

Enhanced Brainstem Cerebral Blood Flow Accompanies Symptoms of Anhedonia in Young Adults

BACKGROUND

- Midbrain monoaminergic projections including dorsal raphe nucleus (DRN), locus coeruleus (LC)¹, and ventral tegmental area (VTA) are of crucial theoretical significance for mood disorders
- Learned helplessness associated with enhanced metabolic activity in the midbrain (dorsal raphe) of rodents²
- However, little human neuroimaging evidence supports involvement of monoaminergic projections in illness severity prediction
- Present study: Arterial Spin Labelling (ASL) measure of cerebral blood flow (CBF) within whole brain during period of rest in distressed and healthy young adults varying on anxiety/anhedonia dimensions

METHODS

Participants

36 distressed (DS) and 34 healthy controls (HC) **Resting State Acquisition**

Participants told to relax and watch fixation cross for six minutes

Neural Measures

- Blood flow was measured via multiband pseudo continuous ASL sequence
- Regional cerebral perfusion data was collected with 25 slices, multiband factor=5, 4mm slice thickness, FA=90, 64x64 resolution FOV=192x912, TR/TE=3.5s/19ms, labeling time=1.5s and postlabeling delay=1.7s.
- Data was processed using Statistical Parametric Mapping (SPM)

Μ

Simona Graur, Henry W. Chase, Tae Kim, Richelle Stiffler, Tsafrir Greenberg, Haris Aslam, Jeanette C. Lockovich, Genna Bebko, Mary L. Phillips Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA

METHODS

Clinical Measures

Anhedonia measured via : Mood and Anxiety Symptom Questionnaire Anhedonic Depression Scale (MASQ-ADS) and Snaith–Hamilton Pleasure Scale (SHAPS) as a secondary measure Anxiety measured via: Mood and Anxiety Symptom Questionnaire General Distress Anxious Symptoms Scale (MASQ GD-A)

Demographics	DS	HC	Statistics		
Age (years)	22.2 <u>+</u> 2.1	21.5 <u>+</u> 1.8	T<1		
Sex (M/F)	9/27	15/19	X ² =2.84, p=0.092		
SES	5.3 <u>+</u> 1.1	5.5 <u>+</u> 1.1	T<1		
Clinical Measures					

MASQ-AD	75.6 <u>+</u> 16.6	50.3 <u>+</u> 9.1	t(68)=-7.9; p<.001
SHAPS	27.8 <u>+</u> 7.8	18.9 <u>+</u> 5.2	t(68)=-6.7; p<.001
1ASQ GD-A	28.0 + 10.1	13.5 + 2.1	t(68)=-8.2; p<.001

Mean <u>+</u> SD (Range) or Proportion

RESULTS

Anhedonia (MASQ-ADS)

Association between anhedonia and midbrain CBF, with increasing endorsement of anhedonic symptoms predicting enhanced CBF

Figures 1 and 2 show regions positively correlating with individual differences in anhedonia (threshold uncorrected p<0.001).

Peak voxels within the midbrain located bilaterally (left: T=5.24, p_FWE=.033, x=-12, y=-34, z=-26; right: T=4.96, p_FWE=.080, x=9, y=-34, z=-23).

RESULTS

- symptoms of distress.
- reward system³.

Future Directions

- midbrain structures
- link with animal work

- 229: 95-103.
- 27(8): 719–731.

Acknowledgments: the present work was supported by NIMH grant MH100041 "Reward, pathophysiologic dimensions and psychological distress in young adults" (PI: Mary Phillips, MD)

CONCLUSION

Anhedonia associated with altered CBF in the midbrain in a young adult population showing heterogeneous

Anhedonia associated with increased CBF in midbrain, possibly the LC¹

If key region is in fact LC, current findings link noradrenergic projections and

anhedonia in humans, consistent with prior experimental studies of the effect of noradrenergic agents on the human

ASL promising tool to examine enhanced local perfusion, potentially reflecting underlying midbrain serotonergic activity Learned helplessness studies in rodents show similar findings², but has thus far been difficult to investigate in humans. Limitations

Better resolution is needed to differentiate between relatively small

No behavioral measure of anhedonia to

REFERENCES

Viviani R, Graf H, Wiegers M, Abler B. Effects of amisulpride on human resting cerebral perfusion. Psychopharmacology 2013;

Christianson JP, Paul ED, Irani M, et al. The role of prior stressor controllability and the dorsal raphe nucleus in sucrose preference and social exploration. Behavioral brain research. 2008;193: 87-93. 3. Pringle A, McCabe C, Cowen PJ, Harmer CJ. Antidepressant treatment and emotional processing: can we dissociate the roles of serotonin and noradrenaline. Journal of psychopharmacology. 2013;