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Abstract
After the first reported case of Zika virus in Brazil, in 2015, a significant increase
in the reported cases of microcephaly was observed. Microcephaly is a
neurological condition in which the infant’s head is significantly smaller with
complications in brain development. Recently, two small membrane-associated
interferon-inducible transmembrane proteins (IFITM1 and IFITM3) have been
shown to repress members of the flaviviridae family which includes the Zika
virus. However, the exact mechanisms leading to the inhibition of the virus are
yet unknown. Here, we assembled an interactome of IFITM1 and IFITM3 with
known protein-protein interactions (PPIs) collected from publicly available
databases and novel PPIs predicted using High-confidence Protein-Protein
Interaction Prediction (HiPPIP) model. We analyzed the functional and pathway
associations of the interacting proteins, and found that there are several
immunity pathways (interferon signaling, cd28 signaling in T-helper cells
crosstalk between dendritic cells and natural killer cells), neuronal pathways
(axonal guidance signaling, neural tube closure and actin cytoskeleton
signaling) and developmental pathways that are associated with these
interactors. These results could help direct future research in elucidating the
mechanisms underlying the viral immunity to Zika virus and other flaviviruses.

 
This article is included in the Zika & Arbovirus

 channel.Outbreaks

 Madhavi K. Ganapathiraju ( )Corresponding author: madhavi@pitt.edu
 Ganapathiraju MK. How to cite this article: Predicted protein interactions of IFITMs which inhibit Zika virus infection [version 1;

  2016, :1919 (doi: )referees: 1 approved] F1000Research 5 10.12688/f1000research.9364.1
 © 2016 Ganapathiraju MK. This is an open access article distributed under the terms of the ,Copyright: Creative Commons Attribution Licence

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
 This work is funded by Biobehavioral Research Awards for Innovative New Scientists (BRAINS) grant (R01MH094564) fromGrant information:

National Institute of Mental Health of National Institutes of Health of USA. 
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 05 Aug 2016, :1919 (doi: ) First published: 5 10.12688/f1000research.9364.1

 Referee Status:

 Invited Referees

 version 1
published
05 Aug 2016

1

report

 05 Aug 2016, :1919 (doi: )First published: 5 10.12688/f1000research.9364.1
 05 Aug 2016, :1919 (doi: )Latest published: 5 10.12688/f1000research.9364.1

v1

Page 1 of 7

F1000Research 2016, 5:1919 Last updated: 18 AUG 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/78482991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://f1000research.com/articles/5-1919/v1
http://f1000research.com/articles/5-1919/v1
http://f1000research.com/channels/arbovirus
http://f1000research.com/channels/arbovirus
http://f1000research.com/channels/arbovirus
http://dx.doi.org/10.12688/f1000research.9364.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.9364.1
http://f1000research.com/articles/5-1919/v1
http://dx.doi.org/10.12688/f1000research.9364.1
http://dx.doi.org/10.12688/f1000research.9364.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.9364.1&domain=pdf&date_stamp=2016-08-05


Introduction
The Zika virus (ZIKV) is a flavivirus that was initially isolated 
from rhesus monkeys in 1947 and was first reported in humans in 
19521. Until recently, reports of this virus had been limited to Africa 
and Asia2 but currently there is an ongoing, wide-spread Zika 
epidemic3. The virus has rapidly spread across the Americas and 
has been declared a ‘global emergency’ by the World Health 
Organization4. It is mostly transmitted by mosquitoes and clini-
cal manifestations include rash, mild fever, arthralgia, conjunc-
tivitis, myalgia, and headaches. In addition, it has been reported 
recently that the virus can be transmitted sexually, with the risk of  
infection persisting for several months after initial contact5. Earlier,  
the symptoms of ZIKV had been reported to be mild1, but, the 
virus has been recently linked to two more serious afflictions:  
Guillen-Barré syndrome6,7 and microcephaly8–12, both of which are 
serious neurological conditions. Microcephaly results in reduced 
head circumference measurement in infants, exhibiting complica-
tions in brain development. Of particular concern is the attribu-
tion of microcephaly to infection with ZIKV occurring between 
the first two trimesters of pregnancy11,12. Evidence linking ZIKV 
to microcephaly includes detection of ZIKV RNA in tissue such 
as the placenta and amniotic fluid of pregnant women with ZIKV, 
as well as in the brains of stillborn infants with microcephaly13. In 
a study with human induced pluripotency stem cells, the mecha-
nism of ZIKV related cell death has been elucidated. This study 
demonstrated that ZIKV infects human embryonic cortical neural 
progenitor cells (hNPCs), ultimately leading to attenuated popu-
lation growth mediated by virally induced caspase-3-mediated  
apoptosis and cell-cycle dysregulation14. Mice studies showed that 
ZIKV infection can lead to nerve degeneration, softening of the 
brain and porencephaly15.

Very recently, two small membrane-associated interferon- 
inducible transmembrane proteins (IFITMs) IFITM1 and IFITM3 
were discovered to have a protective role against the Zika virus  
infection by inhibiting replication of the virus and preventing 
cell death induced by Zika virus5. IFITMs were shown to have an 
inhibitory role against other flaviviruses also, such as West Nile 
and dengue virus. Type 1 interferon (IFN) signaling inhibits Zika  
virus pathogenesis. Prior to induction of IFN-stimulated genes, 
IFITMs may provide initial defense against the infection5.  
However, since the exact mechanism of IFITM1 and IFITM3  
mediated restriction are yet unknown, computational methods  
could accelerate research by presenting testable hypotheses.

In our earlier work, we developed a computational model called 
‘High-confidence Protein-Protein Interaction Prediction’ (HiPPIP) 
model that identifies novel protein-protein interactions (PPIs) in the 
human interactome16, motivated by the fact that PPIs prove to be 
valuable in understanding the function of a gene, and specifically in 
how it plays a role in causing or preventing disease. One example 
of the impact of these computational predictions is the PPI that we 
predicted between OASL and RIG-I16, which was validated to be a 
true PPI through co-immunoprecipitation16,17. This led to the formu-
lation of a hypothesis about its significance and led to the discovery 
of its functional relevance, namely that upon viral infection, OASL 
triggers the immune system by activating the RIG-I pathway, thus 
inhibiting virus replication18. functional studies initiated solely by 
this predicted PPI showed that human OASL binds to dsRNA to 

enhance RIG-I signaling, and that boosting OASL can help inhibit 
viral infection18. In this work, we applied HiPPIP model to discover 
novel PPIs of IFITM1 and IFITM3, to potentially accelerate the 
discovery of the mechanism by which they inhibit ZIKV and other 
viral infections.

Methods
PPIs were assembled by collecting known PPIs from the Human 
Protein Reference Database (HPRD)19 and Biological General 
Repository for Interaction Datasets (BioGRID)20, and by com-
puting novel PPIs using the HiPPIP model that we developed16. 
Computationally discovered PPIs have been shown to be highly  
accurate by computational evaluations and experimental vali-
dations of a few PPIs16. Interactome figures were created using  
Cytoscape21. Pathways associated with proteins in the interactome 
were collected using Ingenuity Pathway Analysis® suite (www.
ingenuity.com). Gene Ontology terms enriched among the interact-
ing partners (including the candidate genes IFITM1 and IFITM3) 
were computed using the BiNGO plugin of Cytoscape22.

Results and discussion
We assembled the PPIs of IFITM1 and IFITM3 (Figure 1) by 
computing novel PPIs using HiPPIP model and collecting known 
PPIs from publicly available databases, Human Protein Reference 
Database (HPRD) and Biological General Repository for  
Interaction Dataset (BioGRID)23,24. We found that both proteins 
have known PPIs with proteins involved in immunity, and several 
novel (predicted) PPIs with proteins that seem to have relevant func-
tions. DEAF1 is involved in neural tube closure, embryonic skeletal 
development and anatomic structure morphogenesis, and other func-
tions. FNDC3B was found to be associated with heart rate, height 
and corneal structure through genome-wide association studies. It 
is a membrane protein, and, while its own functions are unknown, 
its interactors are involved in regulation of glial cell apoptotic proc-
ess, regulation of ion transport (sodium, potassium, calcium) and 
several cardiac processes. SPTA1 is involved in neural functions 
of actin filament organization, neurite outgrowth and axon guid-
ance. RASSF7 is localized to microtubule organizing center. While 
its function is unknown, it interacts with proteins that are involved 
in cell proliferation in brain, regulation of neuroblast proliferation, 
nervous system development, synaptic vesicle fusion to presynaptic 
membrane, and viral budding and assembly. TSSC4 interacts with 
both IFITM1 and IFITM3. TSSC4’s functions are unknown but its 

Figure 1. Protein-protein interactions (PPIs) of IFITM1 and 
IFITM3: Known PPIs were assembled from HPRD and BioGRID 
databases and novel PPIs were predicted using HiPPIP model. 
Novel interactors of IFITM1 and IFITM3 are shown as red colored 
nodes while previously known interactors are shown as light blue 
colored nodes.
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own interactions suggest that it may be involved in viral penetration 
into host nucleus, protein import into nucleus and immune response 
signaling, among other processes. TLR7 is involved in several  
functions and pathways related to innate immunity. ARPC1B is 
part of actin related protein 2/3 complex; its interactions suggest 
that it may be involved in neuronal development such as axono-
gensis and development, neuron differentiation, nervous system  
development, and immune related terms such as innate immune 

response, regulation of immune response, etc. These functional 
annotations are sourced from Schizo-Pi16,25; for example, see:  
http://severus.dbmi.pitt.edu/schizo-pi/index.php/gene/view/10522.

Pathways associated with IFITM interactome computed with  
Ingenuity Pathway Analysis Suite® are given in Table 1. Gene 
Ontology biological process terms associated with the interactome, 
compiled with BiNGO22 are shown in Figure 2 and Table 2.

Table 1. Pathways associated with IFITMs and their interactor. Pathway associations were computed 
with Ingenuity Pathway Analysis Suite ®. Novel interactors are shown in bold.

Gene Associated pathways

AGTR2 Gαi Signaling 
Renin-Angiotensin Signaling

ARPC1B Axonal Guidance Signaling 
Signaling by Rho Family GTPases 
Actin Cytoskeleton Signaling 
Integrin Signaling 
Clathrin-mediated Endocytosis Signaling 
Ephrin Receptor Signaling 
RhoGDI Signaling 
Cdc42 Signaling 
Epithelial Adherens Junction Signaling 
RhoA Signaling 
CD28 Signaling in T Helper Cells 
fMLP Signaling in Neutrophils 
Rac Signaling 
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes 
Regulation of Actin-based Motility by Rho 
Remodeling of Epithelial Adherens Junctions 
Actin Nucleation by ARP-WASP Complex

CD81,CR2 PI3K Signaling in B Lymphocytes

CR2 IL-8 Signaling 
NF-κB Activation by Viruses 
Complement System

GLP1R Gαs Signaling 
GPCR-Mediated Integration of Enteroendocrine Signaling Exemplified by an L Cell

GLP1R 
AGTR2 

G-Protein Coupled Receptor Signaling 
cAMP-mediated signaling

IFITM3, IFITM1 Interferon Signaling

NME5 Salvage Pathways of Pyrimidine Ribonucleotides 
Pyrimidine Ribonucleotides De Novo Biosynthesis 
Pyrimidine Ribonucleotides Interconversion 
Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I

SPTA1 Sertoli Cell-Sertoli Cell Junction Signaling

TLR7 Role of Macrophages 
Fibroblasts and Endothelial Cells in Rheumatoid Arthritis 
Colorectal Cancer Metastasis Signaling 
Systemic Lupus Erythematosus Signaling 
NF-κB Signaling 
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 
phagosome formation 
Communication between Innate and Adaptive Immune Cells 
Crosstalk between Dendritic Cells and Natural Killer Cells 
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis 
TREM1 Signaling 
Toll-like Receptor Signaling

UIMC1 Role of BRCA1 in DNA Damage Response
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Figure 2. Gene Ontology terms enriched in the interactome of IFTIM1 and IFTIM3. Yellow color signifies statistically significant enrichments. 
Novel interactors that are associated with the GO terms are shown in red and known interactors in blue. See Table 1 for a complete list of 
terms associated with the genes.

Table 2. Gene Ontology Biological Process terms associated with 
interactors. Novel interactors are shown in bold.

Interactor Gene Ontology Terms

AGTR2 Angiotensin receptor activity 
Angiotensin type ii receptor activity 
Receptor antagonist activity 
Receptor inhibitor activity 
Glucagon receptor activity 
Peptide receptor activity, G-protein coupled 
Peptide receptor activity 
Receptor signaling protein activity

ARPC1B Structural constituent of cytoskeleton

CR2 Complement receptor activity 
Complement binding

GLP1R Glucagon receptor activity 
Peptide receptor activity, g-protein coupled 
Peptide receptor activity

NME5 Nucleoside diphosphate kinase activity

SPTA1 Structural constituent of cytoskeleton

TLR7 Sirna binding

UIMC1 K63-linked polyubiquitin binding 
Polyubiquitin binding

VKORC1 Oxidoreductase activity, acting on the CH-OH group of 
donors, disulfide as acceptor 
Vitamin-K-epoxide reductase (warfarin-sensitive) activity 
Vitamin-K-epoxide reductase (warfarin-insensitive) activity
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There is only one study that presents altered gene expression under 
ZIKV infection available in Gene Expression Omnibus14. The study 
with eight samples (four infected and four control samples) showed 
that the infection of human neural progenitor cells (hNPCs) with 
the virus caused increased cell death and cell-cycle dysregulation14. 
We examined whether any of the interacting genes were differ-
entially expressed in that study and found five genes that were 
differentially expressed with a small fold-change but with signifi-
cant p-value (< 0.005) (Table 2): CD81, NME5, and RASSF7 were 
found to be under-expressed and FNDC3B and UIMC1 were found 
to be over-expressed (Table 3).

Other resources
See http://severus.dbmi.pitt.edu/schizo-pi for annotations of indi-
vidual proteins that are compiled from various databases. Also 
see the following link to our LENS webserver, where we present 
annotations of all the genes in the IFITM1-IFITM3 interac-

tome and also annotations of proteins that further interact with 
interactors (i.e. 2nd level connectors of IFITMs). Under each tab, 
‘candidate genes’ refers to IFITMs and their interactors shown in 
Figure 1 of the paper, while entire interactome includes all of their 
interactors. Note that the database behind LENS does not include 
novel protein-protein interactions; therefore, they are not shown as 
edges in the network diagram. The sources of the pathways and 
disease associations shown on this website are given in 25,26.

http://severus.dbmi.pitt.edu/LENS/index.php/results/view/
57649c2516f9a/admin_57649c251737d
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Table 3. Interacting genes that are differentially-
expressed under Zika virus infection, along 
with fold-change and significant p-values.

Interactor Log2 Fold Change p-value

FNDC3B 0.92 0.00005

NME5 -1.55 0.00005

RASSF7 -0.46 0.00215

UIMC1 0.73 0.00005

CD81 -0.28 0.00325
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The title, abstract and article overall are well written and clear. The design, methods and analysis are
mostly well described, although some detail could be added. In particular, given that the IFITM
interactome contains a large number of previously unknown PPI’s, it would be useful to give a little more
detail on the methodology on how these predictions were obtained, rather than just stating that HiPPIP
was used. In particular, it would be useful to understand what cut-off was used and a brief mentioning of
the prediction methodology in general. An estimate of false positive and false negative errors for the
prediction in Figure 1 would be particularly helpful.
 
In the analysis, the legend for Figure 2 needs expansion. It is not clear what the edges signify and in
particular what is the meaning of directionality in the arrows.
 
I object to the wording used on page 2 “which was validated to be a true PPI”, as any PPI evidence is
debatable. I would reword to “which was experimentally validated”.
 
I also object to the wording used on page 2 “Computationally discovered PPIs have been shown to be
highly accurate”. Such a blanket statement is clearly not true, as there are many predictions out there that
are highly inaccurate. A more specific example needs to be provided here.
 
A minor suggestion is to replace “HiPPIP model” with “the HiPPIP model”.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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