that

as the value of p increases, the amount of SGS energy decreases. This is in accord with

the expectation that with increased resolution, the influence of SGS scales becomes less

pronounced. This is further demonstrated in Fig. 20 in which the profiles of the resolved

variances are shown. Consistent with the philosophy of LES, as the solution becomes more
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Figure 7: Cross stream variation of the Reynolds averaged SGS scalar variance. The thick

solid line denotes the DG data and dashed line denotes the FDF data. (a) p = 2, (b) p = 3,

(c) p = 4.

accurate, a more significant portion of the energy is resolved. In all cases, the total energy

remains the same, as shown in Fig. 21. For all p values, the LES predictions are in close

agreements with DNS data. This is very encouraging as is indicates that regardless of the

portion of energy captured by the resolved field, the total energy is predicted well and there

is no contamination of the total field due to SGS modeling.

In the reacting case, the consistency of the FDF calculations and realizability of the

simulated results are investigated by considering the compositional structure of the flame

in the mixture fraction domain ξ [63]. As shown in Fig. 10, when chemistry is slow the

composition is close to that of pure mixing. On the opposite side of the spectrum, for very
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Figure 8: Cross-stream variation of the Reynolds-averaged values of the resolved scalar

variance for various polynomial degree at t = 60. (a) p = 2, (b) p = 3, (c) p = 4.

fast reactions, the composition is close to that of the infinitely fast reaction. For the moderate

chemistry, the compositional structure is similar to that of a distributed reaction zone. To

demonstrate accuracy, transport of two Shvab-Zeldovich variables [64] are also considered:

Z1 =
A− B

ν
+ B∞

ν

A∞ + B∞
ν

, (2.17)

where the subscript ∞ denotes the values at the free streams. Figure 11 demonstrates that

the conserved scalar and the mixture fraction are nearly perfectly correlated for Da = 102.

The results for the other two cases are, as expected, very similar and thus are not presented.
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Figure 9: Cross-stream variation of the Reynolds-averaged values of the total scalar variance

for various polynomial degree at t = 60. (a) p = 2, (b) p = 3, (c) p = 4.
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Figure 10: Scatter plots of the filtered composition variables versus the filtered mixture

fraction for (a) Da = 10−2, (b) Da = 1 and (c) Da = 102. The dashed lines denote pure

mixing and infinitely fast chemistry limits.

18



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

〈Z
2
〉 L

〈ξ〉
L

Figure 11: Scatter plot of Z2 vs. mixture fraction for Da = 102.

19



3.0 DG-MC FOR LES OF COMPRESSIBLE FLOW

In the work described in this chapter, the DG-MC methodology is extended for LES of com-

pressible turbulent flows. This is achieved by considering the energy equation and modeling

the unclosed terms in a fashion similar to that in the other scalars’ equations. The con-

sistency and the accuracy of this procedure are established by conducting LES of a three

dimensional, temporally evolving mixing layer involving the transport of a passive scalar.

Simulations are conducted at several compressibility levels.

3.1 FORMULATION

In a compressible reacting flows, the primary transport variables are the density ρ(x, t), the

velocity vector ui(x, t) (i = 1, 2, 3), the pressure p(x, t), the internal energy E(x, t), and

the species mass fractions Yα(x, t) (α = 1, 2, . . . , Ns). The conservation equations governing

these variables are the continuity; conservation of momentum, internal energy and species

mass fractions; along with an equation of state [65]. Large eddy simulation involves the use

of spatial filtering operation [45, 46, 66, 67]:

〈Q(x, t)〉` =

∫ +∞

−∞
Q(x′, t)G(x′,x)dx′, (3.1)

where G denotes a filter function, and 〈Q(x, t)〉` represents the filtered value of the transport

variable Q(x, t) is the filtered value of the transport variable Q(x, t). In variable-density flows

it is convenient to use the Favré-filtered quantity 〈Q(x, t)〉L = 〈ρQ〉` / 〈ρ〉`. We consider

a positive, spatially and temporally invariant filter functions, thus G(x′,x) ≡ G (x′ − x)
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with G(x) = G(−x) and
∫∞
−∞G(x)d(x) = 1. Applying the filtering operation to the basic

conservation transport equations fields [67]:

∂ 〈ρ〉`
∂t

+
∂ 〈ρ〉` 〈uj〉L

∂xj
= 0, (3.2)

∂ 〈ρ〉` 〈ui〉L
∂t

+
∂ 〈ρ〉` 〈uj〉L 〈ui〉L

∂xj
= −∂ 〈p〉`

∂xi
+
∂ 〈τij〉`
∂xj

− ∂Σij

∂xj
, (3.3)

∂ 〈ρ〉` 〈φα〉L
∂t

+
∂ 〈ρ〉` 〈uj〉L 〈φα〉L

∂xj
= −

∂
〈
Jαj
〉
`

∂xj
−
∂Mα

j

∂xj
+ 〈ρSα〉` , (3.4)

∂ 〈ρ〉` 〈E〉L
∂t

+
∂ 〈ρ〉` 〈uj〉L 〈E〉L

∂xj
= −

∂ 〈qj〉`
∂xj

−
∂ 〈p〉` 〈uj〉L

∂xj
+
∂ 〈ui〉L 〈τij〉`

∂xj

− ∂Ej
∂xj

+
∂Vj
∂xj
− ∂Tj
∂xj

. (3.5)

Here, the viscous stress tensor and the scalar fluxes are represented by τij and Jαj , re-

spectively. The chemical reaction source terms Sα ≡ Sα (φ(x, t)) are functions of com-

positional scalars (φ ≡ [φ1, φ2, . . . , φNs ]) where φα ≡ Yα, α = 1, 2, ..., Ns. The terms

Σij = 〈ρ〉`
(
〈uiuj〉L − 〈ui〉L 〈uj〉L

)
and Mα

j = 〈ρ〉`
(
〈ujφα〉L − 〈uj〉L 〈φα〉L

)
denote the SGS

stresses and the mass fluxes, respectively. The unclosed terms in internal energy equa-

tion are the SGS energy flux, Ej = 〈ρ〉`
(
〈ujE〉L − 〈uj〉L 〈E〉L

)
, SGS viscous dissipation,

Vj =
(
〈ujτij〉` − 〈uj〉L 〈τij〉`

)
, and SGS convected pressure, Tj =

(
〈ujp〉` − 〈uj〉L 〈p〉`

)
.

Assuming a Newtonian fluids with Fick’s law of diffusion and Fourier’s law of heat con-

duction, the viscous stress tensor τij, the mass flux Jαj , and the heat flux qj are represented

by:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
, Jαj = −γ ∂φα

∂xj
, qj = −λ ∂T

∂xj
, (3.6)

where µ is the fluid dynamic viscosity, T denotes the temperature field, λ is the thermal

conductivity and γ is the mass molecular diffusivity coefficient for all of the species. In

this formulation we assume using calorically prefect gas in which cv and cp, the specific

heat at constant volume and constant pressure are constants, and E = cvT holds. We
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assume γ = µ and λ = cvγ, i.e. unity Schmidt number (Sc = µ/γ = 1) and Lewis number

Le = µcp/λ = cp/cv.

The FDF denoted by FL, is formally defined as [47]:

FL (ψ,x, t) =

∫ +∞

−∞
ρ(x′, t)ζ (ψ,φ(x′, t))G(x′ − x)dx′, (3.7)

where

ζ (ψ,φ(x, t)) =
Ns∏
α=1

δ (ψα − φα(x, t)) . (3.8)

In this equation, δ denotes the Dirac delta function, and ψ represents the scalar array in

the sample space. The term ζ is the “fine-grained” density [48, 49]. Eq. (3.7) defines FDF

as the spatially filtered value of the fine-grained density. With the condition of a positive

filter kernel [50], FL has all the properties of a mass density function [49]. Defining the

“conditional filtered value” of Q(x, t) as

〈
Q
ψ〉

`
≡
∫ +∞
−∞ Q (x′, t) ρ(x′, t)ζ (ψ,φ(x′, t))G (x′ − x) dx′

FL (ψ,x, t)
, (3.9)

the FDF is governed by the exact transport equation [7]:

∂FL
∂t

+
∂[〈uj(x, t)|ψ〉` FL]

∂xj
= − ∂

∂ψα
[Sα(ψ)FL]

+
∂

∂ψα

[〈
1

ρ(φ)

∂Jαj
∂xj

∣∣∣∣ψ〉
`

FL

]
. (3.10)

This equation indicates that the effect of chemical reaction (the first term on RHS) appears

in a closed form. The unclosed nature of SGS convection and mixing is indicated by the

conditional filtered values in the other two terms. For closure of these terms, we use a gradient

diffusion model for convection, and the linear mean square estimation (LMSE) model [13, 14]

for the molecular mixing. These are given in terms of the stochastic differential equations

(SDE’s) [45, 48]:

dX+
i (t) =

[
〈ui〉L +

1

〈ρ〉`
∂(γ + γt)

∂xi

]
dt+

√
2(γ + γt)/〈ρ〉` dWi(t), (3.11)

dφ+
α = −Ωm

(
φ+
α − 〈φα〉L

)
dt+ Sα(φ+)dt. (3.12)

22



Here X+
i and φ+

α are probabilistic representations of the position and the scalar variables, re-

spectively. The term dWi is the Wiener-Levy process [51]. In the model, Ωm = Cφ (γ + γt) / (〈ρ〉` ∆2)

is the SGS mixing frequency and Cφ = 4 is a model constant. The Fokker-Planck equation

corresponding to this model is [52]:

∂FL
∂t

+
∂[〈uj〉LFL]

∂xj
=

∂

∂xj

[
(γ + γt)

∂(FL/〈ρ〉`)
∂xj

]
+

∂

∂ψα
[Ωm(ψα − 〈φα〉L)FL]− ∂[SαFL]

∂ψα
.

(3.13)

Equation (3.13) represents the modeled FDF transport equation. This equation may be inte-

grated to obtain transport equations for the SGS moments. The equation for the generalized

first SGS moment 〈φα〉L and the SGS variance τα ≡ τ(φα, φα) are:

∂(〈ρ〉` 〈φα〉L)

∂t
+
∂[〈ρ〉` 〈uj〉L〈φα〉L]

∂xj
=

∂

∂xj

[
(γ + γt)

∂(〈φα〉L)

∂xj

]
+ 〈ρ〉` 〈Sα〉L, (3.14)

∂(〈ρ〉` τα)

∂t
+
∂[〈ρ〉` 〈uj〉Lτα]

∂xj
=

∂

∂xj

[
(γ + γt)

∂τα
∂xj

]
+ 2(γ + γt)

[
∂(〈φα〉L)

∂xj

∂(〈φα〉L)

∂xj

]
(3.15)

−2Ωm 〈ρ〉` τα + 2 〈ρ〉` (〈φαSα〉L − 〈φα〉L〈Sα〉L).

These equations are identical to those which would be obtained by employing consistent

closures for the SGS fluxes and the dissipation from Eq. (3.4).

Since the FDF is involved only for the scalar variables, all of the hydrodynamic SGS

terms need to be modeled by other means. The SGS convected pressure, Tj, and viscous

dissipation, Vj, are neglected. For SGS convection, the standard Smagorinsky model [53, 54]

is used:

Σij −
2

3
〈ρ〉`Cν2∆

2S2δij = −2µt

(
〈Sij〉L −

1

3
〈Skk〉L δij

)
,

Mα
j = −γt

∂ 〈φα〉L
∂xj

, Ej = −cvγt
∂ 〈T 〉L
∂xj

. (3.16)

Here, Sij is the filtered strain rate tensor 〈Sij〉L = 1
2

[
∂〈ui〉L
∂xj

+
∂〈uj〉L
∂xi

]
. With that, the SGS

viscosity is modeled by µt = 〈ρ〉` [Cν1∆]2S, where Cν1 = 0.2, Cν2 = 0.18, γt = µt/Sct, Sct =
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1, S =
√

2 〈Sij〉L 〈Sij〉L. The parameter ∆ denotes the characteristic filter size and is taken

as ∆ = Kp × (∆x∆y∆z)
1
3 , where Kp estimated to be 1

2(p+1)
with p denoting the polynomial

order of approximation of the DG elements.

3.2 RESULTS

To demonstrate its effectiveness, the hybrid DG-MC solver is employed for LES of a three-

dimensional, temporally developing mixing layer, as considered in previous DNS [29, 50]. We

consider turbulent mixing of two adjacent streams of compressible fluid with different speeds.

This flow is considered in the contexts of low, moderate and relatively high compressibility

levels. In this configuration, x, y and z denote the stream-wise, the cross-stream and the

span-wise flow directions, respectively (Fig. 12). The velocity components in these directions

are denoted by u, v and w, respectively. The flow is periodic in the stream-wise and span-

wise directions. Both the filtered stream-wise velocity and passive scalar fields are initialised

with hyperbolic tangent profiles, where 〈u〉L = 1, 〈φ〉L = 1 on the top stream and 〈u〉L = −1,

〈φ〉L = 0 on the bottom stream. All of the Reynolds-averaged values are time-dependent

and are determined by ensemble averaging over the homogeneous x − z planes. These are

denoted by an overbar.

The length L is specified such that L = 2npλu, where np is the desired number of suc-

cessive vortex pairings and λu is the wavelength of the most unstable mode corresponding

to the mean stream-wise velocity profile imposed at the initial time. The flow variables

are normalized with respect to the half initial vorticity thickness, Lr = [δv (t = 0) /2] ; δv =

∆U/|∂〈u〉/∂y|max, where 〈u〉 is the Reynolds averaged value of the filtered stream-wise veloc-

ity and ∆U is the velocity difference across the layer. The reference velocity is Ur = ∆U/2.

The Reynolds number (Re = ρUrLr

µ
) is equal to 50 and the Mach number (Ma = Ur

ar
) are 0.2,

0.6 and 1.2. Here ar is the reference speed of sound based on the reference temperature.

Simulations are conducted on a cube box, 0 ≤ x ≤ L,−L/2 ≤ y ≤ L/2 and 0 ≤ z ≤ L.

The 3D field is parametrized in a procedure similar to paper by Vreman et al. [50]. The

formation of the large scale vortical structures are expedited by harmonic forcing of the
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layer. In order to initiate turbulence, both 2D and 3D perturbations are added with a

random phase shift between the 3D modes [50, 68, 69]. At low compressibility levels, this

results in the formation of two successive vortex pairings and strong three dimensionality

caused by growth of secondary instabilities.

Figure 12: Structured hexahedral mesh and distribution of Monte-Carlo particles within the

domain at the initial time. The particles are colored by their scalar values.

The DG-MC FDF simulator is invoked in conjunction with Lax-Friedrichs [57], Roe [58]

and artificially upstream flux vector splitting scheme [59] for the advective fluxes, and a

symmetric interior penalty method [60, 61] for the diffusive fluxes. Temporal integration in

the DG calculations is via a 4th order Runge Kutta method [62]. The SDEs in the MC solver

are integrated via the Euler-Marruyamma approximation [9]. The computational domain is

discretized on equally spaced cells. These points are used for two purposes: (1) to identify the

regions where the statistical information from the MC simulations is obtained; (2) to assess

consistency of the coupled DG-MC solver (as described below). Simulations are conducted

on a structured hexahedral mesh with a total number of cells equal to 35, 937. The MC

particles are initially distributed somewhat uniformly throughout the domain. Due to flow

periodicity in the stream-wise and span-wise directions, particles that leave the domain at

one of these boundaries are replaced by new particles introduced at the opposite boundary
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(a) (b)

Figure 13: Contour plots of the filtered scalar field for p = 4 and M = 0.2 at t = 60. (a)

FDF, (b) DG.
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Figure 14: Scatter plot of the filtered values as obtained by FDF vs. those obtained by DG

for p = 4 and M = 1.2 at t = 80. (a) filtered scalar, the correlation coefficient is 0.9981. (b)

filtered density, the correlation coefficient is 0.9871.

with the same velocity and scalar values. Figure 12 shows the distribution of MC particles

inside the cube with the structured mesh at an initial time.
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Figure 15: Cross-stream variation of the Reynolds averaged values for p = 2, M = 0.2 and

various ensemble domain size. (a) filtered scalar field, (b) SGS scalar variance.

The simulated results are analyzed both instantaneously and statistically. In the for-

mer, the snap-shot contours and scatter plots of the scalar variable are displayed. In the

latter, the Reynolds averaged values are considered. In the presentation below, τ(a, b) =

〈ab〉L − 〈a〉L 〈b〉L denotes the SGS stresses. The resolved stresses are expressed by R(a, b) =

〈a〉L 〈b〉L −
(
〈a〉L

)(
〈b〉L

)
and the total stresses are given by r(a, b) = (ab)− ab. Note that

for a generic filter, r(a, b) = R(a, b) + τ(a, b).

The overall consistency of the simulator is best achieved by comparing the lower moments

as obtained from FDF with those simulated directly via DG on the same mesh. Figure 13

shows the instantaneous contour plots of filtered scalar (〈φα〉L) field as computed via both

DG and MC. The layer displays strong three-dimensionality, primary vortex roll-up in the

span-wise plane, and secondary instabilities in the stream-wise plane. These instabilities

are followed by a transition to small-scale turbulence, resulting in a complicated disordered

flow, although the roller structures can still be discerned. This figure provides a visual

demonstration of the consistency of the FDF simulation as the MC results are in agreement

with those via DG. The overall consistency of the conserved scalar and density first moments

is further demonstrated in the scatter plots shown in Fig. 14.
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A sensitivity analysis is performed to assess the effect of two ensemble sizes on the

results. Figure 15 shows the influence of ∆E in both filtered scalar (〈φα〉L) field and the

SGS variance τ(φ, φ). It is indicated that, the size of the ensemble domain does not have

a significant influence on the Reynolds statistics of the first filtered moments. However, as

expected, when the ensemble size is decreased, the FDF results converge to the DG results.

The best agreement is observed with a ensemble domain size ∆E = ∆/2. Hereinafter, unless

otherwise noted, statistics are generated with consideration of ∆E = ∆/2.

For Ma = 0.2 the most unstable mode is two-dimensional. If the Mach number is

higher, the primary instability is three-dimensional. For the supersonic case (Ma = 1.2) a

pair of opposite oblique modes, becomes most unstable and the primary instability is 3D.

For Ma = 1.2, shock-waves form on top of the vortices [66, 70–72]. Instantaneous contour

plots of the filtered Mach number obtained via the use of 〈u〉L and 〈T 〉L displayed in Fig. 16.

This figure also shows the ability of both the DG and MC schemes to capture the shocklets.

These results are particularly encouraging as they demonstrate that the hybrid DG-MC

solver is capable of conducting LES of shock-dominated flows. Figure 17 demonstrates that

the filtered density evaluated from the MC particles matches well with that via DG. The

particle number density exhibits some oscillations due to statistical errors associated with a

finite sample of particles. Figure 18 shows the temporal evolution of the vorticity thickness

for different Mach numbers. The growth rate of the most amplified disturbance in the flow

is clearly damped with increasing Mach number.

The SGS and the resolved variances for three different Mach numbers are presented in

Figs. 19-20. It is observed that the ratio of subgrid scale variance to that resolved is less than

15%. In all cases, the total energy remains somewhat constant, as shown in Fig. 21. For

Ma = 0.2, the total second moment compared well with DNS results and for Ma = 0.6 and

1.2 is consistently calculated via both MC and DG solvers. Consistent with previous DNS

results [72], the magnitude of the total stresses decreases as the Mach number increases.

28



(a) (b)

Figure 16: Contour plots of the filtered Mach number for the case with Ma = 1.2 at t = 80.

(a) FDF, (b) DG.
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Figure 17: Cross-stream variation of the filtered density at t = 80. (a) Ma = 0.2, (b)

Ma = 0.6 and (c) Ma = 1.2.
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Figure 18: Vorticity thickness vs. time.
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Figure 19: Cross stream variation of the Reynolds averaged SGS scalar variance at t = 80.

(a) Ma = 0.2, (b) Ma = 0.6, (c) Ma = 1.2.
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Figure 20: Cross-stream variation of the Reynolds-averaged values of the resolved scalar

variance at t = 80. (a) Ma = 0.2, (b) Ma = 0.6, (c) Ma = 1.2.
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Figure 21: Cross-stream variation of the Reynolds-averaged values of the total scalar vari-

ance at t = 80. (a) Ma = 0.2, (b) Ma = 0.6, (c) Ma = 1.2.
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4.0 CONCLUSION

In this dissertation, the state of the art in turbulent combustion simulation and modeling is

advanced. This is done by the merger of a high-order Eulerian discontinuous Galerkin (DG)

discretization with a Lagrangian Monte Carlo (MC) solution of the filtered density function

(FDF). This merger provide a novel tool for conducting large eddy simulation (LES) of

turbulent reacting flows.

In Chapter 2, the methodology is developed and implemented for LES of low speed

flows. A three-dimensional temporally developing mixing layer is considered under both

non-reacting and reacting conditions. The consistency of the methodology is assessed by

comparing the first two moments of the FDF with those obtained by the DG solutions of

the same moments’ transport equations. The overall predictive capability of the simulator

is established via comparisons with previous direct numerical simulation (DNS) data. In

Chapter 3, the methodology is extended for LES of high speed compressible flows. In addition

to the assessments made in the low speed case, it is shown that the scheme is capable of

accurately simulating shock dominated flows.

The properties of the DG-MC simulator can be summarized as follows:

1. The DG method combines the versatility of finite volume discretization with the accuracy

of spectral approximations, and is particularly effective when utilized in conjunction with

Lagrangian methods.

2. The DG solver supports curved mixed-element meshes, variable discretization order,

and non-conforming mesh element refinement. Therefore, it supports combined h − p

refinement which results in an optimal solution accuracy for a given computational cost.

3. The DG-MC is capable of conducting accurate LES of shock dominated flows.
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4. Even at low p values, when the resolved energy is significantly reduced, the total energy

is captured accurately. This feature is particularly attractive when the prediction of the

total energies/stresses are of primary concern.

5. The dense kernels of the high-order DG discretization enable superior scalability on

massively parallel computer architectures [37]. The solver is designed to scale to very

large cases, and simulations involving several billion degrees of freedom are within reach.

6. The superior numerical efficiency and scalability of the DG method can be leveraged by

using large polynomial approximation orders p ∼ 4 − 6. Such large polynomial orders

result in very low numerical dissipation [73] which is very desired (in fact essential) in

LES.

7. A significant advantage of the proposed methodology is that it will allow us to reach to

DNS limit via p-refinement. Based on the close to exponential convergence of this refine-

ment, the procedure is much more efficient than the conventional approach of refining

the grid (reducing h) as is the practice in typical Eulerian LES.

8. A particular advantage of the approach is that the DG variables can easily be evaluated

at the MC particle locations since these variables are represented by simple polynomials

on each element. Hence, there is no loss of accuracy due to the use of a lower order

interpolation method as is used in conventional approximations.

9. Due to the high order polynomial approximation, the DG mesh elements are typically

much larger than the cells in FD or FV discretizations. This implies that the FDF

particles will remain much longer in one element as compared to that in conventional

approaches, and thus the computational effort for the particle tracking algorithm will be

reduced significantly.

The success of the DG-MC FDF simulator as demonstrated here warrants its further

extension and applications for LES of complex turbulent combustion problems.
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